Advanced search


Full Text:


In recent years, the Government of the Russian Federation considerably increased attention to the exploitation of the Russian Arctic territories. Simultaneously, the evaluation of snow avalanches danger was enhanced with the aim to decrease fatalities and reduce economic losses. However, it turned out that solely reporting the degree of avalanche danger is not sufficient. Instead, quantitative information on probabilistic parameters of natural hazards, the characteristics of their effects on the environment and possibly resulting losses is increasingly needed. Such information allows for the estimation of risk, including risk related to snow avalanches. Here, snow avalanche risk is quantified for the Khibiny Mountains, one of the most industrialized parts of the Russian Arctic: Major parts of the territory have an acceptable degree of individual snow avalanche risk (<1×10-6). The territories with an admissible (10-4–10-6) or unacceptable (>1×10-4) degree of individual snow avalanche risk (0.5 and 2% of the total area) correspond to the Southeast of the Khibiny Mountains where settlements and mining industries are situated. Moreover, due to an increase in winter tourism, some traffic infrastructure is located in valleys with an admissible or unacceptable degree of individual snow avalanches risk.

About the Authors

Aleksandr Shnyparkov

Russian Federation
Head of the Laboratory of snow avalanches and debris flows, Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia; Leninskie gory 1, 119991

Sven Fuchs

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna, Austria; Peter-Jordan-Strasse 82, A–1190

Sergey Sokratov

Russian Federation
Senior research scientist, Laboratory of snow avalanches and debris flows, Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia; Leninskie gory 1, 119991

Peter Koltermann

Russian Federation
Head of the Laboratory of Natural Risk Assessment, Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia; Leninskie gory 1, 119991

Yury Seliverstov

Russian Federation
Research scientist, Laboratory of snow avalanches and debris flows, Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia; Leninskie gory 1, 119991

Marina Vikulina

Russian Federation
Research scientist, Khibiny educational and scientific base, Faculty of Geography, Lomonosov Moscow State University, Kirovsk, Russia; Zheleznodorozhnaya 10, 184250


1. Adams, J. (1995). Risk. London: Routledge. 228 p.

2. Akkuratov, V.N. (1972). Snow avalanches in the Khibiny Mountains. Cand. Sci. thesis.

3. Kirovsk: Moscow State University. 124 p. (in Russian).

4. Al’gin, A.P. (1989). Risk and its role in social life. Moscow: Mysl’. 192 p.

5. Beck, U. (1992) From industrial society to the risk society: Questions of survival, social

6. structure and ecological enlightenment. Theory, Culture & Society, 9 (1), p. 97–123.

7. Blagoveshchensky, V.P. (1991). Determination of avalanche loads. Alma-Ata: Gylym. 116 p.

8. Bollinger, D., Buri, H., della Valle, G., Hegg, C., Keusen, H.R., Kienholz, H., Krummenacher, B.,

9. Mani, P., Roth, H. (2000). Gefahrenhinweiskarte des Kantons Bern 1:25000. Internationales

10. Symposion Interpraevent, Villach.

11. Bratus’, S.N. (1976). Legal liability and legality: outline of theory. Moscow: Yuridicheskaya

12. literatura. 214 p.

13. Bykov, A.A., Murzin, N.V. (1997). Problems in analysis of the safety of humans, society and

14. Nature. Sankt-Petersburg: Nauka. 247 p.

15. Cullen, A., Small, M. (2004). Uncertain risk: The role and limits of quantitative assessment.

16. Risk analysis and society: An interdisciplinary characterization of the field. T. McDaniels,

17. M. Small, Eds. Cambridge: Cambridge University Press, p. 163–214.

18. Cutter, S. (2001). The changing nature of risks and hazards. American hazardscapes. S. Cutter,

19. Ed. Washington: Joseph Henry Press, p. 1–12.

20. Dombrowsky, W. (2002) Fluβhochwasser – ein Störfall der Vernunft? Gaia, 11 (4),

21. p. 310–311.

22. Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., Savage, W. (2008) Guidelines for landslide

23. susceptibility, hazard and risk zoning for land-use planning. Engineering Geology,

24. (3–4), p. 85–98.

25. Fischhoff, B., Slovic, P., Lichtenstein, S. (1982) Lay foibles and expert fables in judgments

26. about risk. The American Statistician, 36 (3, Part 2), pp. 240–255.

27. Fischhoff, B. (1995) Risk perception and communication unplugged: Twenty years of process.

28. Risk Analysis, 15 (2), p. 137–145.

29. Freeman, P., Kunreuther, H. (2003). Managing environmental risk through insurance.

30. International Yearbook of Environmental and Resource Economics 2003/04. H. Folmer,

31. T. Tietenberg, Eds. Cheltenham: Edward Elgar, p. 159–189.

32. Freudenburg, W. (1988) Perceived risk, real risk: Social science and the art of probabilistic

33. risk assessment. Science, 242 (4875), p. 44–49.

34. Fuchs, S., Keiler, M., Zischg, A. (2001). Risikoanalyse Oberes Suldental (Vinschgau). Konzepte

35. und Methoden für die Erstellung eines Gefahrenhinweis-Informationssystems (Innsbrucker

36. Geographische Studien, 31). Innsbruck: Universität Innsbruck. 182 p.

37. Fuchs, S., Bründl, M., Stötter, H. (2004). Development of avalanche risk between 1950 and

38. in the municipality of Davos, Switzerland. Natural Hazards and Earth System Sciences,

39. (2), p. 263–275.

40. Fuchs, S., McAlpin, M. C. (2005) The net benefit of public expenditures on avalanche

41. defence structures in the municipality of Davos, Switzerland. Natural Hazards and Earth

42. System Sciences, 5 (3), p. 319–330.

43. Fuchs, S., Heiss, K., Hübl, J. (2007) Towards an empirical vulnerability function for use in debris

44. flow risk assessment. Natural Hazards and Earth System Sciences, 7 (5), p. 495–506.

45. Fuchs, S., Kaitna, R., Scheidl, C., Hübl, J. (2008) The application of the risk concept to debris

46. flow hazards. Geomechanics and Tunnelling, 1 (2), p. 120–129.

47. Fuchs, S. (2009) Susceptibility versus resilience to mountain hazards in Austria – Paradigms

48. of vulnerability revisited. Natural Hazards and Earth System Sciences, 9 (2), p. 337–352.

49. Holub, M., Fuchs, S. (2009) Mitigating mountain hazards in Austria – Legislation, risk transfer,

50. and awareness building. Natural Hazards and Earth System Sciences, 9 (2), p. 523–537.

51. Kates, R., Kasperson, J. (1983) Comparative risk analysis of technological hazards (a review).

52. Proceedings National Academy of Science USA, 80 (22), p. 7027–7038.

53. Keiler, M., Fuchs, S., Zischg, A., Stötter, J. (2004). The adaptation of technical risk analysis on

54. natural hazards on a regional scale. Geomorphologische und hydrologische Naturgefahren

55. in Mitteleuropa (Zeitschrift für Geomorphologie, Supplementbände, 135). M. Becht, B.

56. Damm, Eds. Berlin, Stuttgart: Gebrüder Borntraeger, p. 95–110.

57. Kienholz, H. (1994) Naturgefahren – Naturrisiken im Gebirge. Schweizerische Zeitschrift für

58. Forstwesen, 145 (1), p. 1–25.

59. Kienholz, H., Krummenacher, B. (1995). Symbolbaukasten zur Kartierung der Phänomene

60. (Mitteilungen des Bundesamtes für Wasserwirtschaft, 6). Bern: Bundesamt für Wasserwirtschaft,

61. Bundesamt für Umwelt, Wald und Landschaft. 60 p.

62. Kienholz, H., Krummenacher, B., Kipfer, A., Perret, S. (2004) Aspects of integral risk management

63. in practice – Considerations with respect to mountain hazards in Switzerland.

64. Österreichische Wasser- und Abfallwirtschaft, 56 (3–4), p. 43–50.

65. Kontsevaya, V.V., Sokolov, V.M., Freidlin, V.S. (1989). Study of the snow accumulation at various

66. relief forms in the Khibiny Mountains. Proceedings of the 3-rd all-Union conference

67. on avalanches. Leningrad: Gidrometeoizdat, p. 232–240.

68. Kotlyakov, V.M., Ed. (1997). World atlas of snow and ice resources. Moscow: IG RAN, NPP

69. “Kartografiya”, 392 + 263 + 270 p.

70. Kovalev, E.E., Ivanov, V.I., Pakhomov, B.Y., Ivanova, A.A. (1991) New techniques and problems

71. of the human safety. Problems of Philosophy, (5), p. 49–59.

72. Mazzorana, B., Fuchs, S. (2010) Fuzzy Formative Scenario Analysis for woody material transport

73. related risks in mountain torrents. Environmental Modelling & Software, 25 (10), p. 1208–1224.

74. Mokrov, E.G. (2000) Climatic specifics of the Khibiny Mountais as a factor affecting the

75. effecivity of technological solutions. Mining Journal, (3), p. 17–19 (in Russian).

76. Molotkov, N.M. (1992). Risk of natural hazards in mountaineering. Survey mapping

77. of Natural dangers and Natural hazards. Moscow: Moscow State University, p. 221–232.

78. Myagkov, S.M., Kanaev, L.A., Eds. (1992). Geography of avalanches. Moscow: MSU, 332 p.

79. Myagkov, S.M. (1995a) [Problem of the ethno-cultural differences in the attitude to risk.

80. Problems of safety in emergency situations, (12), pp. 23–32.

81. Myagkov, S.M. (1995b). Geography of Natural risk. Moscow: Moscow State University. 224 p.

82. Myagkov, S.M., Porfir’ev, B.N., Lesnykh, V.V., Shnyparkov, A.L. (2003). Perception of Natural

83. risks and front-end relationships. Natural disasters in Russia. Assessment and management

84. of Natural risks. Moscow: Kruk, p. 258–263.

85. Myagkov, S.M., Shnyparkov, A.L. (2004). The concept of risk. Natural-Anthropogenic Processes

86. and Environmental Risk. (Geography, society and environment, N.S. Kasimov, Ed.

87. Moscow: Gorodets, p. 265–274.

88. Oigenzikht, V.A. (1984) Will and risk. Jurisprudence, (4), p. 41–46.

89. Osipov, V.I. et. al., Eds. (1999). Security of Russia. Legal, social-economoc and scientifictechnological

90. aspects. Regional problems of security with risk of occurrence of Natural

91. and technogenic catastrophes accounted for. Moscow: Znanie, 672 p.

92. Porfir’ev, B.N. (1991). The problems of safety at emergency situations. Management in

93. emergency situations: the problems of theory and practice. The outcome of science and

94. technology, Moscow: VINITI. 204 p.

95. Ragozin, A.L. (1995). Recent state and perspectives of the estimation and of administration

96. of the Natural risks in construction. Analysis and estimation of the Natural and technogenic

97. risk in construction. Moscow: PNIIIS, pp. 9–25.

98. Renn, O. (2008a) Concepts of risk: An interdisciplinary review – part 2: Integrative approaches.

99. Gaia, 17 (2), p. 196–204.

100. Renn, O. (2008b) Concepts of risk: An interdisciplinary review – part 1: Disciplinary risk

101. concepts. Gaia, 17 (1), p. 50–66.

102. Schneider, J., Ed. (1991). Risiko und Sicherheit technischer Systeme. Auf der Suche nach

103. neuen Ansätzen. (Monte Verità: proceedings of the Centro Stefano Franscini. Basel:

104. Birkhäuser, 289 p.

105. Schuster, R., Ed. (1978). Landslides. Analysis and control. Washington: National Academy

106. Press, 234 p.

107. Schwarz, R. (1996). Ökonomische Ansätze zur Risikoproblematik. Risikoforschung zwischen

108. Disziplinarität und Interdisziplinarität. G. Banse, Ed. Berlin: Edition Sigma, p. 125–131.

109. Seliverstov, Y., Glazovskaya, T., Shnyparkov, A., Vilchek, Y., Sergeeva, K., Martynov, A. (2008)

110. Assessment and mapping of snow avalanche risk in Russia. Annals of Glaciology, 49,

111. p. 205–209.

112. Seliverstov, Y.G. (1992). The methodology of calculation of the economic loss due to avalanches

113. obstructions at the motorroads (with Kirgizia as an example). Survey mapping of

114. Natural dangers and Natural hazards. Moscow: Moscow State University, pp. 233–242.

115. Shnyparkov, A., Ed. (2004). Snow avalanches, debris flows and risk assessment. Moscow:

116. Geograficheskii fakul’tet MGU, 203 p.

117. Short, J.F. Jr. (1984) The social fabric at risk: Toward the social transformation of risk analysis.

118. American Sociological Review, 49 (6), p. 711–725.

119. Slovic, P., Fischhoff, B., Lichtenstein, S. (1982) Why study risk perception? Risk Analysis, 2 (2),

120. p. 83–93.

121. Slovic, P. (1987) Perception of risk. Science, 236 (4799), p. 280–285.

122. Starr, C. (1969) Social benefit versus technological risk. Science, 165 (3899), p. 1232–1238.

123. Vashchalova, T.V., Myagkov, S.M., Shnyparkov, A.L. (1997). The problem of people attitude

124. to Natural and other risk. Abstracts of the presentations at the International conference

125. “Analysis and estimation of the Natural risks in construction”. Moscow, pp. 143.

126. Vikulina, M.A. (2009). Assessment of snow avalanche activity, hazard and risk (with Khibiny

127. Mountains as an example). Cand. Sci. thesis.: Moscow State University. 230 p. (in Russian).

128. Vilchek, Y., Glazovskaya, T., Seliverstov, Y. (2005) Some approaches to estimation of avalanche

129. danger and avalanche risk. Materials of Glaciological Studies, (99), p. 123–128.

130. Vlek, C., Stallen, P.-J. (1981) Judging risks and benefits in the small and the large. Organizational

131. Behavior and Human Performance, 28 (2), p. 235–271.

132. Vorob’ev, Y.L. (2005). Personal and social safety (some aspects of State policy). EMERCOM;

133. Moscow: Delovoi ekspress. 376 p.

134. White, G.F., Ed. (1976). Natural Hazards: Local, National, Global. New York: Oxford University

135. Press Inc, 304 p.

136. Wisner, B., Blaikie, P., Cannon, T., Davis, I. (2004). At risk. Natural hazards, people’s vulnerability

137. and disasters. London: Routledge. 471 p.

138. Yolkin, V.A. (2004). Regional assessment of karst hazard and risk (with Republic of Tatarstan

139. as an example). Cand. Sci. thesis. Moscow: Institute of Geoecology RAS. 158 p.

140. Zinn, J., Taylor-Gooby, P. (2006). Risk as an interdisciplinary research area. Risk in social science.

141. P. Taylor-Gooby, J. Zinn, Eds. Oxford: Oxford University Press, p. 20–53.

142. Zyuzin, Y.L. (2006). Severe face of Khibiny. Murmansk: Reklam. poligrafiya. 234 p.


For citations:


Views: 941

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)