Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

QUANTIFICATION OF ECONOMIC AND SOCIAL RISKS OF DEBRIS FLOWS FOR THE BLACK SEA COASTAL REGION OF THE NORTH CAUCASUS

https://doi.org/10.24057/2071-9388-2014-7-3-108-122

Full Text:

Abstract

Debris flows are the most frequent and disastrous natural hazards among other exogenic processes at the Black Sea coastal region of the North Caucasus. Numerous debris flow releases are reported every year between Novorossiysk and Krasnaya Polyana. The debris flows bring economic losses, and sometimes loss of human lives. Quantification of the economic, individual and collective debris flows risk is based on their spatial distribution, repeatability, debris flows’ regime, as well as economical and social characteristics of the territory accounted for. Estimation of the individual debris flow risk shows that the level of such risk corresponds to “allowable” and “acceptable” degrees [Vorob’ev, 2005] - less than 3,3 × 10-6. The maximal values of the economic debris flow risk are estimated in the Adler region - more than 1 mln. rub. per year.

About the Authors

Vyacheslav L. Baburin
Department of Economical and Social Geography of Russia, Faculty of Geography, Lomonosov Moscow State University
Russian Federation


Sofia A. Gavrilova
Laboratory of Snow Avalanches and Debris Flows, Faculty of Geography, Lomonosov Moscow State University
Russian Federation


Peter Koltermann
Laboratory of Natural Risk Assessment, Faculty of Geography, Lomonosov Moscow State University
Russian Federation


Yury G. Seliverstov
Laboratory of Snow Avalanches and Debris Flows, Faculty of Geography, Lomonosov Moscow State University
Russian Federation


Sergey A. Sokratov
Laboratory of Snow Avalanches and Debris Flows, Faculty of Geography, Lomonosov Moscow State University
Russian Federation


Aleksandr L. Shnyparkov
Laboratory of Snow Avalanches and Debris Flows, Faculty of Geography, Lomonosov Moscow State University
Russian Federation


References

1. Andreev, Yu.B., Bozhinskiy, A.N. (1994) Snow avalanches risk estimation in mountain regions. Vestnik Moskovskogo Universiteta, Seriya 5: Geografiya, N 2, pp. 23-26. [in Rus-sian].

2. Atlas of natural and technogenic hazards and risks. Russian Federation (2005-2011) Shoigu, S.K. (Ed.) Moscow: Design, Information, Cartography. [in Russian, 8 volumes, subtitles vary].

3. Barinov, A.Y. (2009) Geomorphologic estimation of heavy showers-related debris flows danger at the Black Sea coast of Russia. Candidate thesis. Moscow. [in Russian].

4. Belaya, N.L. (2004) Debris flow regime on the Globe as an object of modelling on the base of the climatic information. Data of glaciological studies, V. 96, 2004, pp. 152-158. [in Russian].

5. Belov, D.M. (2000) Estimation of natural risk during reformation of sea coasts (with the Baltic Sea coast destruction near Narva-Iyesuu settlement as an example). In Ragozin, A.L. (Ed.) Natural risks assessment and management; Proceedings of the “Risk-2000” All-Russia conference. Moscow: ANKIL, 2000. pp. 276-279. [in Russian].

6. Bründl, M., Romang, H.E., Bischof, N., Rheinberger, C.M. (2009) The risk concept and its application in natural hazard risk management in Switzerland. Natural Hazards and Earth System Sciences, V. 9, N 3, pp. 801-813. doi:10.5194/nhess-9-801-2009.

7. Burova, V.N. (2000) Abrasion risk at Seas and water reservoirs in Russia (comparative analysis). In Ragozin, A.L. (Ed.) Natural risks assessment and management; Proceedings of the “Risk-2000” All-Russia conference. Moscow: ANKIL, 2000. pp. 261-264. [in Russian].

8. Chen, S.C., Wu, C.Y., Huang, B.T. (2010) The efficiency of a risk reduction program for debris-flow disasters - a case study of the Songhe community in Taiwan. Natural Hazards and Earth System Sciences, V. 10, N 7, pp. 1591-1603. doi: 10.5194/nhess-10-1591-2010.

9. Chernyavskii, A.S., Efremov, Yu.V. (2010) Regularities of the distribution of the debris flows at the Black Sea coast of the Caucasus. Geomorphology, N 2, pp. 60-69.

10. Delmonaco, G., Leoni, G., Margottini, C., Puglisi, C., Spizzichino, D. (2003) Large scale debris-flow hazard assessment: a geotechnical approach and GIS modeling. Natural Hazards and Earth System Sciences, V. 3, N 5, pp. 443-455, doi:10.5194/nhess-3-443-2003.

11. Dzetsker, E.S. (1995) Estimation of the probability of losses appearance due to underflooding of a built-up area by ground water. In Analysis and assessment of natural and technogenic risks in construction (proceedings of international conference). Moscow: PNIIS. pp. 83-84. [in Russian].

12. Elkin, V.A. (2004) Regional assessment of karst danger and risk (with Republic Tatarstan as an example). Candidate thesis. Moscow: Institute of Geoecology RAS. 158 pp. [in Russian].

13. Fuchs, S., Heiss, K., Hübl, J. (2007) Towards an empirical vulnerability function for use in debris flow risk assessment. Natural Hazards and Earth System Sciences, V. 7, N 5, pp. 495-506. doi: 10.5194/nhess-7-495-2007.

14. Fuchs, S., Keiler, M., Sokratov, S.A., Shnyparkov, A.L. (2013) Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management. Natural Hazards, V. 68, N 3, pp. 1217-1241. doi: 10.1007/s11069-012-0508-7.

15. Heinimann, H. (1998) Der Umgang mit Naturrisiken aus ingenieurwissenschaftlicher Sicht. Schweizerische Zeitschrift für Forstwesen, V. 1998 (149), pp. 691-705.

16. IPCC (2014) Emergent Risks and Key Vulnerabilities. In Field, C.B., Barros, V.R. Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R., White, L.L. (Eds.) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

17. Kantorovich, L.V., Keilis-Borok, V.I., Molchan, G.M. (1973) Seismic risk and principles of seismic regionalization. In Keilis-Borok, V.I. (Ed.) Computational and statistical methods of the seismic data interpretation (Computational seismology; 6). Moscow: Nauka. pp. 3-20. [in Russian].

18. Kappes M, Keiler M, von Elverfeldt K, Glade T (2012) Challenges of analyzing multihazard risk: a review. Natural Hazards, vol. 64, N 2, pp. 1925-1958.

19. Kates, R.W. (1971) Natural hazard in human ecological perspective: hypotheses and models. Economic Geography, V. 47, N 3, pp. 438-451. doi: 10.2307/142820.

20. Kates, R.W., Kasperson, J.X. (1983) Comparative risk analysis of technological hazards (A Review). Proceedings of the National Academy of Sciences of the United States of America, V. 80, N 22, pp. 7027-7038. doi: 10.1073/pnas.80.22.7027.

21. Kazakov, N.A. (2000) Estimation of avalanche risk at the roads of the Sakhalin Island. In Ragozin, A.L. (Ed.) Natural risks assessment and management; Proceedings of the “Risk-2000” All-Russia conference. Moscow: ANKIL, 2000. pp. 269-275. [in Russian].

22. Keilis-Borok, V.I., Kronrod, T.L., Molchan, G.M. (1984) Seismic risk for the largest cities of the World. In Earthquakes and natural hazards prevention (27th International Geological Congress, 4-14 August 1984; Colloquium 06; Proceedings V. 6). Moscow: Nauka. pp. 10-25. [in Russian].

23. Kienholz, H., Krummenacher, B., Kipfer, A., Perret, S. (2004) Aspects of integral risk management in practice - Considerations with respect to mountain hazards in Switzerland. Österreichische Wasser- und Abfallwirtschaft, März/April, V. 56, N 3-4, pp. 43-50.

24. Kurbatova, A.S., Myagkov, S.M., Shnyparkov, A.L. (1997) Natural risk for Russian cities. Moscow: NIiPI ekologii goroda. 240 pp.

25. Kuznetsova, I.L., Miklyaev, S.M., Chernyad’ev, V.P., Chekhovskii A.L. (1995) Estimation of risk for construction on permanently frozen grounds (Bovanenkovskoe field, Yamal peninsula). In Analysis and assessment of natural and technogenic risks in construction (proceedings of international conference). Moscow: PNIIS. pp. 96-97. [in Russian].

26. Liu, X., Lei, J. (2003) A method for assessing regional debris flow risk: an application in Zhaotong of Yunnan province (SW China). Geomorphology, 2003, V. 52, N 3-4, pp. 181-191. doi: 10.1016/S0169-555X(02)00242-8.

27. Marzocchi, W., Garcia-Aristizaba, A., Gasparini, P., Mastellone, M.L., Di Ruocco, A. (2012) Basic principles of multirisk assessment: a case study in Italy. Natural Hazards, V. 62, N 2, pp. 551-573. doi: 10.1007/s11069-012-0092-x.

28. Marzocchi, W., Mastellone, M.L., Di Ruocco, A., Novelli, P., Romeo, E., Gasparini, P. (2009) Principles of multirisk assessment; Interaction amongst natural and maninduced risks (EUR 23615). EC. 69 pp. doi: 10.2777/30886.

29. Myagkov, S.M. (1995) Geography of natural risk. Moscow: Moscow State University. 222 pp. [in Russian].

30. Myagkov, S.M. (2000) Multiplicity of the parameters of measure of natural risk. In Ragozin, A.L. (Ed.) Natural risks assessment and management; Proceedings of the “Risk-2000” All-Russia conference. Moscow: ANKIL, 2000. pp. 296-300. [in Russian].

31. Myagkov, S.M., Shnyparkov, A.L. (2004) Concept of Risk. In Malkhazova, S.M., Chalov, R.S. (Eds.) Natural-anthropogenic processes and environmental risk (Kasimov, N.S. (Ed.) Geography, Society and Environment; V. 4). Moscow: Gorodets Publishing House, 2004. pp. 265-274. [in Russian].

32. Osipov, V.I., Shoigu, S.K. (Eds.) (2000-2003) Natural hazards of Russia. Moscow: Kruk. [in Russian, 6 volumes, subtitles vary].

33. Ragozin, A.L. (1997) Theory and practice of the geological risks estimation. Doctoral thesis. Moscow: PNIIS. [in Russian].

34. Romang, H., Kienholz, H., Kimmerle, R., Böll, A. (2003) Control structures, vulnerability, cost-effectiveness - a contribution to the management of risks from debris torrents. In Röthlisberger, G., Chen, C. (Eds.) 3rd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment; Davos; Switzerland; 10 September 2003 through 12 September 2003; Proceedings. V. 2. Rotterdam: Millpress, pp. 1303-1313.

35. Seliverstov, Y., Glazovskaya, T., Shnyparkov, A., Vilchek, Y., Sergeeva, K., Martynov, A. (2008) Assessment and mapping of snow avalanche risk in Russia. Annals of Glaciology, V. 49. pp. 205-209. doi: 10.3189/172756408787814672.

36. Selva, J. (2013) Long-term multi-risk assessment: statistical treatment of interaction among risks. Natural Hazards, V. 67, N 2, pp. 701-722. doi: 10.1007/s11069-013-0599-9.

37. Shishkina L.A. (1967) Hydrometeorological sketch of the Tuapse region. In Tuapse and Tuapse region. Krasnodar. pp. 78-93.

38. Shnyparkov, A., Fuchs, S., Sokratov, S., Koltermann, K., Seliverstov, Y., Vikulina, M. (2012) Theory and practice of individual snow avalanche risk assessment in the Russian Arctic. Geography, Environment, Sustainability, V. 5, N 3, pp. 64-81.

39. Shnyparkov, A.L., Gryaznova, V.V., Danilina, A.V., Martynov, A.V. (2009) Debris flows risk in Russia. In Burov, V.N. (Ed.) Problems of decrease in natural hazards and risks; Proceedings of the “Risk-2009” International Scientific-Applied Conference. V. 2. Moscow: Peoples’ friendship university of Russia. pp. 39-44. [in Russian].

40. Shnyparkov, A.L., Koltermann, P.K., Seliverstov, Yu.G., Sokratov, S.A., Perov, V.F. (2013) Risk of mudflows at the Caucasian coast of the Black Sea. Vestnik Moskovskogo Universiteta, Seriya 5: Geografiya, N. 3, pp. 42-48. [in Russian].

41. Sokratov S.A., Seliverstov, Yu.G., Koltermann, K.P., Shnyparkov, A.L. (2013) Anthropogenic influence on snow avalanches and debris flows activity. Ice and Snow, N 2 (122), pp. 121-128. [in Russian].

42. Staffler, H., Pollinger, R., Zischg, A., Mani, P. (2008) Spatial variability and potential impacts of climate change on flood and debris flow hazard zone mapping and implications for risk management. Natural Hazards and Earth System Sciences, V. 8, N 3, pp. 539-558. doi: 10.5194/nhess-8-539-2008.

43. Tolmachev, V.V. (2000) Estimation of karst collapse risk in solving engineering problems. In Ragozin, A.L. (Ed.) Natural risks assessment and management; Proceedings of the “Risk-2000” All-Russia conference. Moscow: ANKIL, 2000. pp. 247-250. [in Russian].

44. Totschnig, R., Fuchs, S. (2013) Mountain torrents: quantifying vulnerability and assessing uncertainties. Engineering Geology, V. 155, pp. 31-44. doi: 10.1016/j.enggeo.2012.12.019.

45. UNEP (2002) Disasters. In Global Environment Outlook (GEO 3); Past, present and future perspectives. London, Sterling, VA: Earthscan Publications Ltd. pp. 270-300.

46. UNEP (2012) Global Environment Outlook (GEO 5); Environment for the future we want. Malta: Progress Press Ltd. 528 pp.

47. Vorob’ev, Yu.L. (2005) Personal and social safety (some aspects of the State policy). Moscow: EMERCOM, Delovoi ekspress. 376 pp. [in Russian].


For citation:


Baburin V.L., Gavrilova S.A., Koltermann P., Seliverstov Y.G., Sokratov S.A., Shnyparkov A.L. QUANTIFICATION OF ECONOMIC AND SOCIAL RISKS OF DEBRIS FLOWS FOR THE BLACK SEA COASTAL REGION OF THE NORTH CAUCASUS. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2014;7(3):108-122. https://doi.org/10.24057/2071-9388-2014-7-3-108-122

Views: 233


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)