Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Impact Of Mozhaysk Dam On The Moscow River Sediment Transport

https://doi.org/10.24057/2071-9388-2019-150

Full Text:

Abstract

Sediments are an essential part of the aquatic environment that define its transformation and development. The construction of dams results in severe changes in sediment fluxes. This study aims to assess how the sediment load of the upper Moskva River is affected by the Mozhaysk Dam flow regulation and to estimate its dynamics over the years of the reservoir’s existence. Our analysis of the 1968, 2012 and 2016 detailed field data shows a 20-40% decrease in the proportion of the spring flood in the annual sediment load into the reservoir, which is caused by changes in the streamflow regime of the inflowing rivers. The peak suspended sediment concentrations have decreased 5- to 10-fold, likely due to a significant decline in the watershed’s cultivated land area, which caused a decrease in the erosion rate. In the Moskva River below the dam, the seasonal dynamics of the suspended sediment concentration no longer corresponds to the natural regime. The annual suspended load of the Moskva River below the Mozhaysk Reservoir decreased up to 9-fold. The sediment retention in the reservoir has dropped from 90% to 70-85% and is to some extent restored by an outflow of the particulate organic matter produced in the reservoir. We also described the relationships between water turbidity and suspended sediment concentration of the reservoir’s tributaries, which allow for the first time to estimate the sediment load with higher accuracy than was previously possible.

About the Authors

Dmitriy I. Sokolov
Lomonosov Moscow State University
Russian Federation
GSP-1, Leninskie gory, Moscow, 119991


Oxana N. Erina
Lomonosov Moscow State University
Russian Federation
GSP-1, Leninskie gory, Moscow, 119991


Maria A. Tereshina
Lomonosov Moscow State University
Russian Federation
GSP-1, Leninskie gory, Moscow, 119991


Valeriy V. Puklakov
Lomonosov Moscow State University
Russian Federation
GSP-1, Leninskie gory, Moscow, 119991


References

1. Anselmetti F., Bühler R., Finger D., Girardclos S., Lancini A., Rellstab C., and Sturm M. (2007). Effects of Alpine hydropower dams on particle transport and lacustrine sedimentation. Aquatic Sciences, 69(2), 179-198, DOI: 10.1007/s00027-007-0875-4.

2. Belozerova E.V. and Chalov S.R. (2013). Assessment of river water turbidity using the optic methods. Moscow University Bulletin. Series 5, Geography. 6, 39-45 (in Russian with English summary).

3. Berkovich K.M. (2012). Riverbed processes in rivers influenced by reservoirs. Moscow: Faculty of Geography, MSU (in Russian with English summary).

4. Chalov S. (2017). Hydroclimatic development and anthropogenic impact on sediment loads in the Selenga catchment. Geography and Tourism, 5(2), 27-39, DOI: 10.5281/zenodo.1118161.

5. Dang T., Coynel A., Orange D., Blanc G., Etcheber H. and Le L. (2010). Long-term monitoring (1960–2008) of the river-sediment transport in the Red River Watershed (Vietnam): Temporal variability and dam-reservoir impact. Science of the Total Environment, 408(20), 4654-4664, DOI: 10.1016/j.scitotenv.2010.07.007.

6. Datsenko Yu.S., Puklakov V.V. and Edelstein K.K. (2017) Analysis of the influence of abiotic factors on phytoplankton growth in a low-flow stratified storage reservoir. Transactions of KarRC RAS, 10, 73-85, (in Russian with English summary). DOI: 10.17076/lim611

7. Díaz-Gutiérrez V., Mongil-Manso J., Navarro-Hevia J. and Ramos-Díez I. (2019). Check dams and sediment control: final results of a case study in the upper Corneja River (Central Spain). Journal of Soils and Sediments, 19, 451-466, DOI: 10.1007/s11368-018-2042-z.

8. Gellis A., Webb R., McIntyre S. and Wolfe W. (2006). Land-use effects on erosion, sediment yields, and reservoir sedimentation: A case study in the Lago Loíza Basin, Puerto Rico. Physical Geography, 27(1), 39-69, DOI: 10.2747/0272-3646.27.1.39.

9. Grimshaw D. and Lewin J. (1980). Reservoir effects on sediment yield. Journal of Hydrology, 47(1-2), 163-171, DOI: 10.1016/0022-1694(80)90054-2.

10. Guo C., Jin Z., Guo L., Lu J., Ren S. and Zhou Y. (2020). On the cumulative dam impact in the upper Changjiang River: Streamflow and sediment load changes. Catena, 184, 104250, DOI: 10.1016/j.catena.2019.104250.

11. Hojan M. and Rurek M. (2017). Particle-size distribution of channel bars of the lower Vistula between Bobrowniki and Bydgoszcz-Fordon. Geography and Tourism, 15(2), 97-104, DOI: 10.5281/zenodo.1118185.

12. Huang X.R., Gao L.Y., Yang P.P. and Xi Y.Y. (2018). Cumulative impact of dam constructions on streamflow and sediment regime in lower reaches of the Jinsha River, China. Journal of Mountain Science, 15(12), DOI: 10.1007/s11629-018-4924-3.

13. Ibàhez C., Prat N. and Canicio A. (1996). Changes in the hydrology and sediment transport produced by large dams on the lower Ebro River and its estuary. Regulated Rivers: Research & Management, 1996, 12, 51-62, DOI: 10.1002/(SICI)1099-1646(199601)12:1<51::AIDRRR376>3.0.CO;2-I.

14. Ivanov M. (2018). Changes of cropland area in the river basins of the European part of Russia for the period 1985-2015 years, as a factor of soil erosion dynamics. IOP Conference Series: Earth and Environmental Science, 107, DOI: 10.1088/1755-1315/107/1/012010.

15. Jansson M. and Erlingsson U. (2000). Measurement and quantification of a sedimentation budget for a reservoir with regular flushing. Regulated Rivers: Research and Management, 16(3), 279-306, DOI: 10.1002/(SICI)1099-1646(200005/06)16:3<279::AID-RRR586>3.0.CO;2-S.

16. Kireeva M., Frolova N., Rets E., Samsonov T., Entin A., Kharlamov M., … Povalishnikova E. (2019). Evaluating climate and water regime transformation in the european part of russia using observation and reanalysis data for the 1945-2015 period. International Journal of River Basin Management, 1-12, DOI: 10.1080/15715124.2019.1695258.

17. Kondolf G., Rubin Z. and Minear J. (2014). Dams on the Mekong: Cumulative sediment starvation. Water Resources Research, 50(6), 5158- 5169, DOI: 10.1002/2013WR014651.

18. Kovacs A., Fulop B. and Honti M. (2012). Detection of hot spots of soil erosion and reservoir siltation in ungauged Mediterranean catchments. Energy Procedia. 18, 934-943, DOI: 10.1016/j.egypro.2012.05.108.

19. Koronkevich N. and Melnik K.S. (2015). Runoff transformation under the effect of landscape changes in the Moskva R. basin and in the territory of Moscow City. Water Resources, 42(2), 159-169, DOI: 10.1134/S0097807815020062.

20. Krasa J., Dostal, T., Vrana K. and Plocek J. (2009). Predicting spatial patterns of sediment delivery and impacts of land-use scenarios on sediment transport in Czech catchments. Land Degradation & Development, 21(4), 367-375, DOI: 10.1002/ldr.959.

21. Kurganova I., Lopes de Gerenyu V., Six J. and Kuzyakov Y. (2014). Carbon cost of collective farming collapse in Russia. Global Change Biology, 20(3), 938-947, DOI: 10.1111/gcb.12379.

22. Le N.D., Le T.P.Q., Phung T.X.B., Duong T.T. and Didier O. (2020). Impact of hydropower dam on total suspended sediment and total organic nitrogen fluxes of the Red River (Vietnam), Proceedings of the International Association of Hydrological Sciences, 383, 367-374, DOI: 10.5194/piahs-383-367-2020.

23. Ligon F., Dietrich W. and Trush W. (1995). Downstream Ecological Effects of Dams. BioScience, 45(3), 183-192, DOI: 10.2307/1312557.

24. López P., López-Tarazón J., Casas-Ruiz J., Pompeo M., Ordoñez J. and Muñoz I. (2016). Sediment size distribution and composition in a reservoir affected by severe water level fluctuations. Science of the Total Environment, 540, 158-167, DOI: 10.1016/j.scitotenv.2015.06.033.

25. Maneux E., Probst J., Veyssy E. and Etcheber H. (2001). Assessment of dam trapping efficiency from water residence time: Application to fluvial sediment transport in the Adour, Dordogne, and Garonne River basins (France). Water Resources Research, 37(3), 801-811, DOI: 10.1029/2000WR900195.

26. Moscow City water supply and sewerage plan to the year 2025 [online] (in Russian). Availible at: https://www.mos.ru/dgkh/documents/skhemy/view/41896220 [Accessed 26 Jul. 2020].

27. Nagle G.N., Fahey T.J. and Lassoie J.P. (1999). Management of sedimentation in tropical watersheds. Environmental Management, 23(4), 441-452, DOI: 10.1007/s002679900199.

28. Oltchev A., Cermak J., Gurtz J., Tishenko A., Kiely G., Nadezhdina N., … Gravenhorst G. (2002). The response of the water fluxes of the boreal forest region at the Volga’s source area to climatic and land-use changes. Physics and Chemistry of the Earth, 27(9-10), 675-690, DOI: 10.1016/S1474-7065(02)00052-9.

29. Palmeiri A., Shah F. and Dinar A. (2001) Economic reservoir sedimentation and the sustainable management of dams. Journal of Environmental Management, 61, 149-163, DOI: 10.1006/jema.2000.0392.

30. Piqué G., Batalla R.J., López R., Sabater S. (2017). The fluvial sediment budget of a dammed river (upper Muga, southern Pyrenees). Geomorphology, 293, A, 211-226, DOI: 10.1016/j.geomorph.2017.05.018.

31. Shields F. (2009). Do we know enough about controlling sediment to mitigate damage to stream ecosystems? Ecological Engineering, 35(12), 1727-1733, DOI: 10.1016/j.ecoleng.2009.07.004.

32. Sieber A., Kuemmerle T., Prishchepov A., Wendland K., Baumann M., Radeloff V., … Hostert P. (2013). Landsat-based mapping of postSoviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia. Remote Sensing of Environment, 133, 38-51, DOI: 10.1016/j.rse.2013.01.021.

33. Snoussi M., Haida S. and Imassi S. (2002). Effects of the construction of dams on the water and sediment fluxes of the Moulouya and the Sebou rivers, Morocco. Journal of Material Cycles and Waste Management, 3(1-3), 5-12, DOI: 10.1007/s10113-001-0035-7.

34. Sokolov D.I. (2015). Water turbidity regime of the Mozhaysk Reservoir In: Contemporary issues of reservoirs and their watersheds. Proceedings of the International academic and applied science conference. Perm: PSU Publishing, 153-157 (in Russian with English summary).

35. Sokolov D.I., Erina O.N., Tereshina M.A. (2018). Relationship between water turbidity and suspended sediment concentration in the tributaries of the Mozhaysk Reservoir In: N.N. Mitin, ed., Water resources, ecology, hydrological security. Proceedings of the XI International Scientific Conference for Young Scientists and Talented Students. Moscow: IWP, 112-114 (in Russian with English summary).

36. Sokolov D.I., Kremenetskaya E.R., Lomova D.V., Arakelyants A.D., Filippova P.S. (2011). Profile of the water turbidity regime in a lowland reservoir during low water level. Moscow University Vestnik. Series 5. Geography. 3, 27-32 (in Russian with English summary).

37. Suif Z., Yoshimura C., Saavedra O., Ahmad N. and Hul S. (2017). Suspended sediment dynamics changes in Mekong River basin: possible impacts of dams and climate change. International Journal of Geomate, 12(34), 140-145, DOI: 10.21660/2017.34.2688.

38. Syvitski J.P.M., Vörösmarty C.J., Kettner A.J. and Green P. (2005). Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376-380, DOI: 10.1126/science.1109454.

39. Tang H., Pan H. and Ran Q (2020). Impacts of Filled Check Dams with Different Deployment Strategies on the Flood and Sediment Transport Processes in a Loess Plateau Catchment. Water, 12, 1319, DOI: 10.3390/w12051319.

40. The Mozhaysk Reservoir (1979). Moscow: LMSU Publishing (in Russian with English summary).

41. Thothong W., Huon S., Janeau J., Boonsaner A., de Rouw A., Planchon O., … Parkpian P. (2011). Impact of land use change and rainfall on sediment and carbon accumulation in a water reservoir of North Thailand. Agriculture, Ecosystems and Environment, 140(3-4), 521-533, DOI: 10.1016/j.agee.2011.02.006.

42. Topping D., Rubin D. and Vierra L. (2000). Colorado River sediment transport 1. Natural sediment supply limitation and the influence of Glen Canyon Dam. Water Resources Research, 36(2), 515-542, DOI: 10.1029/1999WR900285.

43. Valero-Garcés B., Navas A., Machín J. and Walling D. (1999). Sediment sources and siltation in mountain reservoirs: A case study from the Central Spanish Pyrenees. Geomorphology, 28(1-2), 23-41, DOI: 10.1016/S0169-555X(98)00096-8.

44. Van Binh D., Kantoush S. and Sumi T. (2020) Changes to long-term discharge and sediment loads in the Vietnamese Mekong Delta caused by upstream dams. Geomorphology, 353, 107011, DOI: 10.1016/j.geomorph.2019.107011.

45. Vanmaercke M., Poesen J., Verstraeten G., de Vente J. and Ocakoglu F. (2011). Sediment yield in Europe: Spatial patterns and scale dependency. Geomorphology, 130(3-4), 142-161, DOI: 10.1016/j.geomorph.2011.03.010.

46. Vanmaercke M., Poesen J., Radoane M., Govers G., Ocakoglu F. and Arabkhedri M. (2012). How long should we measure? An exploration of factors controlling the inter-annual variation of catchment sediment yield. Journal of Soils and Sediments, 12, 603-619, DOI: 10.1007/s11368-012-0475-3.

47. Vinogradova N.N. (1970). Features of suspended sediment production and dynamics in small reservoirs on the Moskva River (on the case of the Mozhaysk Reservoir). Candidate of Sciences dissertation. (in Russian).

48. Walker D., Forbes B., Leibman M., Epstein H., Bhatt U., Comiso J., … Yu Q. (2011). Cumulative effects of rapid land-cover and land-use changes on the Yamal Peninsula, Russia. In: G. Gutman and A. Reissell., eds., Eurasian Arctic Land Cover and Land Use in a Changing Climate. Dordrecht: Springer Netherlands, 207-236, DOI: 10.1007/978-90-481-9118-5_9.

49. Wang S., Fu B., Piao S., Lü Y., Ciais P., Feng X., and Wang Y. (2016). Reduced sediment transport in the Yellow River due to anthropogenic changes. Nature Geoscience, 9(1), 38-41, DOI: 10.1038/ngeo2602.

50. Wright S. and Schoellhamer D. (2004). Trends in the Sediment Yield of the Sacramento River, California, 1957–2001. San Francisco Estuary and Watershed Science, 2(2), DOI: 10.15447/sfews.2004v2iss2art2.

51. Wu X., Xiang X., Chen X., Zhang X. and Wenjuan H. (2018). Effects of cascade reservoir dams on the streamflow and sediment transport in the Wujiang River basin of the Yangtze River, China. Inland Waters, 8, 1-13. DOI: 10.1080/20442041.2018.1457850.

52. Yang Z., Wang H., Saito Y., Milliman J.D., Xu K., Qiao S. and Shi G. (2006). Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: the past 55 years and after the Three Gorges Dam. Water Resources Research. 42(4), DOI: 10.1029/2005WR003970.

53. Zhao G., Kondolf G., Mu X., Han M., He Z., Rubin Z., … Sun W. (2017). Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau, China. Catena, 148, 126-137, DOI: 10.1016/j.catena.2016.05.010.


For citation:


Sokolov D.I., Erina O.N., Tereshina M.A., Puklakov V.V. Impact Of Mozhaysk Dam On The Moscow River Sediment Transport. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2020;13(4):24-31. https://doi.org/10.24057/2071-9388-2019-150

Views: 263


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)