Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Pollution Reduction Potential By Implementing Electrostatic Dust Precipitators On Mongolian Small-Scale Stoves (A Pilot Study In Ulaanbaatar)

https://doi.org/10.24057/2071-9388-2020-50

Full Text:

Abstract

The  Mongolian capital of Ulaanbaatarexperiences some of the world’s  worst air pollution during the winter months, most of it being caused by small coal- and wood-fired stoves which are used for heating and cooking purposes in peri-urban parts of the city. A recent pilot study in Songinokhairkhan  District of Ulaanbaatar City evaluated the feasibility of electrostatic dust precipitators (ESP) for reducing particulate matter (PM) emissions from small stoves. This paper focuses on the pollution reduction potentials that would result from a large-scale implementation of ESPs. Using a locally developed low- cost ESP system (which is currently in the process of further improvement), reduction rates ranging between 10 to 50% of the PM emissions  (depending on the fuel and combustion conditions) could be achieved. Fitting all or at least a major fraction of the small stoves with such ESPs could reduce PM emissions by an order of several thousand tons per heating season for the whole city. The avoided particle emissions would simultaneously prevent atmospheric pollution by various trace metals and metalloids including As, Cd, Pb and Zn, which are known to be major soil and water pollutants locally, and several other toxic substances. However, this also means that safe disposal strategies must be developed for the fly ash precipitated during ESP operation.

About the Authors

Daniel Karthe
German-Mongolian Institute for Resources and Technology
Mongolia

Engineering Faculty

Nalaikh,  Ulaanbaatar



Tim Hafer
RWTH Aachen University; German-Mongolian Institute for Resources and Technology
Germany

Faculty of Georesources and Materials Engineering, RWTH; Engineering Faculty, GMIT

Aachen; Nalaikh,  Ulaanbaatar



Byambasuren Battulga
Mongolian University of Science and Technology; German-Mongolian Institute for Resources and Technology
Mongolia

Department of Mineral Processing and Engineering, School of Geology and Mining, MUST; Engineering Faculty, GMIT

Nalaikh,  Ulaanbaatar

 



Lodoysamba Sereeter
German-Mongolian Institute for Resources and Technology
Mongolia

Engineering Faculty

Nalaikh,  Ulaanbaatar



Gunther Stehr
Hochschule für Technik und Wirtschaft; German-Mongolian Institute for Resources and Technology
Germany

Faculty of Mechanical Engineering, HTW; Engineering Faculty, GMIT

Dresden; Nalaikh,  Ulaanbaatar

 


References

1. Allen R.W., Gombojav E., Barkhasragchaa B., Byambaa T., Lkhasuren O., Amram O., Takaro T.K. and Janes C.R. (2013). An assessment of air pollution and its attributable mortality in Ulaanbaatar, Mongolia. Air Quality, Atmosphere & Health, 6(1),137-150, DOI: 10.1007/s11869-011-0154-3.

2. Batjargal T., Otgonjargal E., Baek K. and Yang J.S. (2010). Assessment of metals contamination of soils in Ulaanbaatar, Mongolia. Journal of Hazardous Materials, 184, 1-3, 872-876, DOI: 10.1016/j.jhazmat.2010.08.106.

3. Batmunkh T., Kim Y.J., Jung J.S., Park K. and Tumendemberel B. (2013). Chemical characteristics of fine particulate matters measured during severe winter haze events in Ulaanbaatar, Mongolia. Journal of the Air and Waste Management Association, 63(6), 659-670, DOI: 10.1080/10962247.2013.776997.

4. Cavanaugh R. (2017). Extreme air pollution in Mongolia’s overflowing capital. Lancet Respiratory Medicine, 5(8), 614-615, DOI: 10.1016/S2213-2600(17)30258-8.

5. Caroll J. and Finnan J. (2017). Use of electrostatic precipitators in small-scale biomass furnaces to reduce particulate emissions from a range of feedstocks. Biosystems Engineering, 163, 94-102, DOI: 10.1016/j.biosystemseng.2017.08.021

6. Cohen A.J. (2003). Air pollution and lung cancer: what more do we need to know? Thorax 58,1010-1012, DOI: 10.1136/thorax.58.12.1010. Dashdemberel S., Sonomjamts M. and Gombojav D. (2012). Lung Function Measurements of Adults in Ulaanbaatar City, Mongolia. Chest, 142(4), 754A, DOI: 10.1378/chest.1359714.

7. Davy P.K., Gunchin G., Markwitz A., Trompetter W.J., Barry B.J., Shagjjamba D. and Lodoysamba S. (2011). Air particulate matter pollution in Ulaanbaatar, Mongolia: determination of composition, source contributions and source locations. Atmospheric Pollution Research, 2(2), 126-137, DOI: 10.5094/APR.2011.017.

8. Dorj G., Dorj G., Gendenragchaa B. and Ochir C. (2016). Influence of Air Pollution on Some Pregnancy Outcomes and Burden of Pneumonia on Children Under Five Years Old in Mongolia. Value in Health, 19(7), A379-A380, DOI: 10.1016/j.jval.2016.09.191.

9. Enkhbat U., Rule A.M., Resnick C., Ochir C., Olkhanud P. and Williams D.L. (2016). Exposure to PM2.5 and Blood Lead Level in Two Populations in Ulaanbaatar, Mongolia. International Journal of Environmental Research and Public Health, 13(2), 214, DOI: 10.3390/ijerph13020214.

10. Enkhjargal A. and Burmaajav B. (2015). Impact of the ambient air PM2.5 on cardiovascular diseases of Ulaanbaatar residents. Geography, Environment, Sustainability, 8(4), 35-41, DOI: 10.24057/2071-9388-2015-8-4-35-41.

11. Enkhmaa D., Warburton N., Javzandulam B., Uyanga J., Khishigsuren Y., Lodoysamba S., Enkhtur S. and Warburton D. (2014). Seasonal ambient air pollution correlates strongly with spontaneous abortion in Mongolia. BMC Pregnancy and Childbirth, 14, 146, DOI: 10.1186/1471-2393-14-146.

12. Erdenebayar E., Santos K.D., Edwards A., Dugersuren N.O., Ochir C. and Nriagu J. (2019). Environmental injustice and childhood lead exposure in peri-urban (ger) areas of Darkhan and Erdenet, Mongolia. BMC Public Health, 19(1), 163, DOI: 10.1186/s12889-019-6486-x.

13. Erdenetsogt B.O., Lee I., Bat-Erdene D. and Jargal L. (2009). Mongolian coal-bearing basins: Geological settings, coal characteristics, distribution, and resources. International Journal of Coal Geology, 80, 87-104, DOI: 10.1016/j.coal.2009.08.002.

14. European Union (=EU) (2008): Directive 2008/50/EC of the European Parliament and of the Council. Official Journal of the European Union, L152:1-44.

15. Fan P., Chen J. and John R. (2016). Urbanization and environmental change during the economic transition on the Mongolian Plateau: Hohhot and Ulaanbaatar. Environmental Research, 144B, 96-112, DOI: 10.1016/j.envres.2015.09.020.

16. Fuhrmann J.C. (2019). Ulaanbaatar is Suffocating in Smog. Air Pollution Causes Serious Health Problems in Mongolia. International Reports of the Konrad-Adenauer-Stiftung, 2, 63-72.

17. German Federal Ministry of Justice and Consumer Protection (Bundesministerium der Justiz und für Verbraucherschutz) (2017). Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV ). Available online: https://www.gesetze-im-internet.de/bbodschv/BBodSchV. pdf [Accessed 11 September 2019].

18. Guttikunda S.K., Lodoysamba S., Bulgansaikhan B. and Dashdondog B. (2013). Particulate pollution in Ulaanbaatar, Mongolia. Air Quality, Atmosphere & Health, 6(3), 589-601, DOI: 10.1007/s11869-013-0198-7.

19. Hasenkopf C.A., Veghte D.P., Schill G.P., Lodoysamba S., Freedman M.A. and Tolbert M.A. (2016). Ice nucleation, shape, and composition of aerosol particles in one of the most polluted cities in the world: Ulaanbaatar, Mongolia. Atmospheric Environment, 139, 222-229, DOI: 10.1016/j.atmosenv.2016.05.037.

20. Hoffman G.L., Duce R.A. and Hoffman E.J. (1972). Trace metals in the Hawaiian marine atmosphere. Journal of Geophysical Research – Atmosphere, 77, 5322-5329.

21. Hrdlička J., Skopec P., Dlouhý T. and Hrdlička F. (2017). Emission factors of gaseous pollutants from small scale combustion of biofuels. Fuel, 165, 68-74, DOI: 10.1016/j.fuel.2015.09.087.

22. Huang Y.K., Luvsan M.E., Gombojav E., Ochir C., Bulgan J. and Chan C.C. (2013). Land use patterns and SO2 and NO2 pollution in Ulaanbaatar, Mongolia. Environmental Research, 124, 1-6, DOI: 10.1016/j.envres.2013.02.006.

23. Intra P., Limueadphai P. and Tippayawong N. (2010). Particulate Emission Reduction from Biomass Burning in Small Combustion Systems with a Multiple Tubular Electrostatic Precipitator. Particulate Science and Technology, 28(6), 547-565, DOI: 10.1080/02726351003758444.

24. Jerret M. (2015). The death toll from air-pollution sources. Nature, 525, 330-331, DOI: 10.1038/525330a.

25. Karthe D., Chalov S., Gradel A. and Kusbach A. (2019). Environmental change on the Mongolian Plateau: atmosphere, forests, soils and water. Geography, Environment, Sustainability, 12(3), 60-65, DOI: 10.24057/2071-9388-2019-1411.

26. Kasimov N., Kosheleva N., Lychagin M. et al. (2019). Environmental Atlas-monograph «Selenga-Baikal». Moscow: Faculty of Geography, MSU. Available at: https://www.researchgate.net/publication/335567904_Environmental_Atlas-monograph_Selenga-Baikal (In Russian). [Accessed 04 May 2020].

27. Kasimov N.S., Kosheleva N.E., Sorokina O.I., Bazha S.N., Gunin P.D. and Enkh-Amgalan S. (2011a). Ecological-geochemical state of soils in Ulaanbaatar (Mongolia). Eurasian Soil Science, 44(7), 709-721, DOI: 10.1134/S106422931107009X.

28. Kasimov N.S., Kosheleva N.E., Sorokina O.I., Gunin P.D., Bazha S.N. and Enkh-Amgalan S. (2011b). An Ecological–Geochemical Assessment of the State of Woody Vegetation in Ulaanbaatar City (Mongolia). Arid Ecosystems, 1(4), 201-213, DOI: 10.1134/S2079096111040081.

29. Kim Oanh N.T., Albina D.O., Ping L. and Wang X. (2005). Emission of particulate matter and polycyclic aromatic hydrocarbons from select cookstove–fuel systems in Asia. Biomass and Bioenergy, 28(6), 579-590, DOI: 10.1016/j.biombioe.2005.01.003.

30. Koulousaris M., Aloupi M. and Angelidis M.O. (2009). Total metal concentrations in atmospheric precipitation from the northern Aegean Sea. Water, Air, & Soil Pollution, 201, 389-403, DOI: 10.1007/s11270-008-9952-0.

31. Krüger E., Rao S.P. and Borchardt D. (2019). Quantifying urban water supply security under global change. Global Environmental Change, 56, 66-74, DOI: 10.1016/j.gloenvcha.2019.03.009.

32. Landing W.M., Caffrey J.M., Nolek S.D., Gosnell K.J. and Parker W.C. (2010). Atmospheric wet deposition of mercury and other trace elements in Pensacola, Florida. Atmospheric Chemistry and Physics, 10, 4867–4877, DOI: 10.5194/acp-10-4867-2010.

33. Lelieveld J., Evans J.S., Fnais M., Giannadaki D. and Pozzer A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525, 367-371, DOI: 10.1038/nature15371.

34. Lelieveld J., Klingmüller K., Pozzer A., Pöschl, U., Fnais, M., Daiber, A. and Münzel, T. (2019). Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. European Heart Journal, 40(20), 1590-1596, DOI: 10.1093/eurheartj/ ehz135.

35. Lim M., Myagmarchuluun S., Ban H., Hwang Y., Ochir C., Lodoisamba D. and Lee K. (2018). Characteristics of Indoor PM2.5 Concentration in Gers Using Coal Stoves in Ulaanbaatar, Mongolia. International Journal of Environmental Research and Public Health, 15(11), 2524, DOI: 10.3390/ijerph15112524.

36. Lobscheid A.B., Lodoysamba S., Maddalena R.L. and Dale L.L. (2015). A study of traditional and energy-efficient stove use in Ulaanbaatar, Mongolia. Boiling Point, 66, 40-43.

37. Luvsan M.E., Shie R.H., Purevdorj T., Badarch L., Baldorj B. and Chan C.C. (2012). The influence of emission sources and meteorological conditions on SO2 pollution in Mongolia. Atmospheric Environment, 61, 542-549, DOI: 10.1016/j.atmosenv.2012.07.044.

38. Lychagin M., Chalov S., Kasimov N., Shinkareva G., Jarsjö J. and Thorslund J. (2017). Surface water pathways and fluxes of metals under changing environmental conditions and human interventions in the Selenga River system. Environmental Earth Sciences, 76, 1, DOI: 10.1007/ s12665-016-6304-z.

39. Mongolian Agency for Standardization and Metrology 2008. Mongolian Soil Standards (MNS 5850:2008). Nalbandian H. (2012). Trace element emissions from coal. London, UK: IEA Clean Coal Centre.

40. Nishikawa M., Matsui I., Batdorj D., Jugder D., Mori I., Shimizu A., Sugimoto N. and Takahashi K. (2011). Chemical composition of urban airborne particulate matter in Ulaanbaatar. Atmospheric Environment, 45(32), 5710-5715, DOI: 10.1016/j.atmosenv.2011.07.029

41. Nottebaum V., Walk J., Knippertz M., Pötter S., Batbayar G., Karthe D. & Lehmkuhl, F. (2019). Arsenic distribution and pathway scenarios for sediments and water in a peri-urban Mongolian small-scale coal mining area (Nalaikh, Ulaanbaatar District). Environmental Science and Pollution Research, 27, 5845-5863, DOI: 10.1007/s11356-019-07271-8.

42. Olkhanud P.B., Praamsma M.L., Ganbaatar N., Tsogtbaatar M., Halmambetova E., Malchinkhuu E., Ochir C., Ulziibayar G. and Warburton D. (2014). Assessment of blood lead levels and associated risk factors among children in Ulaanbaatar, Mongolia. Annals of Global Health, 82(3), 575-584, DOI: 10.1016/j.aogh.2016.04.663.

43. Özdogan S., Uygur S. and Egrican N. (1997). Formation and dispersion of toxic combustion by-products from small-scale combustion systems. Energy, 22(7), 681-692, DOI: 10.1016/S0360-5442(96)00167-3.

44. Praamsma M.L., Ganbaatar N., Tsogtbaatar M., Halmambetova E., Malchinkhuu E., Ochir C., Ulziibayar G. and Olkhanud P.B. (2016). Assessment of blood lead levels and associated risk factors among children in Ulaanbaatar, Mongolia. Central Asian Journal of Medical Sciences, 2(2), 195-205.

45. Schmatloch V. and Rauch S. (2005). Design and characterisation of an electrostatic precipitator for small heating appliances. Journal of Electrostatics, 63, 85-100, DOI: 10.1016/j.elstat.2004.08.001.

46. Sorokina O.I., Kosheleva N.E., Kasimov N.S., Golovanov D.L., Bazha S.N., Dorzhgotov D. and Enkh-Amgalan S. (2013). Heavy Metals in the Air and Snow Cover of Ulan Bator. Geography and Natural Resources, 34(3), 291-301, DOI: 10.1134/S1875372813030153.

47. Stehr G. (2018). Utility Model Electrostatic Dust Precipitator. State Registration No. 20-0002927, Intellectual Property Office Implementing Agency of the Government of Mongolia (IPOM). Date of registration: 15 October 2018; date of expiry: 15 October 2025.

48. Tserenpil Sh., Sapkota A., Liu C.Q., Peng J.H., Liu B. and Segebade P.C. (2016). Lead Isotope and Trace Element Composition of Urban Soils in Mongolia. Eurasian Soil Science, 49(8), 879-889, DOI: 10.1134/S1064229316080147.

49. Tsutsumida N., Saizen I., Matsuoka M. and Ishii R. (2015). Addressing urban expansion using feature-oriented spatial data in a peripheral area of Ulaanbaatar, Mongolia. Habitat International, 47, 196-204, DOI: 10.1016/j.habitatint.2015.01.024.

50. Ulaanbaatar Area Project (УЛААНБААТАР ЦЭВЭР АГААР ТΘСΘЛ) (2913). Report on 2013. Available online: http://usip.mn/uploads/reports/2013_report.pdf (in Mongolian) [Accessed 02 October 2019].

51. United Nations Development Program (= UNDP) (2019). Air Pollution in Mongolia: Opportunities for further actions. Ulaanbaatar, Mongolia and Dublin, Ireland: UNDP and Accounting & Audit Reform Consultants (AARC).

52. United States Environmental Protection Agency (=US-EPA) (2020). Review of the National Ambient Air Quality Standards for Particulate Matter. Federal Register, 85(84), 24094-24144.

53. Unver I.K. and Terzi M. (2018). Distribution of trace elements in coal and coal fly ash and their recovery with mineral processing practices: A review. Journal of Mining and Environment, 9(3), 641-655, DOI: 10.22044/jme.2018.6855.1518.

54. Warburton D., Warburton N., Wigfall C., Chimedsuren O., Lodoisamba D., Lodoysamba S. and Jargalsaikhan B. (2018). Impact of Seasonal Winter Air Pollution on Health across the Lifespan in Mongolia and Some Putative Solutions. Annals of the American Thoracic Society, 15(Suppl 2), S86-S90, DOI: 10.1513/AnnalsATS.201710-758MG.

55. Wedepohl K.H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(2), 1217-1232, DOI: 10.1016/0016-7037(95)00038-2.

56. World Bank (2009). Air Quality Analysis of Ulaanbaatar. Improving Air Quality to Reduce Health Impacts. Washington, D.C., USA: The International Bank for Reconstruction. Available online: http://documents.worldbank.org/curated/en/900891468276852126/Main-report [Accessed 02 October 2019].

57. World Health Organization (=WHO) (2006). Air Quality Guidelines - Global Update 2005. Copenhagen, Denmark: WHO Regional Office for Europe.

58. World Health Organization (=WHO) (2018). Air Pollution in Mongolia: Policy Brief. Available online: http://www.wpro.who.int/mongolia/publications/20180228_policy_brief_on_air_pollution.pdf [Accessed 31 August 2019].

59. Wu Y., Zhang J., Ni Z, Liu S, Jiang Z. and Huang X. (2018). Atmospheric deposition of trace elements to Daya Bay, South China Sea: Fluxes and sources. Marine Pollution Bulletin 127:672-683, DOI: 10.1016/j.marpolbul.2017.12.046.

60. Yoshihara S., Munkhbayarlakh S., Makino S., Ito C., Logii N., Dashdemberel S., Sagara H., Fukuda T. and Arisaka O. (2016). Prevalence of childhood asthma in Ulaanbaatar, Mongolia in 2009. Allergology International, 65(1), 62-67, DOI: 10.1016/j.alit.2015.07.009.


For citation:


Karthe D., Hafer T., Battulga B., Sereeter L., Stehr G. Pollution Reduction Potential By Implementing Electrostatic Dust Precipitators On Mongolian Small-Scale Stoves (A Pilot Study In Ulaanbaatar). GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2020;13(3):117-128. https://doi.org/10.24057/2071-9388-2020-50

Views: 83


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)