Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

INTEGRATING MULTI-SCALE DATA FOR THE ASSESSMENT OF WATER AVAILABILITY AND QUALITY IN THE KHARAA - ORKHON - SELENGA RIVER SYSTEM

https://doi.org/10.24057/2071-9388-2014-7-3-40-49

Full Text:

Abstract

The environmental and socio-enonomic impacts of water pollution are particularly severe in regions with relatively limited water resources [WWAP, 2012]. Water quantity and quality are closely interlinked aspects which are relevant for surface water ecology, water use, and integrated management approaches. However, an intensive monitoring of both is usually prohibitive for very large areas, particularly if it includes the investigation of underlying processes and causes. For the Kharaa - Orkhon - Selenga River system, this paper combines results from the micro (experimental plots, individual point data), meso (Kharaa River Basin) and macro (Selenge River Basin) scales. On the one hand, this integration allows an interpretation of existing data on surface water quantity and quality in a wider context. On the other hand, it empirically underpins the complimentary character of intensive monitoring in selected model regions with more extensive monitoring in larger areas.

About the Authors

Daniel Karthe
Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research, Magdeburg, Germany
Russian Federation


Nikolay S. Kasimov
Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
Russian Federation


Sergey R. Chalov
Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
Russian Federation


Galina L. Shinkareva
Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
Russian Federation


Marcus Malsy
Center for Environmental Systems Research, Kassel University, Kassel, Germany
Russian Federation


Lucas Menzel
Department of Hydrogeography and Climatology, Heidelberg University, Heidelberg, Germany
Russian Federation


Philipp Theuring
Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research, Magdeburg, Germany
Russian Federation


Melanie Hartwig
Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research, Magdeburg, Germany
Russian Federation


Christian Schweitzer
Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research
Russian Federation


Jürgen Hofmann
Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Department Ecohydrology
Russian Federation


Jörg Priess
Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research
Russian Federation


Mikhail Lychagin
Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
Russian Federation


References

1. Alcamo, J.M., Döll, P., Henrichs, T. et al. (2003). Development and testing of the Water-GAP2 global model of water use and availability. Hydrological Sciences Journal, Vol. 48 (3), pp. 317-337.

2. Anisimov, O., Reneva, S. (2006). Permafrost and Changing Climate: The Russian Perspective. Ambio, Vol. 35 (4), pp. 169-175. DOI: http://dx.doi.org/10.1579/0044-7447(2006)35%5B169:PACCTR%5D2.0.CO;2

3. aus der Beek, T., Flörke, M., Lapola, D. M. et al. (2010). Modelling historical and current irrigation water demand on the continental scale: Europe. Advances in Geosciences, N 27, pp. 79-85. DOI: http://dx.doi.org/10.5194/adgeo-27-79-2010

4. Batimaa, P., Tatsagdorj, L., Gombluudev, P., Erdenetsetseg, B. (2005). Observed climate change in Mongolia. AIACC Working Paper, N 12, Assessments of Impacts and Adaptations to Climate Change (AIACC).

5. Batsukh, N., Dorjsuren, D., Batsaikhan, G. (2008). The water resources, use and conservation in Mongolia. First national report. Ulaanbaatar: National Water Committee.

6. Bereznykh, T., Marchenko, O., Abasov, N., Mordvinov, V. (2012). Changes in the summertime atmospheric circulation over East Asia and formation of long-lasting low-water periods within the Selenga river basin. Geography and Natural Resources, Vol. 33(3), pp. 61-68. DOI: http://dx.doi.org/10.1134/S1875372812030079

7. Bolton, W.R. (2006). Dynamic Modeling of the Hydrological Processes in Areas of discontinuous Permafrost. Dissertation at the University of Alaska, Fairbanks, USA.

8. Chalov, S.R., Zavadsky A.S., Belozerova, E.V. et al. (2012). Suspended and Dissolved Matter Fluxes in the Upper Selenga River Basin: Synthesis. Geography, Environment, Sustainability, Vol. 02 (05), pp. 78-94.

9. Clarke, A., Murphy, E.J., Meredith, M.P. et al. (2007). Climate change and the marine ecosystem of the western Antarctic Peninsula. Philosophical Transactions of the Royal Society London B: Biological Sciences,Vol. 362 (1477), pp. 149-166. DOI: http://dx.doi.org/10.1098%2Frstb.2006.1958

10. Döll, P., Kaspar, F., Lehner, B. (2003). A global hydrological model for deriving water availability indicators: model tuning and validation. Journal of Hydrology, Vol. 270 (1-2), pp. 105-134. DOI: http://dx.doi.org/10.1016/S0022-1694(02)00283-4

11. Flörke, M., Kynast, E., Bärlund, I. et al. (2013). Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study. Global Environmental Change,Vol. 23 (1), pp. 144-156. DOI: http://dx.doi.org/10.1016/j.gloenvcha.2012.10.018

12. Garmaev, E.J., Khristovorov, A.B. (2010). Water Resources of the Rivers of the Lake Baikal Ba-sin: Basics of Their Use and Protection. Novosibirsk: Academic Press “Geo”, 301 p (In Russian).

13. Giglio, L.; Descloitres, J.; Justice, C.O. and Kaufman, Y.J. (2003): An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment 87 (2-3): 273-282. DOI: http://dx.doi.org/10.1016/S0034-4257(03)00184-6

14. Hagemann, S., Chen, C., Haerter, J.O. et al. (2011). Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. Journal of Hydrometeorology, Vol. 12 (4), pp. 556-578. DOI: http://dx.doi.org/10.1175/2011JHM1336.1

15. Hartwig, M., Theuring, P., Rode, M., Borchardt, D. (2012). Suspended sediments in the Kharaa River catchment (Mongolia) and its impact on hyporheic zone functions. Environmental Earth Sciences,Vol. 65 (5), pp. 1535-1546. DOI: http://dx.doi.org/10.1007/s12665-011-1198-2

16. Hofmann, J., Hürdler, J., Ibisch, R, Schäffer, M., Borchardt, D. (2011). Analysis of Recent Nutrient Emission Pathways, Resulting Surface Water Quality and Ecological Impacts under Extreme Continental Climate: The Kharaa River Basin (Mongolia). International Review of Hydrobiology, Vol. 96 (5), pp. 484-519. DOI: http://dx.doi.org/10.1002/iroh.201111294

17. Hofmann, J., Rode, M., Theuring, P. (2013).Recent developments in river water quality in a typical Mongolian river basin, the Kharaa case study.[Online]. Proceedings of the IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden. Available from: http://iahs-iapso-iaspei2013.com/Abstracts.aspx?252102 [Accessed 11.03.2014].

18. Hu, X.,Pollard, W.H. (1997). The Hydrologic Analysis and Modelling of River Icing Growth, North Fork Pass, Yukon Territory, Canada. Permafrost and Periglacial Processes.Vol. 8 (3), pp. 279-294. DOI: http://dx.doi.org/10.1002/(SICI)1099-1530(199709)8:3<279::AID-PPP260>3.0.CO;2-7

19. IPCC- Intergovernmental Panel on Climate Change (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press.

20. Ishii, R., Fujita, N. (2013). A Possible Future Picture of Mongolian Forest-Steppe Vegetation Under Climate Change and Increasing Livestock: Results from a New Vegetation Transition Model at the Topographic Scale. In: Yamamura, N., Fujita, N. (Ed.) (2013).The Mongolian Ecosystem Network. Environmental Issues Under Climate and Social Changes, pp. 65-82.

21. Ishikawa, M., Sharkuu, N., Zhang, Y. et al. (2005). Ground Thermal and Moisture Conditions at the Southern Boundary of Discontinuous Permafrost, Mongolia. Permafrost and Periglacial Processes, Vol. 16 (2), pp. 209-216. DOI: http://dx.doi.org/10.1002/ppp.483

22. Karthe, D., Chalov, S., Theuring, P., Belozerova E. (2013). Integration of Meso- and Macroscale Approaches for Water Resources Monitoring and Management in the Baikal-Selenga-Basin. In: Chifflard, P., Cyffka, B., Karthe, D., Wetzel, K.-F. (2013). Beiträge zum 44. Jahrestreffen des Arbeitskreises Hydrologie, Augsburg: Geographica Augustana, pp. 90-94.

23. Karthe, D., Theuring, P., Borchardt, D., Hufert, F. (2012). An Integrated Water Monitoring Concept Designed for a Multi-Stressor Environment: Experiences from the Kharaa River Basin, Mongolia. In: Tserashchuk, M. (Ed.) (2012). Proceedings of the IWA Young and Senior Water Professionals Conference St Petersburg, 2012. Part I, pp. 40-48.

24. Kasimov, N., Lychagin, M., Chalov, S. (2010). Development of a scientific basis for the monitoring and prediction of transboundary pollutant transports in the Selenga River Catchment and their influences on Lake Baikal. Report on project no. 11.519.11.5008 of the Russian Ministry of Education and Science.

25. Malsy, M., aus der Beek, T., Eisner, S., Flörke, M. (2012). Climate change impacts on Central Asian water resources. Advances in Geosciences, Vol. 32, pp. 77-83. DOI: http://dx.doi.org/10.5194/adgeo-32-77-2012

26. MEGD - Ministry for Environment and Green Development (2012). Orkhon River Basin Integrated Water Management Plan. Ulaanbaatar.

27. Menzel, L., Hofmann, J., Ibisch, J. (2011). Untersuchung von Wasser- und Stoffflüssen als Grundlage für ein Integriertes Wasserressourcenmanagement im Kharaa-Einzugsgebiet, Mongolei. Hydrologie und Wasserbewirtschaftung, Vol. 55 (2), pp. 88-103.

28. MNCS&M - Mongolian National Center of Standardizations & Meteorology (2005). Mongolian drinking water standard MNS 900: 2005. Ulaanbaatar.

29. MNE&MH - Ministry of Nature and Environment & Ministry of Health (1997). Surface water classification 143/a/352. Ulaanbaatar: Joint order of the Mongolian Ministry of Nature and Environment and Ministry of Health.

30. MoMo Consortium (2009). Integrated Water Resources Management for Central Asia: Model Region Mongolia (MoMo). Case Study in the Kharaa River Basin. Final Project Report.

31. Piani, C., Weedon, G. P., Best, M. et al. (2010). Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. Journal of Hydrology, Vol. 395 (3-4), pp. 199-215. DOI: http://dx.doi.org/10.1016/j.jhydrol.2010.10.024

32. Potemkina, T. (2011). Tendencies of formation sediment load of Baikal general tributaries at the 20th century and early 21st century. Russian Meteorology and Hydrology, Vol. 36 (12), pp. 63-71. DOI: http://dx.doi.org/10.3103/S1068373911120077

33. Priess, J., Schweitzer, C., Wimmer, F. et al. (2011). The consequences of land-use change and water demands in Central Mongolia - an assessment based on regional land-use policies. Land Use Policy, Vol. 28 (1), pp. 4-10. DOI: http://dx.doi.org/10.1016/j.landusepol.2010.03.002

34. Semenov, V., Myagmarzhav, B. (1977). Hydrological regime of the Selenga River Basin. Leningrad: Hydrometioizdat, 235 p. (In Russian).

35. Shimaraev, M., Kuimova, L., Sinyukovich, V., Tsekhanovskii, V. (2002). Manifestation of Global Climatic Changes in Lake Baikal during the 20th Century. Doklady Earth Sciences, Vol. 383A (3), pp. 288-291.

36. Sloan, C.E., van Everdingen, R.O. (1988). Region 28, Permafrost Region. In: Back, W., Rosenshein, J.S., P.R. Seaber (Eds.) (1988). The Geology of North America, pp. 263-270. Boulder, Colorado: The Geological Society of America.

37. Sorokovikova, L., Popovskaya, J., Tomberg, I. et al. (2013). The Selenga river water quality on the border with Mongolia at the beginning of the 21st century. Meteorology and Hydrology, N 2, pp. 92-103 (In Russian).

38. Theuring, P., Rode, M., Behrens, S., Kirchner, G., Jha, A. (2013). Identification of fluvial sediment sources in a meso-scale catchment, Northern Mongolia. Hydrological Processes, Vol. 27 (6), pp. 845-856. DOI: http://dx.doi.org/10.1002/hyp.9684.

39. Thorslund, J., Jarsjö, J., Chalov, S., Belozerova, E. (2012). Gold mining impact on riverine heavy metal transport in a sparsely monitored region: the upper Lake Baikal Basin case. Journal of Environmental Monitoring, Vol. 14 (10), pp. 2780-92. DOI: http://dx.doi.org/10.1039/c2em30643c

40. Törnros, T., Menzel, L. (2010). Heading for knowledge in a data scarce river basin: Kharaa, Mongolia. In: Herrmann, A., Schumann, S. (Eds.) (2010). Status and Perspectives of Hydrology in Small Basins, pp. 270-275. Wallingford: IAHS Publication 336.

41. Tsogtbaatar, J. (2004). Deforestation and reforestation needs in Mongolia. Forest Ecology and Management, Vol. 201 (1), pp. 57-63. DOI: http://dx.doi.org/10.1016/j.fore-co.2004.06.011

42. Tsogtbaatar, J. (2013). Deforestation and Reforestation of Degraded Forestland in Mongolia. In: Yamamura, N., Fujita, N. (Ed.) (2013). The Mongolian Ecosystem Network. Environmental Issues Under Climate and Social Changes, pp. 83-98. Tokyo: Springer Japan.

43. Verzano, K. (2009). Climate change impacts on flood related hydrological processes: Further development and application of a global scale hydrological model. Reports on Earth System Science 71-2009. Hamburg: Max Planck Institute for Meteorology.

44. Wedepohl, K. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, Vol. 59 (7), pp. 1217-1232. DOI: http://dx.doi.org/10.1016/0016-7037(95)00038-2

45. Weedon, G. P., Gomes, S., Viterbo, P. et al. (2011). Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional Reference Crop Evaporation over Land during the Twentieth Century. Journal of Hydrometeorology, Vol. 12 (5), pp. 823-848. DOI: http://dx.doi.org/10.1175/2011JHM1369.1

46. Wimmer, F., Schlaffer S., aus der Beek, T., Menzel, L. (2009). Distributed modelling of climate change impacts on snow sublimation in northern Mongolia. Advances in Geosciences, N 21, pp. 117-124. DOI: http://dx.doi.org/10.5194/adgeo-21-117-2009

47. Woo, M.-K., Marsh, P., Pomeroy, J.W. (2000). Snow, frozen soils and permafrost hydrology in Canada, 1995-1998. Hydrological Processes, Vol. 14 (9), pp. 1591-1611. DOI: http://dx.doi.org/10.1002/1099-1085(20000630)14:9<1591::AID-HYP78>3.0.CO;2-W

48. WWAP - World Water Assessment Program (2012). The United Nations World Water Development Report 4: Knowledge Base. Paris: UNESCO


For citation:


Karthe D., Kasimov N.S., Chalov S.R., Shinkareva G.L., Malsy M., Menzel L., Theuring P., Hartwig M., Schweitzer C., Hofmann J., Priess J., Lychagin M. INTEGRATING MULTI-SCALE DATA FOR THE ASSESSMENT OF WATER AVAILABILITY AND QUALITY IN THE KHARAA - ORKHON - SELENGA RIVER SYSTEM. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2014;7(3):65-86. https://doi.org/10.24057/2071-9388-2014-7-3-40-49

Views: 349


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)