Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Particle size partitioning of metals in humus horizons of two small erosional landforms in the middle Protva basin – a comparative study

https://doi.org/10.24057/2071-9388-2019-116

Full Text:

Abstract

Partitioning of metals in soil particles of various size classes has been receiving greater significance due to the necessity to predict the behaviour and pathways of the potentially toxic elements in the environment. In this study the analysis of metals’ distribution in various particle size fractions was performed to characterize and compare geochemical features of the topsoil horizons of two small erosional landforms located in uncontaminated area of the central part of European Russia (the Middle Protva basin, mixed forest zone). The landforms represent two typical lithological types of gullies in the study area. Soil samples were fractionated and the concentrations of Fe, Mn, Ti, Zr, Ni, Co, Cr, Zn, Cu, Pb were determined in five particle size fractions: 1–0.25, 0.25-0.05, 0.05−0.01, 0.01–0.001 and <0.001 mm. The metals’ concentrations and their distribution in various particle sizes were found to be related to gully litho-type. The contribution of the clay to the total amount of metals was the greatest for Mn, Zn, Ni and Co in both systems. The highest mass loading for Ti, Zr and Cr came from the coarse silt, while for Cu and Pb it was made by different particle size fractions: the medium and fine silt or the coarse silt. The highest contribution of Fe also came from different fractions, either from the coarse sand or the clay depending on the system.

About the Authors

Olga A. Samonova
Lomonosov Moscow State University
Russian Federation

Faculty of Geography, 

Leninskiye Gori, 1, Moscow, 119991



Elena N. Aseyeva
Lomonosov Moscow State University
Russian Federation

Faculty of Geography, 

Leninskiye Gori, 1, Moscow, 119991



References

1. Acosta J., Faz Cano A., Arocena J., Debela F. and Martínez-Martínez S. (2009). Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia City (Spain). Geoderma, 149, 101-109. DOI: 10.1016/j.geoderma.2008.11.034.

2. Acosta J., Martínez-Martínez S., Faz A. and Arocena J. (2011). Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma, 161(1), 30-42. DOI:10.1016/j.geoderma.2010.12.001.

3. Ajmone-Marsan F., Biasioli M., Kralj T., Grčman H., Davidson C.M., Hursthouse A.S., Madrid L. and Rodrigues S. (2008) Metals in particle-size fractions of the soils of five European cities. Environmental Pollution, 152, 73-81. DOI: 10.1016/j.envpol.2007.05.020.

4. Arinushkina E. (1992). Handbook for chemical analysis of soils. Moscow: Chimiya Publishing house. (in Russian). Azhigirov A., Golosov V., Dobrovolskaya N., Litvin L. and Samodurova L. (1987). Investigation of the flow of water and sediment along interfluve slopes in the Protva river basin. VINITI, 6389-B87, 51-77. (in Russian).

5. Barrón V. and Torrent J. (2013). Iron, manganese and aluminium oxides and oxyhydroxides. European Mineralogical Union Notes in Mineralogy, 14, 297-336. DOI: 10.1180/EMU-notes.14.9.

6. Banerjee A. (2003) Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 123, 95-105. DOI:10.1016/S0269-7491(02)00337-8.

7. Buggle B., Glaser B., Zoeller L., Hambach U., Markovic S., Glaser I. and Gerasimenko N. (2008). Geochemical characterisation and origin of Southeastern and Eastern European loesses (Serbia, Romania, Ukraine). Quaternary Science Reviews, 27, 1058-1075. DOI: 10.1016/j. quascirev.2008.01.018.

8. Deer W., Howie R. and Zussman J. (1997) Orthosilicates. In: Rock-forming minerals: Volume 1A, 2nd ed. Bath, UK: Geological Society, 418-466.

9. De Miguel E., Llamas J., Chacón E., Berg T., Larssen S., Royset O. and Vadset M. (1997). Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmos. Environ., 31, 2733-2740.

10. Dmitriev Ye. (2009). Mathematical Statistics in Soil Science, 3rd ed. Moscow: Book House Librokom. (in Russian).

11. Dobrovolskii V. (1983). Geography of Trace Elements. Global Dispersion. Moscow: Mysl’. (in Russian).

12. Förstner U. (1982). Chemical forms of metal accumulation in recent sediments. In: G. C. Amstutz, G. Frenzel, C. Kluth, G. Moh, A. Wauschkuhn, R. Zimmermann, A. El Goresy, eds., The Ore genesis. Berlin; Heidelberg: Springer-Verlag, 191-199.

13. Gennadiev A., Koshovskii T., Zhidkin A. and Kovach R. (2013) Lateral migration of soil solid-phase material within a landscape-geochemical arena detected using the magnetic tracer method. Eurasian Soil Science, 46(10), 983-993.

14. Golosov V. (2006). The erosional and accumulative processes in river basins in cultivated plains. Moscow: Geos. (in Russian).

15. Gong C., Ma L., Cheng H., Liu Y., Xu D., Li B., Liu F., Ren Y., Liu Z., Zhao C., Yang K., Nie H. and Lang C. (2014)

16. Characterization of the particle size fraction associated heavy metals in tropical arable soils from Hainan Island, China. Journal of Geochemical Exploration, 139, 109-114. DOI: 10.1016/j.gexplo.2013.01.002.

17. Hardy M. and Cornu S. (2006). Location of natural trace elements in silty soils using particle-size fractionation. Geoderma, 133, 295-308. DOI: 10.1016/j.geoderma.2005.07.015.

18. Kabata-Pendias A. (2011) Trace elements in soils and plants, 4th ed. London, New York: CRC Press, Boca Raton.

19. Khademi H., Gabarrón M., Abbaspour A., Martínez-Martínez S., Faz A. and Acosta J. (2019). Environmental impact assessment of industrial activities on heavy metals distribution in street dust and soil. Chemosphere, 217, 695-705. DOI: 10.1016/j.chemosphere.2018.11.045.

20. Kolevatykh E. (2011). Geochemistry of landscapes on mantle loams of the Vyatsko-Kama Cis-Urals: synopsis of the PhD theses. Perm. (in Russian).

21. Liu G., Wang J., Liu X., Liu X., Li X., Ren Y., Wang J. and Dong L. (2018). Partitioning and geochemical fractions of heavy metals from geogenic and anthropogenic sources in various soil particle size fractions. Geoderma, 312, 104-113. DOI: 10.1016/j.geoderma.2017.10.013.

22. Ljung K., Selinus O., Otabbong E. and Berglund M. (2006). Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Applied Geochemistry, 21, 1613-1624. DOI: 10.1016/j.apgeochem.2006.05.005.

23. Muratov M. (1953). On the conditions of loam formation in the Quaternary period. Bulletin of the Quaternary Commission, 19, 57-64. (in Russian).

24. Panin A., Fuzeina Ju. and Belyaev V. (2009). Long-term development of Holocene and Pleistocene gullies in the Protva River basin, Central Russia. Geomorphology, 108, 71-91. DOI: 10.1016/j.geomorph.2008.06.017.

25. Panin, A., Fuzeina, Y., Karevskaya, I. and Sheremetskaya, E. (2011). Mid-Holocene gullying indicating extreme hydroclimatic events in the centre of the Russian Plain. Geographia Polonica, 84, 95-115. DOI: 10.7163/GPol.2011.1.6.

26. Pobedinceva I. (1975). The soils on ancient weathering crusts. Moscow: Moscow Univ. Press. (in Russian).

27. Protasova N. (2003). Rare and trace elements (Mn, Cr, V, Ni, Cu, Zn, Co, Mo, Be, Ti, Zr, Ga, Sr, Ba, I, B) in the parent materials of the Central Chernozemic Belt region. Voronezh University Bulletin. Series Himija, biologija, farmacija, 2, 164-171. (in Russian).

28. Qian J., Shari X., Wang Z. and Tu Q. (1996). Distribution and plant availability of heavy metals in different particle-size fractions of soil. The Science of the Total Environment, 187, 131-141.

29. Rinklebe J., Antoniadis V., Shaheen S. M., Rosche O. and Altermann M. (2019) Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International, 126, 76-88. DOI: 10.1016/j.envint.2019.02.011.

30. Rychagov G. and Antonov S. (1992). The integrated analysis of the Quaternary deposits of the Satino training station. Moscow: Moscow Univ. Press. (in Russian).

31. Samonova O. and Aseeva E. (2006). Geochemical transformation of mantle and moraine loams as a result of soil formation in the Central Protva river basin. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya, 6, 67-74. (in Russian with English summary).

32. Samonova O. and Aseeva E. (2008). The distribution of metals in grain-size fractions of soils in the southeastern part of the SmolenskMoscow Upland. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya, 3, 32-39. (in Russian with English summary).

33. Samonova O. and Aseyeva E. (2013). Distribution of metals in particle size fractions in soils of two forested catenas (Smolensk-Moscow upland). Geography, Environment, Sustainability, 6(2), 28-33, DOI: 10.24057/2071-9388-2013-6-2-28-33.

34. Samonova O., Aseyeva E. and Kasimov N. (2014). Metals in soils of erosional systems in forest zone in the central part of European Russia. J. Geochem. Explor., 144, 247−259. DOI: 10.1016/j.gexplo.2014.03.012.

35. Semenkov I. and Koroleva T. (2019). The spatial distribution of fractions and the total content of 24 chemical elements in soil catenas within a small gully’s catchment area in the Trans Urals, Russia. Applied Geochemistry, 106, 1-6. DOI: 10.1016/j.apgeochem.2019.04.010.

36. Schaetzl R.J. and Anderson S. (2005). Soils. Genesis and geomorphology. Cambrige university press.

37. Sposito G. (2008). The chemistry of soils. 2nd ed. New York, USA: Oxford University Press.

38. Sutherland R. (2003). Lead in grain size of road deposited sediment. Environmental pollution, 121, 229-237, DOI: 10.1016/S0269- 7491(02)00219-1.

39. Van Reeuwijk L. (1992). Procedures for soil analysis. 3rd ed. Wageningen: ISRIC.

40. Vlasov D., Kasimov N. and Kosheleva N. (2015). Geochemistry of road dust in the Eastern District of Moscow. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya, 1, 23-33. (in Russian with English summary).

41. World Reference Base for Soil Resources 2014, update 2015. (2015). International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports 106. Rome: Food and Agriculture organization of the United Nation. Available at: www.fao.org/soils-portal/soil-survey/soil-classification/world-reference-base/en/ [Accessed 20 Jan. 2019].

42. Zhang J., Wu L., Zhang Y., Li F., Fang X. and Mao H. (2019). Elemental composition and risk assessment of heavy metals in the PM10 fractions of road dust and roadside soil. Particuology, 44, 146-152. DOI: 10.1016/j.partic.2018.09.003.

43. Zwozdziak А., Gini M.I., Samek L., Rogula-Kozlowska W., Sowka I. and Eleftheriadis K. (2017). Implications of the aerosol size distribution modal structure of trace and major elements on human exposure, inhaled dose and relevance to the PM2.5 and PM10 metrics in a European pollution hotspot urban area. Journal of Aerosol Science, 103, 38-52. DOI: 10.1016/j.jaerosci.2016.10.004.


For citation:


Samonova O.A., Aseyeva E.N. Particle size partitioning of metals in humus horizons of two small erosional landforms in the middle Protva basin – a comparative study. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2020;13(1):260-271. https://doi.org/10.24057/2071-9388-2019-116

Views: 219


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)