Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Black carbon in spring aerosols of Moscow urban background

https://doi.org/10.24057/2071-9388-2019-90

Full Text:

Abstract

Air quality in megacities is recognized as the most important environmental problem. Aerosol pollution by combustion emissions is remaining to be uncertain. Measurements of particulate black carbon (BC) were conducted at the urban background site of Meteorological Observatory (MO) MSU during the spring period of 2017 and 2018. BC mass concentrations ranged from 0.1 to 10 μg m–3, on average 1.5±1.3 and 1.1±0.9 µg/m3 , in 2017 and 2018, respectively. Mean BC concentrations displayed significant diurnal variations with poorly prominent morning peak and minimum at day time. BC mass concentrations are higher at night time due the shallow boundary layer and intensive diesel traffic which results in trapping of pollutants. Wind speed and direction are found to be important meteorological factors affected BC concentrations. BC pollution rose identifies the North as the direction of the preferable pollution. A negative correlation between BC concentrations and wind speed confirms the pollution accumulation preferably in stable weather days. Relation of BC pollution to a number of agriculture fires is distinguishable by air mass transportation from South and South-Est of Russia and Western Europe. Mean season ВС concentrations at rural and remote sites in different world locations are discussed.

About the Authors

Olga B. Popovicheva
SINP Moscow State University
Russian Federation
Moscow


Elena Volpert
Geographical Faculty, Moscow State University
Russian Federation
Moscow


Nikolay M. Sitnikov
Central Aerological Observatory
Russian Federation
Dolgoprudny, Moscow region


Marina A. Chichaeva
Peoples Friendship University of Russia (RUDN University)
Russian Federation
Moscow


Sara Padoan
Universität der Bundeswehr München
Germany
Neubiberg


References

1. Ahmed T., Dutkiewicz V.A., Khan A.J. and Husain L. (2014). Long term trends in black carbon concentrations in the Northeastern United States. Atmospheric Research, 137, 49-57. doi: 10.1016/j.atmosres.2013.10.003

2. Bhugwant C. and Brémaud P. (2001). Simultaneous measurements of black carbon, PM10, ozone and NOx variability at a locally polluted island in the Southern tropics. Journal of Atmospheric Chemistry, 39, 261-280. doi: 10.1023/A:1010692201459

3. Bityukova V. and Saulskaya T. (2017). Changes of the anthropogenic impact of Moscow industrial zones during the recent decades. Vestnik Moskovskogo Unviersiteta, Seriya Geografiya, 3, 24-33 (in Russian with English summary).

4. Bond T.C., Doherty S.J., Fahey D.W., Forster P.M., et al.(2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118, 5380-5552. doi: 10.1002/jgrd.50171

5. Chen X., Zhang Z., Engling G., Zhang R., et al. (2014). Characterization of fine particulate black carbon in Guangzhou, a megacity of South China. Atmospheric Pollution Research, 5, 361-370. doi: 10.5094/APR.2014.042

6. Cheng Z., Luo L., Wang S., Wang Y., et al. (2016). Status and characteristics of ambient PM2.5 pollution in global megacities. Environment International, 89-90, 212-221. doi: 10.1016/j.envint.2016.02.003

7. Diapouli E., Kalogridis A.-C., Markantonaki C., Vratolis S., et al.(2017). Annual variability of black carbon concentrations originating from biomass and fossil fuel combustion for the suburban aerosol in Athens, Greece. Atmosphere, 8, 34. doi: 10.3390/atmos8120234

8. Dismuke C. and Egede L. (2015). The impact of cognitive, social and physical limitations on income in community dwelling adults with chronic medical and mental disorders. Global Journal of Health Science, 7(5), 183-195. doi: 10.5539/gjhs.v7n5p183

9. Garland R., Yang H., Schmid O., Rose D., et al. (2008). Aerosol optical properties in a rural environment near the mega-city Guangzhou, China: implications for regional air pollution, radiative forcing and remote sensing. Atmospheric Chemistry and Physics, 8, 5161-5186. doi: 10.5194/acp-8-5161-2008

10. Golitsyn G.S., Grechko E.I., Wang G., Wang P., et al. (2015). Studying the pollution of Moscow and Beijing atmospheres with carbon monoxide and aerosol. Izvestiya Atmospheric and Oceanic Physics, 51, 1-11. doi: 10.1134/S0001433815010041

11. Gubanova D., Belikov I., Elansky N., Skorokhod A. and Chubarova N. (2018). Variations in PM2.5 surface concentration in Moscow according to observations at MSU Meteorological Observatory. Atmospheric and Oceanic Optics, 31, 290-299. doi: 10.1134/S1024856018030065

12. Healy R., Sofowote U., Su Y., Debosz J., et al. (2017). Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario. Atmospheric Environment, 161, 34-47. doi: 10.1016/j.atmosenv.2017.04.034

13. Herich H., Hueglin C. and Buchmann B. (2011). A 2.5 year’s source apportionment study of black carbon from wood burning and fossil fuel combustion at urban and rural sites in Switzerland. Atmospheric Measurement Techniques, 4, pp. 1409-1420. doi: 10.5194/amt-4-1409-2011

14. Jacobson M.Z. (2010). Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, arctic ice, and air pollution health. Journal of Geophysical Research: Atmospheres, 115. doi: 10.1029/2009JD013795

15. Janssen N.A.H., Hoek G., Simic-Lawson M., Fischer P., et al. (2011). Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environmental Health Perspectives, 119, 1691-1699. doi: 10.1289/ehp.1003369

16. Järvi L., Junninen H., Karppinen A., Hillamo R., et al. (2008). Temporal variations in black carbon concentrations with different time scales in Helsinki during 1996–2005. Atmospheric Chemistry and Physics, 8, 1017-1027. doi: 10.5194/acp-8-1017-2008

17. Kendall M., Hamilton R., Watt J. and Williams I. (2001). Characterisation of selected speciated organic compounds associated with particulate matter in London. Atmospheric Environment, 35, 2483-2495. doi: 10.1016/S1352-2310(00)00431-3

18. Konovalov I., Beekmann M., Meleux F., Dutot A. and Foret G. (2009). Combining deterministic and statistical approaches for PM10 forecasting in Europe. Atmospheric Environment, 43, 6425-6434. doi: 10.1016/j.atmosenv.2009.06.039

19. Kopeikin V., Emilenko A., Isakov A., Loskutova O. and Ponomareva T.Y. (2018). Variability of soot and fine aerosol in the Moscow region in 2014–2016. Atmospheric and Oceanic Optics, 31, 243-249. doi: 10.1134/S1024856018030089

20. Kozlov V., Panchenko M. and Yausheva E. (2011). Diurnal variations of the submicron aerosol and black carbon in the near-ground layer. Atmospheric and Oceanic Optics, 24, 30-38. doi: 10.1134/S102485601101009X

21. Kul’bachevskii A.O. (Ed.) (2017). Report on the state of the environment in Moscow in 2016. NIiPI IGSP, Moscow. (in Russian).

22. Kuznetsova I., Konovalov I., Glazkova A., Nakhaev M., et al. (2011). Observed and calculated variability of the particulate matter concentration in Moscow and in Zelenograd. Russian Meteorology and Hydrology, 36, 175-184. doi: 10.3103/S1068373911030046

23. Lokoshchenko M. (2015). Wind direction in Moscow. Russian Meteorology and Hydrology, 40, 639-646. doi: 10.3103/S1068373915100015

24. Mousavi A., Sowlat M.H., Hasheminassab S., Polidori A. and Sioutas C. (2018). Spatio-temporal trends and source apportionment of fossil fuel and biomass burning black carbon (BC) in the Los Angeles basin. Science of the Total Environment, 640, 1231-1240. doi: 10.1016/j. scitotenv.2018.06.022

25. Niu S. and Zhang Q. (2010). Scattering and absorption coefficients of aerosols in a semi-arid area in China: Diurnal cycle, seasonal variability and dust events. Asia-Pacific Journal of Atmospheric Sciences, 46, 65-71. doi: 10.1007/s13143-010-0007-2

26. Ohara T., Akimoto H., Kurokawa J.-I., Horii N., Yamaji K., Yan X. and Hayasaka T. (2007). An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmospheric Chemistry and Physics, 7, 4419-4444. doi: 10.5194/acp-7-4419-2007

27. Pope III C.A. and Dockery D.W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association, 56, 709-742. doi: 10.1080/10473289.2006.10464485

28. Popovicheva O., Kistler M., Kireeva E., Persiantseva N., et al. (2014). Physicochemical characterization of smoke aerosol during large-scale wildfires: extreme event of August 2010 in Moscow. Atmospheric Environment, 96, 405-414. doi: 10.1016/j.atmosenv.2014.03.026

29. Popovicheva O.B., Engling G., Ku I.-T., Timofeev M.A. and Shonija N.K. (2019). Aerosol emissions from long-lasting smoldering of boreal peatlands: chemical composition, markers, and microstructure. Aerosol and Air Quality Research, 19, 484-503. doi: 10.4209/aaqr.2018.08.0302

30. Popovicheva O.B., Evangeliou N., Eleftheriadis K., Kalogridis A.C., et al. (2017a). Black carbon sources constrained by observations in the Russian high Arctic. Environmental Science & Technology, 51, 3871-3879. doi: 10.1021/acs.est.6b05832

31. Popovicheva O.B., Shonija N.K., Persiantseva N., Timofeev M., et al. (2017b). Aerosol pollutants during agricultural biomass burning: A case study in Ba Vi region in Hanoi, Vietnam. Aerosol and Air Quality Research, 17, 2762-2779. doi: 10.4209/aaqr.2017.03.0111

32. Ramachandran S. and Rajesh T. (2007). Black carbon aerosol mass concentrations over Ahmedabad, an urban location in Western India: comparison with urban sites in Asia, Europe, Canada, and the United States. Journal of Geophysical Research: Atmospheres, 112. doi: 10.1029/2006JD007488

33. Reddy M.S. and Venkataraman C. (2002). Inventory of aerosol and sulphur dioxide emissions from India: I—fossil fuel combustion. Atmospheric Environment, 36, 677-697. doi: 10.1016/S1352-2310(01)00463-0

34. Salcedo D., Onasch T.B., Dzepina K., Canagaratna M.R., et al. (2006). Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry: results from the CENICA Supersite. Atmospheric Chemistry and Physics, 6(4), 925- 946. doi: 10.5194/acp-6-925-2006

35. Salma I., Chi X. and Maenhaut W. (2004). Elemental and organic carbon in urban canyon and background environments in Budapest, Hungary. Atmospheric Environment, 38, 27-36. doi: 10.1016/j.atmosenv.2003.09.047

36. Sharma S., Brook J., Cachier H., Chow J., et al. (2002). Light absorption and thermal measurements of black carbon in different regions of Canada. Journal of Geophysical Research: Atmospheres, 107, AAC 11-1-AAC 11-11. doi: 10.1029/2002JD002496

37. Singh S., Tiwari S., Gond D., Dumka U., et al. (2015). Intra-seasonal variability of black carbon aerosols over a coal field area at Dhanbad, India. Atmospheric Research, 161, 25-35. doi: 10.1016/j.atmosres.2015.03.015

38. Stein A., Draxler R., Rolph G., Stunder B., et al. (2015). Noaa’s Hysplit Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society, 96, 2059-2077. doi: 10.1175/BAMS-D-14-00110.1

39. Steiner S., Czerwinski J., Comte P., Popovicheva O., et al. (2013). Comparison of the toxicity of diesel exhaust produced by bio-and fossil diesel combustion in human lung cells in vitro. Atmospheric Environment, 81, 380-388. doi: 10.1016/j.atmosenv.2013.08.059

40. Weingartner E., Keller C., Stahel W., Burtscher H. and Baltensperger U. (1997). Aerosol emission in a road tunnel. Atmospheric Environment, 31, 451-462. doi: 10.1016/S1352-2310(96)00193-8

41. WHO (2005). WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide - Global Update 2005.

42. WHO (2012). Health effects of black carbon. WHO.

43. Wu D., Wu C., Liao B., Chen H., et al. (2013). Black carbon over the South China Sea and in various continental locations in South China. Atmospheric Chemistry and Physics, 13, 12257-12270. doi: 10.5194/acp-13-12257-2013


For citation:


Popovicheva O.B., Volpert E., Sitnikov N.M., Chichaeva M.A., Padoan S. Black carbon in spring aerosols of Moscow urban background. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2020;13(1):233-243. https://doi.org/10.24057/2071-9388-2019-90

Views: 288


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)