Advanced search

Leaves of trees and shrubs as bioindicators of air pollution by particulate matter in Saint Petersburg

Full Text:


Accumulation of chemical elements by leaves of trees and shrubs in urban (Central District of St. Petersburg) and background habitats were studied. To determine proportion of pollutants accumulating on the surface of leaves, chemical content of washed and unwashed leaves were analyzed. The results of the study showed that big part (19-62%) of pollutants is deposited on the surface of leaves of urban lindens, and only 10% on the surface of leaves from background places. Average difference between quantity of particulate matter for them is 4 times. Tilia cordata and Ulmus laevis has the highest value of ash content between washing and washing leaves. The level of contamination (Kk) showed high values for Fe (8.83), Co (7.47), Cr (5.62), Pb (4.31), Zn (3.04) for unwashed leaves of urban lindens; for the washed leaves this index slightly increased only for Fe (3.12) and Pb (2.13). Accumulative ability depends on the structure of leaf blade of each species, and the ecological situation of the habitat. Ulmus laevis, Tilia cordata, Populus sp., and Rosa rugosa accumulate more pollutants, and can be recommended for protective green plantings. Tilia cordata, as the most common species in the city green spaces, can be used as an indicator of the level of atmospheric pollution.

About the Authors

Nataliia V. Terekhina
Institute of Earth Sciences, Saint-Petersburg State University
Russian Federation
33/35, 10 line, Vasileostrovsky Island, Saint-Petersburg, 199178

Margarita D. Ufimtseva
Institute of Earth Sciences, Saint-Petersburg State University
Russian Federation
33/35, 10 line, Vasileostrovsky Island, Saint-Petersburg, 199178


1. Aksenova Yu.E. (2017). Estimation of the impact of vehicles on the state of atmospheric air by the method of biogeochemical indication. Proceedings of the conference Problems of Geology and Mineral Resources. Tomsk, 684-686 (in Russian).

2. Aksoy A., Ozturk M.A. (1997). Nerium oleander L. as a biomonitor of lead and other heavy metal pollution in Mediterranean environments. Science of the Total Environment, 205, 145-150. DOI: 10.1016/S0048-9697(97)00195-2.

3. Al-Alawi Mu’taz M., Khakhathi L. Mandiwana (2007). The use of Aleppo pine needles as a bio-monitor of heavy metals in the atmosphere. Journal of Hazardous Materials, 148(1-2), 43-46. DOI: 10.1016/j.jhazmat.2007.02.001.

4. Alfani A., Maisto G., Iovieno P., Rutigliano F.A., Bartoli G. (1996). Leaf contamination by atmospheric pollutants as assessed by elemental analysis of leaf tissue, leaf surface deposit and soil. Journal of Plant Physiology, 148(1-2), 243-248. DOI: 10.1016/S0176-1617(96)80321-X.

5. Anićić M., Spasić T., Tomašević M., Rajšić S., Tasić, M. (2011). Trace elements accumulation and temporal trends in leaves of urban deciduous trees (Aesculus hippocastanum and Tilia spp.). Ecological Indicators, 11, 824-830. DOI: 10.1016/j.ecolind.2010.10.009.

6. Aničić Urošević, M., Jovanović, G., Stević, N., Deljanin, I., Nikolić, M., Tomašević, M., Samson, R. (2019). Leaves of common urban tree species (Aesculus hippocastanum, Acer platanoides, Betula pendula and Tilia cordata) as a measure of particle and particle-bound pollution: a 4-year study. Air Quality, Atmosphere and Health, 12(9), 1081-1090. DOI: 10.1007/s11869-019-00724-6.

7. Bargagli R., Ancora S., Bianchi N., Rota E. (2019). Deposition, abatement and environmental fate of pollutants in urban green ecosystems: Suggestions from long-term studies in Siena (Central Italy). Urban forestry and urban greening, 46, 126483. DOI: 10.1016/j.ufug.2019.126483.

8. Beckett, K.P., Freer-Smith P.H., Taylor G. (1998). Urban woodlands: their role in reducing the effects of particulate pollution. Environmental Pollution, 99, 347-360. DOI: 10.1016/S0269-7491(98)00016-5.

9. Chen L., Liu C., Zou R., Yang M., Zhang Z. (2016). Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment. Environmental Pollution, 208, 198-208. DOI: 10.1016/j.envpol.2015.09.006.

10. Chwil S., Kozłowska-Strawska J., Tkaczyk P., Chwil P., Matraszek R. (2015). Assessment of air pollutants in an urban agglomeration in Poland made by the biomonitoring of trees. Journal of Elementology, 20(4), 813-826. DOI: 10.5601/jelem.2015.20.1.742.

11. Czaja M., Kołton A., Baran A., Muras P. (2014). Influence of urban transport on heavy metals accumulation in the leaves of lime trees in Cracow. Logistyka, 4, 4193-4197.

12. De Nicola F., Maisto G., Prati M.V., Alfani A. (2008). Leaf accumulation of trace elements and polycyclic aromatic hydrocarbons (PAHs) in Quercus ilex L. Environmental Pollution, 153, 376-383. DOI: 10.1016/j.envpol.2007.08.008.

13. Drozdova I.V., Alekseeva-Popova N.V., Beliaeva A.I. (2015). The content of heavy metals in the soil-plant system of some specially protected natural areas of St. Petersburg and the Leningrad region. Environmental problems of industrial cities. Proc. of 7th All-Russia scientific-practical conf. with international participation, Part 1, ed. Prof. E.I. Tikhomirova, Saratov, 251-254 (in Russian).

14. Dzierżanowski K, Gawroński S.W. (2011). Use of trees for reducing particulate matter pollution in air. Challenges of Modern Technology, 1(2), 69-73. DOI: 10.1007/s12273-014-0180-9.

15. Ecological portal of St. Petersburg Available at: [Accessed 10 May. 2019].

16. Ghio A, Devlin R. (2001). Inflammatory lung injury after bronchial instillation of air pollution particles. American Journal of Respiratory and Critical Care Medicine, 164, 704-708. DOI: 10.1164/ajrccm.164.4.2011089.

17. GN, Hygienic standards Supplement N 8 to GN «Maximum permissible concentrations (MPC) of pollutants in the atmospheric air of populated areas» (in Russian).

18. Guidelines for geological survey scale 1: 50 000 Biogeochemical and geobotanical studies. (1972). Leningrad: Nedra (in Russian).

19. Janhäll S. (2015). Review on urban vegetation and particle air pollution – Deposition and dispersion. Atmospheric Environment, 105, 130- 137. DOI: 10.1016/j.atmosenv.2015.01.052.

20. Kabata-Pendias Alina, Pendias Henryk (2001).Trace elements in soils and plants. 3rd ed. Boca Raton FL: CRC Press LLC. .

21. Kardel F., Wuyts K., De Wael K., Samson R. (2018). Biomonitoring of atmospheric particulate pollution via chemical composition and magnetic properties of roadside tree leaves. Environmental Science and Pollution Research, 25-26, 25994-26004. DOI: 10.1007/s11356-018-2592-z.

22. Liu Y., Yang Z., Zhu M., Yin J. (2017). Role of plant leaves in removing airborne dust and associated metals on Beijing roadsides. Aerosol and Air Quality Research, 17, 2566-2584. DOI: 10.4209/aaqr.2016.11.0474.

23. Markert B. (1992). Establishing of “Reference Plant” for inorganic characterization of different plant species by chemical fingerprinting. Water Air and Soil Pollution, 64, 533-538. DOI: 10.1007/BF00483363.

24. Movchan V.N., Zubkova P.S., Kalinina I.K., Kuznetsova M.A., Sheinerman N.A. (2018). Assessment and forecast of the ecological situation in St. Petersburg in terms of air pollution and public health indicators. Vestnik SPSU. Earth Sciences, 63(2), 178-193. (in Russian with English summary). DOI: 10.21638/11701/spbu07.2018.204.

25. Nesterov E.M., Zarina LM, Piskunova M.A. (2009). Monitoring of behaviour of heavy metals in snow and soil covers of the central part of St.- Petersburg. Bulletin of the Moscow Region State University. Series: Natural Sciences, 1, 27-34. (in Russian with English summary).

26. Norouzi S., Khademi H. (2015). Source identification of heavy metals in atmospheric dust using Platanus orientalis L. leaves as bioindicator. Eurasian Journal of Soil Science, 4(3), 144-152. DOI: 10.18393/ejss.2015.3.144-152.

27. Nowak D.J., Hirabayashi S., Bodine A., Hoehn R. (2013). Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environmental Pollution, 178, 395-402. DOI: 10.1016/j.envpol.2013.03.050.

28. Oliva S.R., Valdés B. (2004). Influence of washing on metal concentrations in leaf tissue. Communications in Soil Science and Plant Analysis, 35(11-12), 1543-1552. DOI: 10.1081/CSS-120038553.

29. Palmieri R.M., La Pera L., Di Bella G., Dugo G. (2005). Simultaneous determination of Cd(II), Cu(II), Pb(II) and Zn(II) by derivative stripping chronopotentiometry in Pittosporum tobira leaves: a measurement of local atmospheric pollution in Messina (Sicily, Italy). Chemosphere, 59, 1161-1168. DOI: 10.1016/j.chemosphere.2004.11.066.

30. Paribok T.A., Sazykina N.A., Temp G.A., Troitskaya E.A., Leina GD, Chervyakova E.G. (1982). Metal content in the leaves of trees in the city. Botanicheskii Zhurnal, 67(11), 1533-1539. (in Russian).

31. Piczak K., Leśniewicz A., Zyrnicki W. (2003). Metal concentrations in deciduous tree leaves from urban areas in Poland. Environmental Monitoring and Assessment, 86, 273-287. DOI: 10.1023/A:1024076504099.

32. Popek R., Gawrońska H., Wrochna M. et al. (2013). Particulate matter on foliage of 13 woody species: deposition on surfaces and phytostabilisation in waxes – a 3-Year Study. International Journal of Phytoremediation, 15, 245-256. DOI: 10.1080/15226514.2012.694498.

33. Saet Yu.E., Revich B.A. (1988). Ecological and geochemical approaches to the development of criteria for the regulatory assessment of the state of the urban environment. Bulletin of the Russian Academy of Sciences, Geographical Series, 4, 37-46. (in Russian).

34. Slepyan E.I., Voloshko L.N., Dzyuba O.F. (1997). Flora of Nevsky Prospect and the natural environment of the historical center of St. Petersburg. Life and safety, 2-3, 406-453. (in Russian).

35. Solgi E., Keramaty M., Solgi M. (2020). Biomonitoring of airborne Cu, Pb, and Zn in an urban area employing a broad leaved and a conifer tree species. Journal of Geochemical Exploration, 208, 106400. DOI: 10.1016/j.gexplo.2019.106400.

36. Sæbø A., Popek R., Nawrot B., Hanslin H.M., Gawronska H., Gawronski S.W. (2012). Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Environment, 427-428, 347-354. DOI: 10.1016/j.scitotenv.2012.03.084.

37. Tomašević M., Vukmirović Z., Rajšić S., Tasić M., Stevanović B. (2005). Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area. Chemosphere, 61, 753-760. DOI: 10.1016/j.chemosphere.2005.03.077.

38. Tomašević M., Anićić M., Jovanović Lj., Perić-Grujć A., Ristić M. (2011). Deciduous tree leaves in trace elements biomonitoring: A contribution to methodology. Ecological indicators, 11, 689-695. DOI: 10.1016/j.ecolind.2011.04.017.

39. Ufimtseva M.D., Terekhina N.V. (2005). Phytoindication of ecological state of urban ecosystems in St. Petersburg. St. Petersburg: Nauka (in Russian with English summary).

40. Ufimtseva M.D., Terekhina N.V. (2014). Ecological-geochemical assessment of soil condition in historical center of St. Petersburg. Vestnik of Saint-Petersburg University. Earth Sciences, 2, 122-136. (in Russian with English summary). DOI: 10.21638/11701/spbu07.2017.206.

41. Ufimtseva M.D., Terekhina N.V. (2017). Assessment of ecological status of Central District (Saint-Petersburg) on the basis of ecophytoindication. Vestnik of Saint-Petersburg University. Earth Sciences, 62(2), 209-217. (in Russian with English summary). DOI: 10.21638/11701/spbu07.2017.206.

42. Ugolini F., Tognetti R., Raschi A., Bacci L. (2013). Quercus ilex L. as bioaccumulator for heavy metals in urban areas: Effectiveness of leaf washing with distilled water and considerations on the trees distance from traffic. Urban Forestry & Urban Greening, 12, 576-584. DOI: 10.1016/j. ufug.2013.05.007.

43. Vorontsova A.V., Nesterov E.M. (2012). Geochemistry of snow cover in urban environment. Izvestia: Herzen University Journal of Humanities & Science, 147, 125-132. (in Russian with English summary).

44. Vorontsova A.V. (2013). Features of the behavior of pollutants in the snow cover of St. Petersburg and their impact on the urban environment. PhD Dissertation. St. Petersburg: Herzen University (in Russian with English summary).

45. Weerakkody U., Dover J.W., Mitchell P., Reiling K. (2018). Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban Forestry & Urban Greening, 30, 98-107. DOI: 10.1016/j.ufug.2018.01.001.

46. Yang, J., Chang, Y., Yan, P. (2015). Ranking the suitability of common urban tree species for controlling PM2.5 pollution. Atmospheric Pollution Research, 6(2), 267-277. DOI: 0.5094/APR.2015.031.

47. Yufereva LM, Gavrilova A.A., Yuferev M.Yu. (2013). Investigation of pollution by heavy metals of the snow cover of garden-park zones in the center of St. Petersburg. Proceedings of Petersburg Transport University, 4, 157-162. (in Russian).

For citation:

Terekhina N.V., Ufimtseva M.D. Leaves of trees and shrubs as bioindicators of air pollution by particulate matter in Saint Petersburg. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2020;13(1):224-232.

Views: 243

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)