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WOULD CLIMATE CHANGE POSE A CHALLENGETO
MEETING WIND TARGETS? A GIS-BASED APPROACHTO
UNRAVEL IMPACTS AND IDENTIFY SUITABLE SITES IN
EGYPT
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ABSTRACT. Renewable energy sources are critical choices for achieving long-term energy security while minimizing the
effects of climate change. Wind energy in Egypt has received attention, however, wind power potential is dependent on
climatic factors such as wind speed and temperature. Therefore, the wind power plan must rely on an in-depth understanding
of wind resource sensibility to climate change to guarantee its sustainability, thereby supporting wind plan and climate
change strategy. Using GIS analysis, the effect of climate change has been estimated on wind power density by 2065 under
the climate change RCP 8.5 scenario. Furthermore, some criteria, such as elevation, slope, road networks, protectorates,
archeological sites, touristic sites, and grids, have been used to identify regions that would be suitable for wind projects. The
results revealed that wind energy potential is expected to be vulnerable to climate change, reflected in a 1% decrease in
regions with high wind power density. Even after considering the effect of climate change, the Suez Gulf region would be
the most suitable. Projects can also be expanded to other suitable locations where there are no projects yet, such as the Sinai
Peninsula and the Red Sea coast.

KEYWORDS: climate change; renewable energy; wind power potential; Egypt; GIS, site suitability
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INTRODUCTION

Climate change is a serious challenge that will confront
humanity in the coming years, which will have socio-
economic and geopolitical consequences. Economic
activities are a major driver behind the current warming
trend, as greenhouse gas emissions (GHGs) have been
steadily increasing since the mid-twentieth century, at
an unprecedented rate over decades (Pachauri et al.
2014). One of the main challenges in addressing climate
change is how to balance the growing energy demand
with the need to reduce CO, emissions. Renewable
energyis essential to reaching climate goals because of
its crucial role in reducing emissions and meeting rising
electricity demand in a more sustainable way, as well as its
advantageous strategic and economic benefits (Al-Riffai et
al. 2015). In this regard, wind energy is regarded as one of
the most successful renewables in the world, owing to its
cost-competitiveness and technological maturity (IRENA
2023). Thus, wind energy supports the transition to a green
economy, achieving sustainable development goals (SDGs),
and international ambitions in terms of climate change
mitigation. Climate change, on the other hand, would have
an impact on the energy sector, including supply, demand,

and infrastructure. Permanently rising global surface
temperatures associated with unprecedentedly high levels
of GHGs may considerably affect energy demand patterns
(Clarke et al. 2022). Climate change is expected to cause
spatial and temporal variability in wind resource, which can
have a significant impact on extractable power output and
production costs. Different parts of the world are likely to
experience varying trends and magnitudes of change in
wind power potential (Cronin et al. 2018; Fant et al. 2016;
Ohba 2019; Pereira et al. 2013). Risks related to climate
change, such as extreme weather, storms, hurricanes,
temperature increases, and flooding, are anticipated to
influence on the resilience of the power system and may
harm the infrastructures of wind farms (Clarke et al. 2022).
Climatic determinates of wind power potential include
wind speed, air pressure, and temperature, hence changes
in wind speed and temperature as a result of climate
change impacts would have an influence on wind power
output (EI-F-Ahmar et al. 2017; Rao 2019).

In Egypt, renewable energy sources have experienced
a noteworthy growth during the last decade. The
total installed capacity was 6691 MW, which includes
hydropower, onshore wind, solar PV, solar CSP, and
biomass, accounting for 25.87 TWh of total electricity


https://doi.org/10.24057/2071-9388-2020-136
https://doi.org/10.24057/2071-9388-2025-3669
https://crossmark.crossref.org/dialog/?doi=10.24057/2071-9388-2025-3669&domain=pdf&date_stamp=2026-10-01

Ghanem A., Abdrabo M.A. and Hassaan M.A.

WOULD CLIMATE CHANGE POSE A CHALLENGE ...

generated. This transition to renewable energy is anticipated
to save $287.01 billion by 2050 due to decreased emissions
(Abbas et al. 2021). Wind power represents one of the most
promising sources of renewable energy. The installed wind
power capacity has reached 2191 MW, contributing 3% of
the country’s total electricity generation. With ambitious
national strategies aiming to increase this share to 14%
in the near future, Egypt is actively positioning itself as a
regional leader in wind energy development. Key projects
such as Gebel El-Zeit and Zaafrana have demonstrated
considerable success, attracting international investment for
large-scale wind power deployment. A clear and supportive
governmental policy framework underpins its progress in
wind power. The government has adopted a long-term
Integrated Sustainable Energy Strategy (ISES) targeting 42%
renewable energy by 2035, with wind playing a major role in
this mix. Policy instruments such as feed-in tariffs, competitive
bidding, and public-private partnerships have been crucial in
mobilizing both domestic and foreign investment. In addition,
streamlined licensing procedures and the availability of land
in high-wind zones, such as the Gulf of Suez, have further
accelerated project implementation (Ghanem & Elsobki 2024).
Moreover, Egypt is fostering local manufacturing capabilities
for wind energy components, including towers and related
infrastructure. This is supported by competitive advantages
such as low labor costs, favorable energy prices for industry,
and access to raw materials (Salah et al. 2022). These factors
enhance Egypt's competitiveness in the global renewable
energy market. Moreover, the development of wind power
contributes to national goals of reducing greenhouse gas
emissions, diversifying energy sources, and achieving long-
term sustainability.

Egypt has a desert climate, with hot and dry summers and
mild winters with little rainfall. It is predicted to experience
negative climate change consequences as it becomes hotter
and drier. Also, climate change may make climate extremes
more frequent and severe that are related to renewable energy
production in the future (Abbas et al. 2021; Smith et al. 2013).
In warmer temperatures, wind power plants, for instance,
which are usually designed for conditions of around 25°C,
may become less effective, reducing generation efficiency.
Egyptian electricity systems may be better able to deal with
the negative effects of rising temperatures and heat waves
if adaptation measures are taken, such as incorporating a
climate change impact assessment into energy planning with
the aim of identifying locations for the construction of future
power plant'.

Most published research on climate change’s impact has
overlooked several critical sectors, including the energy sector,
despiteits vitalimportance (Hassaan 2018). Naturally,numerous
research studies were carried out to assess the wind resource
at multiple sites (Agwa et al. 2023; Ahmed 2010; Ahmed 2012;
Ahmed 2018a; Ahmed 2018b; Hamouda 2012; Lashin & Shata
2012), as well as conducted multi-criteria suitability analysis for
installing offshore wind farms (Mahdy & Bahaj 2018). However,
these studies presented assessments of wind power potential
under current wind speeds, without considering climate
change impacts and climate change scenarios. Hence, this
study aims to assess the impact of climate change on the
potential for wind power generation and determine the most
suitable area to install projects by 2065 under the climate
change RCP 85 scenario. Such research work can support
the decision-making and policymaking process in terms of
planning wind energy projects.

Materials and Methods

Geographical Information System (GIS) can be used for a
wide range of fields as they can assist in organizing, querying,
storing, and displaying spatial and non-spatial data. Thus, it can
support knowledgeable decisions and policymaking. Power
generation from renewable resources depends on numerous
spatial determinants, such as wind speed, solar radiation,
biomass availability, locations, grids, energy demand ...etc. In
this regard, several studies have been undertaken in different
regions of the world, applying GIS analysis tools to analyze
wind power potential (Eshete & Abate 2022; Razeghi et al.
2023; Samak 2023) or perform multi-criteria suitability analysis
for siting wind power farms in either inland regions (Atici et al.
2015; Aydin et al. 2010; Elmahmoudi et al. 2020; Pakere et al.
2022), onshore regions (Effat 2014; Sliz-Szkliniarz et al. 2019),
or offshore regions (Saleous et al. 2016; Tercan et al. 2020).
Meanwhile, some previous research work used GIS to assess
the economic impact of the turbines, in the construction and
operation phases (Pakere et al. 2022).

The Arab Republic of Egypt is located in the northeastern
part of Africa, with the Sinai Peninsula forming a land bridge
into western Asia. Egypt is bordered by the Mediterranean
Sea to the north, the Red Sea to the east, Libya to the west,
Sudan to the south, and the Gaza Strip to the northeast.
Geographically, it lies between latitudes 22° and 31° North and
longitudes 25° and 35° East. The Nile River flows through the
country from south to north, dividing it into distinct eastern
and western regions. This strategic location encompasses a
variety of climatic and topographic zones relevant to wind
energy assessment under different climate change scenarios.

In this study, a four-phase methodology was implemented
to assess the potential impacts of the climate change RCP 8.5
scenario on wind power in Egypt and identify suitable sites for
future development using a GIS-based approach. The phases
include (1) data collection and manipulation, (2) assessing
current and projected wind power potential, (3) spatial-
temporal profiling of changes in wind power, and (4) multi-
criteria suitability analysis. Fig. 1 presents an overview of the
workflow, and the following sections describe each phase in
detail.

Data Collection and Manipulation

Data on wind energy determinants were obtained from
the Coordinated Regional Climate Downscaling Experiment
(CORDEX)?in February 2022 for the Middle East and North Africa
region. Climate models are forecasts of the future state of the
climate system and are used to understand how the climate will
change (Abbas et al,, 2021). The CORDEX provides downscaled
climate change scenarios using Regional Climate Models
(RCMs) alongside the Intergovernmental Panel on Climate
Change (IPCC) Fifth Assessment Report for a variety of global
domains. RCMs usually provide climatic data at high spatial and
temporalresolution. The data were collected monthly,and had a
spatial resolution of 24 km, which was achieved using the RCA4
model (Hassaan et al. 2024; Nabipour et al. 2020). The gathered
data included historical data on wind speed, air temperature,
and air pressure at 10 m from 1970 to 2005, which represents
the historical period, with 1988 being the mid-period year for
this reference period. In addition, projected data on the same
variables were acquired for the climate change RCP 8.5 scenario
for 2050-2080, which represents 2065. The IPCC developed four
Representative Concentration Pathways (RCPs) labeled based
on possible radiative forcing in W/m? by the end of the twenty-

'IEA. (2023). Climate Resilience for Energy Transition in Egypt. International Energy Agency (IEA),

Paris. https://www.iea.org/countries/egypt. [Accessed 16 August 2023]

’CORDEX. (2022). Coordinated Regional Climate Downscaling Experiment. https://esgdn1.nsc.liu.se/search/cordex/. [1 February 2022].
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Fig. 1. Proposed methodology of assessment wind power under climate change

first century, relative to the 1986-2005 period. Climate change
scenarios represent how anthropogenic GHG concentrations
may evolve in the future. RCP8.5 is considered the worst-case
scenario, which has a radiative forcing of 8.5 W/m?, high-level
emissions of more than 1000 CO,-eq, and a 3.7 °C increase in
mean temperature by 2100, implying no further climate efforts
(Pachauri et al. 2014). The RCP 8.5 scenario is selected, which,
despite being the highest emission pathway, provides valuable
insights into potential extreme impacts on wind resources.
Given Egypt’s long-term energy planning and the critical need
to assess site robustness under high-risk climate conditions,
RCP 85 is a useful analytical boundary to explore the upper
limits of climatic impact.

Given the absence of direct long-term observational
wind speed data across Egypt for the historical period, this
study relied on the validation efforts of previous research that
assessed the accuracy and performance of CORDEX-RCM
outputs (Hassaan et al. 2024; Nabipour et al. 2020). Therefore,
no additional bias correction or validation was conducted in
this study, and the dataset was used as a reliable source to
analyze climate-induced changes in wind power potential.

Furthermore, data on criteria for siting wind power projects
such as elevation, roads, high voltage grids, and land use were
downloaded from DIVA-GIS®, which provides geographical
open access data for the world’s countries. Moreover, data on
sensitive land uses such as archeological sites were acquired
from (Nagi & Nagi 2002). The collected data were integrated
into a geodatabase that included various vector and raster
feature classes (Table 1). Using ArcGIS Software version 10.8,
the collected data were masked and manipulated to produce
raster layers representing monthly and annual averages of
wind speed, air pressure, and air temperature over historical
and future periods.

To assess whether the observed changes in monthly mean
wind speeds between the reference period (1970-2005) and
the future period (2050-2080) under the RCP8.5 scenario are
statistically significant, a paired sample T-test was conducted.
The test compared the same months between the two periods,
based on monthly mean values derived from wind speed data
that had been spatially processed. The analysis was performed
using SPSS software version 26.

Table 1. Geodatabase Structure

Feature Class Type Description
Current_Wind_Speed Raster Current wind speed for the reference period (1970-2005)
Current_Air_Pressure Raster Current air pressure for the reference period (1970-2005)
Current_Air_Temperature Raster Current air temperature for the reference period (1970-2005)
Projected_Wind_Speed Raster Projected wind speed for the period (2050-2080) under RCP 8.5 scenario
Projected_Air_Pressure Raster Projected air pressure for the period (2050-2080) under RCP 8.5 scenario
Projected_Air_Temperature Raster Projected air temperature for the period (2050-2080) under RCP 8.5 scenario
Elevation Raster Elevation above mean sea level
Slope Raster Slope of land
Roads Vector Road network
Sensitive land uses Vector Protectorates, archaeological sites, and touristic destinations
Grid Vector High voltage grids

*DIVA-GIS. (2022). DIVA-GIS. Free Spatial Data by Country. Available: https://www.diva-gis.org/gdata. [Accessed 16 November 2022].
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Assessing Current and Projected Wind Power Potential

To find wind power potential under current conditions
as well as projected climatic conditions in the future, the
Eqg.1 was employed:

Lo ™
Pwind: E,OV

Where: P, — Power in wind, p — Air density, v — Wind
Speed (Sawadogo et al. 2021)

The air density was calculated according to the Eq. 2:

P
p=— @
TR
Where: p — Air density, R — The gas constant = 287 J/kg-K
for air, P— Air pressure, T — Air temperature in kelvin (Tong
2010)

Profiling Changes in Wind power Under Climate Change

The estimated wind power potential of the reference
period (1970-2005) was compared to the estimated future
wind power potentials under the RCP85 scenario by
the year 2065 (2050-2080). It is worth noting that wind
turbulence needs to be considered when deciding to
locate wind farms, as wind speed fluctuations may cause
fluctuations in power output and also damage the turbine.
Therefore, probability density functions (PDFs) were
produced on an annual basis to determine the variance in
wind speed in each area.

Suitability Analysis for Siting Future Utilization of Wind
Power

In general, wind power potential is critical but not
sufficient for deciding where to locate wind power projects
due to the existence of other factors that may raise the cost
of the project or restrictions that prevent its construction.
This emphasizes the importance of multi-criteria suitability
analysis in determining the most suitable locations for wind
farms, which are dependent on a variety of factors. Such an
analysis involves the use of a set of criteria, including local
topography, economic viability,and environmental aspects.
Local topography criteria assess appropriateness for wind
power farm construction and operation. For example,
suitable sites for a wind farm should have a gentle slope to
avoid difficulties in the installation and operation of wind
turbines. In this respect, it was suggested that the slope of
wind farm sites should not exceed 25 or more favorably 15
. In addition, wind farms are usually installed at relatively
high altitudes to generate more power. Nevertheless,
installation at higher than 2000 m is not preferred because
the air density reduces at these levels, resulting in low
turbine efficiency. Also, moving the turbine components

to extremely high regions is challenging (Feng 2021;
Rediske et al. 2021). Economic viability entails identifying
sites with the largest wind power potential as well as more
accessible sites, allowing for easier and lower-cost wind
farm construction and maintenance. Also, installing wind
farms as close to the transmission power grid as possible
to minimize power loss and grid connection costs. Wind
farm construction and operation are usually associated
with environmental impacts, for instance, turbine noise
that can influence on both human health and animal life.
Wind farms should thus be located away from sensitive
land uses such as protectorates, archaeological sites, and
tourism destinations.

To represent the identified criteria and their relevant
indicators, the slope was derived from the elevation digital
model. Also, using Spatial Analyst Tools (Euclidean Distance
Tool), several raster surfaces were created, representing
the distance to road networks, power grids, and sensitive
areas. As a result, six raster feature classes were produced,
representing various indicators of the criteria considered.
Thereafter, each of these raster surfaces was normalized
through one of the Egs. 3—?{:

N = ™ (3)
X —X
max min
X-X .
N =1_ min (4)
x X -X
max min

Where: N - Normalized pixel value, X — Pixel value,
X ., —Minimum pixel value in the raster surface,

X, — Maximum pixel value in the same raster surface
(Hassaan et al. 2021)

It should be noted that the raster surfaces of those
indicators that are positively correlated with suitability
were normalized according to formula (3), while the raster
surfaces of those indicators that are negatively correlated
with suitability were normalized according to formula
(4). Meanwhile, the raster surface of elevation, whose
curvilinear relationship with suitability, was normalized
according to the Eq. 5:

X —2000
N=1-——— ©)
. X —=2000
max

Where: N — Normalized pixel value, X - Pixel value,
X .. —Minimum pixel value in the raster surface,
X ..~ Maximum pixel value in the same raster surface
These different formulae of normalization ensured
consistent normalized raster surfaces, with pixel values
ranging between 0 and 1 representing the least and
highest levels of suitability, respectively. This is followed
by calculating the composite suitability index through

Table 2. List of criteria and their relevant indicators

Criteria Indicator Unit Relationship
Slope Degree Negative
Local topography
Elevation Meter Curvilinear
Wind power potential W/m? Positive
Cost-effectiveness
Distance to roads network Meter Negative
Distance to Grid Meter Negative
Environmental impact
Distance to sensitive land uses Meter Positive

9
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aggregating various primary indicators, assuming equal
weight of all indicators according to the Eq. 6:

n
S:;(Nixwi)

Where: S — Suitability index, N, - Normalized pixel
value of indicator i, W, —Weight of indicator N,

Asaresult,anew raster surface was generated, representing
different levels of suitability according to the considered
criteria and their indicators. The resulting raster surface has
pixel values ranging between 0 for the least suitable locations
and 1 for the most suitable locations.

©)

Results and Discussion
Projected Changes in Wind Speed

Annual mean wind speed in the reference period
(1970-2005) ranged from 2.76 to 5.73 m/s at 10 m, whereas
under the RCP8.5 scenario, annual mean wind speed would
range from 2.74 to 591 m/s at 10 m (Fig. 2). This means that
the annual mean wind speed is expected to experience a
marginal increase. It should be noted in this respect that the
annual mean wind speed does not reflect temporal and spatial
variations in different locations within the country. Therefore,

ErOWE

i oy O %0 10360 540
[] wwize-35

] moderate (35 - 4.1)

B righa-sT

(a) Reference period (1970 - 2005)

there would be a need to look more in-depth at temporal and
spatial variations in different parts.

Temporally, the monthly mean wind speed in the reference

period (1970-2005) ranged between 3.07 and 4.20 m/s at 10
m. Winds exceeding 4 m/s are prevalent in the summer and
spring. Higher wind speeds indicate greater potential for
electricity generation. It is worth noting that wind speeds
are high during the summer, which is Egypt’s peak electricity
demand season®. Monthly mean wind speed is expected to
range between 3.20 and 4.22 m/s under the climate change
scenario RC8.5. Compared to the reference period, wind speed
on average would increase by 10% in September, while wind
speed in February is expected to be unchanged. Some months
would, meanwhile, experience some decline in wind speed,
with August experiencing the largest decline, exceeding 4%
(Fig. 3).

A paired sample T-test was applied to the corresponding

monthly averages between the two periods, and the results
showed that the difference was not statistically significant at
the 0.05 level (p > 0.05). This minor variation can be attributed
to natural variability and may also fall within the margin of
error inherent in the climate model used.

Spatially, wind speed varies from one area to another.

Different sites have been chosen to evaluate wind potential.
In the Gulf of Suez region, there are already some wind power

Wind speed (1065) =iy
[ owz?-28
- Mloderated (38 - 4.1)
B ohir 5%

(b) By 2065, under RCP 8.5 scenario

Fig. 2. Annual wind speed by 2065 under RCP 8.5 scenario compared to the reference period (1970-2005)
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3CEIC. (2024). Egypt Electricity Consumption. Ceicdata. https://www.ceicdata.com/en/egypt/electricity-consumption/electricity-

consumption. [Accessed 11 April 2024].
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projects, and more will be added in the future. Egypt intends
to grow in the future, including the Red Sea and the West Nile
areas. Furthermore, other sites, such as Sinia, Aswan, Sharq El
Owainat, the Mediterranean Coast, and Kharga Oasis, have
been selected to investigate the possibility of establishing
future wind farms for local community development if they
are determined to be suitable (Fig. 4).

Climate change is likely to cause different patterns
in wind speed (Fig. 5). The Suez Gulf, Red Sea Coast,
Sharg El-Owainat, and Aswan areas are expected to have
significant increases in annual mean wind speeds ranging
between 2.8 -1.1%. Kharga Oasis would experience the
largest increase in wind speed with 7.3% compared to the
reference period. The West Nile and the Sinai Peninsula
areas would be unchanged, while the Mediterranean coast
would experience a 2% decrease. The expected decline
in wind speed alongside the Mediterranean coast was
attributed to a decrease in the temperature difference
between the polar regions and the tropics, resulting in a
decrease in average wind speeds in the middle latitudes
(Ebinger & Vergara 2011).

In order to understand patterns of change in wind
speed in different sites under the climate change scenario
RCP8.5 compared to the reference period, the wind speed
probability density function (PDFs) was estimated. It is
obvious that PDFs vary noticeably among different sites,
so it is crucial to choose a location with favorable wind

conditions for wind power generation (Fig. 6). The findings
indicate that (a) Suez Gulf is predicted to be the windiest
site, with increased variance with high wind speed values.
(b) The annual mean wind speed of the Red Sea Coast is
expected to rise, which would increase the likelihood of
higher wind speeds at low values and lower wind speeds
at high values. Furthermore, no significant variations
are expected in this area. (c) In the West Nile region, the
variance in wind speed would increase without a rise in its
annual mean. This means a lower level of reliability of wind
power in this region. (d) In the Sharg EI-Qwinat region,
the annual mean wind speed is expected to experience
a marginal increase with an unchanged variance in wind
speed, indicating that there is a probability increase in
wind speed toward high values. (e) The annual mean of
wind speed in Aswan would increase with a low variance,
indicating that there is an increased probability of higher
wind speed values. (f) In Kharga, the annual mean wind
speed is expected to increase, with an increased probability
of higher wind speed values and also low variance that
indicates less fluctuation in wind speed. (g) Alongside the
Mediterranean Sea coast, annual mean wind speed would
decrease with unchanged variance, indicating that there
is a decreased probability of higher wind speed values. (h)
The variance in wind speed in Sinai would increase slightly
without a rise in its annual mean. This generally means
unchanged under climate change conditions.
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Fig. 4. Geographic location map of the eight selected sites in Egypt
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Fig. 6. Probability distribution function (PDFs) of wind speed in the selected areas

Expected Changes in Air Density

Based on temperature and air pressure for the reference
period (1970-2005), the annual mean air density was found
to be 1.00 — 1.22 kg/m?. Due to the inverse relationship
between temperature and air density, an increase in
temperature causes a decrease in air density. Under
the RCP8.5 scenario, the annual average temperature is
expected to increase by about 3 K on average, while air
pressure is expected to experience an approximate decline
compared to current levels of air pressure on average.
Accordingly, the range of the annual average air density is
expected to be 1.21-0.99 kg/m?3, decreasing by about 3%
(Fig. 7).

Estimated Changes in Wind Power Potential

Annual wind power density ranged between 12.34
and 112.70 W/m? during the reference period (1970-2005),
whereas it is anticipated to be 11.99 to 122.33 W/m? (Fig. 8).
This, consequently, shows that climate change would have
a slight negative impact on annual mean wind power

density, and this decline is mainly due to a reduction in
expected air density.

Wind power potential was classified into three

categories based on wind speed in the reference period
and under the RCP8.5 climate change scenario (Tables
3 and 4). Land areas with high wind power potential are
projected to decrease by 1% because of climate change
impacts.
Annual wind power density in different locations of Egypt
varied notably during the reference period, ranging
between 29.35 and 53.61 W/m? and is anticipated to
range between 29.95 and 5540 W/m? under climate
change (Fig. 9). Except for the Mediterranean Sea coast,
all of the selected areas are predicted to increase their
annual average wind power density. The Suez Gulf, which
has significant potential, is anticipated to increase by 3%.
This is consistent with (Gebaly et al. 2023) finding that wind
power density in the Gulf of Suez would experience an
increase under climate change scenarios. Meanwhile, sites
with moderate wind power potential, such as Kharga Oasis,
are expected to increase by 18%.
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Table 3. Classification of wind power density (1970-2005) at 10m
Class Wind speed (m/s) Wind power density (W/m?) Resource potential Area (%)
1 28-35 <28 Low 44
2 35-41 28-47 Moderate 52
3 4.1-57 > 47 High 4
Table 4. Classification of wind power density under RCP 8.5 scenario at 10m
Class Wind speed (m/s) Wind power density (W/m?) Resource potential Area (%)
1 2.7-36 <28 Low 45
2 36-4.1 28-47 Moderate 52
3 41-59 > 47 High 3
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Limited research publications (Gebaly et al. 2023;
Hassaan et al. 2024) examined changes in wind resources
under climate change scenarios that revealed multiple
expected trends in wind power density over Egypt. This
research article’s findings differed from those of (Gebaly et
al. 2023), who found that wind power potential based on
the worst scenario (SSP5-8.5) would rise between 2041 and
2100.

Suitable Sites for Future Utilization of Wind Power
Projects

This research paper suggested an approach to
conducting a suitability analysis to determine the most
suitable locations for wind power projects in light of
climate change, which aspect has not been discussed
in previous studies at all (Gebaly et al. 2023; Hassaan et
al. 2024). Indicators revealed various levels of suitability
(Fig. 10); for instance, based on slope and the distance
to sensitive areas, western parts are more suitable than
eastern parts. Meanwhile, the eastern parts have a higher
level of suitability based on elevation and distance to the
roads. This emphasizes the importance of a composite
index, which combines several indicators into a single

| <
un
wn

Red Sea
Coast

40.71

Mean wind power (W/m?)
36.54

Med
Coast

Suez
Gulf

38.44

Kharga Aswan

numerical value that represents the overall compatibility
of different parts.

Fig. 11 depicts the composite suitability index that
indicates the most suitable regions are predicted to be
in the Suez Gulf, a part of Sinai, and southern Egypt,
which together encompass around 8.8% of Egypt’s entire
landmass. In general, depending on the criteria chosen, it is
possible to argue that up to 75% of Egypt’s land would be
suitable for wind power installation in the future under the
RCP8.5 climate change scenario.

Expected minimization in the landmass of the most
suitable sites, especially in the Gulf of Suez region (Table
5), where wind power projects are highly concentrated,
may obstruct the growth of additional wind projects there
and necessitate expansion in other sites. There are no plans
for installing wind power projects in the Sinai Peninsula,
the Red Sea Coast, or Kharga Oasis, for instance, but
these areas may be more suitable under climate change,
especially since technological progress ensures that
integrating remote locations is no longer a barrier to Egypt’s
renewables development (Elgeziry et al. 2019). There
could be a considerable socio-economic improvement
for the local community if a wind farm proposal is made
there. Furthermore, it presents a chance to export energy
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Fig. 9. Predicted change in wind power density in 2065
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Fig. 11. Suitable sites for installing wind power projects

Table 5. Suitability level for future utilization of wind power under RCP8.5 climate change scenario

Reference Period (1970-2005) Under RCP8.5 scenario  (2050-2080)
Suitability level
Area (km?) (%) Area (km?) (%)
Most suitable areas 95,167.39 9.50 88,837.18 8.85
More suitable areas 461,043.49 4594 450,372.7 45.15
Moderately Suitable areas 288,279.32 28.72 298,773.12 29.95
Less suitable areas 155,858.11 15.54 156,858.94 15.72
Least suitable areas 2,363.28 0.23 2,458.71 0.24

production to foreign nations. The West Nile region is one
of the planned sites for wind farms with towers of up to
120 m for developing this area, which is expected to be
suitable for wind project installation under climate change
based on the selected criteria. Nevertheless, in general, it is
preferable to expand to another much more suitable site
with great potential for wind power. In addition, this area
would experience significant fluctuations in wind speed,
making it unsuitable for the installation of a wind farm
since turbulence reduces wind turbine performance.

Conclusions

Climate change has become anissue of concern, with a
wide range of impacts already observed in countries all over
the world. The objective of this research article is to assess
climate change impacts on wind power potential utilizing
climatic factors such as wind speed, air pressure, and
temperature from 1970 to 2005, as well as expected values
under the climate change RCP 8.5 scenario (2050-2080). In
addition, some criteria were employed to determine the
most suitable regions for wind farm installations, including
wind power density, elevation above mean sea level, slope
of land, road networks, protectorates, archeological sites,
touristic sites, and power grids. Spatial analysis was carried
out using GIS, and the results were presented in maps,
tables, and figures.

Although the average wind speed did not exhibit a
statistically significant change between the reference and
future periods under the RCP8.5 climate change scenario,
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the wind power density demonstrated more spatial and
quantitative variability. Specifically, the annual maximum
wind power density increased from 11270 W/m?® to
122.33 W/m?, while the minimum slightly decreased from
12.34 W/m? to 11.99 W/m?. However, the overall average
wind power density across Egypt declined. This apparent
inconsistency is due to the nonlinear relationship between
wind speed and wind power density, where even small
increases in wind speed at certain locations can produce
relatively large increases in power output. At the same time,
this decline is mainly due to a decrease in the predicted
air density that is greater than the rise in the expected
wind speed under the future climate scenario (RCP8.5).
This study demonstrates that climate change would have
a slight adverse impact on wind power potential. Thus, it
may not be able to produce more wind power in the future
than it already does in current climate conditions.

Meeting increased power demand in the future can be
accomplished by installing more wind farms. The findings
revealed that wind power potential in the different sites
would not change greatly under climate change, with
different patterns in each area, however, the Gulf of Suez,
Red Sea Coast, Sinai, and Kharga would have high annual
mean wind density. Suitability analysis revealed that
different parts have varied levels of suitability for future
utilization of wind power. In this respect, the Suez Gulf
region is expected to be the most suitable region, which
is consistent with the state’s plans for wind projects in this
region. It can be expanded to other suitable areas, such as
the Red Sea Coast and Sinai, for example, to establish more
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projects to reach the desired percentage of electricity from
wind.

In developing a strategy for wind energy utilization, it is
essential to take into account not only the current situation
but also predicted conditions under climate change and
more viable measures.

It is important to note that the observed changes in
wind speed and power density may fall within the typical
range of modeling uncertainty. Therefore, the conclusions
and recommendations are not only based on these
numerical differences, but also on the absence of any
substantial decline in wind resource potential, as well as
the strategic importance of energy diversification.

Maximum utilization of wind power potential in Egypt
under climate change requires:

- Integrating wind power into a diversified energy
system can enhance energy security and its resilience. By
combining various renewable energy sources including
wind and solar power, with energy storage systems, a
stable supply of energy can be maintained, especially
under climate variability.

- As climate change may cause an increase in the
magnitude and frequency of extreme weather events,
there is a need to develop and implement comprehensive
disaster preparedness and response plans for wind farms
to minimize damage due to extreme weather events.
For example, wind turbines should be designed and
constructed to withstand extreme weather conditions. This
includes using materials and engineering techniques that
can resist high winds, heavy precipitation, and temperature
fluctuations. Regular maintenance and inspection of
turbines are also essential to identify and address any wear
and tear due to climate impacts.

« Plan new wind farms or expand existing ones by
taking into account long-term climate projections. By
using climate data and models, developers can choose
sites that are less vulnerable to extreme weather events,
such as hurricanes, storms, or prolonged heatwaves.

- Implementing adaptive management practices
allows for the flexibility to adjust operations in response
to changing climate conditions. Regularly reassessing the
risks and vulnerabilities associated with climate change can
assist in ensuring proper and viable investment concerning
renewable energy utilization.

- Promoting policy-relevant research on wind energy
potentials under climate change can support generating
knowledge and thus more informed policy and decision-
making process.

- Encouraging collaboration between climate
researchers and renewable energy stakeholders can
improve wind power resilience. Research can focus
on developing advanced weather forecasting models,
understanding climate change impacts on wind patterns,
and optimizing wind turbine technologies.

- Adopting a more participatory approach actively
engaging different  stakeholders including local
communities in  decision-making  processes  and
encouraging renewable energy adoption can foster
community support and enhance the long-term
sustainability of wind power projects.

- Increasing awareness of climate change impacts
and the importance of renewable energy and promoting
renewable energy initiatives can encourage public-
private partnerships in the renewable energy sector. This
may require developing policies that promote renewable
energy adoption by implementing measures such as
providing financial incentives for climate-resilient projects.

Limitations and Future Work

Thisstudy providesinsightsintothe spatialandtemporal
variability of wind power potential under projected
climate conditions. While the findings lead to a broader
understanding of future wind energy resources, several
limitations have been identified that may influence the
interpretation of the results. Recognizing these limitations
is essential for guiding more targeted research in the future.
First, the analysis relied on a single regional climate model
(RCM) under a single climate change scenario (RCP8.5),
which may not fully capture the range of possible climate
futures. Therefore, multiple RCMs and climate scenarios
such as RCP4.5 or Shared Socioeconomic Pathways (SSPs)
should be incorporated in future analyses to improve the
robustness and generalizability of the results. Second,
the land suitability assessment was limited to proximity
constraints such as roads, power grids, protected areas,
archaeological sites, and touristic destinations. Certain land
use categories were not fully integrated, such as military
zones, urban expansion areas, high-value agricultural lands,
and airport zones. It is recommended that future studies
incorporate these additional constraints to enhance the
practical feasibility of the selected sites. Third, all suitability
criteria were assigned equal weights, which may not reflect
theimportance of each criterion. Future studies could apply
multi-criteria decision-making techniques, such as the
Analytic Hierarchy Process or fuzzy logic, to assign relative
weights. Fourth, the reference period (1970-2005) may
not fully represent current climatic conditions, particularly
given recent trends in climate variability, and the collected
data are at a height of 10 meters. It is recommended to
use more recent reference periods, such as the 2000-2020
period, higher temporal resolution data, and extrapolate
wind speedsto turbine hub heights, such as 50-100 meters,
to enhance practical relevance. Fifth, wind speed modeling
involves a degree of uncertainty, especially when using
data from only one regional climate model and low spatial
resolution. These uncertainties can affect how accurately
wind power density is estimated. To improve future results,
it is recommended to use multiple climate models and
apply downscaling techniques to reduce uncertainty and
increase confidence in the projections. Finally, although
this study evaluated wind power density across Egypt
and performed an analysis at eight selected sites using
ArcGIS tools, these locations may not fully capture the
local variability of wind resources. Future research could
benefit from focusing on only a single location using
the same methodology with higher-resolution spatial
and climate data, possibly combined with ground-based
measurements to enhance the local accuracy and provide
deeper insights into wind power potential. [l
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INTRODUCTION 2017; Aradjo et al. 2019; Srivastava et al. 2019). Various
algorithms are used to construct these models, including
Living organisms, as open systems, are affected by  general-purpose machine learning techniques such as
the environment. Climatic factors, particularly ambient  support vector machines, logistic regression, and neural
temperature, are the most significant abiotic factors networks, as well as specialized methods designed for
determining the existence and reproduction of individuals ~ habitat modeling, the most commonly used of which is
and populations. For terrestrial organisms, humidity is also  MaxEnt (Phillips et al. 2004; Phillips et al. 2006).
an important factor (Bonan 2008; Schimel 2013). Climate Although a wide variety of environmental factors,
change has various effects on land and marine ecosystems,  both abiotic and biotic, can be used as predictors of
including their structure, species composition, and species distribution in these models, climate variables
relationships between components. The most significant  play a major role in almost all models, as they have a
issueistheimpactof climate and climate changeonspecies ~ fundamental limiting effect on organism ranges (Popova
distribution, including shifts in their ranges (McCarty 2001; and Popov 2013; Popova and Popov 2019). Obviously, it is
Gilman et al. 2010; Post 2013). possible to design a huge, if not infinite, number of such
The assessment of potential changes in species  variables. However, not all variables will correlate well with
distribution, particularly those important for economic  distribution data or be significant for range formation, and
activity and human health, presents a significant challenge  not all will be convenient for projecting models to other
for modern science. Currently, the main methodological  regions of the world.
approach to this issue is Species Distribution Modeling In 1984, BIOCLIM was proposed as one of the first
(SDM), which is a rapidly evolving field at the intersection methods for constructing Species Distribution Models
of ecology, biogeography, applied climatology, and (Nix 1986; Busby 1991). This software package included a
information technology (Franklin 2009; Peterson et al.  set of 12 climatic parameters, specifically designed to be
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biologically significant for most species and suitable for
projecting models across hemispheres. The package was
developed by a group of Australian scientists and was
initially used to assess the invasive potential of different
species. In 1996, a new version of this software package
was presented, with the number of bioclimatic parameters
increased to 19 (Booth 2018). Their list is given in Table 1.
The names of these parameters begin with the prefix BIO,
followed by a number from 1 to 19 (BIO1-BIO19).

As shown in Table 1, the first 11 parameters (BIO1-
BIO11) are related to temperature, while the remaining 8
(BIO12-BIO19) reflect a precipitation regime. There is no
specific mention of a particular month or season. Instead,
periods of the year with the highest or lowest temperatures,
or the highest or lowest precipitation, are used. This makes
it easy to move models between regions with different
annual climatic variation, like hemispheres. In addition,
four parameters (BIO8, BIO9, BIO18, and BIO19) are “mixed”,
reflecting the values of climatic factors of one type over
a period determined by factors of another type. Such
an arrangement can be useful for modeling the ranges
of certain species, but it can also cause some problems
in certain cases. For instance, they can have a very high
gradient of spatial variability in some regions, particularly
in equatorial and tropical areas. Some researchers
recommend avoiding the use of these parameters or using
them with extreme caution (Booth 2022).

The design of the BIOCLIM parameters has been so
successful that they are widely used in SDM and other areas
of ecological modeling. This set was further popularized
with the release of the WorldClim database in 2005 and its
second version in 2017'. This database contains values for

six continents and is interpolated onto a spatial grid with
a step of up to 30" (Hijmans et al. 2005; Fick and Hijmans
2017). According to the study (Bradie and Leunig 2017),
the BIOCLIM parameters have been used significantly
more often than other climate variables in the modeling of
nearly 1900 species in about 2000 publications.

However, using a large number of potential predictors
has several disadvantages. First, it introduces a challenge
known as the “curse of dimensionality”in machine learning.
As the number of independent variables increases, so does
the distance between samples in feature space. That can
result in inaccuracies in the classification of virtual space
(Hastie et al. 2009) and lead to overfitting of models, when
a model that fits too well to the training data classifies new
data with a high error rate. Additionally, a large number of
variables can significantly increase the computational load,
especially when analyzing large amounts of data.

In addition to the above-mentioned problems,
climate variables have a fairly strong correlation between
each other, which can also influence the performance of
several algorithms (for instance, in the case of MaxEnt).
Furthermore, when it is necessary to assess the predictor
significance for classification, which in SDM may be linked
to their biological significance for a particular species, the
presence of strongly correlated variables may lead to an
inaccurate assessment of their significance, especially
when using ensemble techniques based on decision trees
such as “random forest” or gradient boosting.

One possible approach to reducing the number of
predictors is to create new variables based on linear or
non-linear combinations of the original variables. These
new variables should retain as much information as

Table 1. Bioclimatic parameters

BIO1 annual mean temperature

BIO2 mean diurnal range (mean of monthly (max temp - min temp))
BIO3 isothermality (BIO2/BIO7) (x100)

BIO4 temperature seasonality (standard deviation x100)
BIOS max temperature of warmest month

BIO6 min temperature of coldest month

BIO7 temperature annual range (BIO5-BIO6)

BIO8 mean temperature of wettest quarter

BIO9 mean temperature of driest quarter

BIO10 mean temperature of warmest quarter
BIO11 mean temperature of coldest quarter

BIO12 annual precipitation

BIO13 precipitation of wettest month

BIO14 precipitation of driest month

BIO15 precipitation seasonality (coefficient of variation)
BIO16 precipitation of wettest quarter

BIO17 precipitation of driest quarter

BIO18 precipitation of warmest quarter

BIO19 precipitation of coldest quarter

" https.//www.worldclim.org

20



Igor O. Popov and Elena N. Popova

STATISTICAL METHOD FOR REDUCING THE NUMBER OF CLIMATIC PREDICTORS ...

possible while being significantly smaller in number.
Common methods for such reduction include various
versions of Principal Component Analysis (PCA), Locally-
Linear Embedding (LLE) and Multidimensional Scaling
(MDS), among others (Roweis and Saul 2000). In particular,
the study (Dinnage 2023) used a neural network Variable
Autoencoder (VAE) to reduce the set of WorldClim variables
to 5 synthetic variables without significant information
loss. These synthetic variables are nonlinear combinations
of the original 19 parameters. However, the disadvantage
of this approach is that the obtained variables are artificial.
It complicates a biological interpretation of the results.

An alternative approach is to identify correlation groups
of the actual variables, i.e., groups with a higher correlation
within than between them. From these groups, we can
select variables that either have the lowest correlation with
the other groups or are particularly significant for a specific
study. Typically, this approach eliminates variables that
demonstrate a high level of correlation with each other; for
example, if the value of a correlation coefficient is above a
certain threshold (Bellard et al. 2013; Petrosyan et al. 2023;
Zhang et al. 2023). However, such simultaneous pairwise
reduction may result in the loss of several important
variables since a variable that is highly correlated with one
or more variables may also be weakly correlated with other
variables. In addition, the choice of a selection threshold is
not always clear.

Asanalternative to the strategies described, we propose
using statistical methods to identify correlation groups.
This approach involves using algorithms that allow for the
identification of fine structures and groups in data based
on various types of relationships between its elements.
For this purpose, we used a modern, highly effective
clustering algorithm called HDBSCAN. Two methods of
factor analysis, varimax and quartimax, were also used as
an alternative approach to verifying the clustering results.
These three algorithms were used for the first time to solve
this problem.

After identifying the correlation groups, our approach
involves selecting one parameter from each group with the
least mean correlation to parameters from other groups. The
identification of correlation groups allows us to determine
the optimal number of selected parameters. This number
balances the minimization of the correlation between
parameters with their minimum sufficient quantity.

The aim of this study was to evaluate the effectiveness
of the proposed approach to reducing the number of SODM
predictors using 19 bioclimatic parameters calculated for
the entire globe as an example.

MATERIALS AND METHODS
Climate data

The climate data source used in this study was the CRU TS
405 database (Harris et al. 2020), which contains the results
of meteorological observations with a monthly resolution,
interpolated onto a regular spatial grid with a step of 0.5°.
This database is widely used in SDM. In particular, it forms the
basis for the popular bioclimatic database WorldClim, which
was discussed in the introduction. The fact that CRU is based
on meteorological observations affords it several advantages
over reanalysis, such as ERA5. Many studies have found that
reanalysis often produces erroneous results, especially with
respect to precipitation data, which is of special importance
for SDM (Purnadurga et al. 2019; Bodjrenou et al. 2025;
Fatolahzadeh et al. 2024).

’https://doi.org/10.5281/zenodo.13913422
*https://doi.org/10.5281/zenodo.13970876

In total, this grid contains 67,420 nodes with values, as
the nodes over the seas, oceans, and Antarctica do not have
climate variables’ values. Nineteen bioclimatic parameters
were calculated according to their description in Table 1 for
the entire globe, using temperature variables and monthly
precipitation amounts. These values were averaged over
the period 1991-2020 for each node in the spatial grid.

As a result of the calculations, each of the 67,420 spatial
nodes was characterized by 19 bioclimatic parameters.
Based on this data, linear correlation coefficients were
calculated for each pair of parameters to form a correlation
matrix with a size of 19x19.

All calculations in this work were performed using the
Python 3 programming language. A Python 3 module
for the calculation of bioclimatic parameters is available
in the repository?. Jupyter notebooks containing the
calculations and some additional materials are available in
the repository?.

Cluster analysis

To identify correlation groups among bioclimatic
parameters, cluster analysis was used. This method allows
the identification of groups of objects (in this study, sets
of bioclimatic parameter values) that are closer together
than other objects. In other words, it helps to detect
areas of increased density in the space of objects. Cluster
analysis can use different metrics to measure the distance
between objects. In this study we used metrics based on
the linear correlation coefficient to measure the distance
between the values of bioclimatic parameters. This allows
us to determine groups of parameters that have a higher
correlation with each other than with other parameters.

Currently, there are many methods of cluster analysis
(Wierzchon and Ktopotek 2018). In this work, we used the
HDBSCAN (Hierarchical Density-Based Spatial Clustering of
Applications with Noise) algorithm, which is an evolution
of the DBSCAN and OPTICS methods (Campello et al. 2013;
Mclnnes and Healy 2017). A special feature of this method
is that it can independently determine the number of
clusters and identify noise points — samples that do not
belong to any cluster and can be considered as single-
sized clusters. Furthermore, it does not require access to
the original data but only a matrix of distances between
the analyzed samples.

In its modern form, the HDBSCAN algorithm includes
several stages of data processing:

1. Transformation of the original sample space to
better select areas of increased density, using the method
described and justified in the paper (Eldridge et al. 2015).

2. Construction of a graph where the vertices are the
samples, and the edge weights are equal to the distance
between the samples. The graph is then transformed into
a minimum spanning tree, which is a graph where each
vertex has at least one connection to other vertices, and
the total weight of all the edges is minimized.

3. Construction of a hierarchical cluster tree based on
the obtained minimum connected tree.

4. Transformation of the hierarchical cluster tree into
a flat cluster system. At this stage, both user-defined
hyperparameters (minimum cluster size and € — minimum
allowable distance between clusters) and several
parameters calculated directly from the data are used.
This distinguishes the HDBSCAN method from DBSCAN,
which only identifies clusters based on the specified
hyperparameters.
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When analyzing a small number of samples, as in this
study, it is recommended to set the minimum cluster size
to 2. In this case, € becomes the only hyperparameter
that needs to be optimized to find the optimal value that
provides the best quality of cluster selections. (Malzer and
Baum 2020).

The distance between bioclimatic parameters was
determined using two different metrics. These metrics
differ in their assessment of negative correlations. Negative
correlation, like positive correlation, implies the presence
and duplication of information about one variable in
another variable, albeit in a different sense. This type of
correlation can also negatively affect the quality of the
modeling.

The first metric, d1, considers negative correlation
values as an indicator of a greater distance between
parameters. It is calculated using the Eq. 1:

dl =1-r

where ris the linear correlation coefficient.

This metric ranges from 0 (for parameters with a perfect
positive correlation) to 2 (for parameters with a perfect
negative correlation).

The second metric, dz, considers negative correlation as
equivalent to positive correlation. It is calculated using the
absolute value of the correlation coefficient (Eq. 2):

d,=1-]r|

M

)

This metric ranges from 0, where the parameters have
correlation coefficients of 1 or -1, to 1, where there is a
complete lack of correlation between the parameters.

To select the optimal value for the hyperparameter e,
the average value of the silhouette coefficients was used
(Rousseeuw 1987). This is one of the most commonly
used metrics for evaluating clustering quality. The
implementation of the HDBSCAN algorithm from the scikit-
learn machine learning library* was used in this study.

Factor analysis

Another alternative approach that we used to identify
correlation groups is factor analysis. This method is used in
conjunction with cluster analysis to increase the reliability
and validity of the results.

Factor analysis is based on the assumption that there
are a small number of latent variables (called factors)
underlying the observed variables. Observed variables
can be expressed as linear or non-linear combinations
of factors (Mulaik 2009; Gorsuch 2014). The most
common model currently used is the linear model for the
relationship between factors and observed variables. It can
be expressed mathematically as (Eqg. 3):

X=AP+U+E (3)

where X is a matrix of observed values with m rows
and n columns, corresponding to n observed variables
and m samples. Pis a matrix of factor scores. It has a size of
k xm (k << n)and contains columns with the coordinates
of the observed variables in the new space of k factors. U
is a matrix of deviations from the mean of the observed
values, and £ is an error matrix. A is called a factor matrix
of size n X k. Its elements are called factor loadings, which
are the coordinates of the factor space basis and reflect
the influence of the factors on the observed variables
(Reyment and Joreskog 1996).

Before conducting factor analysis, it is common to
standardize the values of the observed variables. This

* https.//scikit-learn.org/stable
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process leads to the matrix U becoming a zero matrix. This
simplifies further analysis.

The goal of further calculations is to determine a matrix
A in which the factor loadings of each variable for different
factors are as distinct as possible, while minimizing the
number of factors and the values of the elements in the
error matrix £. The most common approach to solving this
problem is the so-called “rotation”. It involves rotating the
initial basis or its subset in the space of observed variables
by a certain angle. This operation is done to satisfy the
criteria mentioned above. The resulting factors can be
either orthogonal or non-orthogonal, depending on the
specific rotation method used.

These methods are based on a specific criterion for
optimally choosing the factor matrix. Historically, the first
criterion was the quartimax method proposed in the
work (Ferguson 1954). This criterion corresponds to the
maximization of the criterion A which is the sum of the
factor loadings aij in the fourth power (Eqg. 4):

q,= Z aij4—>maximum )

A feature of this method is that it tends to produce
factorsthataretoo general. The number of factors produced
is too small, and each of these factors has too great an
influence on several observed variables simultaneously.
Nevertheless, this criterion is still in use today.

As a development of the quartimax method, the
varimax method was proposed in the work (Kaiser 1958).
According to it, the criterion to be maximized is

Cl..

var lmax Z
Tz
J

2

Za

— maximum

where a,are the elements of the factor matrix A and n'is
the number of observed variables.

There are several other rotation methods available, both
orthogonal (such as oblimax, equimax, and parsimax) and
non-orthogonal (including promax and quartimin). Each
of these methods has its set of benefits and drawbacks.
However,varimaxand quartimin,whichareboth orthogonal,
are currently the most commonly used in factor analysis.

As can be seen, the search for a factor matrix is reduced
to solving an optimization problem of the corresponding
criterion. Currently, several methods are used for this
purpose, the most effective of which is recognized as
the Gradient Projection Algorithm (GPA) (Jennrich 2001;
Jennrich 2004).

In this study, two rotation methods were used to
identify correlation groups among bioclimatic parameters:
quartimax and varimax. Their implementation in the scikit-
learn package was used. Before the analysis, the values of
the bioclimatic parameters were standardized.
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According to the accepted approach, it was considered
that the identified factor could be defined as the main factor
for a certain parameter (in other words, the parameter could
be attributed to a certain correlation group) if its loading value
was maximum (since loadings can have negative values, we
will talk hereinafter about their absolute values) and exceeded
the values of the loadings of other factors by at least 30%. If
there were one or more factors with a lower loading value and
the difference in loadings did not exceed 30% of the maximum
value, then a conclusion was drawn about the influence of
several main factors on the bioclimatic parameter (Mulaik
2009).

RESULTS

Correlation matrix analysis

Fig. 1 shows a heatmap of the correlation matrix for
all 19 bioclimatic parameters. This matrix contains Pearson
linear correlation coefficients r. As can be seen, all bioclimatic
parameters can be divided into several groups.

Firstly, two groups of parameters are distinguished,
containing temperature (BIO1-BIO11, excluding BIO4 and BIO7)
and humidity (BIO12-BIO19, excluding BIO15) factors. Within
these groups, the correlations are significantly higher than
those between parameters from different groups. Within the
first group, the correlation coefficients ranged from 0.53 to 0.99,
with an average of 0.829. In the second group, they ranged
from 0.45 to 0.99, averaging 0.712. The correlation coefficients
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between the groups ranged from -0.05 to 0.63, with an average
of 0.32.

Secondly, two factors stand out among the temperature
parameters: BIO4 and BIO7. These factors characterize the
annual temperature range and have a fairly strong negative
correlation with most other parameters, except for BIO7 and
BIO2. There is also a strong positive correlation between BIO4
and BIO7 (r=0.97).

The BIO2 parameter also stands out, having a fairly weak
positive correlation with the temperature parameters (ranging
from 0.08 to 0.29), and a weak negative correlation with the
humidity parameters (ranging from -0.14 to -0.3), except for
BIO15 (r=0.38).

The parameter BIO15, in turn, also stands out among
the other humidity parameters. It has a negative or very
weak positive (with BIO13) correlation with other humidity
parameters and a low positive correlation (from 0.17 to 0.38)
with most temperature parameters, except for the above-
described BIO4 and BIO7, with which it has r values equal to
-0.12 and -0.03, respectively.

Thus, five correlation groups can be distinguished already
at the stage of simple analysis of the correlation matrix of
bioclimatic parameters:

1. BIOT1, BIO3, BIO5, BIO6, BIO8-BIO11

2.BIO12-BIO14, BIO16-BIO19

3. BIO4, BIO7

4. BIO2

5.BIO15.
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Fig. 1. Heatmap of the correlation matrix of bioclimatic parameters
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Results of the cluster analysis

The optimal value of the hyperparameter ¢ for the
HDBSCAN algorithm was found by simply enumerating its
possible values in the range from 0.01 to 0.5, with a step
size of 0.01. For the metric dy, the optimal € value was found
to bein the range of 0.19-0.36, giving an average silhouette
coefficient of 0.6336. For the metric d,, the same range of
values (0.19-0.36) was found to provide the optimal €, with
an average silhouette coefficient of 0.5531.

Table 2 shows the obtained distribution of bioclimatic
parameters by clusters for the two distance metrics used.
The noise points are marked with a value of -1. As can be
seen, when using the d7 metric, the HDBSCAN algorithm
identified three clusters and two noise points. In the case
of the d, metric, two clusters and two noise points were
identified. In both cases, the BIO2 and BIO15 parameters
were identified as noise points. Cluster 1 was completely
the same for both metrics. Cluster 0, obtained for the dz
metric, when using the d, metric, was divided into two
clusters: 0 and 2. In this case, cluster 2 contained the
parameters BIO4 and BIO7.

As can be seen, the results of the cluster analysis
coincide completely with the results of a simple analysis
of the correlation matrix. The noise points (BIO2 and BIO15
parameters) were previously assigned to groups 4 and 5,
respectively. Cluster 1 corresponds to group 2, and cluster
0 (d, metric) includes groups 1 and 3. When the d, metric
is used, clusters 0 and 2 coincide completely with these
groups.

Results of the factor analysis

Table 3 shows the results of the factor analysis (factor
matrix and identified main factors) conducted using the
varimax method. As can be seen, varimax identifies 5
factors. Meanwhile, for most bioclimatic parameters, it can
be concluded that there is only one main factor.

The temperature parameters BIOT and BIO3-BIO11 are
influenced by the main factor 1, which is consistent with the
results of the correlation matrix analysis and cluster analysis.

The parameters BIO4 and BIO7 are also influenced by the
main factor 3. This conclusion is consistent with the results
of the cluster analysis, which allocated them to cluster 2
when using the metric d, and combined them with cluster
0, corresponding to factor T when using the metric d,. In this
case, theloadings of factor 1 forthese parameters are positive,
unlike the loadings of the other temperature parameters, for
which they are negative. This means a different nature of the
influence of factor 1 on these parameters, and corresponds
to the negative correlation of the parameters BIO4 and BIO7
with the other temperature parameters (except BIO2). These
circumstances allow us to allocate the parameters BIO4 and
BIO7 to a separate group, if we take into account the nature
of their correlation with other temperature parameters, or
to combine them if the sign of the correlation coefficient is
considered to be unimportant.

The BIO2 parameter has one main factor, 5, which is not
the main factor for any other parameter. This corresponds to
the allocation of this factor to a separate group 4 and to a
separate noise point.

Table 2. Belonging of the studied bioclimatic parameters to the selected clusters according to two metrics

Bioclimatic Cluster number
parameter metricd, ——
BIO1 0 0
BIO2 -1 q
BIO3 0 0
BIO4 2 0
BIOS 0 0
BIO6 0 0
BIO7 2 0
BIO8 0 0
BIO9 0 0
BIO10 0 0
BIO11 0 0
BIO12 1 1
BIO13 1 ]
BIO14 1 .
BIO15 -1 -1
BIO16 1 1
BIO17 1 .
BIO18 1 1
BIO19 1 1
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Table 3. Factor matrix of the bioclimatic parameters obtained using the varimax method
(loadings of the main factors are highlighted)

orometer Factor loadings Main
1 2 3 4 5 factor
BIO1 -0.9393 0.2066 -0.2091 0.0183 -0.0338 1
BIO2 -0.2896 -0.2246 -0.0365 -0.2483 -0.5180 5
BIO3 -0.6146 04194 -04777 0.0983 -0.1950 1
BIO4 0.6481 -0.3408 0.6066 -0.1174 0.0304 13
BIOS -0.9362 0.0151 01118 -0.0779 -0.0902 1
BIO6 -0.8679 0.2764 -0.3608 0.0902 0.0142 1
BIO7 0.5878 -0.3902 0.6036 -0.1867 -0.0852 13
BIO8 -0.8371 02314 0.1058 -0.0916 0.0079 1
BIO9 -0.8548 0.1491 -0.3749 0.0748 -0.0605 1
BIO10 -0.9579 0.0986 0.0285 -0.0312 -0.0168 1
BIO1 -0.8915 0.2533 -0.3324 0.0422 -0.0432 1
BIO12 -0.2235 0.8269 -0.1694 04163 0.0242 2
BIO13 -0.3051 0.8701 -0.1482 0.1011 0.0163 2
BIO14 -0.0141 04509 -0.0585 0.7711 0.0280 4
BIO15 -0.3547 -0.0657 0.0470 -0.5679 -0.1909 4
BIO16 -0.2923 0.8753 -0.1525 0.1422 0.0178 2
BIO17 -0.0488 05216 -0.1043 0.7473 0.0183 4
BIO18 -0.1147 0.7889 -0.0327 0.2531 0.0673 2
BIO19 -0.1780 0.5949 -0.2218 04326 -0.0451 2

The humidity parameters BIO12, BIO13, BIO16, BIO18,
and BIO19 have one main factor, 2, which corresponds to
their assignment to cluster 1 and correlation group 2.

The parameters BIO14, BIO15,and BIO17 are influenced
by one main factor, 4, which distinguishes them from the
other parameters. At first glance, they could be combined
into one group on this basis. However, the values of the
loadings of factor 4 for these parameters have a peculiarity:
the loading of the parameter BIO15 is negative, and that
of BIO14 and BIO17 is positive. This distinction means that
this factor determines these parameters in different senses:
it has a negative relationship with BIO15 and a positive
relationship with BIO14 and BIO17. This difference can also
be seen in the correlation matrix: BIO14 and BIO17 have
a strong positive correlation with each other (r = 0.98)
and a moderate negative correlation with BIO15 (r=-047
for both parameters). In addition, BIO14 and BIO17 have
quite large positive loadings for factor 2. The loadings of
the other humidity bioclimatic parameters, for which this
factor is the main one, are also positive. At the same time,
the loading of factor 2 for BIO15 is very low. These results
allow us to single out the parameter BIO15 as a separate
group, as well as the parameters BIO14 and BIO17, but this
group has a relative proximity to the parameters that are
influenced by factor 2, as by the main one.

Table 4 shows the factor matrix obtained as a result of
applying the quartimax method.

Alltemperature parameters, except BIO2, are influenced
by factor 1. Simultaneously, the parameters BIO4 and BIO7
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have loadings of the main factor with signs opposite to the
signs of loadings for the other parameters. This finding is
consistent with the negative correlation between these
groups of parameters. A similar situation was observed
when using the varimax method, as well as cluster
analysis, which, when using the d7 metric, singled out
these parameters into a separate group, and when using
the dz metric, combined them with other temperature
parameters.

The parameter BIO2 is influenced by one main factor,
4, for which it is the only parameter with a significant load
value.

All the humidity parameters are influenced by the
main factor 2. At the same time, the parameters BIO14
and BIO17 do not differ from other parameters, as was the
case with the varimax method. But the parameter BIO15 is
determined not only by the factor 2 but also by the main
factor 3, which does not influence any other parameter.
The loading value of factor 2 for BIO15 also has a different
sign from the sign of the loadings of this factor for other
humidity parameters. These results obtained on the
basis of the quartimax method allow us to single out the
parameter BIO15 into a separate group and to combine the
other humidity parameters. This data is consistent with the
results of the correlation matrix analysis, cluster analysis,
and partly with the results of using the varimax method.

In general, it is possible to note the consistency of the
results obtained from all applied methods for identifying
correlation groups. At the same time, factor analysis is
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Table 4. Factor matrix of bioclimatic parameters obtained using the quartimax method

(loadings of the main factors are highlighted)

barameter Factor loadings Main
1 2 3 4 factor
BIO1 -0.9782 0.0875 0.0013 0.0039 1
BIO2 -0.2851 -0.3667 -0.0766 -0.4936 4
BIO3 -0.7772 0.3583 -0.0554 -0.1790 1
BIO4 0.8274 -0.3108 -0.0107 0.0122 1
BIOS -0.8659 -0.1456 0.0005 -0.0456 1
BIO6 -0.9579 0.2029 0.0282 0.0449 1
BIO7 0.7688 -0.3988 -0.0406 -0.0978 1
BIO8 -0.7973 0.0454 -0.1254 0.0440 1
BIO9 -0.9367 0.0872 0.0772 -0.0274 1
BIO10 -0.9161 -0.0458 0.0047 0.0257 1
BIO11 -0.9731 0.1523 -0.0006 -0.0096 1
BIO12 -0.3533 0.9003 -0.0335 0.0069 2
BIO13 -0.4409 0.7659 -0.3197 0.0093 2
BIO14 -0.0623 0.7781 04386 0.0009 2
BIO15 -0.3410 -0.3957 -0.4259 -0.1593 2,3
BIO16 -0.4294 0.7930 -0.2879 0.0092 2
BIO17 -0.1186 0.8247 0.3872 -0.0083 2
BIO18 -0.2088 0.7885 -0.1648 0.0506 2
BIO19 -0.2984 0.7201 0.0901 -0.0608 2

distinguished by greater complexity in interpreting the
results, although it allows the detection of some subtle
properties of the data not revealed by other methods.

Selection of parameters from the identified correlation
groups

On the basis of the above results, it is possible to
identify five groups of bioclimatic parameters, the
correlation within which is higher than the correlation with
parameters from other groups. The composition of these
groups is presented in Table 5.

In case it is assumed that the negative correlation has
the same value as the positive one, it is possible to combine
groups 5 and 1. Also, from the results of the factor analysis
using the varimax method, it follows that the parameters
BIO14 and BIO17 can be separated, if necessary, from

group 2 into a separate group 6 (for example, if it is known
that they are of particular importance for modeling the
distribution of the species under study).

Next, a final selection of parameters was carried
out, one from each identified group that demonstrated
minimal correlation with parameters from other groups.
For this purpose, the average values of the corresponding
linear correlation coefficients and their absolute values
were calculated (Table 6).

Based on the results presented in Tables 5 and 6, a list
of selected bioclimatic parameters can be proposed as
follows:

1. BIO2 (mean diurnal range (mean of monthly (max
temp - min temp)))

2.BIO5 (max temperature of warmest month)

3. BIO7 (temperature annual range BIO5-BIO6)

4. BIO14 (precipitation of driest month)

Table 5. Identified correlation groups of bioclimatic parameters

Group Bioclimatic parameters
1 BIOT, BIO3, BIO5, BIO6, BIO8-BIO11
2 BIO12-BIO14, BIO16-BIO19
3 BIO2
4 BIO15
5 BIO4, BIO7
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Table 6. Average values of correlation coefficients r and average absolute values of correlation coefficients |r| between
bioclimatic parameters and parameters from other groups (the minimum values in each group are highlighted)

Average value

Bioclimatic parameter

r 7]
Group 1
BIO1 0.121 0.409
BIO3 0.206 0519
BIOS 0.064 0.242
BIO6 0.136 0.464
BIO8 0.117 0.303
BIO9 0.100 0.405
BIO10 0.087 0.296
BIO11 0.134 0452

Group 1 (including BIO4 and BIO7)

BIO1 0.324 0.324
BIO3 0.443 0443
BIO4 -0.396 0.396
BIOS 0.179 0.194
BIO6 0.367 0.367
BIO7 -0.404 0.422
BIO8 0.256 0.256
BIO9 0.308 0.308
BIO10 0.234 0.234
BIO11 0.358 0358
Group 2
BIO12 0.127 0.409
BIO13 0.201 0.429
BIO14 -0.034 0.211
BIO16 0.190 0.427
BIO17 -0.008 0.253
BIO18 0.073 0.282
BIO19 0.100 0.342

Group 2 (without BIO14 and BIO17)

BIO12 0.219 0.462
BIO13 0.242 0438
BIO16 0.239 0442
BIO18 0.149 0.328
BIO19 0.179 0.386

27



GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

2025
Group 5
BIO4 -0.544 0.554
BIO7 -0.563 0.563
Group 6
BIO14 0.145 0.389
BIO17 0.184 0434

5. BIO15 (precipitation seasonality (coefficient of
variation))

6. If it is necessary to separate group 6 from group 2,
BIO18 (precipitation of the warmest quarter) can be added
to this list, but this should be done with caution due to the
mixed nature of this parameter and the possible negative
effects associated with it when constructing species
distribution models (see Introduction).

If the same meaning of positive and negative
correlations is accepted, the parameter BIO7 can be
removed from the list due to the merging of groups 2
and 5. Scatter plots of the mutual dispersion of these six
parameters and the values of their correlation coefficients r
are presented in Fig. 2.

r=-0.298| r=—0.049

r=-0.365

As can be seen in Fig. 2, the maximum value of the
correlation coefficient between the selected parameters is
0.389 (BIO5 and BIO15). In absolute value, it is -0.582 (BIO14
and BIO18). Generally, the correlation between these
selected parameters is quite low.

To compare the results obtained, we selected
parameters using a method based on pairwise correlation
threshold. Only those parameters were selected that had
values of the linear correlation coefficient r below a certain
value. As a result, only two parameters were selected at the
threshold of 0.7 (BIO2 and BIO15), three parameters were
selected at the threshold of 0.8 (BIO2, BIO15 and BIO19),
five parameters at the threshold of 0.85 (BIO2, BIO3, BIO15,
BIO18, and BIO19) and six parameters at the threshold of
0.9 (BIO 2, BIO 3, BIOS§, BIO15, BIO18 and BIO19). Different

r=-0.474

3000 1

— r=-0221] r=0.07
2000

2

5 1500 1
10004 .
5004 .

r=-0.183

10 20 30 0 20 40 20 40 60
BIO2 BIOS BIO7

10‘00 20’00 30‘00

BIO18

0 200 400 0 1 2 3 0
BIO14 BIO15

Fig. 2. Scatter plots, linear correlation coefficients r and histograms of distributions (on the diagonal) for six selected
bioclimatic parameters
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threshold values lead to different numbers of selected
parameters. What threshold must be used is unclear. At
threshold 0.85 maximum value of the linear correlation
coefficient is 0.575 (BIO3 and BIO8), which is significantly
higher than the maximum value for the method we used
(0.389). The number of parameters with low correlation
coefficients with other selected parameters were lost. As
can be seen, this comparative study indicates that the
approach we used for the analyzed data is more effective
than the commonly used method based on selection by
correlation threshold.

DISCUSSION

As noted in the introduction, the problem of reducing
the number of predictors in SDM, as in any classification
problem, is an important step in reducing the overfitting
of the constructed models. The resource for this reduction
is the presence of redundant information in the initial set of
predictors, expressed in a high level of correlation between
them.

As can be seen in the results of this study, the statistical
approach we proposed made it possible to reduce the
pairwise correlation to a low level. At the same time, the
number of selected predictors (5 or 6), as experience shows,
is sufficient to build effective species distribution models. It
can be noted that the number of main correlation groups
of bioclimatic parameters identified in this study coincides
with the number of synthetic variables obtained as a result
of using a neural network of the Variable Autoencoder type
in the paper (Dinnage 2023), which was mentioned in the
introduction.

The use of the HDBSCAN cluster analysis algorithm
to identify correlation groups in our study showed its
effectiveness. With its help, a fairly large number of
clusters with a good level of difference between them
were identified. At the same time, the technology of
its application and, importantly, the interpretation of
the obtained results are easy to use and can be applied
routinely.

The results of factor analysis, in general, with the
exception of some nuances, corresponded to the results of
the cluster analysis. This fact confirms the reliability of the
results of the clusteranalysis. The assignment of a number of
parameters to several main factors is quite consistent with
the presence of a high negative correlation between the
parameters. When using factor analysis, it is important to
pay attention to the sign of the loading. However, it should
be noted that the sufficient complexity and ambiguity of
the interpretation of the factor analysis results make it less
preferable for routine use in SDM practice compared to
cluster analysis.
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Our proposed approach to the final selection of
parameters from correlation groups is not the only possible
one. Firstly, it is possible to select them based on the
special significance of any parameter for the vital activity
of the organism, known in advance from physiological
or ecological studies. Secondly, it is possible to make a
selection based on the results of a preliminary distribution
modeling using an unreduced set of predictors, followed
by analysis of their importance for model construction.
Approaches based on the jackknife principle, with
successive elimination of parameters or modeling using
only one parameter, can be applied. Thirdly, the approach
used in our work can also estimate the correlation in the
final set of predictors in another way. For example, we
can use multiple correlation metrics, such as the variance
inflation factor (VIF).

In this study, the values of 19 bioclimatic parameters
were analyzed across the globe for the period of 1991-2020.
Obviously, even when analyzing this set of parameters for
a narrower geographic area or for a different time period,
different results can be obtained. The degree and nature
of the correlation between these variables vary in time
and space, and also depend on the spatial scale of their
calculation (Dormann et al. 2012).

Reducingthe number of predictors while preserving the
information they contain as much as possible isa common
problem in machine learning and predictive systems, as
noted in the introduction. The approach proposed in this
work can be applied to a wide variety of areas related to
modeling and forecasting, including both classification
and regression. First of all, it can be useful for climatological
and meteorological studies, since meteorological and
climatological parameters tend to strongly correlate with
each other.

CONCLUSIONS

In the course of the conducted studies, using several
methods, it was shown that, for the period 1991-2020, for
the entire territory of the Earth, it is possible to identify 4-6
correlation groups of bioclimatic parameters, depending
on the interpretation of the negative correlation. From
these groups, it is possible to select six bioclimatic
parameters that demonstrate a minimum average
correlation with parameters from other groups. The
obtained results are an illustration of the proposed method
for reducing bioclimatic parameters and focusing on the
selected time period and geographical area. They are of
a recommendatory nature. The developed approach to
reduce the number of predictors can be used in various
areas of statistical modeling and forecasting, both in
classification and in regression analysis. [l
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ABSTRACT. The purpose of this article is to examine the distribution of natural radionuclides as well as the gamma radiation
flux due to the variations of soil seasonal thawing depth. The study was conducted at a lumpy peat bog located within the
catchment area of the Oma River, located within the Nenets Autonomous Okrug of Russia. The site was selected due to
the presence of an active layer (AL) with varying depths of thawing, as well as the warming effect of the river. This feature
enabled an initial assessment of the impact of thawing depth on radon flux, gamma radiation, and the distribution of other
natural radionuclides along the peat profile. Field observations revealed that permafrost deposits act as a barrier to the
intake of ?22Rn from geological layers. The relationship between alterations in radiation parameters (gamma radiation flux,
radon flux density (RFD), radionuclide composition of peat) and the thickness of the AL has been established. An increase
in gamma radiation levels and RFD has been observed in areas exhibiting maximum seasonal thawing of the seasonally
thawed layer. The correlation coefficients were found to be 0.70 and 0.83, respectively. The analysis of peat profiles in diverse
permafrost settings revealed that in regions exhibiting deeper thawing of soil, there is an abundance of 210Pb relative to the
concentration of its progenitor radionuclide, ?°Ra. The observed excess of ?’°Pb may be attributed to radon flux from deeper
geological layers.
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INTRODUCTION Consequently, the degradation of permafrost may result in
alterations to the chemical composition of the elements
Permafrost plays an integral role in the Arctic natural  present, including radioactive elements, within soils and
environment, exerting a considerable influence on global rocks (Shirokova et al. 2021; Pokrovsky et al. 2021; Puchkov
change and human activity ( Streletskiy et al. 2023). An  etal. 2021).
increase in air temperature and snow cover parameters, Radon (**?Rn) is a member of the radioactive 238U
particularly a reduction in snow depth, results in permafrost ~ family and is ubiquitous in environmental components
degradation, which is manifested as an expansion of the  on Earth. 222Rn is continuously formed in all geological
permafrost roof depth in both Arctic and mountainous  environments. The ?*’Rn decay sequence results in the
regions (Streletskiy etal.2023). Itis observed thatalterations ~ emission of short-lived radioactive products, including
in the boundaries of permafrost are occurring (Zhang etal.  ?'®Po, ?"*Pb, and 2"Bi, and long-lived ?'°Pb and ?'°Po, which
2021). The consequences of permafrost degradation are  are characterized by alpha and beta decay. The physical and
already evident in several significant incidents, including  chemical properties of ??Rn and its decay products permit
the formation of extensive sinkholes in the Yamalo-Nenets its utilization as a tracer for the investigation of a multitude
Autonomous Okrug (Buldovicz et al. 2018) and the collapse  of geological and atmospheric processes (Sabbarese et
of industrial facilities in Norilsk (Koptev 2020). Furthermore,  al. 2021; Giustini et al. 2019; Miklyaev et al. 2010; Baskaran
permafrost can exert a considerable influence on the et al. 2016; Daraktchieva et al. 2021; Selvam et al. 2021).
distribution of chemical elements in the environment.  Concurrently, ?*Rn and its decay products represent a
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significant health risk, particularly in contexts where high
concentrations are present, such as residential dwellings
(Lorenzo-Gonzalez et al. 2020; Maier et al. 2021; Petrova et
al. 2020; Rodriguez-Martinez et al. 2018; Rosenberger et al.
2018).

To date, there has been a paucity of scientific literature
devoted to the behavior of ?Rn and its decay products
in frozen rocks and permafros, while simultaneously
observing the thawing and alteration of phase boundaries,
which in turn modifies the pathways for ?Rn migration
to the surface. The majority of these studies are of a
theoretical nature (Puchkov et al. 2021). The results of
the theoretical synthesis presented in Zhang et al. (2024)
highlight the dearth of relevant studies on ??Rn migration
and its relationship in permafrost regions, underscoring
the urgent need for further research in this area. As the
authors observe, priority research areas include the study
of ?22Rn migration mechanisms in freezing and thawing
soils/rocks; the response to permafrost degradation
due to the release of ?22Rn absorbed in permafrost soils;
and ?2Rn migration in groundwater systems, among
others. Scientists have published numerous articles on
the experimental evaluation of ??Rn migration under
conditions of varying temperatures (Puchkov 2022; Ye
2024). It has been demonstrated in existing scientific
literature that permafrost serves as an effective barrier to
the upward migration of ??Rn from the ground (Glover et
al.2022).This study highlights the necessity to extend these
findings to other locations, given the heterogeneous and
geographically distinctive nature of permafrost conditions.
This prompts our investigation into the migration and flow
of radioactive gases to the Earth’s surface in the event of
permafrost thawing.

The objective of this scientific article is to evaluate the
flux of gamma radiation and RFD at the peat bog surface,
as well as the distribution of natural radionuclides along
the peat profile, under varying conditions of AL formation.

MATERIALS AND METHODS
Study area

The experimental site is situated in the Kanin tundra
territory within the Nenets Autonomous Okrug in
northwestern Russia (Fig. 2). The experimental site is the
lumpy peat bog situated within the Oma River basin.
Throughout the river basin, permafrost peat soils are
prevalent. Soils of the alluvial soddy-gley and alluvial-
boggy types are present along the riverbanks. Alluvial
solonchak soils are found at the river mouth. In the Kanin
tundra territory (Chizha, Nes, Vizhas and Omariver basins),
the average AL depth is up to 0.4 m, according to Iglovsky
(2010). Average annual soil temperatures in the study
area can range from +1.5 to -1.3°C in the AL and down
to -3.5°C in the upper permafrost layers (Iglovsky 2010).
The peat deposit is characterized by an uneven degree
of decomposition. The upper layers (10-15 cm deep)
contain highly decomposed peat (over 40%) mixed with
the remains of shrubs, herbaceous plants, and lichens. The
middle layer (10-30 cm) consists of poorly decomposed
(5-10%) sphagnum peat. The lower layer consists of
medium-decomposed (20-25%) sedge-sphagnum peat.
The weight moisture content of peat can vary widely, from
tens of percent in the upper, highly decomposed layers to
1000-2000% in the lower, weakly decomposed layers of the
peat deposit (Prokhorenko 2013). Hillock peat ash content
can range from 1.5 to 10%, peaking in the lower part of the
AL. Closer to the mineral layer, the peat’s ash content can
increase to several tens of percent (Prokhorenko 2013).
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The choice of the experimental site is conditioned by
the varying thawing levels of AL, including the warming
effect of the river. This peculiarity allows for an initial
approximation of the influence of thawing depth on the
22Rn flux, gamma radiation, and the distribution of other
natural radionuclides along the peat profile.

The methodology employed in the survey, along with
the principal findings pertaining to the AL thaw depth,
gamma radiation flux, and RFD estimation, are illustrated in
Fig. 2. A total of 76 points were measured in the bog area,
and two peat profile cuts were investigated. For gamma-
spectrometric measurements, peat and soil samples from
two peat profile cuts were taken by shovel in a 2020 cm
plot at 5 cm horizons. Peat and soils in frozen condition
were cut with a battery-powered electric saw. Sample
preparation and measurements were carried out at the
Environmental Radiology Laboratory of the Northern
Laverov Federal Center for Integrated Arctic Research of
the Ural Branch of the Russian Academy of Sciences (Russia,
Arkhangelsk). The selected samples were allowed to dry
in a BINDER E28 desiccator at 105°C. After drying, soil and
peat samples were ashed at a temperature not exceeding
400°C to avoid loss of radionuclides. Ashing the soil and
peat samples is necessary to improve the radionuclide
detection efficiency of the semiconductor detector. This is
done by reducing the volume and weight of the sample
and the distance between the sample and the detector.
The radionuclide activity presented in this paper is on a dry
weight.

Radiometric measurement method

The measurement of the RFD utilizes the radon
radiometer  «Alpharad  plus»  (manufacturer:  NTM
Protection, Moscow city, Russia) (Fig. 1). The measurements
were conducted in accordance with the prescribed
algorithms and in compliance with the instructions set
forth in the operational manuals. The equipment employs
a semiconductor detector in which electrostatically
charged ?"®Po ions are deposited. The radiation parameters
of ?2Rn, including activity concentration and flux density,
are determined by the number of registered alpha particles
resulting from the decay of '8Po atoms that fall on the
detector (Afonin 2013).

Prior to the installation of the samplers, the soil surface
was leveled and a 1 cm deepening was prepared. The
samplerwas leftin situ fora period of 30 minutes, after which
the air was pumped out of it into the measuring chamber
of the radonometer. The measurements were conducted
for a period of 20 minutes. In light of the necessity to
perform a considerable number of RFD measurements, it
was deemed appropriate to utilize two radon radiometers
with identical technical specifications.

Gamma Spectrometry Measurements

Gamma spectrometry is a widely used method to
measure gamma radiation from radionuclides of natural
origin, including ?*°Ra. It is a universal, non-destructive
and easy-to-use method, especially at the stage of sample
preparation and in the measurement process (Syam et al.
2020). The radionuclides #°Ra, 2*Th, ?'°Pb, and 40K were
determined using a low-background semiconductor
gamma spectrometer manufactured by ORTEC (USA). The
instrument is based on a coaxial detector, the GMX25,
which is made of high-purity germanium (HPGe). The
spectrometer is equipped with Spectraline software. The
relative efficiency of the gamma-ray spectrometer is 25%.
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Fig. 1. The radon radiometer “Alpharad plus”

The calibration and quality control of gamma-spectrometric
measurements were conducted using disc-type sources
(OSGI-P) and special measures of volumetric activity,
namely Marinelli beakers of varying density (RITWERZ,
Russia-Germany). A plastic Petri dish with a diameter of
60 mm and a counting sample volume of 5 to 25 ml was
chosen as the geometry for peat soil measurements. For
clay bedrock samples, a 1-liter Marinelli vessel was used.

To achieve an equilibrium state of ?*Ra decay
products, the counting sample was sealed for a period of
approximately three weeks. The Petri dishes were sealed
using a sealant and duct tape. The samples were measured
for a minimum of 12,000 seconds. The primary gamma-
ray energies of ?"Pb (351.93 keV) and 2"Bi (609.32 keV,
1120.29 keV, 176449 keV) were employed to detect
2%Ra and ascertain its activity concentration. The primary
gamma-ray energies of ?"?Pb (238.63 keV), ?2®Ac (911.20
keV) and 2%Tl (583.19 keV, 2614.51 keV) were employed to
identify ?Th and quantify its activity concentration. In this
study, it was assumed that the decay products of #?Th and
the parent radionuclide itself are in a state of radioactive
equilibrium. The activity concentration of the radionuclide
21%Ppb was determined from the 46.50 keV gamma ray line,
while the activity concentration of radionuclide 40K was
determined using the energy of 1460.82 keV.

Dosimetry measurements

To measure gamma radiation flux, the scintillation
geological exploration radiometer SRP-88n was employed.
The measurements were conducted in accordance with
the prescribed algorithms and in compliance with the
instructions set forth in the operational manuals. The
height of the measurements at each point was 10 cm.

AL thaw level measurements
AL thawing level measurements were carried out

using a contact thermometer TK-5.04 with a submersible
probe of length =500 mm. At each control point, the
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probe was immersed into the ground as far as it would go
in at least 3 locations 10 cm apart. This method was used
to exclude the probe stop in hard material (stone, wood).
The parameter that indicated the level of ice in the ground
was the probe temperature = 0 degrees Celsius. The level
of ground thawing was measured by the depth of probe
immersion. The average value of at least 3 immersions into
the ground up to the ice stop was taken as the result.

Quality control of measurements

The determination of 222Rn, 2%Ra, ?*Th, 40K, ?'°Pb,
and gamma ray flux was conducted utilizing the
instrumentation of the Environmental Radiology
Laboratory of the N. Laverov Federal Center for Integrated
Arctic Research of the Ural Branch of the Russian Academy
of Sciences (Russia, Arkhangelsk), which is in compliance
with the accreditation criteria for testing laboratories as
outlined in ISO/IEC 17025. The laboratory is equipped
with an extensive range of reference radionuclide sources,
which are employed for the calibration of equipment and
the monitoring of measurement quality.

If the measurement result was beyond the sensitivity
of the measuring instrument, parallel measurements
were made at such points. The result was accepted if the
following condition was fulfilled (Eqg. 1):

|A1—A2|<,/5A§+5A§

where A, and A, — measurement results; (SAL2 -
uncertainties of measurement results A, and A,

If the condition was not fulfilled, the measurement was
repeated again.

M

Statistical analysis

Statistical analysis was performed using licensed
software packages OriginPro and Microsoft Office.
Mapping was carried out using Surfer software by Golden
Software, Inc. (Golden, Colorado, USA).
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RESULTS

The study scheme and the main results of AL thaw
depth, gamma ray flux, and RFD are summarized in Fig. 2.

During the study period (July 2023), the greatest depth
of AL thawing was observed along the edge of the bog
(band width not exceeding 1-2 m), reaching 50-60 cm
(bedrock level). From the edge of the bog, the thawing
depth decreased markedly, with a range of 5to 15 cm.

The gamma radiation flux within the area under study
exhibits a range of 14.4 to 30.4 impulses per second, with
an average value of 21.7 impulses per second. The results
of the measurements indicated a slight increase in gamma
ray flux in areas of maximum AL thawing within the peat
strata. A comparable distribution pattern is evident for RFD
in the area under study. The parameter in question exhibits
a range of 6.0 to 44.0 mBg-m?s”, with an average value
of 16.4 mBg-m?s™'. The highest RFD values are observed
along the edge of the peat bog, within a band with a width
of no more than 1-2 m.

Scheme of measurements of AL thawing depth,

gamma radiation flux and radon flux density
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Two peat profile cuts were conducted within the bog,
one at the edge (Profile 1) and one at a distance of 100
meters (Profile 2) (Fig. 3). The results of the assessment
of the natural radionuclide content in samples from peat
profile cuts are presented in Tables 1 and 2.

For the purposes of clarity and informative content, the
results presented in Tables 1 and 2 are plotted in Fig. 4. As
evidencedinTables 1 and 2, the distribution of radionuclides
26Ra, 21%Pb, #?Th, and 40K exhibits a comparable pattern
across the depth of peat profile cuts. In general, the values
of these radionuclides are consistent with the available
data for the Northwest region, as reported by Kriauciunas
(2018), Yakovlev (2022, 2023).

The 2'°Pb activity concentration ranges from the lowest
measured values (2.3+1.1 Bg-kg™ for the 20-25 cm horizon) to
330.0+60.0Bg-kg ' forpeatprofile Tandfromthelowestmeasured
values (4.1+1.9 Bg-kg™ for the 15-20 cm horizon) to 270.0+60.0
Ba-kg™ for peat profile 2. The maximum activity concentration
of 21%b (330.0+60.0 Bg-kg™) falls on the uppermost horizon
(0-5 cm), which is a natural phenomenon given that the
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Fig. 3. Peat profile cuts at the edge of the bog (A, proﬁle 1) and 100 m from the edge of the bog (B, profile 2)
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Table 1. Variation of natural radionuclide content with depth in profile 1

Activity concentration, Bg-kg"

Isotopic ratio

Profile 1

Profile 2

Layer,cm

Y 226R3 210pp 22Th 40K °Ra/*'°Pb

0-5 < MDA 330.0+60.0 3.1+1.0 60.0+18.0 -
5-10 < MDA 65.0+£18.2 2.5%1.0 51.0+£19.0 -
10-15 < MDA 10.0+£2.5 2.0£0.8 450+18.0 -
15-20 < MDA < MDA < MDA 35.0+14.0 -
20-25 0.3£0.2 2.3%1.1 1.3+0.8 23.0+9.2 0.13
25-30 1.1+04 8.1+3.2 4.8+0.6 780125 0.14
30-35 2.8+0.8 7.3%29 4.5+0.6 62.0+11.8 0.38
35-40 2307 12.0+£50 51£0.7 155.0£21.7 0.19
40-45 10.5+¢16 16.0£6.4 20.1+1.8 330.0+£29.7 0.66
45-50 14.2+2.6 21.0+84 25.0+23 370.0£33.3 0.68
50-55 16.3+25 17.0+6.8 259422 530.0+47.7 0.96

Table 2. Variation of natural radionuclide content with depth in profile 2
Activity concentration, Bg-kg" Isotopic ratio
Layer,cm 226R3/219Ph
26Ra 210ph 22Th 40K

05 < MDA 27004600 < MDA 51.0+180 -
5-10 < MDA 22.0+182 < MDA 45.0£19.0 -
10-15 < MDA < MDA < MDA 35.0+18.0 -
15-20 < MDA 41419 48423 78.0+14.0 -
20-25 3.6+0.2 9.0£1.1 8.6£0.8 155.0+£9.2 040
25-30 33+04 6.5+3.2 84+0.6 183.0£12.5 0.51
30-35 45+0.8 11.0£2.9 9.6+0.6 167.0£11.8 0.41
35-40 5.8%0.7 8.0£5.0 9.7£0.7 190.0£21.7 0.73
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Fig. 4. Plots of radionuclide activity concentration distribution and isotopic ratios along profiles 1 and 2
(red dashed line shows average AL level according to (Iglovsky 2010))
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only way ?'°Pb enters the peatland is atmospheric fallout
(Yakovlev et al. 2022). The concentration of ?'°Pb at a
depth of 15-20 cm in profile 1 and 10-15 cm in profile 2
is below the minimum detectable activity concentration.
In general, the ?'°Pb activity concentration in the studied
profiles is comparable to other regions of Northwest Russia.
For instance, the maximum ?'°Pb activity concentration
recorded in the llassky peatland in the Arkhangelsk region
was 310.8 Bg-kg' (Yakovlev et al. 2022). However, there are
cases where the vertical distribution of 2'°Pb differs from
the above. Cwanek and tokas (2022) demonstrated that
the highest activity concentration was not confined to the
uppermost layer but occurred within intermediate depths.
Additionally, there were significant deviations from the
simple monotonic decrease of atmospheric components,
which often fluctuated downward, presumably reflecting
episodic variations in recent peat growth or decomposition
rates.

The vertical distribution of 2?°Ra, *“Th, and 40K differs
from the vertical distribution of ?'°Pb for our study area. The
maximum values of these radionuclides are observed in
the underlying horizons. This effect is especially noticeable
for peat profile 1, where samples were taken including
the bedrock, with increased sorption properties of clay
minerals.

DISCUSSION

The obtained data sets of AL, RFD and gamma flux
density differ from the normal distribution, so we used
the nonparametric Spearman’s rank criterion to evaluate
correlation dependencies. A correlation coefficient of 0.70
(significant at the 0.05 p-value) was observed between
gamma ray flux and AL thawing depth. It is likely that
the elevated gamma ray flux is attributable to the flux of
natural radioactive gases, including ?Rn and its decay
products, given the absence of a permafrost barrier.
Conversely, the observed increase in gamma radiation
flux may be attributed to intrinsic properties of gamma
radiation. The ability of gamma radiation to penetrate
an object is contingent upon the energy of the gamma
quantum and the density of the substance absorbing it.
The thickness of the water layer at 24 cm (which, in the
present study, is equated with the thickness of the frozen
ground) attenuates the gamma radiation flux with an
energy of 0.5 MeV by a factor of 10. Given the considerable
range of gamma-radiation energies exhibited by natural
radionuclides (Levin 1973), spanning from the X-ray zone
to energies exceeding 2.5 MeV, ice or frozen ground can
serve as a substantial barrier to the passage of gamma-
quanta. This phenomenon may be reflected in the findings
of studies examining the distribution of gamma-ray flux in
peat bogs within the Oma River basin.
| n contrast to gamma radiation, there is a very strong
correlation between RFD and the AL thaw level of 0.83
(significant at the 0.05 p-value). Concurrently, a comparison
of RFD and gamma radiation flux reveals a relatively weak
correlation between these parameters — 0.59 (significant at
the 0.05 p-value)). It can be reasonably assumed that the
greatest contribution to the gamma-quantum flux is made
by gamma-emitting radionuclides, including ?*’Rn decay
products present in the soil. “K, a radionuclide found in
abundance in natural environments, also emits gamma
radiation. In the present study, its activity concentration
exceeds that of other radionuclides, especially in the
underlying horizons. Furthermore, the gamma-ray energy
of “K is notably high at 1460 keV. However, it is important
to note that the beta decay of “K is accompanied by
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gamma-quantum yield in only 10.6% of cases (Levin 1973).
Consequently, the contribution of 2K to the total gamma
radiation flux is likely to be approximately equivalent to
that of other radionuclides.

The surface distribution of radiation parameters can be
directly related to the vertical distribution of radionuclides
in different frozen conditions. As previously mentioned,
the concentration of ?'°Pb at a depth of 15-20 cm in
profile 1 and 10-15 cm in profile 2 is below the minimum
detectable activity concentration. This lower concentration
is likely attributable to the absence of vertical migration
of 2%b, which entered via atmospheric deposition due
to the shallow depth of the AL and its brief melt period.
Conversely, in horizons deeper than 15-20 cm, both profiles
demonstrate an increase in the content of 2'°Pb, as well as
its parent isotope ??°Ra. The results of the calculation of the
226Ra/?1%Ph isotopic ratio for depths between 20 and 40 cm
demonstrated that in profile 1, this parameter exhibited a
range of 0.13 to 0.38, while in profile 2, it varied between
0.40 and 0.73. The low value of the isotopic ratio in profile
1 may be indicative of an excess of ?'°Pb (in comparison
to the ?Ra content), which is likely due to the ??’Rn flux
from the underlying horizons. The application of the
2Ra/*"°Pb isotope ratio method is discussed in detail by
Tsapalov (2013). The authors demonstrate that the 2'°Pb
content is excessive in conditions of active geodynamics
due to the inflow of «deep» ?’Rn. In the present study, it is
hypothesized that in permafrost conditions, the activities of
226Ra and ?'°Pb are in radioactive equilibrium, whereby their
ratio is assumed to be 1 (one). This assumption is founded
upon a series of indirect indications, as direct evidence
for this phenomenon is not available within the scientific
literature. For instance, in 1990, research was conducted
to assess the distribution of permafrost by measuring the
activity concentration of ?2Rn as a tracer (Sellmann et al.
1990). The results of the studies demonstrated a strong
correlation between the ?*?Rn activity concentration and
frozen areas in the permafrost distribution, with varying
levels of permafrost roof occurrence. The necessity to take
into account the factors such as surface ice and permafrost
presence when assessing ??Rn distribution was pointed out
in Evangelista et al. (2002). It has been hypothesised that
surface ice and permafrost act as significant barriers to the
22Rn flux reaching the Earth's surface. Theoretical studies
on this contentious issue were initiated in 2006-2008
(Glover 2022). Conclusions have been drawn by Russian
scientists (Klimshin et al. 2010) regarding the significant
influence of the level of seasonal ground freezing (up
to 1 m) in wintertime on *?Rn emanation to the Earth's
surface. The evidence suggests that ?Rn may be sealed
within the permafrost. The absence of ?Rn migration
can be interpreted as an absence of both ?*’Rn itself and
its decay products. However, when permafrost conditions
are disrupted, *?Rn will begin to migrate through the
geological environment (Puchkov et al. 2021), leaving
behind radioactive decay products, which may potentially
resultin a reduction in the value of the ?*°Ra/?'°Pb ratio.

In terms of the ongoing discussion of ?*Ra/?'"°Pb
ratio violations, there is a further potential cause of the
21%Pp excess: the compression of pore waters and gases
(including gas hydrates) containing ??Rn because of
cryogenic concentration from the permafrost zone to
the freezing zone (Chuvilin et al. 2000). The *?Rn does not
form gas hydrate crystals with water independently, as it
lacks the requisite partial pressure for hydrate formation.
However, its atoms are actively embedded in the nodes
of hydrate crystals of the auxiliary gas, thereby forming a
mixed hydrate (Portman 2014).
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It is important to note that the discussions presented
above do not conclusively address the issues of increased
22Rn fluxes resulting from permafrost degradation and
the deterioration of the radiological situation in areas
with an unfavorable radiochemical background. These
issues remain open for further debate and investigation.
The results of the observed increase in ?2Rn and gamma
radiation fluxes can be interpreted not only in the
context of permafrost conditions but also in relation to
other factors. The measured RFD values indicate that the
concentration of ?’Rn decay daughter products in the air
and on the soil surface is likely insufficient to significantly
impact gamma radiation flux values. To this end, it would
be advisable to conduct a further study in territories with
an unfavorable radiogeochemical background. The excess
of 2'%Pb compared to ?°Ra may be related to the increased
concentration of ?'°Pb in this layer. This level is probably
formed in autumn and early winter during freezing of the
AL from above. In this process, soil 22?Rn cannot escape
to the atmosphere and appears ‘sealed’ in the melted
area between permafrost rocks and the freezing layer.
For example, Klimshin et al. (2010) demonstrate that the
freezing of the surface soil layer can reduce the ?>’Rn flux by
up to 10 times compared to the period preceding freezing.

CONCLUSIONS

This paper presents the findings of field studies
investigating the distribution of ?°Ra, ?*’Rn, its decay
products, and gamma radiation flux in relation to varying
levels of AL occurrence. The studies were conducted on
the territory of a hillocky peat bog situated within the Oma
River basin, which is located in the Nenets Autonomous
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APPENDIX A
Table A1. RFD, AL, and gamma radiation flux at the peat bog surface
ID point RFD*, mBgm?™s' AL, cm Gamma rai‘jfisoencgﬁg*' impulses

1 30 53 259
2 25 52 258
3 29 49 29.7
4 36 50 279
5 32 55 237
6 31 50 219
7 35 51 22.1
8 29 54 23.8
9 28 59 26.2
10 31 50 18.3
11 36 51 20.3
12 37 54 259
13 32 53 24.7
14 25 55 304
15 26 56 286
16 18 14 19.9
17 10 7 183
18 11 8 196
19 12 8 220
20 11 10 184
21 15 9 21.8
22 14 9 185
23 16 8 16.0
24 9 10 18.0
25 9 12 183
26 10 12 16.3
27 12 8 22.7
28 12 9 20.1
29 14 13 18.1
30 15 15 203
31 14 12 22.1
32 13 11 23.7
33 10 12 223
34 6 11 214
35 7 9 20.6
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36 9 9 159
37 10 8 17.7
38 8 9 17.9
39 6 10 184
40 15 12 206
41 16 12 219
42 11 11 16.3
43 6 12 204
44 8 10 18.1
45 7 13 239
46 19 44 257
47 8 12 216
48 10 13 19.7
49 1 10 16.8
50 14 33 234
51 11 14 23.6
52 19 39 253
53 16 12 22.7
54 15 12 185
55 12 1 14.6
56 13 10 16.2
57 9 10 144
58 10 28 20.3
59 21 47 239
60 21 48 24.3
61 18 24 19.0
62 24 30 219
63 18 29 263
64 19 28 22.7
65 20 32 221
66 20 49 321
67 24 20 18.2
68 23 41 23.0
69 24 39 26.5
70 23 42 230
71 19 37 18.6
72 20 45 22.3
73 21 44 26.8
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74 20 29 221
75 23 26 249

*Notes: According to the technical documentation, the uncertainty of measurements with the scintillation geological exploration
radiometer SRP-88n is 10%. According to the technical documentation, the uncertainty of measurements with the radon radiometer

«Alpharad plus» is 30%.
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ABSTRACT. In the context of climate change, forests are a vital source of ecosystem services for humankind, acting primarily
as carbon sinks. The aim of this study is to use the machine learning algorithms available in the Google Earth Engine (GEE) to
predict the above-ground biomass of the Azrou forest in the Middle Atlas Mountains of Morocco. After a literature review, the
work consisted of characterizing the natural features through Land Use Land Cover analysis (LULC) and forest stand types. The
accuracy of the forest stand type classification was assessed at 81.55% using the kappa index. Analysis of vegetation cover
time series data, derived from NASA imagery and MODIS, was carried out, focusing on four key indices: NDVI (Normalized
Difference Vegetation Index), EVI (Enhanced Vegetation Index), LAl (Leaf Area Index), and FPAR (Fraction of Photo synthetically
Active Radiation). The study predicted biomass using the Random Forest machine-learning model, implemented in GEE with
JavaScript. NASA/ORNL biomass data for 2010 served as the dependent variable, while LULC, elevation, and the four indices
were used (selected summer period) as independent explanatory variables. In addition, forest stand types were integrated to
calculate total biomass for specific stand types and for the study area as a whole for the years 2015, 2020 and 2024. In 2024,
the predicted biomass is 461,587 tons, compared with 501,172 tons in 2010. The biomass median values by species were
29 tons/ha for pure Atlas cedar (Cedrus atlantica Manetti), 24 tons/ha for pure holm oak (Quercus ilex) and 31 tons/ha for a
mixture of Atlas cedar and holm oak. The results highlight challenging conditions for the Azrou forest, with a notable decline
in biomass over the study period. These results will serve as a basis for future forestry planning in the context of climate
change.
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INTRODUCTION 2001;Panetal, 2024; Schilling etal.,, 2012).In December 2015,
the COP 21 in Paris led to an agreement within the United
In the 271 century, global climate change becomes  Nations Convention on Climate Change with the purpose
more severe which is due to greenhouse gas emissions,  of keeping the increase in global surface temperature well
which are recognized as one of the key drivers of ecosystem  under 2°C, while pursuing efforts to limit the rise to 1.5°C. In
degradation and climate disruption (Scott et al. 2020). This this concern, each party involved in the agreement has to
phenomenon has had serious consequences, including  establish a national goal to limit greenhouse gas emissions
global warming, ocean acidification, accelerated glacier (Erickson & Brase, 2020; Ourbak & Magnan, 2018). Biomass
melt, and an increase in the frequency and intensity of  carbon pools act as a sink for atmospheric CO, and, in the
extreme weather events (Calvin et al,, 2023). Mediterranean region, carbon sequestration by forests
In the context of climate change, the uptake of carbon  ranges between 0.01 and 1.08 t C ha' annually (Merlo &
dioxide by forest ecosystems is precarious for regulating  Croitoru, 2005). The ability to quantify forest carbon stock
it (Friedlingstein et al, 2022). They play a key role since  at the regional and local levels is expected to support
maintaining and increasing the sink capacity of forests is  compliance with the treaty and its goals.
essential to reduce growing greenhouse gas emissions into Forests are a vital source of ecosystem services for humans
the atmosphere (Friedlingstein et al, 2022; R.B. Mynenietal,  and mainly act as carbon sinks (FAO, 2020). Nonetheless, forest
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improvement activities and changes in land and forest use
emanate directly from forests and account for all emissions
from agriculture and other related uses (Laaribya et al., 2024;
Nourelbait et al., 2016; Rudel et al., 2005). In addition, activities
linked to deforestation, reforestation, and forest conservation
are important. Combined with the effects of deforestation and
acceptable sustainable harvesting, forests can also act as a
source of carbon long before the agreement. In this context,
the reduction of greenhouse gas emissions from deforestation
and increased forest degradation is part of a sustainable
development approach and enhances carbon storage (Alaoui
etal, 2021; Forsell et al,, 2016; Garcia et al,, 2010; Laaribya et al,,
2021; Sinha, 2022).

Although much research has been carried out on the Atlas
cedar forest to assess its state of conservation, much remains
to be discovered about its capacity to store carbon in biomass
and the long-term sustainability of this emblematic Moroccan
ecosystem (Boulmane et al, 2015; El Mderssa, 2022; El Mderssa
et al, 2019; Laaribya, 2024; Laaribya et al,, 2024; Linares et al,,
2011; Terrab et al, 2006; Zaher et al, 2020a). This work has
highlighted the need to improve conservation strategies to
preserve this ecosystem, as its ability to act as a carbon sink
is highly dependent on its sustainability and maintenance.
Indeed, this remarkable ecosystem plays an essential role in
carbon sequestration, helping to mitigate climate change.

The aim of this study is to use the available machine
learning techniques, adapted inside the GEE environment, to
assess the cover dynamic and to predict the above-ground
biomass of the Azrou Cedar Atlas forest in the Middle Atlas
Mountains in Morocco.

Satellite imagery, coupled with the power of Artificial
Intelligence (Al) and cloud-based platforms like GEE, has
revolutionized the way environmental monitoring is
conducted, making it possible to analyze vast forest landscapes
over extended periods efficiently (Laaribya & Alaoui, 2025;
Mutanga & Kumar, 2019; Zhao et al,, 2021). Indeed, given that
traditional methods are difficult to meet the requirements in
this field due to the long period of experimentation in the field,
the availability of timber cuttings, and the high cost. Nowadays,
machine learning (ML) is emerging as a new research paradigm
to facilitate research in the field of machine learning for forest
biomass prediction.
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« =2 C M@
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MATERIALS AND METHODS
Study area

The Azrou forest is located on the northern edge of the
Middle Atlas plateau (Morocco) and covers an area of 17,807 ha.
Contrasting relief characterizes it, with altitudes ranging from
1,700 m to 2,100 m. Precipitation is relatively high and comes
in the form of rain or snow. Annual rainfall varies between 563
mm and 1122 mm, while maximum temperatures range from
30.3°C to 43°C, with July and August being the hottest months
(Laaribya, 2024).

The bioclimate is humid Mediterranean with a cold
variant and subhumid with a temperate variant. Atlas
Cedar (Cedrus atlantica Manetti) is the main species in
this forest, and depending on the nature of the substrate,
it forms pure stands or a mixture with holm oak (Quercus
ilex) (Laaribya, 2024). The topographic characteristics of the
study area are shown in Fig. 2.

Referring to the International Soil Classification System

(WRB 2014), the study area offers three main soil groups
(Fig. 3).
In our study area, analysis of the Gaussen Index (Bagnouls
& Gaussen, 1953) (Fig. 4) reveals a dry period lasting
approximately four months, from June to September
(1985-2022). This prolonged aridity significantly affects
vegetation cover and tree growth in the Azrou forest.

Data collection

To achieve our objectives, we used a dual approach
to analyze environmental changes and biomass evolution
over time (Fig. 5). This study relies on various data from
reliable and verified sources. All thematic maps were
produced using software tools ArcGIS 10.8.

Forest stand types mapping and accuracy assessment

The accuracy of the forest stand types classification is
assessed using a confusion matrix, which compares the
stand type results to a set of reference data (ground truth
or other high-quality datasets).

a

& @

X

* © O

o n ee-saidlaaribyal Q

Google Earth Engine Q "MODIS/061/MCD12Q1"
Bl i Docs Assets
Filter soripts.. Ex -

i 1 Map.addLayer(roi,{color:
~ Owner (1) 2  Map.centerObject(roi,1e);
~ users/saidlaaribyal/PNT 3

B Biomass_Pred X

NEN f A Pos
o i ~ uim/y 773 Miltaite dto
ol f -
+° /11
A

4
Kasbah'Ait
AaMMOUr==——

‘Ait Ouahi
P7209 & ]

ModisLandCover_ROI * T BT BT = 0 B || iespector Console TR

» var roi: Table users/saidlaaribyal/Peuplement_azrou

‘green’})

44

Search or cancel

multiple tasks in

the Task Manager® or try the
Tasks Page in the Cloud Console@

Layers Plan Sate\lme E\

T : r-::l
. & At \B | 1
' £ ’ .‘fr‘: f} & E?: : : 5
& ; S
% . j ; wagl

Z v)\zL

» .
Ait Said Ou
Heddou

Guigou
$5es -~
-, l
" AIT AHRA
Ait pameus
IBBE

e

Ait Hamza

s -
At Ghanem : ';;.uo- »

Al ol

B Coucher du soleil



Said Laaribya and Assmaa Alaoui

BIOMASS PREDICTION USING MACHINE LEARNING ...

5°15'W

5°10'W

5°5'W 5°W

33°30'N

33°25'N

33°20'N

5 0

Study area

5

s Km

Mediterranean Sea

Morocco Map

uesd0 onuepy

-l Azrou forest

Ifrane >
Vs
N
[ Province of Ifrane
[JFes Meknes Region
ﬂ Azrou forest

Fig. 1. Study area (the Azrou i?orest)

1w s1ew si030w sTw 33w sw s1raow 1w si030w sTw saow sw
I }N\
z z
£ s
2 2
5 g
] 2
Slope classes
I o0-25
. Elevation (m) . [ 26-50
‘ High : 2112 ‘ I 51-75
Low: 1182 [g [ 76 - 100 |z
5 25 0 5 - = 15 25 0 5 - &
— km b — km I 110- 150 |3
1w s1ew si030w sTw 33w sw s1raow 1w si030w sTw saow sw
N %\ N
£ : 4 £
£ s
2 2
5 g
B North @ E
[ Northeast
[ |East
I southeast Hlllshade
[ south High : 180
@' - I southwest '," -
. B West L -0
B Northwest & ow g
5 25 0 5 “ = 15 25 0 5 13
— Km 2| — Km 8

Fig. 2. Topographic maps of the study area

45



GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

2025

5°17'30"W 5°14'W 5°10'30"W 5°7'W 5°3'30"W 5°W
N
0
\\ \A/H A
\ L
2 P z
X(j/\ﬁ » g
N
) |
\ __o \
U~ _a —
—
z
- ' §
Y 4
Soil types
. - Il Regosol/Arenosol
[/ Regosol/Luvisol .
o 25 s 10 P [ Luvisol 3
Km >

Fig. 3. Soil type in the study area (map based on the soil maps (INRA 2000) not published)

Monthly Precipitation and Temperature (1985-2022)

80 1 I 40
‘E‘ 60 30 5
£ L
T L
- 2
& ©
-4 g
i*
4 40 4 F20 g

20 r10

0 T T T T T T T T T T T T ]
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Fig. 4. Bagnouls and Gaussen climate diagrams (1985-2022)
| I
Spatial Characteristics Mapping of the study area
Location, Altitude, Exposure, Slope, Soil (GIS rools)
Land Use/Land Cover Forest Stand Classification Vegetation Analysis Biomass

MODIS Land Cover Type Yearly Global

NDVIL, EVI, LAI and Fpar
National forestinventory database

(MODIS imagery)

(Global Aboveground and Belowground
Biomass Carbon Density Maps 2010)

ty

Accuracy Assessment

Confusion Matrix, User’s

ty

Spatio-temporal

Detection cover

Trend Analysis and Change

Accuracy, Producer’s Accuracy,
Kappa

Validate classification.

Sen's Slope

| &

Biomass prediction 2015, 2020 and 2024 (by forest stand type)
Random forest Machine Learning algorithm in GEE

Fig. 5. Methodological Framework

46



Said Laaribya and Assmaa Alaoui

BIOMASS PREDICTION USING MACHINE LEARNING ...

User's accuracy: Measures the accuracy of classification
from the user’s perspective (correctly classified instances
out of all instances predicted for a given class) (Eq. 1).

(Number of Correctly Classified Pixels in each Category) 100 (1)
(Total number of Classified Pixels in that Category (The Row Total) )

Producer’s accuracy: Evaluates the accuracy of the

classification from the producer’s perspective (correctly

classified instances out of all instances belonging to a

given class) (Eq. 2).
Number of Correctly Classified Pixels in each Category

Total number of Reference Pixels in that Category (The Column Total) 100 (2)

Kappa coefficient (K): A statistical measure that assesses

the overall accuracy of the classification, accounting for
random chance (Eq. 3).

((TSx CS) — (Z (Column Total x Row Total)))

x 100 (3)
(TSXTS) — (2 (Column Total X Row Total))

Spatio-temporal of

conditions (2001-2024)

comparisons vegetation

Monitoring and change detection for indices used
throughout the year (mean for 4 seasons) all over the 2001-
2024 period.

For analyzing the vegetation conditions across time,
global MODIS vegetation indices (NDVI, EVI, LAl and FPAR)
were used (Table 1). The two indices provide insights into
vegetation health and productivity:

Normalized Difference Vegetation Index (NDVI): Used
to assess vegetation density and health, where higher
values correspond to denser vegetation.

The Normalized Difference Vegetation Index (NDVI)
(Tucker, 1979) is the most commonly used vegetation
index for observe greenery globally (Eq. 4):

4)

where NIR-Near-Infrared reflectance, R - Red reflectance

Enhanced Vegetation Index (EVI): Similar to NDVI but
includes corrections for atmospheric and soil variations,
making it particularly useful in areas with dense vegetation.
The Enhanced Vegetation Index (Huete, 1997) is an
improved version of the NDVI, designed to minimize the
influence of atmospheric conditions and soil reflectance,
particularly in areas with dense vegetation (Eq. 5):

NIR — R
NIR+ C1R - C2Blue+L

where: NIR:Near-Infrared reflectance, R:Red reflectance,
Blue: Blue reflectance, G: Gain factor, CI: Coefficient for
the red band, C2: Coefficient for the blue band, L: Canopy
background adjustment

Leaf Area Index (LAI) : LAI (Eq. 6) is broadly defined as
the amount of leaf area (m?) in a canopy per unit ground
area (m?) (Watson, 1958). Leaf area index (LAl) is one of the
most frequently used parameters for the analysis of canopy
structure and is an important structural characteristic of
crop monitoring and crop productivity (Behera et al.,, 2010).

LAI=LA/P (6)

Variables: LA: Leaf area m?), P: Ground area (m?)
Note also that if LAl is the mean leaf area per plant, and
n is the plant density, then also (Eq. 7)

LAI=LA Xn

EVI=G (5)

7)
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Variables: LA: Leaf area of a single plant (in m? or cm?),
n: Plant density the number of plants per unit ground area
(e.g., plants/m?)

Fraction of photosynthetic active radiation (FPAR):
Photosynthetic active radiation used by plants in the
photosynthesis process. PAR knowledge can provide key
inputs for modeling biomass and forestry production
(Aguiar et al., 2012; Garcia-Rodriguez et al., 2021).

The two indices LAl and FPAR were used from the
MOD15A2H V6.1 (MODIS product) combining leaf area
index (LAl) and fraction of photosynthetically active
radiation (FPAR) in an 8-day composite dataset at 500 m
resolution (R. Myneni et al,, 2021).

Trend analysis and change detection for NDVI and EVI

To detect trends and changes in vegetation conditions,
the following statistical methods were applied especially
to NDVI and EVI indices:

Sen’s slope estimator: A non-parametric method for
estimating the slope of a trend in time series data. It is
widely used for trend analysis when dealing with datasets
that may contain non-linear trends or outliers (Sen, 1968).

Random forest machine learning algorithm in GEE

To to apply biomass prediction over 3 years (2015,
2020 and 2024), we have used the summer period (month
5 to month 9) to calculate the biomass explanatory indices
NDVI, EVI, LAl and FPAR.The median was used to perform all
those parameters. Indeed, the summer period is generally
the best time to calculate the values of these indices,
making it easier to identify patterns, assess vegetation
health, and monitor changes.

Given the models robustness in prediction, we
have used the Random Forest Machin Learning
algorithm. The dependent variable is biomass 2010 (ee.
ImageCollection('NASA/ORNL/biomass_carbon_density/
v1). This is the carbon stock density of the above-ground
living biomass of the combined woodland and herbaceous
cover in 2010. This includes carbon stored in living plant
tissues above the earth’s surface (stems, bark, branches,
and twigs) (Spawn et al,, 2020).

The random forest is an ensemble learning method
mainly used formodeling.Its principleis to build a multitude
of decision trees during training and merge their results to
improve overall accuracy and control overfitting (Schonlau
& Zou, 2020). Random forests are a combination of tree
predictors such that each tree depends on the values of a
random vector sampled independently and with the same
distribution for all trees in the forest (Breiman, 2001). The
model parameters and their characteristics are presented
in Table 1 below. Other parameters (excluding indices) are
also included in the Random Forest model as independent
variables.

Biomass = f (NDVI, EVI, LAI, FPAR, LULC, Elevation)
Var dataset = ee.lmage.cat([NDVI, EVI, LAI, FPAR, LULC,
Elevation])

RESULTS

Lund Use Land Cover

Analysis of the LULC map shows that our study area
is marked by a diversity of vegetation cover, mainly
grassland, which accounts for more than half the surface
area (57%). Forest cover appears to be open and in a state
of degradation all over the study area (Fig. 6 and Table 2).
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Table 1. Parameters and data collection
Parameters Collection Snippet Resolution (m) Date
) o NASA/ORNL/biomass_carbon_density/v1
Biomass (aglo'Band) (Global Aboveground and Belowground Biomass Carbon Density Maps) 300 2010
NDVI MOD13Q1.061 (Terra Vegetation Indices 16-Day Global 250m) 250 2001-2024
EVI MOD13Q1.061 (Terra Vegetation Indices 16-Day Global 250m) 250 2001-2024
LAl (Leaf Area Index)
FPAR (Fraction of MOD15A2H.061 (Terra Leaf Area Index/FPAR 8-Day Global 500m) 500 2001-2024
Photosynthetically Active
Radiation)
Elevation USGS/GTOPO30 30arc seconds 1996
(equiv 1 km)
MODIS/061/MCD120Q1
LULC Land Cover Type Yearly Global 200 2010/2022
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Table 2. LULC 2022 area (ha)

LULC Area (Ha) %
Water 404 2.3%
Evergreen Needleleaf Forest 2,468 13.9%
Open Shrublands 660 3.7%
Woody Savannas 511 2.9%
Savannas 2,064 11.6%
Grasslands 10,148 57%
Permanent Wetlands 106 0.6%
Croplands 1,404 7.9%
Urban and Built-up Lands 43 0.2%
Total 17,807 100%

To deepen the analysis and prepare data for the
prediction of forest biomass, we prepared a map of forest
stand types based on data from the National Forest
Inventory. An accuracy assessment was carried out to
determine the validity of the classification of the results of
this inventory in the field.

The composition of the forest species in our study
area includes pure stands of Atlas cedar (Cedrus atlantica)
(8.4%), Atlas cedar mixed mainly with holm oak (Quercus
ilex) (40.3%), pure holm oak stands (24.8%) and other areas
(24.7%) (Secondary species and non-wooded areas) (Fig. 7
and Table 3).

The Atlas cedar is a noble Moroccan species with a
much more majestic and imposing appearance than other
species.

The higher Kappa (81.55%) coefficient obtained in our
analysis (Table 4) is a strong validation of the classification
accuracy, allowing us to confidently focus our study on
Forest stand. This robust classification framework forms
the basis for assessing spatio-temporal trends in the main
indices and corresponding land cover classes, in particular
trees, crops, and pasture, over the selected study period
(2001-2024).

Time series analysis during 2001-2024

The vegetation assessment parameters NDVI and EVI
are widely used to analyze the condition of forest areas.
According to the results obtained for the period 2001-2024,
NDVI values are generally higher than EVI values over time
in the study area (Figs. 9 and 10). In addition to the NDVI
index, the use of the EVI index offers additional benefits by
mitigating the effects of saturation and correcting for soil
and atmospheric influences. The two vegetation indices
complement each other and improve the detection of
changes in vegetation.

Analysis of the descriptive statistics for the two series
(2001-2024) confirms the results of the LULC classification,
where vegetation cover is generally sparse and in a
degraded state. The coefficient of variation varies by 13
and 15% for NDVI and EVI, respectively (relatively low
variability), with relatively low mean values of 0.53 and 0.27
(Table 5).

The coefficient of variation varies from 32% to 17% for
LAl and FPAR indices, respectively, with relatively low mean
values of 0.99 and 4.13 (Table 5).These results show that the
LAl index is the most variable, reflecting direct changes in
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leaf area over time or space. FPAR is slightly more variable
than NDVI and EVI but less than LA, representing small
fluctuations in vegetation productivity (Figs. 11 and 12).

In conclusion, overall vegetation cover and greenness in
the study area remain relatively low and stable in space
and time in the period 2001-2024.

The differences in dynamics between the two indices
(NDVI and LAIl) are normal, as they are sensitive to different
vegetation characteristics. NDVI reflects chlorophyll
content and greenness, but it reaches saturation in dense
or mature vegetation. However, LAl continues to increase
with leaf growth and vegetation cover stratification, linking
it more directly to leaf areas and biomass. NDVI reacts
more quickly to greening at the beginning of the season,
while LAl shows more gradual and sustained growth.
During senescence, NDVI decreases more rapidly, while LAl
continues to increase until significant leaf loss occurs.

Spatio-temporal analysis / change detection

For further statistical evaluation, we applied Sen’s
slope spatio-temporal trend analysis to both the NDVI
and EVI series (2001-2024). This method was chosen for
its robustness in detecting monotonic trends, making it
particularly suitable for analyzing vegetation dynamics
over time. The results of this analysis, detailed below, offer
an explanation for the spatial evolution of vegetation over
the study period.. A summary of results is presented in the
following Table 6.

Spatio-temporal analysis carried out over the entire

study area reveals both positive and negative trends in
vegetation dynamics (NDVIand EVI) (Figs. 13 and 14). These
trends vary and cover the entire study area. The decreasing
values of Sen’s slope in the study area confirm the findings
of forest degradation and the impact of climate change
in the area. The two vegetation indices complement each
other and improve the detection of changes in the study
area.
Degradation is occurring mainly in forest ecosystems
conquered by Atlas cedar (Cedrus atlantica), as well as in
mixed stands of Atlas cedar and holm oak (Quercus ilex).
These forest ecosystems are predominantly vulnerable
due to a combination of natural and anthropogenic
pressures.

Spatio-temporal analysis carried out over the entire
study area reveals both positive and negative trends in
vegetation dynamics (NDVI and EVI) (Figs. 13 and 14). These
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Fig. 7. Classification of the forest stand types in the study area
Table 3. Classification of the forest stand types in the study area

Stand type Area (ha) %

Pure Atlas cedar (Cedrus atlantica) 1497 84
Pure holm oak (Quercus ilex) 4420 248
Cedar mixed with holm oak 7182 403
Others 4708 247

Total 17,807 100

Table 4. Forest stand Accuracy assessment

Pure Atlas )
Landuse cedar (Cedrus Pure holm' oak ;edar mixed Others Total User accuracy (%)
) (Quercus ilex) | with holm oak (user)
atlantica)
Pure Atlas cedar (Cedrus atlantica) 23 0 3 0 26 88%
Pure holm oak (Quercus ilex) 3 9 1 0 13 69%
Cedar mixed with holm oak 1 2 17 1 21 81%
Others 0 0 0 21 21 100%
Total (producer) 27 1 21 22 81
Producer accuracy (%) 85% 82% 81% 95% Overall Accuracy =
y i 0 ° ° ° 86.44%
Kappa = 81.55%

Table 5. Descriptive statistics for the time series indices (2001-2024)

Indices Min Max Mean Median St dev Coefficient of variation (%)
NDVI 0.196 0.65 053 0.54 0.07 13
EVI 0.11 0.37 0.27 0.27 0.04 15
LAl 0.04 1.84 0.99 1.02 032 32
FPAR 0.25 559 413 4.23 0.72 17
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trends vary and cover the entire study area. The decreasing
values of Sen’s slope in the study area confirm the findings
of forest degradation and the impact of climate change
in the area. The two vegetation indices complement each
other and improve the detection of changes in the study
area.

Degradation is occurring mainly in forest ecosystems
conquered by Atlas cedar (Cedrus atlantica), as well as in
mixed stands of Atlas cedar and holm oak (Quercus ilex).
These forest ecosystems are predominantly vulnerable due
to a combination of natural and anthropogenic pressures.

Biomass prediction using Machine Learning in GEE

Biomass estimation models based on remote sensing
data (NDVI, EVI, LAI, FPAR) are sensitive to changes in
vegetation structure and vigor, which can decrease without
any visible change in land cover type. Biomass modelling
provided an assessment of the mass in the forest area
studied, expressed in dry weight, of the woody parts (stem,
bark, branches and twigs) of all living trees, excluding
stumps and roots (Spawn et al., 2020). The Random Forest
model designed for our prediction (correlation =0, 7 with a
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Table 6. Sen’s slope class for NDVI and EVI
Indices/Sen’s slope Decreasing Stable Increasing
NDVI -2.23t00 0-1 1t03.6
EVI -141t00 0-1 1to34
p-value < 0, 05) has enabled us to obtain the first results by DISCUSSION

period (2010, 2015, 2020 and 2024) in the forest study area
for data based on the satellite dataset (Fig. 15).

The results obtained showed a decrease in value (-8%)
between 2010 and 2024, with a biomass of 501,172 tons/ha in
2010 versus 461,587 tons/ha predicted by our model for 2024.

In 2024, the biomass median values by species were 29
tons/ha for pure Atlas cedar, 24 tons/ha for pure holm oak,
and 31 tons/ha for a mixture of Atlas cedar and holm oak
(Table 7, Figs. 16 and 17).

Generally, between holm oak (Quercus ilex) and Atlas cedar
(Cedrus atlantica), above-ground biomass potential depends
on several factors such as region, ecological conditions (soil
type, climate, elevation), stand density and tree age.

These results further confirm that Atlas cedar produces
a higher above-ground biomass than holm oak, particularly
under favorable conditions. These results provide a
comprehensive approach to mapping biomass estimation in
forestry and suggest guidelines for forest planning.
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In addition to vegetation condition over time and
space, this research work examines the assessment of
forest biomass by machine learning algorithms in GEE.
This innovative approach replaces the use of costly field
investigations. The biomass values obtained are reference
values for the main forest species in the area, namely Atlas
cedar and holm oak.

A negative evolution was highlighted, in biomass
values, between 2010 and 2024, materializing the negative
trend in vegetation parameters studied in the area. In
2024, the predicted biomass is 461,587 tons, compared
with 501,172 tons in 2010. This measurement is the carbon
stock density of the above-ground living biomass of the
combined woodland and herbaceous cover. The biomass
median values by species were 29 tons/ha for pure Atlas
cedar, 24 tons/ha for pure holm oak, and 31 tons/ha for a
mixture of Atlas cedar and holm oak. According to the FAO
(2006) in (Oubrahim et al., 2016), carbon stocks in forests
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Table 7. Biomass predicted by period in the study area
Stand type c dAtlas ctledatr ) (QHoIm o(:alk ) Atla.sthCEdlar mlxked Others Total
Biomass earus atlantiCa uercus riex WI olm Oa
Area (ha) 1,497 4,420 7,182 4,708 17,807
Median (Mg/ha) 32 26 34 20 -
Biomass 2010
Total (Mg) 47,904 114,920 244,188 94,160 501,172
Biomass Median (Mg/ha) 31 26 33 20 -
predicted 2015 1 10031 (Mg/ha) 46,407 114920 237,006 94,160 492,493
Biomass Median (Mg/ha) 30 24 32 19 -
predicted 2020 Total (Mg) 44,910 106,080 229,824 89,452 470266
Biomass Median (Mg/ha) 29 24 31 19 -
predicted 2024 Total (Mg) 43,413 106,080 222,642 89,452 461,587

(Units of measurement are expressed in megagrams (Mg) per hectare. 1 Mg = 1 metric ton)
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in North Africa (the total carbon in biomass, dead wood,
forest floor and the first 30 cm of the soil profile) were on
average 64.9 tons/ha.

In the Middle Atlas cedar area, in four reservoirs, ie.,
aboveground biomass, belowground biomass (roots),
necromass (litter and deadwood) and the soil, carbon
stocks were esteemed at 395.37 Mg/ha for the natural
cedar Atlasand 76.05 Mg/ha for the cleared area. Analysis of
the carbon stock distribution in the ecosystem discovered
that soil was the largest reservoir. Indeed, the soil carbon
stock varies from 46.4% to 93.5%, that of the biomass
(aboveground and belowground) fluctuates between 4.3%
and 52.7% and in the necromass, it is between 0.8 and 2.2%
(Zaher et al., 2020b).

The highest carbon stocks are foundinthe mostdensely
wooded areas (dense forests). This finding is confirmed
by other studies on the subject (Le Clec’h et al, 2013;
Oubrahimetal, 2016).In addition to aboveground biomass,
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assessing the contribution of forest soils makes it possible
to estimate the total biomass level of the ecosystem. Forest
soils are a significant reservoir of carbon; more than 40%
of the total organic carbon in terrestrial ecosystems is
stored in forest soils (Wei et al.,, 2014; Weston & Whittaker,
2004). In the banj oak forests (Quercus leucotrichophora) of
the Central Himalaya, tree biomass declined by 62% from
undisturbed to degraded forests, the carbon sequestration
rate decreased by 73%, peaking in moderately disturbed-A
forests, while total soil carbon fell by 79% (Pandey et al,
2020).

The decline in biomass values in our increasingly
fragile ecosystem is attributed to several interdependent
processes and factors that do not necessarily involve a
change in LULC classification. Firstly, we can note the
degradation of forest areas, such as the excessive logging
of precious Atlas cedar wood and overgrazing that exceeds
the carrying capacity, which can significantly reduce
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biomass even though the overall forest cover appears
unchanged. Secondly, reduced tree density and stress
can also lead to lower biomass estimates. Known climatic
stress factors in recent decades (droughts and rising
temperatures, etc) have limited tree growth and health,
thereby reducing biomass accumulation.

The increased stress on vegetation in the area was
highlighted by analyzing spatial and temporal variations in
vegetation indices (NDVI, EVI, LAl and FPAR). These indices
are reliable indicators of vegetation health and are sensitive
to changes in vegetation cover and structural properties
(Gonzélez-Alonso et al.,, 2006; Shammi & Meng, 2021).

The negative trends observed for NDVI and EVI
indices reflect a reduction in photosynthetic activity and
vegetation density in the forest study area. Shortened
vegetation affects carbon sequestration, biodiversity, and
ecosystem services in the study area.

Models based on remote sensing and machine-
learning techniques have made it possible to detect subtle
changes in biomass, even in areas where LULC cover does
not appear to have changed visibly. We can therefore
conclude that these tools are powerful for monitoring and
assessing the state of forest ecosystems beyond simple
changes in land use.

The downward trends observed in biomass, particularly
in cedar forests and mixed oak and cedar forests, reflect both
local degradation processes and regional environmental
pressures. In our area, carbon stocks vary considerably
dependingonthetype offorest. The ecosystemisvulnerable
to degradation, which reduces its carbon sequestration
potential. Overgrazing and deforestation not only reduce
above-ground biomass but also lead to soil erosion and loss
of organic matter, contributing to a decrease in soil carbon
stocks. In a regional context marked by human pressures
and climate change (Del Rio et al,, 2017; Gomez et al,, 2012;
Vayreda et al, 2012), intensified land use, and difficulties
in natural regeneration, similar trends in biomass decline
and carbon loss are observed, suggesting that these trends
may be regional. Globally, these findings are consistent
with broader concerns about the declining carbon storage
capacity of dry Mediterranean forests, pointing to the
importance of sustainable management strategies.

It would be interesting to take into account local data
validation (forest inventories or biomass measurements
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ABSTRACT. This paper explores the use of ¥’Cs derived from Chernobyl as an indicator of sediment supply and transport
within small agricultural catchments by analyzing the depth distribution of radionuclides, with a focus on post-Chernobyl
changes in the activity concentration of radionuclides. To this end, depth-incremental sampling was carried out along routes
of sediment transport within a small agricultural catchment subject to intense radioactive contamination in the Tula region.
Some points were set to repeat the position of those made 27 years earlier and to understand the dynamics of deposition
and the */Cs content in the sediment load. It has been suggested that a decrease in the activity concentration of *’Cs can be
used as an indicator of the relative age of deposits. Assuming this, the pattern of erosion product deposition on the sides and
bottom of the dry valley was determined. This pattern was found to be stable and consistent with the observed geomorphic
features and climate trends: the rate of accumulation in the valley bottom over the past 27 years has dropped almost twice,
coinciding with a decrease in snowmelt runoff during springtime and no increase in intense rainfall. Grain-size analysis of the
collected samples showed that selective transfer of clay particles may occur, but over a short delivery distance, it is unlikely
that the sorting process will significantly alter the downward trend of ¥’Cs concentrations. The proposed approach has the
potential to significantly improve the accuracy of sediment budget estimations and environmental quality assessments.
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INTRODUCTION transformation of sediment budgets due to changes in
the intensity of erosion and sediment delivery processes
Due to anthropogenic impact, which results in (Owens 2020).
disturbances of the natural canopy, accelerated erosion Several artificial compounds that are brought into the
on the interfluve slopes plays a major role in the sediment  environment are successfully used to investigate erosion
budget (Vanwalleghem et al. 2017). Yet, the products of  and sedimentation, including heavy metals (Dai et al.
erosion are mostly re-deposited along pathways from 2013; Wang et al. 2019; Elbaz-Poulichet et al. 2020;), fly
cultivated slopes to the river channels (Sidorchuk 2018). ash (Olson et al. 2008; Davis & Fox 2009; Gennadiev et al.
Emerging sediment fluxes are discontinuous; they begin 2010), and radioactive isotopes (Zapata 2003; Alewell et al.
with single events of short erosion periods on the slopes,  2017). The latter is closely linked to regular and occasional
continue along the thalwegs of hollows and valleys toward  discharges from nuclear facilities (UNSCEAR report 2000)
permanent watercourses, and extend beyond the outlets and nuclear weapons tests (Aoyama et al. 2006). Among
of river catchments, where they partly mix with products of ~ other anthropogenic fallout radionuclides ’Cs is most
riverbed deformations and become trapped by floodplains ~ often used as a tracer (Zapata 2002).
and reservoirs. Exploration of accumulated deposits using The highest '™Cs activity concentration usually
high-resolution chronomarkers and tracers along the  occurs during the 'Cs fallout from the atmosphere,
routes of sediment transport may help understand the  unless the soil has been affected by perturbations and
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erosion, intense migration of radionuclides (Jagercikova
et al. 2015), and material from a more contaminated area
has been transported and deposited at the sediment
sinks. Considering the pointed limitations, precise dating
of sediments becomes possible by using '’Cs depth
distribution (Foucher et al. 2020).

The distribution of radionuclides above the layer
associated with massive fallout, such as that from the
Chernobyl accident, can be seen as a record of changes in
activity concentrations in sediments carried and deposited
after the event. These variations are determined by activity
concentration in the material from a specific sediment
source, the proportion of sources contributing to the
sediment flux, and the possible sorting of particles and
aggregates during transportation. If the long-term trend in
the behavior of *’Cs in mobilized sediment for a selected
location is predictable, then it is possible to link activity
concentrations with the age of the accumulated sediment.

The aim of this research is to assess the potential use
of the Chernobyl-derived '*’Cs depth distribution not only
as an accurate chronomarker but also as a geochemical
indicator of sediment fluxes in a small agricultural
catchment affected by intense Chernobyl fallout in Central
Russia. To this end, the following questions were raised:

1. How did the '¥/Cs activity concentration change
in sediments that reached the lower boundary of the
cultivated fields and then entered a dry valley bottom over
the post-Chernobyl period?

2. Is there a significant difference in the grain-size
composition of material deposited in different geomorphic
units, indicating the potential influence of sorting during
transport on the radionuclide content?

3.Whatis the sedimentation rate in the dry valley along
different sediment transfer routes, and can it be related to
the activity concentration values of sediment believed to
be older than 19867

4.How long does it take for sediment to move from the
arable slope to the catchment outlet, considering changes
in erosion and sediment load from the slopes?

Materials and methods

The study area is located in the southern part of the Tula
region near Plavsk town in the central part of a zone heavily
contaminated with *¥/Cs following the Chernobyl accident
in 1986 (Fig. TA). The chosen catchment has been studied
over the past few decades using Chernobyl-derived ¥'Cs
as a soil erosion tracer (Golosov et al. 1999a,b; Golosov et
al. 2000; lvanova et al. 2000; Panin et al. 2001; lvanov 2017;
Ivanov, Ivanova 2023; Ivanov et al. 2023, 2024a). Despite
this, the catchment still has high potential for in-depth
exploration of erosion and sediment transport processes.
Surveys from different years allow us to observe the long-
term transformation of sediment and contaminant fluxes.

The area of the study site is 0.25 km?, and the elevation
difference is 52 m:from 187 m asl near its mouth (see Fig. 1B)
to almost 236 m on the watershed surface. A major part of
the drainage area is occupied with arable interfluve slopes
of 1°=7°. The rest of the catchment area is represented by

steep (up to 25°) sides and a gently sloping bottom of a dry
valley (Fig. 1B).

The bedrock represented by Carboniferous limestone is
covered by a loess-like loam (Ratnikov 1960) that serves as a
soil-forming deposit for leached (Luvic Chernic Phaeozems)
and podzolized (Luvic Greyzemic Chernic Phaeozems)
according to the WRB-22 classification. According to the
Plavsk weather station, the average annual precipitation is
approximately 650 millimeters. Since the early 1990s, there
has been a clear trend towards an increase in average winter
air temperatures and a decrease in snowmelt runoff, up to
its complete disappearance in some years (Barabanov et al.
2018), due to the lower depth of soil freezing and the higher
infiltration capacity of the soil during the snowmelt season.

The lower boundary of arable slopes is usually outlined
with lynchets: a ramparts emerged due to ploughing.
Therefore, the transfer of mobilized sediments outside the
slope occurs mainly through slope hollows, where slope
runoff is concentrated (Panin et al. 2001). Before plowing
ramparts (lynchets), erosion products accumulate at the foot
of arable slopes. Accumulation in this zone plays a significant
role in the sediment budget, comparable to the sediment
load entering receiving watercourses (Ivanov et al. 2024b).
The material that is carried outside the slope is deposited in
the form of slopewash fans and covers on the sides of the
valley. The rest of the sediments are transferred along the
fluvial network and mainly deposited inside valleys.

As far as water flow is predominantly controlled by local
topographic features, the specific routes of sediment transfer
can be identified and studied separately. In our study, three
routes were investigated with depth incremental sampling
points (Fig. 1D, Table 1).

The first route is located in the western part of the
catchment. The slope runoff from the neighboring slopes
is concentrated along the lynchet, so its transfer to the
valley bottom is observed in the corner of the cultivated
field. Two sampling points were selected here: one at the
foot of the slope before the fulfilled lynchet (LF-1) and one
on the side of the dry valley (LS-1), where conveyance of
mobilized material was expected. The second route passes
through the central part of the study area and includes
three sampling points: on the slope of the fulfilled lynchet
(LF-2), on the side of the dry valley (LS-2), and in the upper
reaches of the valley's bottom (LB-1). The third route starts
at the lower reach of the bottom of a large slope hollow
(LF-3), passes through a well-defined slopewash fan on the
side of the valley (LS-3), and continues along the bottom dry
valley bottom, where two sampling points were selected: in
the upper reaches (LB-2) and near the mouth (LB-3). In the
central part of the valley bottom, there is a local area with
bottom gully incision. The position of the gully head has not
changed significantly since it was first observed in 1997.The
locations of LB-2 and LB-3 were selected to be close to the
soil sections examined in 1997 by Golosov et al. (1999a) for
comparison purposes within the 1997-2024 time window
(see Fig. 1Q).

The depth incremental sampling was conducted in
two ways. Soil cores were collected using a hand auger at
points LF-1, LF-2, LS-2, LF-3, and LS-3. At points LS-1, LB-1,

Table 1. The routes of sediment delivery reaching the foot of arable slope

Route Sampling points Soil losses 1986-2022, t*
1 LF-1-LS-1 4834
2 LF-2-1S-2-1B-1 3583
3 LF-3-LS-3-LB-2-1B-3 73792

*after lvanov et al. 2024b
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LB-2, and LB-3, we dug pits to describe the soil profile and
collect samples from the walls of the soil sections. Sampling
was performed at 3-5 centimeter intervals: either from the
wall of the soil section or by cutting a core directly with the
hand auger. All samples were delivered to the laboratory
and dried out. They were then weighed and ground before
being placed in petri dishes for further examination of '¥’Cs
activity, using a gamma spectrometer with a high-purity
germanium (HPG) detector manufactured by ORTEC (USA)
with an error not exceeding 10%. All activity values were
recalculated for 1986, taking into account radioactive
decay. For the samples of Route 3 (LF-3, LS-3, LB-2 and
LB-3) the grain-size composition was determined using a
Malvern Mastersizer 3000 particle size analyzer to figure
out any sorting during transport.

Results

After examining samples from set points along
the first route, it was learned that some of the material
was accumulated at the foot of the slope during the
post-Chernobyl period, while the rest was deposited
downstream in the valleys. The depth distribution of
¥Cs from LS-1 demonstrates heavily contaminated
strata, whose thickness is several times greater than the
depth of ploughing. Due to the intensive deposition, the
sampling depth at this site was insufficient to collect all
the soil material containing Chernobyl '¥Cs (Fig. 2A). On
the valley's side, accumulation also occurred. The layer
with highest activity concentration corresponding to the
fallout was identified at depth of 25-30 cm. The upper 25
cm strata is argued to be deposited later (Fig. 2B).

Obviously, the concentration of activity in the
accumulated material shows a downward trend. As can
be seen from LF-1 (Fig. 2A), despite repeated cultivation
resulting in mixing of the upper layer of soil, values

dropped from 2124+34 to 1386+27 Bqg kg'. Given no
disturbance after the accumulation in point LS-1, the
activity concentration dropped by almost two times, from
2564+1011t0 1324+30Bgkg. Assuming that the sediments
redeposited at the studied points have the same origin,
the activity concentration can be used as a parameter to
correlate the '*’Cs depth distributions. Thereby the almost
equal range of concentration indicates that accumulation
in LF-1 and LS-2 took place simultaneously. Even if the
lynchet had been morphologically pronounced sometime
after the Chernobyl fallout, the concentration of runoff was
enough to deliver sediment beyond the cultivated field.
For the second route, the situation is quite different. At
the point LF-2, activity concentrations of '*’Cs exceeding
1500Bg kg™ are only seenin the upper30 centimetersand are
distributed almost evenly. Downwards in the soil profile, *’Cs
content starts todrop (Fig. 3A). Therefore, it can be concluded
that there has been no significant accumulation before the
cultivated field boundary. On the adjacent side of the valley
(point LS-2), the accumulation during the post-Chernobyl
period has been no more than 9 cm (Fig. 3B). In addition, the
concentration of *’Cs in the upper 6 cm of sediment, which
can be linked to post-Chernobyl accumulation, turned out
to be higher than in the material deposited at the foot of
the slope: 2392+132-2752+168 Bqg kg™ versus 1791+167-
1940+173 Bqg kg (Fig. 3B). It may indicate that sediment
deposition on the valley side occurred when the activity
concentration of '*’Cs in the sediment runoff was higher.
Currently, no accumulation is detected. Down by the route
in the valley's bottom examination of sediments at the
point LB-1 showed that a maximum of '*’Cs activity lies
almost on the surface (Fig. 3C). The only upper 3 cm layer
which can be argued to have accumulated after 1986 has
a very high concentration of 3352+72 Bq kg™'. This is much
higher than the concentrations in sediments that were
accumulated nearby at the LS-2 point. Considering that
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Fig. 1. The map of '¥’Cs Chernobyl fallout (after Izrael et I., 1996) and location of the study area (A). The photo of
the mouth of the Lapki catchment was made in 2021 (B). Observed routes of sediment transport (D): 1 - catchment
boundary; 2 - steep eroded slopes; 3 - observed routes of sediment transport; 4 — arable slopes; 5 - dry valley's sides;
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valley bottom
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Fig. 3. The depth distribution of 137Cs at points LF-2 (A), LS-2 (B) and LB-1 (C)

samples near the surface are subject to vertical migration
of radionuclides, including that along plant roots, it is more
likely that there was no accumulation in this location.

At the foot of the slope, at point LF-3, the distribution is
similar to that seen in the previously described example at LF-1
(Fig. 2A), indicating intensive accumulation due to high values
of slope runoff delivered through the slope hollow (see Table
1). The activity concentration varies between 1263+118 and
14844114 Bqg kg-1, and there is no obvious decreasing trend
observed (Fig. 4A).

High accumulation is also seen on the surface of the
slopewash fan at point LS-3, with more than 39 centimeters
accumulated between 1986 and 2022 (Fig. 4B). The upper 24
cm of the sediment are characterized by a gradual increase in
13’Cs concentration moving down, with values that lie close to
those observed in LF-3, ranging from 1188+77 to 1437498 Bq
kg™ In the deeper part (24-39 cm), this growth becomes more
intense: from 1580+112 to 2651+172 Bg kg™ and indicates
older material than observed at the point LF-3.

In upper reach of the valley bottom (LB-2), the thickness
of post-Chernobyl accumulation drops to 27 cm. Here, there is
a clear increase in ¥’Cs concentration, starting at the surface.
It is likely that most of the accumulation occurred during a
short period after the fallout, when the concentration did not
decrease to levels observed in LS-3 and the upper part of LF-3:
from 3469+173 to 1380476 Bq kg™ (Fig. 4C).

Along the valley bottom, the rate of accumulation
continues to decline, and near the mouth of the valley (LB-3),
the accumulation is less than 18 cm over the period 1986-2024.
The concentration of activity in the accumulated sediments
ranges from 1664+98 to 3416+159 Bq kg™ (Fig. 4D). This range
is almost like that observed at the upper reach (LB-2), indicating
the same age of the deposited material. It turns out that
modern products of soil erosion are hardly represented here.
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Grain-size analysis of the collected samples suggests
that there has been a selective transfer of clay particles. The
percentage of particles smaller than 2 microns gradually
decreases from 12.48% at the foot of the arable slope to
9.66% near the dry valley’s mouth. At the same time, the
proportion of particles thicker than coarse silty (16 microns)
shows an increase as they move downstream (Fig. 5).

The grain-size composition shows no clear trend in the
vertical distribution. At the observed points, each fraction
has random fluctuations which show (Fig. 6).

Comparison of ¥Cs depth distributions obtained in
1997 (Golosov et al,, 1999a) and in 2024 showed that the
depth of the peak of activity concentration has changed:
in LB-2 from 12-15 cm in 1997 (Fig. 7A) to 27-30 cm in
2024 (Fig. 7B) and in LB-3 from 7-9 cm (Fig. 7C) to 15-18
in 2024 (Fig. 7D). Accordingly, in both locations, the rate of
accumulation over 27 years decreased almost twice: from
1.1-14 cm year' to 0.7-0.8 cm year' in LB-2, and from 0.6
0.8 cm year' to 04-0.5 cm year' in LB-3. The deposition
was still much higher in the valley's upper part (LB-2
compared to LB-3), but the ratio of the accumulation rates
of LB-2 to LB-3 was stable, at 1.4-2.3in 1997 and 1.4-2.0in
2024. Also, the mean activity concentration in the upper
samples, 1798 Bg kg in LB-2 versus 2358 Bqg kg ' in LB-3,
indicates a different age of sediment (Fig. 7 A, C).

DISCUSSION

Summarizing the results presented, the following
points can be made. The transport of sediment and
radioactive isotopes from agricultural slopes is primarily
determined by the concentration of slope runoff. This, in
turn, is influenced by both the topography of the slope and
the microrelief at its foot. It is clearly indicated by the depth
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distribution of ¥’Cs in sediments on both sides of the lower
boundary of the cultivated field. The decrease in ¥Cs
activity concentrations in sediments mobilized on arable
slopes and redeposited downstream is typical for all cases
observed. This decrease was not linear, with a rapid decline
shortly after fallout, becoming smoother over decades until
relatively stable values recently. The selective transport of
clay particles could affect activity concentration during
transportation. The depth distribution of *’Cs suggests an
increase in accumulation in the buffer zone on the slopes
of the dry valley and in the upper reach of the dry valley.
This pattern is consistent with observed climate trends:
decreasing snowmelt runoff and no increase in intense
rainfall.

The obtained picture is consistent with the current
understanding of the lateral migration of particulate *'Cs
in areas with intense fallout. The Chernobyl incident was
followed by a sharp increase in the contamination of the
subsurface soil layer. Within the arable slopes, activity
concentration dropped shortly after plowing, which depth
was recommended to increase for remediation purposes
(Alexakhin et al. 1992). A similar situation was observed
in the affected areas of Fukushima, where the activity
concentration of '¥Cs in terrestrial environments decreased
rapidly relative to expectations due to active land use and
decontamination efforts (Onda et al.,, 2020). Afterwards, it
was expected that concentration would decrease due to a
number of factors.

There would be a loss of upper, highly contaminated
soil layers due to erosion and harvesting, which would result
in the involvement of deeper and cleaner material during
plowing. Freeze-thaw processes can lead to unstable
soil surfaces and the development of intense rill erosion
in springtime, which in turn causes a decrease in activity
concentrations in mobilized sediment (Wakiyama et al.
2019; Igarashi et al. 2021). However, given the increasing
average temperature and the reduction of snowmelt
runoff in the beginning of the XXI century (Baranov et al.
2018), this factor does not seem to play a significant role.
Also, activity concentration values would decline as a result
of the complex migration of radionuclides primarily down
through the soil profile. However, the latter effect was
expected to be negligible (Golosov et al. 2013).

The sorting of material occurs along the entire
transportation pathway and can potentially affect the
concentration of *’Cs in sediments. Shamshurina et al.
(2011) found that activity concentration correlates with the
share of soil aggregates. In the soils of the upper and middle
slopes, approximately 50% of the total '*’Cs inventory is
associated with aggregates larger than 2 mm. In the lower
part of slopes, this share rises to about 70%. As the material
moves and aggregates break down, sorting occurs primarily
based on the size of individual particles. The selective
deposition of larger particles leads to the enrichment of the
sediment load with clay and fine silt (Golosov et. 2000). In
turn, the selective transport of clay and silt particles may
lead to the intensive migration of bound radionuclides
(Evrard et al. 2015; Konoplev et al. 2016). However, over
a short delivery distance, it is unlikely that the sorting
process will significantly alter the downward trend of ¥'Cs
concentrations. Given a single sediment source, the activity
concentration of *’Cs can be used as an indicator for the
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relative age of the deposited sediment.

As the number of sediment sources increases, the
picture of contamination is likely to become more
complicated, but changes in activity concentrations may be
used for fingerprinting tasks (Schuller et al. 2013; Evrard et
al. 2020). If the radiocesium content from different sources
is varying, it is possible to understand their contributions by
comparing the '*’Cs depth distribution in deposits before
and after the confluence of sediment fluxes.

Panin et al. (2001) reported that the long profile of the
valleygradually decreasesfromits upperreachestoitsmouth
but has some slight convexities along the way, indicating
separate episodes during the period of cultivation. As it has
been declared, for the valley that receives sediment load
from the explored catchment, the main way that deposits
can be mobilized is through the incision of bottom gullies.
Otherwise, the valley bottom provides long-term storage
for eroded sediment and radionuclides. This statement may
be supported by the fact that the activity concentrations in
the upper samples in soil sections along the slope and at
the bottom of the selected valley have different values, and
consequently, sediments are of different ages. Sediments
downstream are found to be older than those upstream, as
can be seen in the example of LB-2 and LB-3 (Fig. 4C, D).
This pattern has been consistent over decades (Fig. 5). Thus,
distribution of the '¥’Cs activity concentration may act as a
geochemical indicator of geomorphic disconnectivity.

Using the distribution of activity concentration as a
proxy for the age of sediment mobilization may help us to
better understand sediment accumulation by correlating
it with specific time periods. Sediment budget studies on
small catchments are a useful way to validate estimations
of soil erosion and sediment delivery from cultivated slopes
to dry valleys and further along fluvial networks (Walling
et al. 2002; Reid and Dunne 2016; Zhidkin et al. 2023)
obtained results may be used to calibrate existing models.
As accelerated erosion is a major source of sediment-
associated contaminants, including radioactive ones (Lal
1994, Quinton and Catt 2007; Konoplev et al. 2021; Rashmi
etal. 2022), the rate at which eroded material is delivered to
watercourses is critical for assessing current environmental
quality and forecasting future scenarios.

CONCLUSION

Since intrabasin sediment deposition constitutes a
significant part of the sediment budget in river catchments
with intensive anthropogenic influence, any additional time
markers to explore sedimentation would be instrumental
and should be included in the toolbox. The study conducted
has shown that the pattern of Chernobyl-derived ’Cs
contamination has a close relationship to sediment
redistribution in almost all decades after the fallout. The
decrease of activity concentration during the post-Chernobyl
period demonstrates high potential as a surrogate of relative
age. This finding is consistent with previous research and
sheds light on the potential use of '*’Cs depth distribution
as a proxy of the sediment age during post-Chernobyl
accumulation. However, the proposed approach requires
a clear understanding of the long-term variation in the
radionuclide content in material eroded from slopes and
transported into the fluvial system. Il
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ABSTRACT. As urban areas grow, understanding the impact of built environments on aerosol distribution is crucial for
accurate monitoring and forecasting of urban air quality and for the development of mitigation strategies. This study
uses Large Eddy Simulation approach combined with Local Climate Zones (LCZ) classification to simulate the transport of
Lagrangian aerosol particles in different urban configurations. The study simulates several urban configurations based on LCZ
classification, specifically LCZ 4 (open high-rise), LCZ 5 (open mid-rise), and LCZ 6 (open low-rise), varying in building height
and density. Both regular and randomized urban development configurations were examined to understand the impact
of building geometry on particle dispersion. The study reveals that building orientation significantly influences particle
distribution, with structures parallel to the wind adding horizontal dispersion and those perpendicular promoting vertical
mixing. In randomized configurations, variations in particle concentrations highlight the role of architectural heterogeneity
in turbulence development and aerosol dispersion. The findings suggest that aggregated block- or district-scale building
geometry properties strongly influence aerosol transport. For randomized urban configurations, without idealized regular
structures, the difference in the large-scale morphometric characteristics of specified LCZ types has a significantly greater
impact on the particle dispersion process than the local geometric differences between configurations of the same LCZ type.
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accuracy and applicability of this approach.
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INTRODUCTION

With the rise of urbanization, the problem of aerosol
air pollution in cities has become more challenging, which
has required the use of advanced modeling techniques
to assess the dispersion of particulate matter in the urban
environment. Understanding and being able to forecast
this process is crucial for estimating health risks and
developing mitigation strategies, as urban air pollution is
associated with serious health consequences, including
respiratory and cardiovascular diseases (Pope and Dockery
2006; Kampa and Castanas 2008; Kasimov et al. 2024). The
impact of PM2.5 concentrations on mortality has a global
effect and is especially evident in low- and middle-income
countries (Cohen et al. 2017), where urbanization is usually
very active.

The complexity of urban landscapes, characterized by a
variety of architectural forms and types of land use, requires
models with high spatial resolution to ensure effective
analysis and forecasting (Baklanov et al. 2007). At the same
time, processes of a wide range of scales are important
for the physics of atmospheric processes in urban areas,
from an individual building to a meteorological mesoscale,
necessitating the use of models with different depths of
process description and resolution depending on the
task (Blocken 2015). Currently, there is a trend towards
multi-scale modeling of meteorological processes and air
pollution, as this approach allows fora more comprehensive
analysis of processes and more efficient decision-making;
however, it requires more complex verification of models
and the development of new recommendations and
standards for modeling (Kadaverugu et al. 2019; Baklanov
and Zhang 2020).

Historically, aerosol dispersion modeling has relied on
a Gaussian or plume approach (Berlyand 1991), which is
computationally simple but does not allow for detailed
consideration of the features of urban development and
the underlying surface (Britter and Hanna 2003; Holmes
and Morawska 2006). The development of computing
technologies and computational fluid dynamics (CFD)
models, primarily RANS (Reynolds-Averaged Navier-Stokes)
and LES (Large Eddy Simulation) approaches, has allowed
us to move to a qualitatively new level for simulation of
atmospheric processes in cities. Such models reproduce
the complex structure of an airflow and turbulent eddies
inside urban areas (Blocken et al. 2012). The influence of
urban development on microclimate and thermal comfort
has been actively studied for a long time using CFD
(Chatzidimitriou and Axarli 2017; Lee and Mayer 2018),
but air quality is not ignored either. It has been shown
that taking into account the geometry of buildings and
streets has a pronounced effect on particle dispersion and
allows us to obtain results that differ significantly from
simulations using plume models (Oke et al. 2017). At the
same time, building geometry exerts complex nonlinear
effects on particle concentrations (Starchenko et al. 2023)
and provides notable impact on other components of
the urban environment, including the air quality, e.g., via
greening of roofs (Wu and Liu 2023; Venter et al. 2024).

One of the methods to tackle the issues listed above
is the use of LES models, since with sufficient computing
resources they can provide a more accurate representation
of air flows and turbulence in urban areas than the more
popular RANS models (Zheng and Yang 2021). This
approach is already used for real urban development on
the scale of an entire city and allows us to draw conclusions
about the influence of street orientation on the dispersion
of pollutants (Zhang et al. 2021). In addition, LES models are
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used to verify simpler models or parameterizations used
for operational forecasting of air quality and atmospheric
composition (Grylls et al. 2019). Of particular interest are
studies using LES models with Lagrangian tracking of
pollutants as individual particles (Glazunov 2018), which
accounts for the interaction of solid particles with the
urban atmosphere and buildings in a more explicit way
compared to Eulerian models; e.g., this approach was
used to assess the impact of building development and
atmospheric stratification on particle dispersion in Helsinki
(Kurppa et al. 2018).

An important achievement in the field of urban
meteorology is the creation of the concept of local
climate zones (LCZ) and its use in hydrodynamic models
of various scales. LCZ classifies urban areas based on
building and street parameters, vegetation cover, and
surface properties - these variables strongly affect the local
microclimate and the structure of air flows (Stewart and
Oke 2012). Studies using the LCZ classification are primarily
focused on quantifying urban morphology impact on air
or surface temperature (Varentsov and Samsonov 2020;
Aslam and Rana 2022), however, there are more and more
works on the topic of air quality, which demonstrate that
the characteristics of urban development strongly affect
the concentrations and surface deposition of pollutants
(Kosheleva et al. 2018), and many classifications of the
underlying surface are not relevant to urban morphology,
which is presented in the LCZ (Jiang et al. 2023). It has been
repeatedly shown that there is a relationship between the
LCZ types and the concentration patterns of solid particles
(Shietal. 2019; Lin et al. 2024; Nourani et al. 2024), however,
conclusions about the specific nature of this relationship
vary depending on the city and research methods.

The aim of this study is to apply a novel approach
combining Large Eddy Simulation with Local Climate Zones
classification to analyze the impact of urban development
geometry on air pollution at various scales, from district
level to individual buildings. This approach not only
deepens our understanding of atmospheric environment
dynamics in urban settings but also paves the way towards
projecting more resilient urban infrastructures and
healthier living environments.

MATERIALS AND METHODS
Large Eddy Simulation

As the main tool, we used the model developed
at the RCC MSU (Lomonosov Moscow State University
Research Computing Center) and the INM RAS (G.l.
Marchuk Institute of Numerical Mathematics of the Russian
Academy of Sciences) based on a unified hydrodynamic
code combining LES (Large Eddy Simulation), DNS (Direct
Numerical Simulation) and RANS (Reynolds Averaged
Navier-Stokes) approaches for modeling geophysical
turbulent flows with high spatial resolution (Mortikov
et al. 2019; Kadantsev et al. 2021; Tkachenko et al. 2022;
Debolskiy et al. 2023, Suiazova et al. 2024). In this work, the
LES configuration of the model was used, which allows
for a detailed reproduction of turbulent airflows in the
presence of complex urban geometry.

This model calculates the dynamics of a thermally
stratified  fluid defined using filtered Navier-Stokes
equations in  the Boussinesq approximation. To
parameterize the subgrid stress tensor, the Smagorinsky
eddy viscosity model is used, in which the Smagorinsky
constant and the subgrid Prandtl number (which depend
on time and spatial coordinates) are determined using a
dynamical procedure (Germano et al. 1991). The numerical
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model utilizes conservative finite-difference schemes
of second-order accuracy for spatial approximation on
rectangular meshes. A fractional step method is used to
integrate the equations of motion and continuity over
time and to ensure the incompressibility condition, and
an explicit third-order Adams-Bashforth scheme is used to
approximate the momentum and heat equations.

An important feature of this model is explicit
representation of the buildings (Tarasova et al. 2024).
The surface of buildings can be given its roughness
and temperature, which allows us to make simulations
including complex scenarios when different buildings
have different properties.

Lagrangian particle model

To model particulate matter transport in the urban
atmosphere, a Lagrangian particle transport module was
introduced to the LES model. The main advantage of the
Lagrangian approach is its ability to track the trajectories
of individual particles in detail, which allows explicitly
describing theirinteraction with the diverse elements of the
urban environment.In complex urban environments where
buildings, streets, and green spaces create heterogeneous
airflow patterns, the lLagrangian method can account
for the effects of turbulence, particle sedimentation on
buildings surfaces, and changing atmospheric conditions
near surfaces, resulting in more accurate predictions of
local concentrations compared to the Eulerian framework.

In this paper, the Lagrangian approach is used for
numerical modeling of aerosol transport. Each particle is
tracked through its entire trajectory, as well as the particle’s
velocity and other state variables. This approach is used
to track a limited number of particles but allows us to
explicitly consider the forces acting on the particle. Using
the Lagrangian approach, the change in position of each
individual particle is described by the Eq. (1) (Thomson and
Wilson 2012):

dx =u dt M
p p
where x - particle position, u_ — its velocity, t — time.
P o

The developed model allows to consider inertial ("heavy”)
particles, whose velocity may not coincide with the
velocity of the ambient air at particle position. Therefore,
changes of both particle’s position and its velocity have
to be calculated - Eq. (1) is supplemented with Eq. (2) for

velocity based on Newton's second law:

o 8(PP_P) +F (u—u )
D 14

p
dt P,

where g=(0,0,-g) — gravitational acceleration (g>0)
in Cartesian coordinates, p. — particle density, p - air
(medium) density, u=(u,u,u,) - ambient flow (medium)
velocity, f, — drag coefficient.

To account for the interaction with buildings,
parameterization of collisions with hard (impermeable)
surfaces has been implemented, in which both reflection
of a particle from the surface of a building and deposition
on it are possible. It is implemented by representing
buildings as impenetrable surfaces of the computational
grid.

The Lagrangian transport module also takes into
account the effect on particle motion of the turbulent
eddies which are subgrid for LES model. The total flow
velocity  from Eq. (2) is represented as the sum of the
averaged and subgrid components (Eq. 3):

@

u=u+u' 3)
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where u — velocity explicitly resolved at the numerical
grid of LES model, u’ — subgrid velocity fluctuation which
is evaluated using the Lagrangian stochastic model (LSM).
The 1t order LSM is used in this work, for which the change
of fluctuation component along the trajectory of a fluid
parcel (coinciding with the particle path for light particles)
can be calculated as Eq. (4) (Reynolds and Cohen 2002):

’

1 u i
du'= — —b>——dt+ b¢. (4)
1 2 62 1
u.
l
where =1,2,3 is the Cartesian coordinate index,

b2=CO€, ai - subgrid velocity variance, C=6.0 -

Kolmogorov’s lconstant, € — the rate of dissipation of

turbulent kinetic energy, diagnosed by LES model, { -

independent delta-correlated (in time) Gaussian random
'3

Jar

The developed Llagrangian transport module was
previously verified on analytical solutions for light and
heavy particles (Varentsov et al. 2020; Varentsov et al. 2023).

variables with standard deviation &

Urban configurations

Since a limited number of numerical experiments
cannot cover the entirety of urban geometry variability, to
select urban geometry configurations for LES experiments,
it was necessary to choose building development types
that are both idealized enough to be described by a small
set of properties and easily reproduced in other studies
and relevant to the real urban settings so that they could
describe urban areas in different cities of Russia and the
world. The classification of Local Climate Zones (LC2),
proposed in (Stewart and Oke 2012), is increasingly used
as such a universal tool for identifying characteristic
types of homogeneous (in terms of mean morphological
characteristics) urban development within a city.

We restrict our study to 3 types of LCZ — the selected
configurations are LCZ 4, L.CZ 5, and LCZ 6. The parameters
defining each type are shown in Table 1. These types of
LCZ are widespread both in Russia and in the world, as
evidenced by the global LCZ map (Demuzere et al. 2022).
Configurations LCZ 1, LCZ 2, LCZ 3, and LCZ 7 require
calculations with more detailed resolution and higher
computational cost due to the very high density of
buildings, and LCZ 8, LCZ 9, and LCZ 10 are not so common
in residential areas of Russian cities — so these types are
planned to be considered not now, but in further studies.

LCZ 4 is an open high-rise building zone. In Russian
cities, a common example of such development is Soviet-
era housing, which typically consists of tower blocks with
8 to 12 floors in park-like surroundings. LCZ 5 is an open
medium-rise building zone. The typical example is the
neighborhoods of Soviet five—storey apartment buildings
(e.g., so-called "khrushevka"), typical of almost any Russian
city. LCZ 6 is an open low-rise building zone, and it can
include areas with both individual private houses and low-
rise apartment buildings. Common examples in Russia are
suburbs with private houses and city districts built up with
two-storey communal housing.

To generate building geometry so that the whole
domain corresponds to one of the selected LCZs,
two methods were used: manual specification of the
geometry with a regular pattern and automatic generation
of the geometry with a randomized pattern using
specially developed generator software. Hereafter, the
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Table 1. LCZ parameters used to generate the building geometries for numerical experiments

Lz Buildings height Building areal fraction Aspect ratio (the ratio of building height to street width)
LCz4 >25m 20-40 % 0.75-1.25
LCZ5 10-25m 20-40 % 0.3-0.75
LCz6 3-10m 20-40 % 0.3-0.75

configurations of these two types are called “regular” and
“randomized’, respectively.

As a result of the manual generation of regular
geometry, 9 configurations were prepared (Fig. 1), with 3
variants for each of the selected LCZ. The only differences
between the LCZs in these configurations were building
height and aspect ratio, while the shape and orientation of
the buildings differed between LCZ variants. The first two
options (LCZ 4 (a-b), LCZ 5 (a-b), LCZ 6 (a-b)) are regular
patterns with long buildings forming urban canyons
stretching from South to North or from West to East, such
scenarios mimic areas of Soviet residential districts, newly
built according to the cities’ master plans (Engel 2022). The
third option (LCZ 4 (c), LCZ 5 (¢), LCZ 6 (c)) is the regular
pattern of square buildings, typical for some urban areas
of the 21 century in Russia and for many cities around the
world, especially in developing countries.

Urban development rarely has a perfectly periodic
structure, so the regular geometry of identical buildings
and streets presented above is an idealized option. A
pseudorandom pattern of buildings of similar scale
can be found in almost any city. To consider more
realistic scenarios, we have created randomized building
geometries in which the structure of streets, blocks, and
buildings is present, but their location and parameters are
random within acceptable values for a particular LCZ.

The approach of generating building geometry based
on specified characteristics is used both in atmospheric
flow simulationsin general (Sutzl et al. 2020) and specifically

LCZ 4 (a)

200 min = 32.0, max = 32.0, mean = 32.0, std = 0.0

LCZ 4 (b)
min = 32.0, max = 32.0, mean = 32.0, std = 0.0

for LCZ classification (Zhou et al. 2023). However, the
available generation methods are usually limited in
setting or selecting parameters. Therefore, to generate a
randomized building geometry, we developed a generator
tool that takes as input the area size and the morphological
characteristics of the selected LCZ, including parameters
from Table 1 and manually selected restrictions on building
sizes. Next, the fractal geometry of urban development is
generated in several stages.

At the first stage, the minimum and maximum sizes of
streets and blocks and their number are calculated based
on the LCZ parameters. The area is randomly divided
into a corresponding number of streets (along the X and
Y axes) and rectangular blocks; all random values have a
uniform distribution within the minimum and maximum
sizes mentioned above. A block refers to an area with a
width of 1 to 3 buildings and a length of at least 1 building.
At the second stage, rectangular building objects are
generated in each of the obtained blocks, taking into
account the LCZ parameters and the selected building size
restrictions. The third stage of the generation is to check
the correspondence of the generated geometry and the
selected LCZ. The morphological characteristics (height
and area of buildings, aspect ratio) are checked separately
foreach block. Ifany of the parameters deviate by more than
5% from the required value, the buildings in this block are
generated again. If in a certain quarter it is not possible to
achieve the required values in several generation attempts,
or all blocks are approved, but a deviation of more than 5%
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Fig. 1. Elevation maps for manually created regular building configurations corresponding
to Local Climate Zones LCZ 4, LCZ 5, and LCZ 6
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is obtained for the entire region, then the entire region is
being regenerated, that is, streets and blocks.

In this way, 12 building configurations were generated,
4 for each LCZ (Fig. 2). The main differences between
randomized and regular configurations are the variation
in building sizes and heights, the different shape and
orientation of buildings within even one block, the lack
of a regular structure, and the different number and
width of streets. The building sizes for LCZ 4 and LCZ 5 are
quite similar for both generation methods. However, the
randomized LCZ 6 configurations have significantly more
buildings, and their size is smaller than in the regular LCZ
6 configurations, which is caused by the limitations of the
generation method.

Although such a random building pattern may not
have exact real-world analogues, it can be called more
realistic, since perfectly regular geometry is extremely
rare in cities (even cities built according to master plans
usually have a heterogeneous structure), and randomized
buildings of the same scale can be found in almost any city.

Numerical experiments setup

For each building configuration (for 9 regular and 12
randomized ones), a numerical experiment was conducted
to compute aerosol transport. The experiments simulated

LCZ 4 (1)
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the spread of atmospheric pollutants emitted from the
street in the form of vehicle emissions and fine road
dust. The spread of such pollutants within urban areas
was assessed under common meteorological conditions:
low wind and neutral atmospheric stratification, which
together provide ventilation of the city and vertical mixing,
but with low intensity.

The characteristic meteorological conditions of the
experiments included the wind speed and direction at
the upper boundary, as well as the vertical temperature
gradient. The wind boundary conditions were set to 4 m/s
at an altitude of 120 m and above, and the wind direction
was westerly (along X-axis). For temperature, the boundary
conditionswere setto+15°Catanaltitudeof 120 mand+16
°C on the surface of the earth and buildings, which ensured
neutral temperature stratification of the atmosphere
when vertical air mixing, unlike stable stratification, is
significant but not as active as with unstable stratification.
The lateral boundaries were set with periodic conditions
for atmospheric parameters, allowing the airflow to be
adapted to the geometry of urban development as if a
similar pattern of buildings surrounded the entire domain
area. The graphical representation of the experiment setup
is shown in Fig. 3.

Spherical solid particles with a diameter of 1 um
and a material density of 1000 kg/m?® were defined as
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Fig. 2. Elevation maps for randomized building configurations corresponding
to Local Climate Zones LCZ 4, LCZ 5,and LCZ 6
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aerosols, which correspond to the widely used aerosol
category PM2.5 (Zwozdziak et al. 2017). The particles we
are considering are relatively light and weakly affected by
inertia and gravitational subsidence. Heavier and larger
particles (PM10 and larger) are planned to be considered
in future studies. The source of particles in all experiments
was a volumetric source having a width of 8 meters (along
X) and a height of 4 meters (from 0 to 4 m along Z) and
elongated through the entire Y axis, that is, simulating
emissions from a long street perpendicular to the wind
direction. In configurations with regular geometry, the
source was located at coordinates from X=21.0 to X=29.0
meters from the western border of the domain; that is, it
was located in the first left canyon. In configurations with
randomly generated geometry, the source occupied the
south-north strip at coordinates from X=4.0 to X=12.0
meters, i.e, it was also located in the first left canyon.
Particles escaped domain on the western, eastern, and
upper borders of the computational domain, periodic
conditions were set on the southern and northern borders
(particles appear at the southern margin while crossing
the northern, and vice versa), and deposited on the earth’s
surface.

The dimensions of the computational domain
were 400 (X) m by 200 (Y) m by 161.29 (Z) m for regular
configurations and 400 (X) m by 400 (Y) m by 161.29 (Z) m
for randomized ones. The horizontal grid spacing along the
X andY axes was 2 m, the vertical resolution was 2 m inside
bottom 80-meter layer, and above it the cell size increased
by 4% with each grid step up to 5.12 m. In total, the vertical
domain extent was divided into 64 cells. The experiments
were carried out for a period of 12 hours, sufficient for the
flow to achieve a quasi-stationary equilibrium state and
gather statistics (mean and fluxes) in the last 4 hours of the
simulation. The time step of the LES model was fixed in all
cases and equal to 0.04 seconds.

RESULTS AND DISCUSSION

Regular configurations

Based on the results of numerical experiments,
the distribution of particle concentrations and the
characteristics of their propagation were analyzed. For
regular building configurations, Fig. 4 shows the average
concentrations at the ground level (0-4 m above surface),
demonstrating the removal of particles from the source
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Fig. 3. Schematic of the experiment setup

through the streets. In the plots of time-averaged near-
surface concentrations, plumes of higher concentrations
can be clearly traced along the streets through which the
particles are carried horizontally. The maximum average
concentrations are observed in LCZ 4 (a-c), which can
be explained by the highest height of buildings among
the selected LCZs and, as a result, the greatest resistance
to airflow, which negatively affects the street ventilation.
At the same time, there is no significant difference in
average concentrations and standard deviation (SD) of
concentrations between LCZ 5 (a-¢) and LCZ 6 (a-c), despite
the twofold difference in the height of buildings.

Significant differences are noticeable among the
various building configurations that belong to the same
LCZ (between (a), (b) and (c) configurations of each
same LCZ). For each of the LCZs, it can be seen that the
lowest concentrations were obtained in configuration
(@), elongated buildings perpendicular to the wind,
which is associated with the formation of vertical vortices
(Glazunov 2018) inside the canyons and the active removal
of particles into the layer above the buildings. At the same
time, configurations (b) show average concentrations that
are 10-15% higher, which is associated with a lower vertical
mixing effect and a more active removal of particles
along the streets at the same height near the surface. The
highest average concentrations and SD are observed in
configurations (c) — these are the variants with the highest
building density, which affects the weakening of vertical
mixing and a decrease in wind speed inside the urban
canopy.

Randomized configurations

For randomly generated configurations, the average
concentrations at the ground level (0-4 m in height)
are shown in Fig. 5. Due to the random nature of the
building patterns, there are much more significant
differences between LCZs and, as before, noticeable
differences between realizations of a single LCZ. The
most noticeable difference from the experiments with
regular configurations (Fig. 4) is that the highest average
concentrations were obtained for LCZ 6 with the lowest
building height, while the values for LCZ 4 and LCZ 5 are
similar. Such a drastic difference can be explained by the
fact that in the case of randomized geometry, the airflow
becomes more turbulent, and the role of vertical mixing
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Fig. 4. Simulated surface (altitude 0-4 m) particle concentrations for regular building configurations corresponding to
Local Climate Zones LCZ 4,LCZ 5,LCZ 6

and removal of particles into the air layer above buildings
increases. At the same time, in the case of LCZ 6, the urban
environment is lower and denser than in LCZ 4 and LCZ 5.
This, in turn, reduces the exchange between the air layers
inside it and above the buildings.

If we compare different configurations within the same
LCZ, then there is a very strong influence of geometry near
the source — concentrations at different points at the same
distance from the source may differ by an order of magnitude,
but at large enough distances, this is smoothed out due to the
random nature of the urban development.

From the above results, it can be concluded that
buildings parallel to the wind (regular configurations (b), Fig.
4) contribute to the horizontal removal of particles without
active vertical mixing, while perpendicular buildings (regular
configurations (a), Fig. 4) contribute to the vertical removal
of air into the layer above buildings. However, these effects
have been tested under conditions of neutral stratification. In
cities with frequent stable stratification, i.e, at high latitudes
and in winter (Varentsov et al. 2023), the removal of aerosols
requires the presence of well-ventilated streets and courtyards.
With frequent daytime unstable stratification, particle removal
will also be accelerated by wind-obstructing structures that
activate vertical mixing. However, from the point of view of
aerosol removal, randomized building configurations have
been proven to be the best, in which streets parallel to the
wind and buildings perpendicular to the wind are combined,
but low building density remains — in total, all this leads to
increased turbulence and active horizontal and vertical mixing.

Configurations intercomparison

To assess the LCZ classification relevance to pollution
dispersion in urban environments, we determined how
large the differences in concentration and particle transport
patterns are between variations in geometry within a single
LCZ type.

Fig. 6 shows vertical profiles of particle concentrations
averaged over the eastern half of the region (coordinates
[200:400 m, 0:400 m] on the X and Y axis respectively), that is,
over the part of the building as far away from the sources as
possible, where the concentration field is already significantly
mixed by buildings and less dependent on the position of
buildings compared to the latter located directly next to the
source. The general shape of the profiles is similar for most
configurations. The maximum concentrations are observed
at a height close to the average building height, since inside
the urban canopy, vertical mixing lifts particles up, but above
the roofs, it is not so active, and particles are carried away by
horizontal flows. At the same time, particles sediment on the
ground, so surface concentrations are not high at a distance
from the source. For some configurations, high concentrations
are observed not only at the roof level but also up to the
upper boundary of the domain. This effect can be caused
by the severe turbulence that occurs over tall and highly
heterogeneous urban development.

For regular geometries (Fig. 6a, 6¢, 6e), the profiles and the
spread between them are very similar — the standard deviation
of concentration ranges from 0.23 to 0.27 (in dimensionless
units relative to the maximum concentration among the
profiles), and the shape of the profiles for the same buildings'
configurations but for different LCZs is the same (with profiles
normalized by building heights), e.g., for (c) configurations
of all LCZs. For each of the LCZs, there is a large variation in
concentrations between different versions of its geometry,
which suggests that the LCZ cannot be approximated by any
single geometry configuration — it is necessary to consider
various options and take into account the influence of the
shape and orientation of buildings.

For randomized geometries, similar conclusions were
obtained for LCZ 4 and LCZ 5 (Fig. 6b, 6d) — the profiles for
different configurations of the same LCZ differ significantly
from each other. However, for LCZ 6 (Fig. 6f), extremely low
variability was obtained between the geometry variants — due
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Fig. 5. Simulated surface (altitude 0-4 m) particle concentrations for randomized building configurations corresponding
to Local Climate Zones LCZ 4,LCZ 5,LCZ 6
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Fig. 6. Vertical particle concentration profiles, averaged over the eastern half of the region, for regular (a, ¢, €) and
randomized (b, d, f) building configurations corresponding to Local Climate Zones LCZ 4 (a-b), LCZ 5 (c-d), LCZ 6 (e-f)

to the low height and small size of the buildings, unlike LCZ
6 regular configurations with longer and wider buildings, the
geometry of buildings is more homogeneous and does not
generate large disturbances in the wind flow.

Fig. 7 shows concentration profiles similar to Fig. 6,
but averaged over all configurations of the same LCZ. In
the case of regular geometries (Fig. 7a), the difference
between different LCZ types is minimal at the surface
and only significantly manifests itself at the roof level and
in the layer above the buildings. The maximum standard
deviation (0.2) turned out to be less than when comparing
different geometry configurations within a single LCZ
Thus, for regular building configurations, the shape and
orientation of buildings had a greater impact on the spread
of aerosols than the different LCZ parameters: the height of
the building and the aspect ratio of urban canyons.
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For the randomized configurations (Fig. 7b), on the
contrary, significant differences were found between the
profiles for different LCZs. The maximum standard deviation
values observed at heights of 15-20 m were approximately
1.5 times higher than the maximum standard deviation
values for various configurations within the same LCZ. The
average concentrations also vary significantly at the surface
level — for LCZ 6, they were almost 2.5 times higher than
for LCZ 4. The results for the randomized configurations
demonstrate that in the absence of an ideal periodic
structure of the city and the presence of heterogeneity
in the size, shape, and height of buildings, the spread of
aerosols in the urban environment is determined by the
general morphometric parameters of the area much more
strongly than the specific location of buildings and their
orientation.



A.l.Varentsov, E. V. Mortikov, A. V. Glazunov et al.

LARGE-EDDY SIMULATION OF AEROSOL TRANSPORT OVER ...

LCZ 4 - 6 regular, avg. SD = 0.11, max SD = 0.2

LCZ 4 — 6 random, avg. SD = 0.14, max SD = 0.32

100
! —— LCZ 4 average
94 | —— LCZ 5 average
\ —— LCZ 6 average
80 - : Standard deviation
1
70+—+
1
1
604 |
1
E 50
N N
‘(‘v
40
’%\\
30 A
20 A
10 A
00 01 02 03 04 05 06 07 08 09 10
Concentration (C / C_max)
(b)

Fig. 7. Vertical particle concentration profiles in the eastern half of the region averaged over
the implementations of each LCZ, for regular (a) and randomized (b) building configurations
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CONCLUSIONS

In this paper, the analysis and comparison of aerosol
particle dispersion within the city were carried out
depending on the following parameters. Firstly, depending
on the type of urban development based on the LCZ
classification. Secondly, depending on the specifics of
the geometry implementation for the selected LCZ type.
Thirdly, depending on the randomization and periodicity
of the geometry configuration. The results of numerical
calculations using a large-eddy simulation model with
a lLagrangian particle transport model allowed us to
draw conclusions for a finely dispersed urban aerosol
distribution under typical meteorological conditions:
neutral stratification and low wind.

When generating regular geometry with identical
buildings, the influence of the features of a particular
configuration (primarily, the shape and orientation of
buildings) turned out to be comparable, and in some
cases more significant, than the influence of large-
scale morphometric parameters of buildings, which are
determined by LCZ types and characterize qualitatively
different types of urban development. However, such LCZ
implementations are highly idealized and have very few
analogues in real cities, which motivates the creation of
configurations with a limited range of building parameters
and a random contribution to their location relative to
each other.

Using the developed LCZ generator, building
configurations were created taking into account the
random contribution to the parameters and location
of each building but corresponding to the large-scale
morphometric characteristics of the selected LCZ types.
Such configurations are more realistic, as they reflect
the quasi-random nature of real urban development at
the level of individual buildings but retain the typical
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scale of blocks and streets for most cities. Experiments
with these configurations showed a significant variation
in concentrations between specific implementations
of a single LCZ for high-rise and medium-rise buildings
(LCZ 4, LCZ 5) and a slight variation for low-rise buildings
(LCZ 6), while for all LCZs the scale of variation between
implementations was smaller than in the case of regular
configurations. The differences between LCZs in this
case turned out to be one and a half times greater than
the maximum scale of differences between individual
implementations of a single LCZ.

Thus, in urban areas, which are highly distinct from the
single, regular, periodic structures, it is possible to describe
the features of aerosol distribution by considering the
aggregated type of urban development - for example,
the LCZ type. This result opens up new prospects for the
development of global and regional models of atmospheric
dynamics and pollution dispersion by more accurately
accounting for the urban underlying surface and its effect
on the spread of aerosols.

Based on the results of this work, the following
recommendations can be proposed for developers and
urban planners. With low and medium building densities,
one of the ways to increase air mixing and remove polluting
aerosols from the surface level may be to increase the
height spread of buildings and make their location and
orientation more random, avoiding the construction of
identical regular structures.

Further research on this topic is required to analyze the
differences more accurately between all existing types of
LCZ and to take into account a larger number of factors:
atmospheric stratification, wind speed, aerosol size and
composition, interaction of different LCZ types on the city
scale, etc. Also, in further research, it is worth considering in
more detail the influence of model parameters, especially
spatial resolution. M
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ABSTRACT. Various anthropogenic impacts alter the structure and functioning of natural components, and the process of
self-recovery in a damaged environment is more relevant than ever. Water quality worsens due to pollution with organic
and inorganic chemical substances, and understanding the ability of aquatic streams to self-purify is a key challenge facing
the scientific community. This article, dedicated to the Osam River (Bulgaria), provides knowledge on how eight physico-
chemical elements change their concentrations from upper to lower reaches and to what extent the river manages to self-
purify of pollutants. The paper is based on information concerning the values of DO,, N-NH,, N-NO,, N-NO,, N-tot, P-PO,,
P-tot, and BOD,, recorded at four sampling sites from 2015 until 2021. Water quality is classified into one of three classes of
physico-chemical status (excellent, good, or moderate) following the guidelines in Regulation H-4/14.09.2012 for surface
water characterization. The self-purification coefficient of Tumas (a) is computed to determine the extent to which the river is
able torid itself of pollutants. The results indicate that water quality changes from upstream to downstream due to the inflow
of untreated wastewater discharged from various sources and the ongoing self-purification processes. In the upper section,
the river fails to get rid of phosphate pollution caused by households and industry, while in the lower sector, nitrate loading
from agriculture is most disturbing. The current research focuses on the ability of rivers to restore their natural conditions
under various anthropogenic impacts and points to the need for more effective control of unregulated discharges.

KEYWORDS: self-purification ability, physico-chemical status, anthropogenic impact

CITATION: Seymenov K. K., Gartsiyanova K. M., Kitev A. V., Kolcheva K. P. (2025). Self-Purification Capacity And Physico-Chemical
Assessment On A River Basin Pressured By Anthropogenic Influences: Example Of The Osam River, Bulgaria. Geography,
Environment, Sustainability, 3 (18), 80-87

https://doi.org/10.24057/2071-9388-2025-3964

ACKNOWLEDGEMENTS: The authors are grateful to the Executive Environment Agency for the data provided.

Conflict of interests: The authors reported no potential conflict of interests.

INTRODUCTION According to the ecosystem approach, applied
in the hydro-ecological practice, watercourses under

Wateris one of the components of the environmentthat ~ certain conditions are able to restore their initial quality

is most strongly and complexly subjected to a multivariate ~ based on the ongoing biological, physical, chemical, and
anthropogenicimpact. The disruption of the normal aquatic ~ hydrodynamic processes. There are different definitions
ecosystem functioning is a consequence of water pollution,  regarding the river water’s self-purification. For example,
primarily resulting from anthropogenic pressures (Hishe et it can be expressed as a partial or a complete restoration
al. 2020; Sakke et al. 2023). The prolonged and continuous  of the original state of water masses through natural
discharge of polluting substances is associated with a processes (Benoit 1971). Another definition of self-
decrease in the water’s self-purification ability, causing a  purification states that it involves reduction in the content
hydro-ecological imbalance (Midyurova et al. 2021). The  of pollutants entering in the water after a certain period
main sources of water loading with substances of various or distance from the point of entry (Ignatova 1992) or
origins and compositions include agriculture, industry,  that the aquatic environment responds to the entry of
the communal-household sector, transport, tourism, the pollutants through a number of mechanisms aimed at
character of land use, etc. (Zhang M et al. 2022), and rarely,  restoring its original state (Vismara 1992). The process of
some natural processes, such as erosion (Chalov et al. 2024).  self-purification consists of various complex phenomena,
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involving numerous physical, chemical, and biological
factors, acting and interacting more or less effectively. The
scientific expression of the ability of river streams to self-
purify (Bukaveckas 2007; Alexander et al. 2009), as well as
the quantification of the water’s self-purification capacity
today is a relevant and complex research issue (Zhang X et
al. 2022).

The review of the scientific publications addressing
the problem of the rivers’ self-restoration indicates
the application of various methods, approaches, and
techniques in determining their self-purification capacity.
Vagnetti et al. (2003) found a significant reduction in
the content of pollutants in water samples taken at the
beginning and end of the Sile River in the Veneto Region,
ltaly, through statistical processing of existing data. The
researchers draw conclusions about which elements show
a significant reduction in values and formulate possible
interpretations. Fisenko (2006) presents a model of a
process for self-purifying river streams along the Mimico
Creek in the Ontario Province, Canada, through a natural
foam formation. To determine the self-purification capacity
of river flows, Mala and Maly (2009) focus on assessing
the toxic effect of heavy metals on biochemical oxygen
demand (BOD,) in surface waters of the Svratka River in
the Brno District, Czech Republic. Self-purification of rivers
occurs at a certain distance from the point where polluting
substances enter and involves several processes (dilution,
sedimentation, reaeration, adsorption, absorption, and
both chemical and biological reactions). This complex
mechanism of cleaning polluted water can be evaluated
through various mathematical models. Menezes et al.
(2015) and Salih et al. (2021), dealing with river basins at
different spatial scales in Brazil and Irag, use models that
focus on the content of dissolved oxygen (DO,), which is
one of the crucial indicators for aquatic ecosystems and
the water’s self-purification processes. Hishe et al. (2020),
applying the Streteer-Phelps model, assess the impact of
point source pollutants from industry on the water’s self-
purification ability along the Abay River, Ethiopia. Zhang
X et al. (2022), using the SWAT model, estimate the effect
of non-point source pollutants on water’s self-purification
of the Yiluo River, China. Medupe and Letshwenyo (2025)
leverage advanced predictive models and algorithms to
offer real-time insights and future projections regarding
self-purification for a tributary of the Limpopo River,
Botswana. Gurjar and Tare (2019) and Xu et al. (2019),
working with Bayesian Networks, evaluate the influence
of land use and sewage outfalls on water’s self-purification
capabilities for tributaries of the Ganges River (India) and
the Yangtze River (China), respectively. The surface water’s
self-purification by determining the distribution of nitrate
(NO,) and phosphate (PO,) concentrations for natural and
regulated stretches along the Nemunas River, Lithuania has
been studied by Saulys et al. (2020). The method proposed
by the authors for comparing the amount of pollutants
entering and leaving a certain section is, in practice, the
most objective way to assess the self-purification capacity
along the course of a given river.

Likeanumberofriversystemsinthe Republicof Bulgaria,
the catchment area of the Osam River is characterized
by diverse natural conditions and the development of
different socio-economic activities (agricultural, industrial,
communal-household, etc.) (Gartsiyanova et al. 2023). The
paststudies (Gartsiyanova 2015; Gartsiyanova and Varbanov
2015) on the water quality of this river reported continuous
pollution with chemical substances of various origins and
compositions whose concentrations are changing from
upstream to downstream (Seymenov 2022). This, in turn,
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implies variable self-purification ability along the river’s
course.

The present article builds on previous studies dealing
with the water quality of the Osam River and is the first
to focus on its capacity to dilute the entering pollutants.
This paper aims to evaluate the Osam River’s water self-
purification ability by analyzing selected physico-chemical
elements in three sections along its course for the period
2015-2021.

MATERIALS AND METHODS
Study area

The Osam River is the second longest tributary of the
Danube River in the Republic of Bulgaria, with a total length
of 314 km and a catchment area of 2824 km? (Hristova
2012) (see Fig. 1).

The main river is formed from the tributaries Beli
Osam River (a left branch) and Cherni Osam River (a right
branch), merging at the northern outskirts of the town of
Troyan. The longer of them, the Cherni Osam River, has a
total length of 36 km and takes its source on the western
foothills of the Levski Peak (2166 m a.s.l), Central Balkan
Mountains (Hristova 2012). In this part, the river runs north
in a deep, narrow valley. Later, the river enters the Central
Fore-Balkans, where between the towns of Lovech and
Levski flows northeastern in a canyon-like valley through
a karst terrain. Downstream after the town of Levski, the
river crosses the Central Danube Plain in a northwesterly
direction and forms an asymmetrical valley with flat left
and steeper right slopes. The riverbed widens and, due
to the low gradient, meanders in all directions. The Osam
River empties into the Danube River not far from the village
of Cherkovitsa at 22 m as.l. (Hristova 2012). The Osam
River receives mostly short left- and right-bank tributaries,
forming a narrow-shaped drainage basin with an expanded
middle part (see Fig. 1).

The region is characterized by temperate-continental
climatic conditions with a transition to mountainous with
increasing altitude. The mean annual air temperature
ranges from 9.0°Cto 11.5°C.Winter temperatures are around
-2.5°C, but decrease to -5.0°C toward the river's source,
while summer temperatures reach 23°C. The annual sum
of precipitation varies from 550-600 mm to 1000-1200
mm. The rainiest month is May or June, while the driest is
February (Velev 2010). The Osam River has a mixed-type
feed of snow, rain, and karst water (Hristova 2012). Snow
and rain feed is prevalent in the Balkan Mountains, rain
in the Danube Plain, and karst water in the Fore-Balkans.
The average annual streamflow is increasing in a flowing
direction, varying from 3.42 m*/s (the Beli Osam River at
Troyan) up to 14.10 m3/s (the Osam River at Sanadinovo).
The runoff regime is marked by a high water level in spring
(April and May) and a low flow phase in late summer and
autumn (September and October) (Hristova 2012). The
water resources of the Osam River are utilized for irrigation,
household, and industrial needs. There are also several
small hydropower plants and balneological complexes.
In the Balkan Mountains, the drainage basin is covered
by deciduous forests, transitioning to low-stemmed
woods and bushes in the Fore-Balkans and arable lands in
the Danube Plain. The catchment area occupies parts of
Lovech and Pleven Districts and concentrates a total of 88
settlements.

The combination of steep slopes, persistent snow
cover, hydrothermal springs, and forest vegetation in the
mountainous section, on the one hand, and flat relief
with fertile soils in the plain sector, on the other hand,
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Fig. 1. Map of the Osam River Basin showing the location of settlements, water measuring points, and river stretches

is a prerequisite for the development of various socio-
economic activities that are potential sources of surface
water pollution (Gartsiyanova et al. 2023). The different
natural conditions and anthropogenic practices in the
upper and lower sections of the catchment area imply
variable self-purification capacity for the river.

Data and Methodology

Water samples were collected according to the
requirements of the Water Framework Directive 2000/60/
EC and their equivalent criteria, transposed into Regulation
H-4/14.09.2012 for surface water characterization. The
concentrations of eight physico-chemical elements:
dissolved oxygen (DO,), ammonium nitrogen (N-
NH,), nitrate nitrogen (N-NO,), nitrite nitrogen (N-NO,),
total nitrogen (N-tot), orthophosphates (P-PO,), total
phosphorus (P-tot), and biochemical oxygen demand
(BODS) were used. The time-series data consists of 28
measurements taken from 2015 until 2021, with sampling
four times per year or at least once per season. The output
information was collected and published by the Executive
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Environment Agency (EEA) and processed using standard
statistical procedures by the authors.

According to the mean annual values of each
variable, water quality is assigned to one of the three
classes of physico-chemical status following Regulation
H-4/14.09.2012 for surface water characterization (see
Table 1).

The observations were conducted at four water
sampling sites (see Table 2). The measuring points,
falling within surface water bodies of types R4 (Semi-
mountainous streams in a Pontic province) and R7 (Large
tributaries of the Danube River), were selected so that they
cover parts of the upstream, midstream, and downstream
of the examined river (see Fig. 1).

For an assessment of the self-purification ability, three
stretches along the investigated river were distinguished
(see Fig. 1, Table 3).

The water’s self-purification coefficient of Tumas
(2003), comparing the amount of pollutant entering and
leaving a certain river section, and being in practice the
most objective way to assess the self-restoration capacity
along the course of a river, was applied in this study. The
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Table 1. Status classification according to the physico-chemical elements as stated in Regulation H-4/14.09.2012 for
surface water characterization

Physico-chemical elements
Water body Stat
types tatus DO, N-NH, N-NO,, N-NO,, N-tot, P-PO, P-tot, BOD,,
mag/L™! mg/L™ mag/L™! mag/L™! mg/L™ mag/L™! mg/L™ mag/L™!
Excellent >8.0 <0.04 <05 <0.01 <0.5 <0.02 <0.025 <1.2
R4 Good 8.0-6.0 0.04-04 05-15 0.01-0.03 05-15 0.02-0.04 | 0.025-0.075 1.2-30
Moderate <6.0 >04 >1.5 >0.03 >1.5 >0.04 >0.075 >3.0
Excellent >7.0 <0.1 <0.7 <0.03 <0.7 <0.07 <0.15 <20
R7 Good 7.0-6.0 0.1-0.3 0.7-2.0 0.03-0.06 0.7-25 0.07-0.15 0.15-0.3 20-40
Moderate <6.0 >0.3 >2.0 >0.06 >2.5 >0.15 >0.3 >4.0
Table 2. Information about water measuring points
Location of the measuring point
Typie ogtge Numberbofdthe water Geographic coordinates
water body ody Description
X (°E) Y (°N)
R4 BG10OS700R1001 The Osam River after the town of Troyan 24.686 42957
R4 BG10OS700R1001 The Osam River after the town of Lovech 24.804 43.195
R7 BG10S700R1011 The Osam River after the town of Levski 25.163 43371
R7 BG10OS130R1015 The Osam River at the village of Cherkovitsa 24.848 43.674
Table 3. Information about river stretches
N Altitude (m) of the river stretch Slope (%o) of the | Length (km) of
At the beginning At the end river stretch the river stretch
The Osam River after Troyan — the Osam River after Lovech 380 200 350 52
The Osam River after Lovech — the Osam River after Levski 200 50 2.00 76
The Osam River after Levski — the Osam River at Cherkovitsa 50 30 0.16 122

coefficient was calculated for each of the eight physico-
chemical variables, using the Eq. 1:
a=m(c c; L (1)
o L

where: C, — a concentration (mg/L™") of a physico-
chemical element at the beginning of the river stretch;
CL - a concentration (mg/L™") of a physico-chemical
element at the end of the relevant stretch; L — length of
the river stretch (km); In — natural logarithm, and a - a self-
purification coefficient.

This coefficient is preferred due to its simplicity of
operation, sensitivity of parameters, and informative
results. So far, it has been applied by Saulys et al. (2020) to
compare the water’s self-purification capacity in terms of
NO, and PO, for natural and regulated river stretches along
the Nemunas River (Baltic Sea Basin, Lithuania). Montreuil
et al. (2010) used a modified version of this coefficient to
evaluate the impact of riparian wetlands on the values of
NO, along the course of the Scorff River (Atlantic Ocean
Basin, France). The authors concluded for which stretches
the reduction in the monitored concentrations was
significant and formulated possible interpretations. The
coefficient has not been used in the Republic of Bulgaria
until now.

A key point using this coefficient is the selection
of river stretches, their beginning, end, and length. It is

83

assumed that the length of the river stretch has a direct
impact on the results obtained. In general, rivers need a
certain distance to dilute pollutants, and selecting too
short segments can lead to worse results (Tumas 2003). If
conditions allow, the stretches should have approximately
equal length. The slope gradients, soil types, topography,
vegetation species and distribution, and anthropogenic
practices could also influence the value of the self-
purification coefficient (Tumas 2003). A higher value, for
example, could be impacted by the adjacent permanent
grasslands and forests. The dilution of polluted water with
surface flow and groundwater can also affect it (Saulys et al.
2020). On the other hand, a lower value typically indicates
an uncontrolled discharge of untreated wastewater from
industrial activities, which has a direct, often deleterious
effect on water quality (§au|ys et al. 2020). If obtained
ratings are less than zero, the stream fails to dilute the
entering pollutants. Negative scores indicate that excessive
amounts of chemical contaminants are disposed of in the
river, so it is incapable of treating itself (Montreuil et al.
2010).

RESULTS and DISCUSSION
Statistical processing of monitoring data demonstrates

spatial and temporal variations in the values of the physico-
chemical elements along the Osam River (see Tables 4-5).
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Table 4. verage multi-annual values of physico-chemical elements for 2015-2021 and status assessment according to
Regulation H-4/14.09.2012 for surface water characterization

Physico-chemical elements
Measuring points DO, | NNH, | NNO, | NNO, | Not, | PPO, | Pto, | BOD,
mag/L™! mag/L™! mag/L™! mag/L™! mg/L™! mag/L™! mag/L™! mag/L™!
The Osam River after Troyan 8.037 0.152 0.648 0.017 1.138 0.027 0.038 3.079
The Osam River after Lovech 8.150 0.146 0.970 0.015 1.524 0.088 0.105 3463
The Osam River after Levski 8512 0.223 2.258 0.042 3.110 0.054 0.069 4102
The Osam River at Cherkovitsa 7435 0.187 2.355 0.020 3.048 0.057 0.078 3.758

Note: Status of water: excellent (blue), good (green), and moderate (yellow)

The physico-chemical variables most often failing to
meet the requirement of Regulation H-4/14.09.2012 for
surface water bodies of type R4 are N-tot, P-PO,, P-tot,
and BOD, with average values falling within the numerical
ranges for “moderate” status. Due to the increase/decrease
in pollutant concentrations, as well as the more liberal
reference standards, the failed variables for surface water
bodies of type R7 include mostly N-NO, and N-tot (see
Tables 4-5)".

The analysis of the temporal variability of the physico-
chemical elements, as well as the review of past studies,
shows that the Osam River’s water fails to achieve “‘good”
status for the last three decades. Gartsiyanova (2015) and
Gartsiyanova and Varbanov (2015), exploring the water
quality status at the measuring point after Lovech during
the period 1990-2014, reported an elevated content of
N-NH, and N-NO, from 1990 to 1993, N-NO, between
1994 and 2007, and P-PO4 from 1998 to 2009. The cited
authors found continuous pollution with N-NH4 and
P-PO, between 1996 and 2005 at the measuring sites
after Levski and near Cherkovitsa, and stated that the
highest observed concentrations of these elements
exceeded from 10 to 25 times the reference norms for
“good” status pointed in Regulation H-4/14.09.2012 for
surface water characterization. The deteriorated water
quality for the reported periods was mainly influenced
by the unregulated discharge of untreated wastewater
from households, industrial enterprises, and agricultural
lands. The current results show another situation — the
mean annual values of the failed variables for 2015-2021
exceed no more than three times the reference standards.
This contradiction confirms the positive tendency in the
water quality status, already established by Gartsiyanova
(2015) and Seymenov (2022), and suggests that the Osam
River's water continues to improve its physico-chemical
conditions between 2015 and 2021. Recently, the study
area has been strongly affected by the negative natural
population growth, depopulation and emigration, the
closure of industrial factories, and the crisis in agriculture.
All of these adverse socio-economic processes contributed
to reducing of the anthropogenic impact on water quality.

The analysis of spatial variations of the physico-chemical
elements finds that the content of N-NO, and N-tot is
increasing in a flowing direction, while the concentrations
of the rest of the variables are increasing/decreasing from
one measuring point to another (see Tables 4-5). This result
partially confirms the study of Seymenov (2022), dealing
with the spatial distribution of biogenic substances along
the river.

As per the location of water measuring points, the
river's course could be divided into three stretches (see Fig.

1, Table 3). The first sector is marked by increasing content
of DO,, N-NO,, N-tot, P-tot, P-PO,, and BOD, and declining
values of N-NH, and N-NO,. The second stretch has rising
concentrations of all elements, excluding P-PO, and P-tot.
The third sector is characterized by growing content of
N-NO,, P-PO,, and P-tot and falling values of the rest of the
variables (see Table 4).

The changesinthe average concentrations, determined
at the beginning and the end of the river stretches, as
well as the computed self-purification coefficient values,
show that the Osam River’s water self-purifies better in the
downstream section (see Fig. 2, Table 6).

In the upper part between Troyan and Lovech, almost
all the time the river fails to dilute N-NO,, N-tot, P-PO,, and
P-tot (see Fig. 2, Table 6). Although the entire river stretch
is surrounded by permanent forests and natural grasslands
covering steep mountainous terrain, i.e., the bank erosion
is prevented, the flow rate is higher, and the detention of
pollutants is lower, concentrations of polluting substances
are gradually increasing. The untreated or partly treated
domestic and industrial effluents released from settlements
with incompletely developed sewage systems are the
main factors deteriorating upstream water quality. In the
mid-stretch between Lovech and Levski, the river manages
to self-purify regarding P-PO, and P-tot but worsens its
status as per N—NH4, N—Nog, N—NOZ, and N-tot (see Fig. 2,
Table 6). In this part, the river enters flat terrain with arable
lands, whereat it slows down its flow, which to some extent
explains the growing values of nitrogenous compounds.
In the lower unit between Levski and Cherkovitsa, the
river self-purifies in terms of almost all elements, especially
N-NH,, N-NO,, and BOD, (see Fig. 2, Table 6). Although the
entire river stretch is abundant in meanders, i.e., the flow
rate is lower and the detention of pollutants is higher, the
river restores its water quality. Moreover, the surrounding
farmlands release waste masses containing fertilizers
and pesticides, but despite this, pollutant concentrations
are decreasing. The higher rates of the self-purification
coefficient can be explained by the dilution of wastewater
with the surface flow and their connection with
groundwater. It should be mentioned the relatively greater
length of this stretch compared to the remaining two, but
nevertheless, the river water’s diluting ability is obvious.

The temporal analysis does not find a trend toward
a decrease or increase in the water’s self-purification
capacity throughout the period. The upstream stretch is
characterized by a worse ability to restore its condition in
2021, with the lowest coefficient ratings for three of the
eight elements, and a better capacity to self-purify in 2016
and 2020, with positive scores for half of the indicators.
Conversely, the mid-stretch achieved more negative results

'Such assessments were also reported in the second edition of the River Basin Management Plan (2016-2021), published by the Danube River
Basin Directorate. Available from: www.bd-dunav.org/ (last accessed: 16.08.2025).
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Table 5. Average annual values of physico-chemical elements and status assessment according to Regulation
H-4/14.09.2012 for surface water characterization

Physico-chemical elements

Measuring points vears DO, | N-NH, | N-NO, | N-NO, | N-ot, | PPO, | P-tot, BOD,,
mag/L™! mag/L™! mag/L™! mag/L™! mag/L™! mg/L™! mag/L™! mag/L™!

2015 9.800 0,088 0675 0012 1115 0.044 0,051 3475

2016 10.100 0.090 0.570 0.006 0.680 0.037 0.044 2.100

2017 7.066 0.086 0.381 0022 0.669 0016 0028 3,600

The Oﬁ:;yzifr after 2018 7.338 0.120 0.906 0012 1219 0022 0.030 2650
2019 6.500 0.226 0.546 0.025 1.607 0.032 0.041 2.766

2020 6.630 0.247 0.790 0.020 1308 0.021 0.046 4500

2021 10.750 0.227 0465 0015 1.000 0015 0.021 1.185

2015 10,675 0,070 0.907 0014 1.965 0,082 0.090 5.900

2016 7.200 0.060 0670 0012 0.750 0.031 0.040 3.200

2017 7433 0.087 0693 0.008 0.937 0.095 0.108 2,160

The Osfg;eRcmer after 2018 7527 0,097 1587 0010 1985 0073 0,092 2025
2019 6.333 0.246 0.733 0012 1830 0,092 0.105 3.100

2020 6.966 0.289 1206 0013 1.790 0012 0016 5430

2021 9.275 0.147 0.698 0.034 1215 0.095 0.106 1916

2015 10.800 0.195 2.300 0.051 3.970 0.049 0,061 4525

2016 11.500 0.070 1.800 0018 1.900 0,045 0,052 2.800

2017 6.300 0.220 2113 0.045 2.443 0.074 0.085 3.283

The Osagvmer after 2018 7425 0.136 2657 0.030 3.385 0,054 0.056 4510
2019 6.067 0402 1953 0.051 2696 0.057 0.088 3453

2020 7433 0.253 2270 0.047 3.073 0.044 0.069 4900

2021 7.900 0.120 1872 0.036 2430 0058 0077 2.320

2015 10,400 0075 2,600 0022 4150 0.050 0.066 3.530

2016 8.500 0.067 2.100 0015 2310 0.057 0.058 6.300

2017 5.525 0.159 2863 0016 2,900 0.058 0,070 3.600

Thec(a;flig VRl'tVS‘Zr at 2018 5.550 0.178 2443 0019 3292 0.069 0.100 2175
2019 6.530 0276 1.906 0018 2436 0.054 0.065 6.266

2020 7.700 0428 2460 0,024 3.130 0.084 0.104 5.020

2021 8475 0.113 1963 0023 2525 0.046 0073 2225

Note: Status of water: excellent (blue), good (green), and moderate (yellow)

in 2016 and positive ones in 2021. The downstream section
generally demonstrates a higher ability to self-purify over
the years (see Table 6). This variability confirms that river
water’s self-purification is a complex process involving
multiple factors acting simultaneously and interacting
more or less effectively.

CONCLUSIONS

The conducted research focused attention on a
relatively poorly studied issue related to the capacity of
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rivers to restore their natural conditions under various
anthropogenic pressures. The obtained results showed
continuous pollution along the selected river, but with a
general trend toward improvement in water quality. The
applied self-purification coefficient was an informative
and easy-to-use approach for assessing the ability of the
watercourse to get rid of contaminants. The calculated
ratings revealed that in the upper stretch the river is unable
to self-purify, while in the lower section the streamflow and
inflowing groundwater dilute the entering pollutants and
thus contribute to the decrease in their concentrations.
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Fig. 2. Self-purification coefficient ratings based on the average multi-annual values of physico-chemical
elements for 2015-2021
Table 6. Self-purification coefficient ratings based on the annual values of physico-chemical elements
Physico-chemical elements
River stretches Years
DO, N-NH, | NNO, | N-NO, N-tot P-PO, P-tot BOD,
2015 -0.002 0.003 -0.006 -0.003 -0.011 -0.012 -0.011 -0.010
2016 0.007 0.008 -0.003 -0.013 -0.002 0.003 0.002 -0.008
2017 -0.001 0.000 -0.012 0.019 -0.006 -0.034 -0.026 0.010
The Osam River after
Troyan — the Osam River 2018 0.000 0.004 -0.011 0.004 -0.009 -0.023 -0.022 0.005
after Lovech
2019 0.001 -0.002 -0.006 0.014 -0.002 -0.020 -0.018 -0.002
2020 -0.001 -0.003 -0.008 0.008 -0.006 0.011 0.020 -0.004
2021 0.003 0.008 -0.008 -0.016 -0.004 -0.035 -0.031 -0.009
2015 0.000 -0.013 -0.012 -0.017 -0.009 0.007 0.005 0.004
2016 -0.006 -0.002 -0.013 -0.005 -0.012 -0.005 -0.003 0.002
2017 0.002 -0.012 -0.015 -0.023 -0.013 0.003 0.003 -0.006
The Osam River after
Lovech - the Osam River 2018 0.000 -0.005 -0.007 -0.015 -0.007 0.004 0.007 -0.011
after Levski
2019 0.001 -0.007 -0.013 -0.019 -0.005 0.006 0.002 -0.001
2020 -0.005 0.002 -0.008 -0.017 -0.007 -0.018 -0.019 0.001
2021 0.002 0.003 -0.013 -0.001 -0.009 0.007 0.004 -0.003
2015 0.000 0.008 -0.001 0.007 0.000 0.000 -0.001 0.002
2016 0.002 0.000 -0.001 0.001 -0.001 -0.002 -0.001 -0.007
2017 0.001 0.003 -0.002 0.009 -0.001 0.002 0.002 -0.001
The Osam River after
Levski — the Osam River at 2018 0.002 -0.002 0.001 0.004 0.000 -0.001 -0.005 0.006
Cherkovitsa
2019 -0.001 0.003 0.000 0.009 0.001 0.000 0.002 -0.005
2020 0.002 -0.004 -0.001 0.006 0.000 -0.005 -0.003 0.000
2021 -0.001 0.000 0.000 0.004 0.000 0.002 0.000 0.000
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The study concludes that active actions are needed to
prevent pollutants from entering the riverbed and to improve
the self-purification capacity of surface water. The so-called
soft naturalization measures are proposed. These include
planting riparian protection zones along the riverbanks with
connection to the surrounding wetlands in floodplains,
maintaining well-aerated water by allowing woody vegetation
to grow on river slopes, forming natural barriers and obstacles
to water flow, etc. Stricter measures should be considered to
limit the inflow of untreated wastewater into the river from
agricultural, industrial, and residential sources.
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ABSTRACT. Mangrove forests provide critical ecosystem services, including coastal protection, habitat for biodiversity, and
carbon sequestration. Monitoring these ecosystems is essential for their conservation and sustainable management. This
study was conducted on Pramuka Island, Indonesia, focusing on high-density Rhizophora stylosa vegetation. Data was
collected using the DJI M300 RTK UAV equipped with the Zenmuse L1 LiDAR sensor, which generated a Canopy Height
Model (CHM) and identified treetops. Various kernel sizes (3x3, 5x5, 9x9, 11x11, 21x21) and Local Maximum Filter (LMF)
window sizes (0.5, 1, 3 meters) were applied to analyze mangrove tree density. The study found that the combination of a 3x3
kernel with a 0.5 meter window size yielded the best results, achieving the highest F-score and balancing precision and recall.
However, despite the optimized settings, LIDAR still struggled to detect individual trees in dense mangrove stands, resulting
in the underestimation of tree counts compared to field data. This highlights the challenges LiDAR faces in dense vegetation
environments. The study emphasizes the need for optimized kernel and window size configurations for more accurate tree
detection and calls for further development of LiDAR-based algorithms to improve detection in mangrove forests. Improved
methodologies will enhance the effectiveness of mangrove forest conservation and management efforts.

KEYWORDS: mangrove, UAV, individual tree detection, LiDAR, kernel, window size
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INTRODUCTION mitigating climate change, as they can store up to four
times more carbon per unit area than terrestrial forests.
Mangrove forests are vital coastal ecosystems that Monitoring mangrove forests is crucial for their

provide a wide range of ecological services. They play a  conservation and sustainable management. Traditional
crucial role in carbon sequestration, capturing CO, and methods of counting mangrove trees using ground surveys
storingitin theirbiomassand soil (Mumby et al. 2004; Himes- are labor-intensive, time-consuming, and expensive. These
Cornell 2018; Sharifi 2022). These unique ecosystems actas ~ methods often require significant human resources,
natural barriers against storm surges and coastal erosion,  making them less feasible for large-scale monitoring (Tran
safeqguarding coastal communities and infrastructure (Sahu et al. 2022). Moreover, the challenging muddy terrain
2015; Giri et al. 2015; Carugati et al. 2018; Giri 2021; Sharifi and dangerous wildlife in mangrove ecosystems pose
2022). Additionally, mangroves support many marine and significant risks to researchers, further complicating ground
terrestrial species, making them biodiversity hotspots  surveys (Rajpar and Zakaria 2014; Saini et al. 2020).

(Mumby et al. 2004; Sahu 2015; Giri 2021). The role of Remote sensing techniques have been widely
mangroves in carbon sequestration is particularly vital in ~ employed for mangrove monitoring, with satellite imagery
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playing a prominent role. Early studies applied terrestrial
vegetation indices to mangrove environments (Green et al.
1998), followed by advancementsin mangrove classification
(Lasalle et al, 2023), development of mangrove-specific
indices (Gupta et al. 2018; Diniz et al. 2019; Prayudha
et al. 2024), and carbon and biomass estimation from
satellite data (Suardana et al. 2023). However, satellite-
based methods face limitations in spatial resolution and
temporal frequency, constraining their ability to provide
detailed information at the scale of individual trees or
small clusters. To address these limitations, advancements
in remote sensing technologies such as unmanned aerial
vehicles (UAVs) have enabled the collection of high-
resolution imagery and data over targeted areas with
greater efficiency and reduced cost (Jones et al. 2020;
Tian et al. 2023; Yin et al. 2024). UAVs reduce the need for
extensive ground surveys, minimizing risks and logistical
challenges (Tamimi and Toth 2024), and provide access to
areas difficult to survey on foot.

Among UAV-based technologies, Light Detection and
Ranging (LIDAR) is particularly promising for mangrove
monitoring. LIDAR employs laser pulses to measure distances
between the sensor and objects on the Earth's surface,
providing accurate and detailed data on forest structure'. The
system calculates the time taken for the laser pulses to travel
to the object and back, using this information to determine
the distance with high precision. In mangrove forests, LiDAR
can capture detailed images of canopy height, density,
and tree distribution, which provide important information
regarding the forest’s health and composition (Wang et al.
2019;Yin and Wang 2019; Tian et al. 2023; Yin et al. 2024).

LIDAR technology has proven effective in various forest
monitoring applications. For instance, studies that specifically
utilize LIDAR for mangrove detection have been conducted
by various researchers to observe, both to estimate the
number of trees and tree height (Kasai et al. 2024; Yin et al.
2024) as well as to calculate mangrove biomass (Fatoyinbo
etal. 2018; Qiu et al. 2019; Wang et al. 2019; Wang et al. 2022;
Salum et al. 2020; Tian et al. 2021). However, the application of
this technology still faces challenges in terms of accuracy and
efficiency, particularly in areas with high vegetation density,
where under-detection of trees occurs (Yin and Wang 2019).

The Seribu Islands, particularly Pramuka Island, serve as
the focus of this study due to their characteristic mangrove
plantations. The area consists primarily of a single species,
Rhizophora stylosa, planted in clusters through community
reforestation efforts?. This clustered planting results in
high tree density, relatively short trees due to nutrient
competition, and limited electromagnetic wave penetration,
which  complicates data acquisition and individual
tree discrimination. These conditions provide a unique
opportunity to evaluate and optimize the effectiveness of
UAV-based LIiDAR for individual tree detection in mangrove
plantations.

Our research is expected to make a contribution to the
conservation and sustainable management of mangrove
forests by addressing the challenge of individual tree
detection in dense mangrove plantations using UAV LiDAR
data. Specifically, we investigate how the smoothing process

and detection window size can affect the accuracy of
individual tree detection in this challenging environment. By
optimizing these parameters, we seek to enhance detection
performance, providing more precise data on mangrove
forest structure to support sustainability and environmental
management.

MATERIALS AND METHODS
Study Area

The data was collected on Pramuka Island, a small island
in the Seribu Islands, Indonesia (Fig. 1). The observed area
covers approximately 0.6 ha (6,000 m?), delineated using
a rectangular boundary. It consists of a single mangrove
species, Rhizophora stylosa, resulting from community
planting efforts. The planting technique involved grouping
seedlings in clusters, leading to a high-density stand of trees?.
As a result, the trees are relatively short due to competition
for nutrients. The density of the mangroves also causes low
penetration of electromagnetic waves, resulting in limited
information availability for ground data. Furthermore, the
relatively homogeneous tree height across the plantation
makes it difficult to discriminate between individual canopies.
These circumstances are interesting to observe, as they
provide an opportunity to test the effectiveness of the LiDAR
sensor applied in the mangrove plantation community.

Data collection

Aerial imagery was acquired using the DJI M300 RTK
UAV equipped with the Zenmuse L1 LiDAR sensor. The
LIDAR sensor provides high-resolution point cloud data,
which is crucial for accurately mapping and analyzing forest
structures. The sensor is capable of a pulse repetition rate of
up to 240,000 pulses per second, enabling high-density data
recording. Additionally, the sensor integrates data with Global
Navigation Satellite System (GNSS) and Inertial Measurement
Unit (IMU) systems*, providing very high georeferencing
accuracy and resulting in highly detailed and accurate data.
Table 1 presents the aircraft specifications and sensor used for
the acquisition.

The data collection was conducted at 10:00 a.m. local
time under clear sky conditions (minimal cloud cover) with a
flying altitude of 80 meters. This acquisition process resulted
in a total of 339,316 points, providing sufficient detail to
capture the structural complexity of the mangrove canopy.
Details of the flight settings are provided in Table 2.

Ground truth data were collected through a 10m?transect,
encompassing measurements of tree density (including
trees, saplings, and seedlings), diameter at breast height
(DBH), average tree height, substrate type, and mangrove
species composition. GPS was used solely to mark the
transect location without recording the exact coordinates of
individual trees. This limitation hindered the direct validation
of LiDAR data. However, the ground truth data were utilized
to estimate tree density and average height as a reference
for evaluating the accuracy of individual tree detection (ITD)
from the Canopy Height Model (CHM).

'Codex Y. (2023). Predicting Species Distributions using High-Resolution Remote Sensing Data: A Comprehensive Review and
Assessment. Available at: https://codex.yubetsu.com/article/c004a755544b427a942af6ed2580f3f7 [Accessed 10 January 2025]
’Kementerian Lingkungan Hidup dan Kehutanan (KLHK) (2023). Penanaman mangrove dengan sistem rumpun berjarak di Kepulauan
Seribu. Available at: https://itjen.menlhk.go.id/berita/penanaman-mangrove-dengan-sistem-rumpun-berjarak-di-kepulauan-seribu

[Accessed 10 January 2025]

*Kementerian Lingkungan Hidup dan Kehutanan (KLHK) (2023). Penanaman mangrove dengan sistem rumpun berjarak di Kepulauan
Seribu. Available at: https://itien.menlhk.go.id/berita/penanaman-mangrove-dengan-sistem-rumpun-berjarak-di-kepulauan-seribu

[Accessed 10 January 2025].

‘DJI (2024). Zenmuse L1 specifications. Available at: https://enterprise.dji.com/zenmuse-11/specs [Accessed: 6 August 2024].



GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

2025

106°3658.212"

106°37°2.136”

-5°44'34.800”

-5°44'36.600”

1.0 : : . :
N
A

_|_

%

Panggan
island ’

Pramuka island

s

- Seribu Island
%

Fig. 1. The study site is located on Pramuka Island. The red box indicates the selected area for this study

Table 1. Aircraft and sensor specifications’

DJI M300 RTK (Aircraft)

DJI Zenmuse L1 (Camera)

RTK Positioning Accuracy
RTK enabled and fixed:
Tcm+ 1 ppm (horizontal)
1.5cm + 1 ppm (vertical)

Point Rate
Single return: 2,400,000 pts/s
Multiple returns: 480,000 pts/s

Hovering Accuracy (P-mode with GPS)
Vertical:

+0.1 m (Vision system enabled)
+0.5 m (GPS enabled)
+0.1 m (RTK enabled)

Horizontal:

+0.3 m (Vision system enabled)
+1.5 m (GPS enabled)
+0.1 m (RTK enabled)

System Accuracy
Horizontal: 10 cn @ 50 m
Vertical: 5cm @ 50 cm

Operating Frequency
24000 - 2.4835 GHz
5.725-5.850 GHz

Field of View (FOV)
Repetitive line scan: 70.4° x 4.5°
Non-repetitive line scan: 70.4° x 77.2°

Max Wind Resistance
12m/s

Scan Modes
Repetitive line scan mode
Non-repetitive petal scan mode

GNSS
GPS + GLONASS + BeiDou + Galileo

Maximum Return Supported: 3
Ranging Accuracy:3cm @ 100 m

Data pre-processing

Fig. 2 illustrates the entire process conducted in this
study. The captured LiDAR data was initially processed
using WebODM, an open-source photogrammetry and 3D
reconstruction tool, to generate the 3D point cloud data
(LAS file). Processing began with the lidR package (Roussel
and Auty 2024) in an R environment®.

The LAS file was first converted into a Digital Surface
Model (DSM) using the Point-to-Raster (P2R) tool. This step
involves transforming the LIDAR points into a 2D raster grid,
where each cell (with a pixel size of 0.1 meter) represents

the maximum elevation from the points within the cell. The
resulting DSM captures the elevation, both terrain and all
above-ground objects, such as vegetation and structures.

To generate a Digital Terrain Model (DTM) a more
detailed workflow was applied. The original point cloud
was then classified, separating bare earth from vegetation
and other non-ground features. The ground-classified
points were then interpolated using the Inverse Distance
Weighting (IDW) method. This interpolation imparts more
weight to nearby ground points, ensuring a smooth and
accurate terrain surface (Mohan et al. 2021).

°R Core Team (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Available at: https://www.R-project.org/. [Accessed: 10 August 2024]



M. R. Nandika, J. Renyaan, B. Prayudha et al.

HOW DRONES AND LIDAR HELP IN COUNTING MANGROVE TREES: ...

Table 2. General flight setting

Parameters Setting

Fly height 80m

Drone speed (while recording) 8m/s
Side overlap 50%

Following this, the CHM was produced by normalizing
DSM  with DTM, specifically by subtracting the DSM
with DTM (Pertille et al. 2024). This process removes the
ground elevation from the DSM, leaving only the height
of vegetation or other objects above the ground. Once
the basic data was prepared, the next step was to detect
individual trees.

Individual tree detection

Filtering treatment

In tree detection using CHM data, the process typically
involves an initial smoothing stage to reduce noise and
minor irrelevant variations in the canopy height data.
This reduction in noise results in more representative and
accurate peak detection. Smoothing also clarifies treetops
by diminishing minor variations, making the highest points
that represent the treetops more prominent and distinct.
Additionally, smoothing helps eliminate minor anomalies or
outliers that may not be part of the tree structure, ensuring
thatirrelevant data does not disrupt peak detection (Pertille
et al. 2024).

In this study, the Gaussian method was applied as a
filtering treatment. The application of Gaussian filtering
plays a crucial role in refining the CHM and improving the
accuracy of individual tree detection. In this study, we tested
a range of square-shaped kernel sizes, including unfiltered
CHM and 3x3, 5x5, 9x9, 11x11, and 21x21 kernel sizes.
These filters were used to smooth the CHM and remove
noise while retaining critical information for detecting
individual mangrove trees (Pertille et al. 2024).

Local maxima method and window size treatment

A relatively straightforward method for detecting
individual trees on the LiDAR-derived CHM is the Local Maxima
(LM) algorithm. The LM method assumes that local height
maxima in the CHM represent treetops (Korpela 2006). This
method is relatively simple and uses two main parameters:
a smoothing parameter, often referred to as the smoothing
window size (SWS), and a fixed window size (FWS) for tree
detection (Silva et al. 2016). As the FWS increases, the number
of detected trees decreases (Mohan et al. 2017). Applying
smoothing filters helps eliminate invalid local maxima caused
by significant, spreading tree branches, thereby reducing
the number of detected local maxima and improving the
algorithm's accuracy (Lindberg and Hollaus 2012).

In this study, we tested various combinations of CHM
smoothing kernel sizes and LMF window sizes to evaluate
their effect on individual tree detection performance. The
smoothing kernel sizes included unfiltered, 3x3, 5x5, 9x9,
11x11,and 21x21, each applied with LMF window sizes of 0.5
m, 1 m,and 3 m.

F-score calculation

To evaluate the accuracy of individual tree detection, this
study employed the F-score (F1) as a performance metric. The
F-score is the harmonic mean of precision and recall, which
balances the trade-off between detecting true positives (TP)
while minimizing false positives (FP) and false negatives (FN)
(Power 2011). This metric has also been widely adopted in
similar studies related to UAV-based tree detection (Mohan et
al. 2017; Ahmadi et al. 2022)

A
LngiE;unt ] c'::z':':zt;zz‘)f Digital Surface Height Canopy Height
{las/laz) vegetation points Model (DSM) normalization Model (CHM)
Digital Terrain
Model (DTM)
B
Fixed window size
(TWS) local o
Canopy Height Apply No maxima Telye 7e) lidati Accuracy
Model (CHM) smoothing T . 05x05m | treetqps . Assessment
detection
¢ Ixlm
Yes ¢ 3.3x3m

Gaussian filter

(SWs) Ground truth

« 3x3 data

* 5x5

¢ 9x9

« 11x11
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Fig. 2. Workflow of LiDAR data pre-processing and local-maxima-based individual tree detection (ITD) methodology. (A)
LiDAR data pre-processing steps include filtering, normalization, point classification, noise removal, and data fusion to
prepare the data for analysis. (B) Local-maxima-based individual tree detection involves the generation of the Canopy
Height Model (CHM), followed by the detection of local maxima to identify tree tops and subsequent clustering to
delineate individual trees
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Given that UAV-based tree detection can result in both
overestimation (FP > 0) and underestimation (FN < 0), this
metric provides a comprehensive measure of detection
effectiveness. The precision (P), recall (R), and F-score (F1)
were calculated using the following Egs. 1-3 (Power 2011):

o TP
Precision = —— (1)
TP + FP
TP
Recall = ——— )
TP+ FN

Precision X Recall

F1—score=2x 3)

Precision + Recall

True positives (TP) represent the number of trees
detected by the UAV that match the expected tree count
in the field. False negatives (FN) refer to trees that were
present in the field but were not detected by the UAV. On
the other hand, false positives (FP) indicate trees that were
counted by the UAV but do not correspond to trees in the
field. These definitions help evaluate the accuracy of the
UAV-based tree detection system by assessing how well the
detected trees align with the actual tree count in the field.
Since ground-truth data on tree positions were unavailable,
TP FP, and FN were estimated based on the total number of
trees recorded in the field rather than a tree-to-tree spatial
validation. This is a clear limitation of the study, as the lack
of spatial correspondence between UAV-detected trees
and field-observed trees prevents the accurate matching
of individual trees. As an alternative, TP, FP. and FN were
approximated using total tree counts per plot. A detection
was considered a true positive if it occurred within the
plot area and the total number of UAV-detected trees did
not exceed the field count. In underestimation cases (UAV
count < field count), all detected trees were assumed to be
true positives, and FP was set to zero. In contrast, if the UAV
count exceeded the field count, the surplus detections
were considered false positives. While this method does
not allow spatially explicit matching between detected and
actual trees, it does not replace precise spatial validation
and should be interpreted accordingly.

RESULT

The UAV-acquired imagery was precisely cropped at
the observation site to obtain more accurate and reliable
data. This cropping process was designed to exclude non-
target objects such as buildings, water bodies, or non-
mangrove vegetation. By eliminating these elements, the
precision of the CHM information was enhanced, resulting
in cleaner data with minimal external interference. This
process ensures that the analytical results have a high
level of accuracy and are relatively free from errors, thereby
improving the reliability of the data for this study. Fig. 3

shows the results of the 3D point cloud cropped specifically
for the selected area.

CHM Normalization

The DSM showed elevation values ranging from 25.6 to
34.10 meters, capturing both ground and above-ground
features such as vegetation and structures. In contrast,
the DTM exhibited a narrower elevation range of 25.6 to
26.853 meters, indicating minimal elevation difference
across the terrain. This relatively flat ground surface is
consistent with typical mangrove habitats. However, in
several areas, the DTM failed to fully represent the terrain
due to limited ground returns. These gaps are not visually
apparent in DTM figures but should be taken into account
when interpreting the CHM result. Despite the limitation,
the CHM was successfully generated by normalizing DSM
with DTM (Gomroki et al. 2017), producing a height range
from -0.24 to 7.59 meters. Fig. 4 illustrates the difference in
height patterns before and after normalization.

Effects of Kernel and Window Size on Tree Detection
Accuracy

The unfiltered CHM produced a noisy image with
numerous local maxima that did not correspond to actual
tree tops, primarily due to variations in the canopy structure,
such as large branches or small gaps. This excessive noise
compromised tree detection accuracy using the Local
Maxima (LM) algorithm (Lisiewicz et al. 2022). In contrast,
the 3x3 kernel applied a light smoothing filter, effectively
reducing noise while preserving important canopy details.
It eliminated minor irregularities and allowed for more
accurate tree detection, especially in dense and uniform
canopy structures. Visually, the CHM with a 3x3 kernel
would show a more controlled and smoother image, with
less color variation between areas, preserving the essential
tree structures while softening the noise (Fig. 5).

As the kernel size increased to 5x5, 9x9, 11x11,
21x21, the CHM became progressively smoother. The 5x5
kernel removed additional noise and minor fluctuations,
providing a balance between smoothing and preserving
canopy details. However, larger kernel sizes like 9x9,
11x11, and 21x21 introduced excessive smoothing,
which led to the merging of nearby treetops and a
significant underestimation of the number of detected
trees. The 21x21 kernel, in particular, overgeneralized the
canopy, removing critical details about individual trees
and rendering it unsuitable for dense mangrove forests
(Tanhuanpaa et al. 2019; Quan et al. 2021).

Various combinations of kernel sizes (unfiltered,
3%3, 5%5, 9x9, 11x11, 21x21) and Local Maximum Filter
(LMF) window sizes (0.5, 1, and 3 meters) were applied to
analyze mangrove tree density (Fig. 6). The results indicate
that smaller window sizes detect more trees due to their

Fig. 3. 3D RGB LiDAR data of mangrove in Pramuka Island
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sensitivity to local variations. However, these findings may
lead to overestimation in dense mangrove stands, where
the algorithm may misidentify non-tree objects as treetops
(Yan et al. 2024).

On the other hand, larger kernels and window sizes
smooth out local variations, producing more refined
estimates by reducing over-detection errors. While such
practices may reduce the risk of excessive detection
errors, using large kernels and window sizes can obscure
important local details and lead to underestimating the
number of trees (Balsi et al. 2018).

Given the limited field data obtained specifically from
Pramuka Island, we attempted to broaden the scope of
analysis byincorporating field data from several observation

3x3 Kernel

9x9 Kernel

."
| ‘s

Fig. 5. Gaussian filtering for different pixel kernel - in meter

11x11 Kernel

5x5 Kernel

21x21 Kernel

]

0.0
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points on other islands within the Seribu Islands (Table
3). This approach is feasible due to the homogeneity of
mangrove ecosystems across the Seribu Islands, where
most of the mangroves are cultivated, predominantly
consisting of Rhizophora mucronata and Rhizophora
stylosa, and planted using a clustered spacing system®. This
uniformity results in relatively similar structural patterns
across the mangrove areas in the region.

The detection results show that using a window size
of 0.5 meters, supported by kernels 3x3, 5x5, and 9x9,
provides more accurate detection of mangroves, aligning
with the average number of tree-phase mangroves found
in the Seribu Islands (Fig. 7). This smaller window size is
particularly effective in dense mangrove conditions, where

®Kementerian Lingkungan Hidup dan Kehutanan (KLHK) (2023). Penanaman mangrove dengan sistem rumpun berjarak di Kepulauan
Seribu. Available at: https://itien.menlhk.go.id/berita/penanaman-mangrove-dengan-sistem-rumpun-berjarak-di-kepulauan-seribu

[Accessed 10 January 2025].
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Fig. 6. Tree detection using the Local Maxima function with different window sizes for each kernel. In every kernel,
a window size of 1 meter provides more detailed and numerous tree point information compared to larger window sizes
(3 and 5 meters)

it can detect individual trees more accurately, especially
in high-density areas (Kim et al, 2020). In contrast, using
larger window sizes, such as 1 and 3 meters, tends to
result in underestimates, except for the 1-meter window
size combined with the 3x3 kernel, which aligns well
with field data. Larger window sizes often lead to over
smoothing, which hinders the detection of smaller or
hidden trees beneath larger canopies (Balsi et al., 2018).
Additionally, unfiltered data combined with a 0.5x0.5
meter window size leads to an overestimate, as unfiltered
data does not distinguish well between mangrove trees
and other objects, resulting in more trees being detected
than are actually present. Despite these configurations
yielding better results, all detection outcomes (except for

94

the unfiltered configuration with kernel 0.5x0.5) are still
underestimated compared to mangrove plots at specific
locations on Pramuka Island. This highlights that LiDAR
still struggles to distinguish individual mangrove trees
with homogeneous heights, as this condition creates a
bias where crowns overlap, making it difficult to clearly
define the boundaries between individual trees (Galvincio
& Popescu, 2016).

The analysis revealed that mangrove plots that
had reached the tree growth stage—where tree-stage
mangroves are the only ones detectable via drone imagery,
unlike saplings and seedlings, which are often obscured by
the tree canopy—contained between 19 and 63 individuals
per 100 m?. Additionally, the areas observed by drone
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Table 3. Field Data of 10 mangrove plot points in the Seribu Islands, including substrate type, trees, saplings, and
seedlings measurements

Plot Code Lat () Lon (%) Substrate Type | Trees (ind./plot) | Saplings (ind./plot) | Seedlings (ind./plot)
Panggang 1 -5.74243 106.6041 Sandy mud 57 56 0
Panggang 2 -5.74196 106.6039 Sandy mud 21 96 4

Kelapa 1 -5.64895 106.5671 Sandy mud 0 390 0

Kelapa 2 -5.6568 106.5639 Sandy mud 25 216 0

Kelapa-Harapan -5.65228 106.5743 Muddy sand 9 229 0

Harapan -5.65379 106.5808 Muddy sand 9 243 0

Pari -5.85288 106.6208 Sandy mud 43 4 10

Pramuka 1 -5.74391 106.6162 Sandy mud 63 65 2
Pramuka 2 -5.74527 106.615 Sandy mud 61 66 0
Pramuka 3 -5.74874 1066116 Sandy mud 6 209 0
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Fig. 7. Treetop Detection Density (ind./100m?) Across Different Kernel Sizes and Window Sizes Compared to Field Data
(Pramuka 1: 63 ind/100m?)

specifically consisted of tree-stage mangroves, as this is the
only stage where accurate observation and counting from
aerial imagery are feasible, given the limitations of drone
detection for saplings and seedlings (Hsu et al.,, 2020; Bakar
et al., 2024).

Conversely, plots containing mangroves at the seedling
stage exhibited much higher densities, with over 200
individuals per 100 m?. This is due to the clustered spacing
planting method’, which supports mangrove growth up to
the seedling stage.

Evaluation of F-score in UAV-based tree detection

This study applied various combinations of smoothing
kernel sizes and local maxima filtering (LMF) window sizes
to optimize individual tree detection from CHM (Table
4). The F-score was calculated for each combination
to determine which method vyielded the best balance
between minimizing false positives (FP) and maximizing
true positives (TP) while reducing false negatives (FN).

A higher F-score indicates that the method correctly
identifies trees and minimizes errors.

The highest F-score was achieved using the Kernel
3x3/WS 0.5 method (F1-score = 0.854), which provided
the best trade-off between precision and recall. This
method detected 47 of the 63 trees recorded in the field,
resulting in a relatively high recall (0.746). This combination
effectively minimized FN, making it the most balanced
approach in the study. In contrast, methods with larger
smoothing kernels and window sizes (e.g., Kernel 9x9/WS
3, Kernel 21x21/WS 3) had extremely low recall (0.031-
0.047), leading to F-scores below 0.1. These methods failed
to detect a significant portion of the trees due to excessive
smoothing, which merged adjacent treetops and resulted
in severe under detection.

DISCUSSION

This study aimed to detect and analyze individual
mangrove trees using LiDAR-derived Canopy Height

’Kementerian Lingkungan Hidup dan Kehutanan (KLHK) (2023). Penanaman mangrove dengan sistem rumpun berjarak di Kepulauan
Seribu. Available at: https://itjen.menlhk.go.id/berita/penanaman-mangrove-dengan-sistem-rumpun-berjarak-di-kepulauan-seribu

[Accessed 10 January 2025].
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Table 4. F1-score for all of the configuration

Method UAV Count TP FP FN Precision Recall F1-Score
Kernel 3x3/WS 0.5 47 47 0 16 1 0.746 0.8545
Unfiltered/WS 0.5 101 63 38 0 0.6238 1 0.7683
Kernel 5x5/WS 0.5 34 34 0 29 1 0.54 0.701
Kernel 9x9/WS 0.5 23 23 0 40 1 0.365 0.5349

Unfiltered/WS 1 21 21 0 42 1 0.333 0.5
Kernel 11x11/WS 0.5 19 19 0 44 1 0.302 04634
Kernel 3x3/WS 1 17 17 0 46 1 027 0.425
Kernel 5x5/WS 1 17 17 0 46 1 0.27 0.425
Kernel 9x9/WS 1 10 10 0 53 1 0.159 0.2739

Kernel 11x11/WS 1 7 7 0 56 1 0.111 0.2

Kernel 21x21/WS 0.5 7 7 0 56 1 0.111 0.2
Unfiltered/WS 3 3 3 0 60 1 0.048 0.0909
Kernel 3x3/WS 3 3 3 0 60 1 0.048 0.0909
Kernel 5x5/WS 3 3 3 0 60 1 0.048 0.0909
Kernel 9x9/WS 3 2 2 0 61 1 0.032 0.0615
Kernel 11x11/WS 3 2 2 0 61 1 0.032 0.0615
Kernel 21x21/WS 1 2 2 0 61 1 0.032 0.0615
Kernel 21x21/WS 3 1 1 0 62 1 0.016 0.0313

Model (CHM) in a dense mangrove forest. The challenge
of accurately extracting tree heights and positions
in such complex environments is well-known due to
structural variability and occlusions in the canopy. LIDAR
data processing, including Digital Terrain Model (DTM)
generation and smoothing of CHM data, plays a critical
role in minimizing errors and improving tree detection
accuracy.

One significant limitation encountered was the dense
mangrove canopy, which likely obstructed the LiDAR
sensor’s ability to penetrate through to the ground,
resulting in interpolation gaps and uneven terrain surfaces
(Wannasiri et al. 2013; Balsi et al. 2018; Yin & Wang 2019;
Li et al. 2023; Wijaya et al. 2023). This limited ground
return coverage can affect the accuracy and reliability of
the DTM, which in turn impacts the derived CHM and its
interpretation. Although these interpolation gaps are not
visually apparent in the DTM figures, they may lead to
underestimation or spatial inconsistency in canopy height
measurements. Future studies could consider integrating
additional ground-based surveys or complementary
remote sensing data to improve terrain representation in
dense mangrove environments.

The unfiltered CHM's noise was mainly caused by
structural variations in the canopy, such as large branches
or small gaps, leading to numerous false local maxima and
reduced tree detection accuracy with the Local Maxima
algorithm (Lisiewicz et al. 2022). Applying a 3x3 Gaussian
kernel offered light smoothing, which effectively reduced
noise while preserving essential canopy features, thus
improving detection in dense mangrove canopies.

Increasing kernel sizes progressively smoothed
the CHM but introduced trade-offs. The 5x5 kernel
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balanced noise reduction and detail preservation, while
larger kernels (9x9 and above) excessively smoothed
the canopy, causing merging of adjacent treetops and
underestimation of tree counts. The 21x21 kernel was
particularly overgeneralizing, losing vital individual tree
information and making it unsuitable for dense mangrove
forests. This excessive smoothing reduces color and height
variation, impairing the ability to distinguish individual
trees in complex environments (Tanhuanpaa et al. 2019,
Quan et al. 2021).

Choosing an appropriate kernel size is therefore critical
to optimize the balance between noise suppression and
canopy detail preservation in mangrove tree detection.
These findings indicate a significant trade-off in selecting
kernel and window sizes for optimal tree detection. Smaller
LMF window sizes, while sensitive to minor variations, may
not be appropriate in dense mangrove conditions, as
they increase the likelihood of detecting false positives.
Conversely, larger kernels and window sizes improve
robustness against noise but risk underestimating true tree
counts by merging individual tree signals and suppressing
fine-scale canopy variation. While the 3x3 kernel and
0.5-meter window size yielded the best results in this studly,
this outcome should be interpreted with caution. The
performance of these parameters is strongly influenced
by the CHM pixel resolution (10 cm) and the relatively
high density and structural uniformity of mangrove trees
in the Seribu Islands. Parameter effectiveness may vary in
different contexts, such as areas with lower tree density,
heterogeneous canopy structures, or different CHM
resolutions. Therefore, selecting kernel and window sizes
should be context-specific, reflecting both the spatial
resolution and vegetation characteristics of the study area.
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HOW DRONES AND LIDAR HELP IN COUNTING MANGROVE TREES: ...

Due to the lack of spatial ground-truth data containing
exact tree positions, the F-score calculation in this study
was based solely on the total number of detected trees
rather than a one-to-one comparison of detected and
actual trees. As a result, precision remained at 1.0 for all
methods except Unfiltered/WS 0.5 since false positives (FP)
were assumed to be zero in all underestimated cases. This
means that every detected tree was considered correct
despite the potential presence of undetected trees (false
negatives, FN). Consequently, although precision appears
perfect, recall remains significantly lower in most cases,
leading to low F-scores for many methods. This highlights
the limitations of relying solely on precision when
evaluating detection performance in an underestimation
scenario.

CONCLUSION

This study successfully demonstrated the potential of
UAV LiDAR technology in monitoring mangrove forests.
The optimum configuration, using a 3x3 kernel with a 0.5
meter window size, achieved the best balance between
detection accuracy and noise reduction. These findings
highlight that parameter tuning is critical to optimize
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ABSTRACT. Unique karst evolution in Siberia is attributed to climatic factors and the presence of permafrost. Climatic
fluctuations in Northern Eurasia had occurred during the Quaternary period and significantly influenced the processes
of permafrost aggradation and degradation, as well as the karst activity. Despite their wide popularity and impressive
manifestations, the karst landforms on the Prilenskoe Plateau still remain tenuously studied in terms of landform classification
and obtaining their morphometric characteristics. The article presents the results of field studies of karst terrain in the Sinyaya
River valley in Central Yakutia. Based on field observations and the analysis of the generated digital surface models, we have
determined the median relative heights of different types of karst ridges in the Sinyaya River valley: “incipient ridges”- 34 m,
“young ridges”- 42 m, “mature ridges”- 79 m and “old ridges”- 58 m. Most ridges that exceed 100 m are “mature and old”. The
highest ridges are located on the concave parts of river meanders and belong to the type of “mature ridges”. In addition, our
observations in the Sinyaya River valley have shown “old ridges”are the most common, accounting for over 58% of the overall
ridge length. “Mature ridges” make up approximately 25%, “young ridges” 13%, and “incipient” ridges only 4% of the total.
This distribution reflects the long history of topographic development in the valley and the significant influence of erosion
processes on these features. The most prominent forms of this landscape include karst ridges, which present as rock pillars
formed through physical and chemical weathering, with very active frost shattering, gravitational, and erosion processes.
Using field surveys conducted with unmanned aerial vehicles (UAVs) and subsequent processing in a geographic information
system (GIS), it was determined that the highest ridges are located in the lower reaches of the Sinyaya River, where it cuts
through the axial, most elevated part of the Prilenskoe Plateau. The morphometric characteristics of the identified types of
karst ridges and their spatial change along the river meanders are associated mainly with the activity of lateral river erosion,
which ensures the removal of weathering material and slope deposits.
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INTRODUCTION

Modern karst study is conducted in a wide range of
disciplines, including both the study of karst landform
entanglement with lithology and tectonics and a
set of environmental problems associated with karst
development, land and soil degradation, changes in
vegetation cover, and connections with water supply
(Gillieson et al. 2022; Zhang et al. 2022; Saroli et al. 2022).
Researchers use new methods to study karst topography,
such as unmanned aerial vehicle (UAV) surveys for
constructing digital elevation models and obtaining

detailed karst landform characteristics (Silva et al. 2017,
Doumit and Ghanem 2021; Kim and Hong 2024). The
studies are mainly devoted to the tropical and subtropical
karst or karst landforms in temperate climate. There is a lack
of modern publications on karst in permafrost.

Sinsky Pillars within the Prilenskoe Plateau were
inscribed on the List of UNESCO World Heritage' in 2016
as a part of National Park Lena Pillars. In the middle and
lower reaches of the Sinyaya River, various karst forms are
present, including high pillars (Fig. 1a). Karst ridges are
confined to both sides of the meandering river (Fig. 1b, c).
Sinsk Pillars are not directly related to the SDGs (Sustainable

"UNESCO World Heritage Convention (2012), https://whc.unesco.org/en/list/1299/documents/
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Development  Goals)?  themselves. However, their
significance as a UNESCO World Heritage Site, particularly
for their geological and paleontological value, indirectly
contributes to several SDGs, especially those related to
environmental sustainability and knowledge, Sinsk Pillars
connect to the SDGs. SDG 15 Life on Land serves as a prime
example of geological formations and ecosystems that
deserve protection and preservation. They showcase the
planet’s history and contribute to biodiversity conservation.
SDG 13 Climate Action. The study of the Sinsk Pillars can
offer new perspectives on past climate changes and the
long-term impacts of environmental processes, aiding in
understanding and mitigating current climate challenges.
SDG 4 Quality Education - National Park Lena Pillars offers
opportunities for educational and research initiatives,
raising awareness about the importance of natural
heritage and promoting scientific understanding. SDG 11
Sustainable Cities and Communities - National Park Lena
Pillars supports ecotourism and sustainable development
in local communities, providing economic opportunities
while preserving the environment. SDG 17 Partnerships
for the Goals - National Park Lena Pillars’ inclusion on
the UNESCO World Heritage List demonstrates the
international collaboration needed to safeguard natural
sites and promote sustainable practices (UN SDGs).

126°40'E

STUDY AREA

The distinctive characteristics of the Prilenskoe Plateau
karst are attributable to its formation under permafrost
conditions, with a thickness reaching up to 500 m (The
Foundation... 2011). According to S.S. Korzhuev (1961),
permafrost does not stop karst but only slows it down, and
water moves freely in strongly fractured limestones and
dolomites. In the middle reaches of the Lena River between
the mouth of the Vitim River and the town of Pokrovsk, S.S.
Korzhuev (1961) identified underground and surface forms
of karst: 1) sinkholes, saucers, and baths; 2) caves, niches,
canopies, and corridors; 3) disappearing streams and karst
springs; 4) karst lakes; 5) ditches of slope subsidence; 6)
spots of limestone scaling; 7) clay karst.

In Prilenskoe Plateau, the karst is developed in the
Lower Cambrian limestones and dolomites 400-500 m
thick (State geologic... 2022), covered by Quaternary
deposits in the valleys and on the interfluve area of the
Lena, Buotama, and Sinyaya Rivers (Fig. 2a, b). During the
Middle Pleistocene ~400 ka Prilenskoe Plateau has been
uplifted 150-300 m above the regional base level of
erosion (Tolstikhin and Spektor 2004; Lena Pillars... 2012).

The climate of the region is strongly continental; as
reported by the Pokrovsk meteorological station, there has
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Fig. 1. Study area. a - the area of karst landform field studies in the Sinyaya River valley in 2023 and key sites with UAV
surveys. ArcticDEM Mosaic (Porter, Claire et al., 2023) is used as elevation data, b - spatial distribution of ridges of
various types along the Sinyaya River valley (a red rectangle on a). The map is based on ESRI Basemap World Imagery;
c - areas of surface karst with ridge formation are confined to the areas of undercutting of the valley sides of the actively
meandering Sinyaya River valley

2UNTHE 17 GOALS, Sustainable Development, https://sdgs.un.org/goals
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section. 1 Early Jurassic Ukugut formation; 2-6 Early Cambrian formations: Keteme, Kutorgin, Sinsk, Perekhod, Pestrocvet;
7-9 Precambrian formations: Udoma, Amga, lengra; 10 Late Devonian diabase dykes; 11 Fault lines

been an increase in the average annual air temperature
from -9.4 to -7.5°C between 2006 and 2023. The long-
term average temperature of the coldest month, January,
is -38.1°C, while the warmest month, July, has an average
temperature of +19.2°C. The annual precipitation on
average is 268 mm, with more than half of this amount
falling during the warm season. The northern part of the
Prilenskoe Plateau is distinguished by the presence of
continuous permafrost, with a thickness of up to 400 m.
In this region, the mean annual ground temperature is
recorded to be -5°C. In contrast, the central part of the
Prilenskoe Plateau exhibits a discontinuous permafrost,
with a thickness ranging from 50 to 300 m. The mean
annual ground temperature in this area varies from -1 to
-4°C (Spektor et al. 2009).

For the Lena Pillars (and they are similar for Sinsky Pillars)
M. Veress obtained 4 phases of development (Veress et al.
2014). Phase 1 — process of karstification occurred during
a period of warmer climate conditions than are observed
today, a time before the development of permafrost.
Consequently, it was possible to form a karst water zone
within the rock formation. The karst water level was situated
close to the surface, with the karst surface exhibiting a
height that was only marginally higher than the base level
of erosion. The surface’s altitude was therefore low, and
the Lena had not yet undergone downcutting processes.
Consequently, the development of caverns occurred in
close proximity to the surface, with the formation of these

caverns being driven by the presence of fractures. The
process of karstification gave rise to a fracture-controlled
phreatic network, which in turn gave rise to the formation
of narrow, vertically developed corridor networks. These
networks were characterized by the development of grikes
on the surface, which were aligned perpendicular to the
fracture systems. This resulted in the rock being dissected
into clints, bordered by a grikes system. Phase 2 — the karst
water table sank due to the uplift of the area. The deepening
of the grikes resulted in the floors of some grikes reaching
the caverns. The coalescence of the caverns and grikes
occurred due to the caverns exceeding the water surface
during this period. Consequently, the formation of giant
grikes was initiated. The development of pinnacles from
one part of the clints occurred during the dissolution of
grike walls. Phase 3 — grikes were filled and buried. Phase
4 — the Lena River underwent a period of development,
resulting in the destruction of some grikes and clints due
to its downcutting activity. This process exposed the
feature assemblage, leading to the partial destruction of
the filling sediment in the remaining grikes. The walls of the
exposed grikes exhibited potential for widening through
frost weathering. The development of newer pinnacles was
observed, indicating a transformation in the rock features of
the pillars and the remaining karstic features. These features
underwent destruction or transformation due to frost
weathering, mass movements, sheet wash, and gully erosion.
This ongoing process is a contemporary phenomenon.
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The karst landforms in the Sinyaya River valley are
concentrated in the part where it crosses the Prilenskoe
Plateau. Various surface and underground Kkarst features
are prevalent along the Sinyaya River valley, including
funnels, ponors, karst lakes, karren, karst niches, canopies,
caves, sinkholes, and karst remnants (Trofimova 2012).
Morphological classification of karst landforms of Lena Pillars
was performed by E.V.Trofimova (2012,2013,2017,and 2018).
She identified 4 types of karst ridges, using a description
of their morphological features without numerical
characteristics, which could be collected only on the basis
of processing a significant number of sites. EV. Trofimova
noted that a comprehensive geomorphological survey and
mapping of morphometric characteristics of karst features
is still lacking (Trofimova 2012). In our research, we decided
to rely on the classification proposed by E.V. Trofimova, since
this is currently the most relevant classification developed
specifically for the study area. It should be noted that Veress
et al. (2014) conducted a morphological classification but for
individual karst landforms - rock pillars.

The objective of this research is to provide a
comprehensive description of the karst features found
in the Sinaya River Valley, which exhibit various stages
of development. The specific tasks include: 1) acquiring
quantitative morphometric data regarding karst ridges; 2)
validating the distinctions among the types identified by
EV. Trofimova based on this data; 3) identifying patterns
in the spatial distribution of the different ridge types; and
4) characterizing the array of processes that influence the
topography in karst regions.

MATERIALS AND METHODS

InJune 2023, field route observations were conducted on
the lower section of the Sinyaya River that passes through the
Prilenskoe Plateau. (Fig. 1a). During the rafting expedition on
the river, field descriptions and mapping of karst formations
were conducted, along with photo documentation with GPS
tracking and the capture of key sites using a UAV. The total
length of the route was 126 km. The field studies utilize the
approaches related to the stages of relief formation (Davis,
1899) and morphometric analysis of the relief (Simonov 1998;
Simonov 1999). A UAV survey was undertaken at 21 key sites
without ground control points. We captured high-resolution
images of karst features using the DJI Mavic 3 drone with a 20
mpx Hasselblad 4/3 CMOS camera. Vertical and perspective
shooting modes were used. UAV survey data were processed
using Agisoft PhotoScan software based on Structure-

Fig. 3. Categories of ridges on the Sinyaya River Valley: a -
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from-Motion (SfM) photogrammetry. This way, point-cloud
models, 3D and digital surface models (DSMs) were created
with a spatial resolution of 0.1-0.2 m for each key site. The
relative accuracy of the adjustment of the created point
clouds, as reported by Agisoft for all key sites, is as follows:
the root mean square (RMS) for reprojection errors ranges
from 0.1 to 0.13 m, while the maximum errors range from 0.3
to 0.4 m. These DSMs were used to analyzed morphometric
characteristics, such as the relative heights of ridges and rock
pillars. Measurements of relative heights of karst ridges and
rock pillars in our study were carried out with an accuracy of
1 m, ensured by the accuracy of the created point clouds and
DSMs. To extract the heights from DSMs, the standard ArcGIS
Pro Profile tool was used.

Through analysis of field data, including information from
UAV surveys, photographs, and field descriptions, as well as
very-high-resolution satellite imagery from the ESRI basemap
(World Imagery), areas of rock ridges along the Sinyaya River
Valley have been identified. Additionally, the segmentation
of karst features by age, morphometric, and morphological
characteristics has been carried out (Fig. 1). To characterize
the topography of the area along the Sinyaya River valley, we
used ArcticDEM Mosaic data with a spatial resolution of 2 m
(Porter, Claire, et al, 2023). Ridge heights for the non-drone
surveyed areas were measured using the Profile tool module
in QGIS software. Elevation differences from the top of the
ridge to the bottom of the slope were extracted from the
profiles. Statistical analyses were performed in R (Samsonov
2024). The tidyverse package was used to determine the
spatial distribution of ridges along the river. The ggplot2
package was used to construct the graphs.

RESULTS

Following the classification introduced by E.V. Trofimova
(2013), two distinct groups of karst features have been
identified: surface and underground features. Surface
features encompass positive forms like ridges, individual
rock remnants, and pinnacles, along with negative forms
such as cracks, corridors, and sinkholes. On the other hand,
underground features include canopies, niches, caves, and
tunnels. According to EV. Trofimova (2013, 2017), positive
landforms such as ridges can be classified based on their
age, morphometric, and morphological characteristics.
These categories include “incipient’, “young’, “mature’, and
‘old"ridges (Fig. 3). Table 1 (Appendix) provides photographs
that depict the distinct features and differences between
these identified ridge types.

-

incipient; b - young; c - mature; d - old
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The “incipient ridges” are linear morphostructural
elements that delineate the limestone cliffs. They are
minimally cut by denudation and present nearly continuous
cliffs with rare cracks. The altitude difference of “incipient
ridges” between the summit and their base can reach 52
m with the rock’s blocks from 15 to 28 m height. Primarily
situated along the Sinyaya River banks, these ridges are
located in places where the riverbed has arrived recently.
“Incipient ridges”are directly cut by the river erosion, often
resulting in the absence of a stable accumulative beach.

The “young ridges” are the next stage of the landform’s
transformation process due to denudation. These ridges
mainly look like subvertical cliffs that are divided into
blocks by cracks and erosion cuts. The height of” young
ridges” can reach 113 m above the water, and the height
of rock pillars can be up to 60 m. As well as “incipient’, the
“young ridges”are also located along the river bank.

“Mature ridges”mark the stage of significant separation
of the limestone massif by karst and other denudation
processes, which leads to the formation of a series of rock
remnants. “Mature ridges” represent the most impressive
positive karst landforms, including pronounced groups of
banshee-shaped pinnacle pillars of various morphologies
as needle-shaped, cylindrical, cone-shaped. They can
be either standing alone or merged in the base, forming
peculiar brushes or short ridges. Even within the same area,
pinnacles differ in both morphology and height. In the
studied areas, the relative heights of the pillars vary widely,
from 20 to 124 m (the maximum heights of the “mature
ridges”pillars are discovered within the key-site N 11).

For “old ridges’, a characteristic feature is the presence
of remnants or single pillars on the slopes, surrounded by a
debris cover.“Old ridges” can be found either at a distance
from the current position of the riverbed, such as on the
periphery of meanders, or in areas where lateral erosion
is not active now. Initially, “incipient ridges” are aligned
along the meandering riverbed. Due to karst, slope, and
erosion processes, these ridges divide into blocks that
form short transverse micro-ridges perpendicular to the
riverbed. Such a series of linear, elongated, halted ridges
without mutual orientation can often be found within “old
ridges” with an uphill gradient of up to 30-35°. Remnants
can be represented by low cones and pillars. The relative
height of pillars above the surface of the slopes, varies
mainly depending on the age of the ridges, ranging from
a few up to 92 m (the highest pillars of “old ridges” are
discovered within the key-site N 14). It should be noted
that local “rejuvenation” of ridges can occur in areas where
the riverbed, as a result of meandering, begins to erode the
base of an “old ridge”intensively, leading to the removal of
the debris cover and the formation of a subvertical cliff of
limestone at the base of the slope directly near the river.

In addition to the selected types of ridges, there are also
intermediate states. Often, within the same extensive ridge,
transitions between these selected types are observed,
as well as alternating fragments. Several intermediate
stages between “mature” and “old” ridges cover areas
with varying degrees of erosion of limestone massif, their
relative elevation above the surface of the slopes, and the
proportion of areas of rock remnants compared to the
debris covered slopes around them.

The median height for “mature ridges” is 79 m (the
maximum is 134 m), and for “old ridges”- 58 m and 125 m,
respectively. If for“mature ridges” these values characterize,
among other things, the height of steep cliffs and pillars
(which sometimes approach the full height of the ridge),
then for “old ridges”this is the difference in height from the
foot of the slopes (often covered with clastic material) to
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bedrock outcrops in the upper parts of the valley slopes.
The heights of rock pillars within the “old ridges” are much
lower and range from a few meters to a few tens of meters
(Appendix).

“Incipient”and "young ridges”are lower than the other
two types, which is reflected both in the maximum values
(86 mand 104 m) and in fairly similar median heights (34 m
and 42 m for“incipient”and “young ridges’, respectively).

The “incipient ridges” are mainly localized in the
middle part and the beginning of the second half of the
observed part of the Sinaya River valley (Appendix), which
corresponds to the most elevated part of the Prilenskoe
Plateau. In this part, the river is intensively meandering, and
along the bends, a long section of karst ridges is formed,
which, according to morphological and morphometric
characteristics, are segmented into several types.“Incipient
ridges” with steep, weakly dissected cliffs mark the areas
where the river channel has shifted relatively recently.

“Young ridges” are distributed along almost the
entire length of the study part of the valley, mainly in the
beginning and middle, the median value of appearance
is located in the first half. Karst ridges of this type are
beginning to appear in the upper part of the river. Closer
to the mouth of the Sinyaya River, this type of ridges
disappears; “mature” and “old ridges” prevail there. We
assume that such a change in the occurrence of ridges of
different types along the river is associated with a change
in the intensity of lateral erosion and the restructuring of
meanders due to the flattening of the longitudinal profile
of the river as it approaches the mouth.

DISCUSSION

The methods we applied to obtain data on the
morphometric characteristics of the landforms, using UAVs
and GIS analysis, enabled us to gather information about
both the height of karst ridges and rock pillars, as well as
the spatial distribution of landforms and the relationship
with a complex of relief-forming processes in the study
area. The use of optical and LIDAR survey data from UAVs
is widely used to study the topography, also in areas with
karst landforms (Silva et al 2017; Kim and Hong 2024). Our
study also fits into this context. Methods of morphometric
data extraction and landform classification based on DSM
are actively developing (Cao et al. 2023). A similar approach
and automation of algorithms for remote sensing data
processing and DSM analysis is a promising direction for
further research.

The study area topography is the result of the joint
development of relief-forming processes: 1) karst related
to dissolution of carbonate rocks, 2) physical weathering, 3)
fluvial processes, and 4) gravitational (slope) processes.

Karst activity is facilitated by fracturing limestones in the
area of supra-permafrost groundwater. Deeper penetration
of cracks contributes to the formation of vertical karst
features because water dissolves minerals along the cracks
and warms the permafrost. The cryogenic factor of physical
weathering is most clearly manifested during cycles of
systematic freezing and thawing. There are two main
mechanisms of cryogenic weathering (Konishchev 1981)
here: 1) frost weathering, when ice freezing in cracks splits
frozen rocks into coarse fragments - blocks, rubble, debris; 2)
cryohydration weathering, when the disjoining pressure of
capillary water in microcracks when changing the phase state
of water crushes and grinds the clastic material into small
fractions of silty and fine sand grain sizes. Rock fragments
disintegrated by physical weathering are thus prepared for
further movement by other relief-forming processes.
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Clastic rocks are moved on slopes under the influence of
gravity in various forms and are transported by the action of
flowing water in streams and rivers. Within the fragments of
“old ridges’, the slopes surrounding isolated rocky outcrops
are covered with a stone coarse clastic cover. Various types
of mass movements are observed. These debris fields creep
like kurum stones due to the accumulation and melting
of ice under the active layer. In sites where coarse clastic
material is presented with finely dispersed loamy filler, in
the case of local excessive water saturation, some types of
landslides occur in the forms of translational landslides or
debris avalanches (Fig. 4).

Amongthefluvial processes determining morphological
features of the karst landforms of the Sinyaya River valley, it
is necessary to highlight the lateral erosion leading to the
undercutting of carbonate rock outcrops on the concave
parts of modern river meanders (Fig. 1¢).

In some sites there is no beach, and a vertical rock cliff
goes below the river's water level. In these cases, dissolution
of limestone complements the activity of lateral erosion
(Fig. 5). On the apex of the river meanders, significant karst
landforms with rock pillars are located (Appendix, Table 1).

On the periphery of modern river meanders, along
the sides of the valley with adjoining floodplain terraces,

the absence of lateral erosion activity in the river leads to
a decrease in the dissection of the terrain. More “mature’
ridges are located here, the modern development of which
isdominated by the role of karst proper, physical weathering
of rock, gravitational processes which determine the
movement of clastic material on slopes.

In spatial terms, ridges alternate on the left and right
sides of the valley without a clearly expressed prevalence.
The extent of ridge fragments is determined by the
dimensions, primarily the radius, of the river meanders
along which they are located. In the transverse profile of
the Prilenskoe Plateau, the absolute elevations increase
in the middle part, slightly closer to the Lena River valley.
This pattern is also manifested in the relative heights of
karst ridges. Within the study area, the highest karst ridge
height, exceeding 100 m, are located in the second half of
the Sinyaya River valley, closest to the mouth (Fig. 6a). Such
significant heights are most typical for “mature”and some
“old ridges” (Fig. 6b, c).

Within the studied area of the Sinyaya River valley, “old”
ridges predominate, their length is 52.2 km, which is more
than 58% of the total length of the studied ridges. The
length of “mature” ridges is 21.9 km, which is about 25%
of the length of all ridges; “young”ridges is 11.6 km (13%),

4

Fig. 4. Landslide (debris avalanche) of coarse clastic material in the section of the «old» ridge. The yellow line indicates

Fig. 5. Lateral river erosion expressed as niches on the base of limes

5

tone wall (at the «young ridge” site)
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“incipient”ridges is 3.7 km (4%). Such distribution indicates
a long history of the valley topography formation and a
significant impact of denudation processes on the ridges.

There is a unity in the morphology of karst landforms
and ridge types with the nearby Lena Pillars, which are
included in one generalized region of karst development
within permafrost (Spektor and Spektor 2009; Veress et
al. 2014). The Lena Pillars region is also characterized by a
significant diversity of karst landforms, and E.V. Trofimova
(2013) identified ridge types similar to the Sinsky ones.
The height of ridges, including rock remnants with vertical
walls, reaches 200 m (Trofimova 2013), within which
pinnacles up to 100 m high are located (Veress et al. 2014).
Such karst landforms are quite rare for temperate latitudes.
Alone-standing limestone towers (pillars or pinnacles)
are most typical of tropical karst. In Guangxi Province,
China, the Guilin karst is characterized by standing alone
steep pillar towers up to 100 m high (Tang and Day 2000;
Waltham 2008). These rock pillars are rising from an alluvial
plain between Yangshuo and Fuli. On the Siberian platform,
ancient buried karst is widespread; however, it lacks the
striking positive landforms found in the Lena and Sinsky
Pillars. On the Patom Plateau, the Proterozoic limestones
are dominated by sinkholes, partly transformed into lakes.
In the Aldan-Timpton interfluve and in the neighboring
regions of southern Yakutia, where karst is developed in
the carbonate rocks of the Cambrian, landforms of modern
karst are widespread as sinkholes, depressions, funnels,
and other negative landforms (Korzhuev 1961; Tolstikhin
and Spektor 2004; Spektor and Spektor 2009; Veress et al.
2014; Trofimova 2018; Vaks et al. 2020).

CONCLUSIONS
The karst landforms in the Sinyaya River valley are

the result of karst, river erosion, and slope processes
paragenesis. These processes interact in a complex way to
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create a diverse range of landforms and to set their spatial
distribution. Each process has varying degrees of influence
on the formation of the terrain characteristics, leading to a
unigque landscape.

As a result of field observations and analysis of the
created DSMs, morphometric characteristics of the
previously identified types of karst ridges of the Sinyaya
River valley were obtained: 1) “incipient ridges” with a
median height of 34 m; 2) “young ridges” with a median
height of 34 m, 3) "mature ridges” with a median height
of 79 m; and 4) "old ridges” with a median height of 58 m.
Most of the ridges with a height exceeding 100 m are of
“mature” type. In spatial terms, the greatest heights of the
ridges are observed where the valley cuts through the
most elevated part of the Prilenskoe Plateau. Here, the
highest single standing pinnacle pillars reaching 124 m are
observed, located within the “mature ridges” (Appendix).

In the Sinyaya River valley “old” ridges are the most
prevalent over 58% of the overall length of the examined
ridges. “Mature” ridges represented approximately 25% of
the total ridge length; “young”ridges 13%; while “incipient”
ridges were 4%. This distribution reflects the extensive
history of topographic development in the valley and
highlights the significant influence of denudation
processes on the ridges.

Within the river meander, a consistent change in the
types of ridges is observed. “Incipient ridges” are located
where the river channel came relatively recently. “Young”
and“mature ridges”are located at the concave eroded river
banks. “Old ridges” are usually located on the periphery
of meanders where the river channel has gone or lateral
erosion is not active.

The obtained data could be used in further studies on
the stages of karst landform development in permafrost, as
well as in regional studies on the terrain dynamics within
the Prilenskoe Plateau, providing detailed morphometric
characteristics of karst landforms. [l
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ABSTRACT. The article presents the results of digitizing the maps of submarine permafrost on the shelf of the Arctic seas
of Russia. Submarine permafrost mapping relies heavily on expert knowledge because there is a lack of data regarding the
structure and thickness of permafrost. Maps compiled by different authors vary significantly due to the use of different
approaches, paleogeographic scenarios, ideas about the geological structure, evolution of shelf permafrost, sea level and
climatic changes. The first maps were based on the analysis of shelf morphology and seawater temperature; they represent
only the assumed boundaries of the submarine permafrost distribution. Later, the distribution of submarine permafrost was
associated with neotectonic movements on the modern shelf. As the first drilling and seismoacoustic data were received,
more detailed maps were compiled, and the discontinuous distribution of submarine permafrost was substantiated, especially
in the Western Arctic. By now, a large amount of seismoacoustic and drilling data has been accumulated, which has made
it possible to create new maps based on these data. In recent decades, methods of mathematical modeling the formation
and evolution of submarine permafrost have been rapidly developed. Calculated maps of the distribution and depth of
submarine permafrost top in the Russian Arctic have been compiled. For the first time, it has become possible to predict the
rate of degradation of submarine permafrost under climate warming.
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INTRODUCTION 2024, only 17 boreholes had been drilled in the Barents
and Kara Seas, which have exposed SMP. Drilling on the
The study of submarine permafrost (SMP) is of interest East Siberian Shelf commenced in 1953 (Grigoriev 1966)
in connection with the discovery of promising oil and gas  and has continued to the present day. Moreover, most of
fields onthe shelf of the Russian Arcticand the development  the boreholes are located in shallow coastal areas. At the
of the Northern Sea Route. Another important problem  same time, geophysical methods for studying SMP are
associated with SMP is the assessment of the role of  increasingly advancing; among these, high-resolution
permafrost in the formation of methane flows on the shelf  seismic methods hold the greatest promise (Rekant and
of the Arctic seas (Bogoyavlensky et al. 2023a,b; Koshurnikov Vasiliev 2011; Kulikov et al. 2014; Overduin et al. 2015).
et al. 2020; Shakhova et al. 2015) and the overall impact of Seismoacoustic profiling has become an almost mandatory
climate change on the Arctic environment. task during marine expeditions. By now, a substantial
Permafrost is formed when the shelf drains up during ~ number of seismoacoustic profiles have been completed
sea regression. During sea transgression, permafrost  in the Arctic seas. Methods of electrical exploration for
transitions to a subaqueous state, and its degradation  the study of SMP are successfully developed by AV.
occurs. New permafrost formation also occurs within Koshurnikov (2023).

currently developing marine accumulative forms (Grigoriev As our understanding of SMP evolves, attempts
1987). have been made to map its distribution, properties, and

The distribution and evolution of SMP in the Arctic thickness. Due to limited data, most of the maps are
have been the subject of many publications (Antipina etal.  based on expert assessments and reflect the authors’

1979; Zhigarev 1997; Kassens et al. 2000; Chen et al. 2022; perspectives on the potential distribution and conditions
Romanovskii et al. 1997; Romanovskii et al. 1999; Rokos et of the occurrence of SMP. Currently, there are several
al. 2023 and many others). maps illustrating the potential distribution of subaqueous

Direct observations of the space distribution, thickness, permafrost on the shelf based on the analysis of bottom
state, and thermal regime of SMP are extremely limited. By temperature, bathymetry, and sea level rise data. Until
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recently, all these maps were available only in paper form.
Some of these maps are currently unavailable for use, as
they were only included in scientific and technical reports.

Recently, digital SMP maps compiled based on
mathematical modeling of SMP formation and evolution
have become increasingly widespread (Malakhova 2019;
Smirnov et al. 2024; Nicolsky et al. 2012; Gavrilov et al.
2020; Malakhova and Eliseev 2020). The main drawback
of such maps is an incomplete accounting of actual SMP
data. The SMP parameters displayed on digital maps
are calculated and can sometimes contradict even the
limited factual information available. This issue is due to
a lack of information, mainly on the boundary conditions
used in mathematical models. Nonetheless, modeling the
formation and evolution of SMP has resulted in a distinct
and rapidly advancing field of SMP research.

This work is dedicated to the collection, processing,
and analysis of approaches of published and archived
maps of the SMP and the compilation of a GIS album,
including SMP maps, some of which were previously
inaccessible and unknown to researchers. Maps containing
information about permafrost on the shelf of the Russian
Arctic from published data, archives of the Institute of the
Earth Cryosphere SB RAS, other institutes, and Rosgeolfond
were processed. The purpose of the work is to ensure the
availability of many published or unpublished (archived)
maps of the SMP of the Russian Arctic.

MATERIALS AND METHODS

The QGIS geographic information system (GIS) was
used. Today, it is among the most dynamically developing
and functional desktop GIS applications. The main task
was to digitize original paper maps. To work with GIS, it
is essential to establish a correspondence between the
internal coordinate system of the raster (graphic image)
and the external (target) coordinate system used in the
GIS project; in other words, it is necessary to perform raster
referencing. Referencing consists of determining two pairs
of coordinates for a certain number of points: coordinates
in the internal coordinate system of the raster and
coordinates in the target coordinate system. The reference
points should be evenly distributed across the image (or at

least the part used in the study) and not on the same line.

The Lambert Azimuthal Equal Area Projection (WGS
84/North Pole LAEA Russia) was selected as the coordinate
system for the GIS project, as it is the most suitable for
the cartographic representation of the Russian Arctic
SMP. However, the created maps can easily be converted
to any other projection. Additionally, one advantage of
working in QGIS is the availability of base maps — coastline,
hydrological network, and simplified topographic maps.

When digitizing the maps, we aimed to preserve the
original legends as much as possible, as they reflect the
authors’ approaches to constructing the maps and their
content. However, in some cases, the legend had to be
modified.

Here we offer the visual representation of the maps; if
needed, GIS projects can be obtained from the publication’s
authors.

RESULTS

By now, all available geocryological maps have been
digitized. One of the first publications in 1972 was AL
Chekhovsky's forecast scheme for the distribution of the
subaqueous cryolithozone in the Asian sector of the Arctic
(Chekhovsky 1972).In conditions of insufficientinformation,
the author, in fact, displayed the spatial distribution of water
temperature in the Arctic seas, considering the shelf relief.
The scheme does not illustrate subagueous permafrost but
rather the cryolithozone, understood as sediments that
presumably have a negative temperature (Fig. 1). It should
be noted that, when applied to the western sector of the
Russian Arctic, the boundaries of the cryolithozone and the
distribution area of subaqueous permafrost containing ice
differ significantly from the modern data. A.L. Chekhovsky
identified two types of cryolithozone in the Arctic seas: shelf
cryolithozone, extending to a depth of 200 m, and oceanic
cryolithozone, found at depths greater than 200-800 m.
Within the shelf cryolithozone, with ground temperatures
ranging from 0 to —-1.8°C, areas with positive summer
temperatures have been identified in the estuaries of large
rivers. The oceanic cryolithozone, located to the north of
the shelf, has temperatures of —0.7°C in the Atlantic sector
of the Arctic and —0.35°C in the Pacific.
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Fig. 1. Image of the forecast map of the distribution of cryolithozone in the Asian sector of the Arctic (Chekhovsky 1972).
Legend: 1 - shelf cryolithozone, MAGT 0...-1°C with a positive summer water temperature; 2 - the same, but with a
constant negative temperature; 3 - oceanic cryolithozone with MAGT -0.7°C; 4 - also with MAGT -0.35°C; 5 - unfrozen
sediments with MAGT 0.6-2.0°C; 6 — isobaths, m
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Later, the same approach to assessing the distribution
of the shelf cryolithozone based on the spatial distribution
of the temperature of the bottom water layer was used
by L.AA. Zhigarev in his monograph (1997). By the time
the monograph was published, new data on seawater
temperatures in the Arctic seas and, most importantly,
the results of SMP studies in the coastal zones of the
Laptev Sea, East Siberian Sea, and Chukchi Sea had
been obtained. The monograph includes a schematic
map of the cryolithozone in the Arctic seas of Russia.
The map illustrates the boundaries of the distribution of
alongshore permafrost (established and assumed), relict
permafrost (established and assumed), seasonally frozen
sediments (established), perennially and seasonally non-
frozen sediments with temperatures below 0°C, cryotic
sediments, and average annual isotherms (established
and assumed). The author selected this classification of
cryolithozone as a basis for identifying areas and regions
that differ in the conditions of heat exchange between
bottom sediments and seawater. The schematic map is
created on a small scale, accompanied by an ineffective
legend, making its practical use exceedingly challenging.
The significant advantage of the schematic map was that it
outlined the boundaries of the distribution of frozen rocks
on the sea shelf of the Eastern Arctic. This schematic map
has not been digitized.

In the 1950 and 1970s, the content was developed
(Baranov 1960; 1972), and in 1977, the geocryological
map of the USSR was published under the editorship of I.
Ya. Baranov at a scale of 1:5,000,000. The map covers both
the continental and shelf regions of the Russian Arctic. The
construction of the marine part of the map was based on
the concept of shelf drainage, freezing, and subsequent
submersion and flooding of the shelf, along with the
active involvement of tectonic movements (Fig. 2). The
map for the first time reflected the boundaries of the SMP
distribution in sufficient detail (Geocryo... 1977).

Surprisingly, the boundaries of the SMP distribution in
the Kara Sea on this map align closely with modern ones
derived from drilling and seismic acoustic data.

As ideas about the SMP’s conditions, formation history,
and evolution developed, more detailed maps began to be
compiled using limited drilling data and high-resolution
seismic data. One example is the map created by V.A.
Soloviev for the Barents and Kara Seas (Fig. 3) (Soloviev et
al. 1981).

For the first time, the map reflects different SMP
types and their continuity and provides estimates of their
thickness. The legend uses the concepts of cryolithozone
and frozen zone. Apparently, the term ‘cryolithozone”
is used to designate negative-temperature sediments
without ice inclusions, and the term “frozen zone” refers
to frozen sediments that contain ice. The non-continuous
nature of the SMP distribution in the Barents and Kara
Seas is substantiated for the first time. Later, the map was
improved, and became more detailed, and the legend was
slightly changed.

The ideas about the SMP distribution developed by
Ya.V. Neizvestnov and V.A. Solovyov were implemented in
compiling the well-known and accessible Geocryological
Map of the USSR at a scale of 1:2,500,000 (1996). When it
was created, drilling and seismoacoustic research data
from the Arctic seas were considered. However, the map’s
legend inthe part of the Arctic shelfturned out to be heavily
overloaded and difficult to read. As a result, the practical
utilization of the map for evaluating the distribution and
conditions of SMP occurrence is quite challenging.

Later, the same authors tried to implement a qualitative
assessment of the probability of the distribution of the
SMP of different continuity — ranging from less probable to
probable and then to more probable. When creating the
map, in addition to considering the probability distribution
of SMP, greater emphasis was placed on the morphology
of the shelf and the temperature regime of the bottom
layer of water. The map is characterized by a high level of
spatial resolution, as the analysis of the distribution and
conditions of occurrence of SMP was conducted for each
sheet of the international sheet numbering on a scale of
1:1,000,000. Unfortunately, the map was not published and
exists only in paper form in a report in the Rosgeolfond
archive (Neizvestnov et al. 1991). The appearance of the
map is shown in Fig. 4.

In creating a circumpolar map of Arctic permafrost
and ground ice, developed by an international team of
researchers (Broun et al. 2001), the Russian part of the map
is based on the previously published Geocryological Map of
the USSR atascale of 1:2,500,000 (1996). The production ofa
comprehensive circumpolar map depicting the distribution
and thickness of SMP was undertaken at the initiative of
the IPA as part of the European project NUNATARYUK.
For the shelf permafrost of the Russian Arctic seas, the
boundaries of the SMP distribution were clarified, and the
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Fig. 2. Image of the marine part of the geocryological map of the USSR, edited by I. Baranov (1977). Legend: 1 -
submarine permafrost in the inner part of the shelf, underlain by unfrozen saline sediments with a negative temperature;
2 - submarine permafrost in the outer part of the shelf partially thawed from above, underlain by unfrozen saline
sediments with a negative temperature; 3 - unfrozen saline sediments with a negative temperature
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Fig. 3. Image of the SMP map of the Barents and Kara Seas (Soloviev et al. 1981). Legend: 1 - zone of positive
temperatures; SMP: 2 -with a thickness of more than 50 m with cryopeg interlayers; 3 — with a thickness of 25-50 m with
cryopeg interlayers; 4 - with a thickness of less than 25 m with cryopeg interlayers; 5 - seasonal submarine permafrost;
6 — episodically unfrozen area; 7 - area of sparse insular relict permafrost; 8 - insular relict permafrost with a thickness of
less than 50 m; 9 - insular relict permafrost with a thickness of more than 100 m; 10 - insular relict permafrost beneath
the episodically unfrozen zone; 11 - insular relict permafrost beneath the positive temperature zone
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Fig. 4. Image of the forecast map of the cryolithozone of the shelf and islands of the Arctic seas of the USSR (Neizvestnov
etal. 1991). Legend: 1 - continuous (newly formed) and relict permafrost zones turning into an island one; 2 - separate
large massifs of frozen sediments within the island permafrost zone; 3 - island permafrost zone (more probabilistic
distribution); 4 - island permafrost zone (probabilistic distribution); 5 - island permafrost zone (less probabilistic
distribution); 6 - continuous relict permafrost zone under positive-temperature sediments; 7 - island relict permafrost
zone under positive-temperature sediments (more probabilistic); 8 - island relict permafrost zone under positive-
temperature sediments (probabilistic); 9 - island relict permafrost zone under positive-temperature sediments (less
probabilistic); 10 - negative-temperature thawed non-frozen zone; 11 - positive-temperature zone; 12 - boundary of
continuous permafrost, turning into an island permafrost; 13 - the boundary of the island permafrost; 14 — the boundary
of the negative temperature thawed (not frozen) cryolithozone; 15 - the boundary of the intermediate island permafrost
zone
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map's legend and content were considerably simplified.
This map illustrates the spatial distribution of the SMP
along with the thickness estimations of the added SMP. It is
available on the GRID-Arenda website (Fig. 5). It should be
noted that the permafrost thickness was estimated based
on the depth of the 0°C isotherm. For the eastern sector of
the Arctic, the thickness estimates are generally satisfactory
and correspond to other calculations (Romanovskii et al.
1997; Nicolsky et al. 2012; Koshurnikov et al. 2020), while
for the western sector, the values of the SMP thickness are
extremely overestimated. Quaternary deposits on the shelf
of the western Arctic are represented by a thick stratum of
saline sandy-clayey soils of predominantly marine origin.
The onset temperature for freezing and thawing can
vary from 0 to —1.5°C, depending on the salt content and
lithological composition. In this case, the SMP permafrost
occupies only the upper portion of the section with
temperatures below the phase transition temperature;
beneath, it is underlain by non-frozen sediments.

This same map was later used to model the submarine
permafrost evolution from the Pleistocene to the Holocene.
This was done to clarify the boundaries of the submarine
permafrost’s distribution and to calculate its thickness and
ice content (Overduin et al. 2019; Angelopoulos et al. 2020;

70°N 75°N 80°N

Chen et al. 2022). Both the original map and the model
may not only overestimate the SMP thickness but also
exaggerate the boundaries of its distribution. In particular,
in the Barents Sea, the SMP is present north of Kolguev
Island. However, according to seismoacoustic profiling
data, the SMP was not detected in this area, and the SMP
boundary is situated south of what is indicated on the map.
In the same way, the SMP map in the Kara Sea indicates
a large submarine permafrost massif to the west of the
Severnaya Zemlya archipelago. Detailed seismoacoustic
observations revealed a widespread distribution of Late
Pleistocene marginal moraines framing the ice shelf here
(Polyak et al. 2008). Thus, there were no conditions for the
SMP formation (Gusev et al. 2012).

With the acquisition of new drilling and seismoacoustic
profiling data in the Kara and Barents Seas, it became
possible to utilize this information not only to interpret the
geological structure of the Quaternary strata but also to
analyze the distribution of SMP. All available seismoacoustic
profiling and drilling data were gathered and reinterpreted
to search for SMP manifestations (Rekant and Vasiliev 2011).
Thus, a database of manifestations and occurrence depths
of SMP in these seas was developed, and a GIS-oriented
map of their distribution was constructed (Fig. 6).

80°N

Fig. 5. Distribution and thickness of the submarine permafrost on the IPA map (Permafrost in the Northern Hemisphere
2020, based on Overduin et al. 2019). In the legend, the SMP thickness is as follows: 1 - 0-100 m; 2 - 100-300 m; 3 - 300-
500 m; 4 - 500-700 m; 5 - 700-900 m
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Fig. 6. Map of the distribution of submarine permafrost in the Barents and Kara Seas based on drilling and seismoacoustic
profiling data (Rekant and Vasiliev 2011). Legend: 1 - seismoacoustic profiles; 2 — boreholes and their respective
numbers; 3 - permafrost limit

111



GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 2025

The peculiarity of this map is the possibility of its  according to direct observations (Dubrovin 2015; Rokos et
continuous improvement and development as new  al. 2023), a decrease in bottom temperatures only leads to
seismoacoustic data become available and boreholes are  the formation of frozen crusts with a thickness of no more
drilled. than 0.2..0.5 m in the near-surface part of the section,

In 2025, V. Bogoyavlensky and co-authors published  which completely thaws during the summer season.
an article that provides a map of the SMP distribution in Stable permafrost formation under current conditions is
the Laptev Sea and the East Siberian Sea based on drilling ~ impossible in any area of the Arctic shelf.
data and, mainly, the results of deep seismic interpretation In 2023, the Arctic Permafrost Atlas was published,
(Bogoyavlensky et al. 2025). The area of SMP distribution ~ which contains several maps characterizing the SMP
on this map is much smaller in the Laptev Sea, and SMP  (Westerveld et al. 2023). As an example, Fig. 8 shows a
is completely absent in the East Siberian Sea. The authors ~ fragment of the distribution map of the Russian Arctic
explain these features of the SMP distribution through ~ SMP based on modeling. In fact, the album repeats the
permafrost degradation, up to its complete thawing.  maps (Fig. 5) given in the publications (Overduin et al.
This hypothesis contradicts all existing ideas about the  2019; Angelopoulos et al. 2020). Contradictions regarding
distribution of SMP in the East Siberian seas. The Laptev  the distribution boundary of the SMP and its thickness
and the East Siberian Seas shelves have a similar geological remained unresolved when the atlas was published.
structure, a common paleogeographic history and a A promising method for studying the SMP using
similar modern thermal regime of seawater. Therefore, the  electrical exploration is being developed by AV.
presence of permafrost in the Laptev Sea suggests that  Koshurnikov. Based on marine profiles in the Arctic seas of
there are no reasons for it to completely thaw in the East ~ Russia, he showed that the specific electrical resistance of
Siberian Sea. Most likely, the source of the discrepancy is  frozen strata and potential gas hydrates under permafrost
the incorrect interpretation of deep seismic data. are close to each other. The proximity does not allow them

A detailed map of the distribution of SMP in the Russian ~ to be separated on the profiles. A map of the distribution

Arctic was created at VNIllokeangeologiya (Shcherbakov et of the SMP and the total thickness of SMP and gas hydrates
al. 2018). It considered all the drilling data and the results of has been developed (Koshurnikov, 2023). When digitizing
our own seismoacoustic profiling in both the western and ~ the map, the legend was simplified (Fig. 9), and a different
eastern sectors of the Arctic that were available at that time.  color scheme was used. The areas of distribution of the
The map reveals for the first time the spatial distribution ~ SMP and the total thickness of SMP and gas hydrates for
of SMPs in various percentages of the permafrost area  the Barents and Kara Seas shown on the map differ greatly
and offers more substantiated estimates of the thickness  from other maps. The author explains these differences
and temperature of frozen sediments than previous by the widespread development of saline Quaternary
assessments. (Fig. 7). The water area of the Russian Arctic deposits on the shelf of the Western Arctic, which greatly
seas is divided into zones according to cryolithozone types.  complicates the interpretation of field observations.
The boundaries of the SMP itself and non-frozen sediments Geoelectric surveys by magnetotelluric and transient
are plotted. The VNllokeangeologiya map illustrates the  electromagnetic methods have good prospects for
distribution of SMP in the seas of the Eastern Arctic with subaqueous permafrost mapping (Yakovlev et al. 2018).
much greater detail. For the first time, potential new SMP  The application of the method in the Khatanga Gulf has
formation areas are indicated on the shelf of the Arctic  shown its effectiveness in determining the depth of the
seas, based on the presence of bottom temperatures that ~ SMP top.

fall below the phase transition temperature. However,
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In recent decades, the construction of submarine
permafrost maps based on mathematical modeling
has been actively developing. Permafrost formation is
considered a result of a long geological history of shelf
development, with periodic stages of cooling and warming,
transgressions, and regressions in the Arctic Ocean. As a
rule, a heat exchange model based on the solution of the
Stefan problem is used here. The primary issue with this
modeling is to consider the characteristics of the geological
structure of the Arctic shelf, as well as the composition, ice
content, salinity, and temperature of phase transitions.
The upper boundary conditions are established according
to the chosen paleogeographic scenarios. In this case,
specific paleotemperatures of the air are often assigned
based on indirect data. The temperature on the Earth’s
surface is set equal to the air temperature. However, actual
observations of modern air temperatures (MAAT) and
permafrost temperatures (MAGT) show that the ratio of
MAGT and MAAT ranges from 0.1 to 1.0 depending on the
landscape conditions that determine the heat exchange at
the surface. The average ratio between modern MAGT and
MAAT for the western sector of the Russian Arctic is about
0.7 (Malkova et al. 2022).

An example of SMP maps constructed through
mathematical modeling can be the map of the distribution
and thickness of the SMP in the Kara Sea (Gavrilov et al.
2020) (Fig. 10).

When creating the map, the authors considered the
125 Kyr history of the Kara Sea shelf development. The
model takes into account not only the change in sea level
during the Late Pleistocene but also the eustatic uplift of
the dried shelf surface during the postglacial transgression.
Since the model contains several uncertainties in the
properties of freezing bottom sediments, the temperature
of the bottom water layer, paleoclimate, etc., the authors
adopted broad ranges of the SMP thickness shown on
the map in the legend. This enabled the identification of
areas with sharply contrasting calculated thickness values.
The map highlights a region with a SMP thickness of 100-
300 m. However, A. Portnov showed that under the most
severe climatic conditions of the Last Glacial Maximum in
the Kara Sea, the submarine permafrost thickness cannot
exceed 270 m (Portnov et al. 2014). Considering the SMP
degradation from above and below, its maximum thickness
cannot exceed 200-250 m. The area of SMP distribution in
the southern part of the Kara Sea is underestimated when
compared to seismoacoustic profiling data, whereas it is
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overestimated in the central and northern parts of the sea.
Later, an analogous map was compiled for the Laptev Sea
(Gavrilov et al. 2024).

More efficient but also more complex modeling of the
SMP is being developed in the Institute of Computational
Mathematics and Mathematical Geophysics SB  RAS
(Malakhova 2019; Malakhova et al. 2020; Malakhova 2023;
Malakhova and Eliseev 2023). This model uses both climate
and heat exchange models in the Arctic Ocean. This
approach allowed V. Malakhova, for the first time, to not
only establish the modeled boundaries of the distribution
of the SMP and its thickness (Fig. 11) but also to assess
the current and projected trends of its degradation in the
Russian Arctic. Under the RSP scenario of 8.5, the average
rates of SMP degradation were 1-2 cm per year for 1950-
2015, 5 cm per year for 2015-2100, and 10 cm per year for
2100-2300.

The map was not digitized due to its small scale.

Yu. Smirnov and co-authors (Smirnov et al. 2024)
modeled the SMP, taking into account the climate zonality
and spatial distribution of salinity in the seas of the Russian
Arctic.

The boundaries of the distribution of the SMP on the
map by Yu. Smirnov et al. for the central and southern
Kara Sea demonstrate good agreement with those
previously established based on seismoacoustic profiling
and drilling data on the shelf (Rekant and Vasiliev 2011;
Overduin et al. 2019), but for the Barents Sea, the area of
the SMP distribution is clearly underestimated (see Fig.
6). Furthermore, in both seas, the depth of the SMP top is
significantly underestimated. This is attributed to both the
model’s imperfections and the uncertainties regarding the
characteristics of the soils on the shelf and the boundary
conditions.
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CONCLUSIONS

The conducted studies made it possible to ensure the
availability of many published and unpublished (archive)
maps of the Russian Arctic submarine permafrost. All maps
were digitized and integrated into a single GIS format,
enabling comparison. The review indicates that as the
ideas about the distribution, conditions of occurrence,
and thickness of the submarine permafrost developed, the
content of the maps also changed.

The first maps were based on an analysis of the
morphology of the Arctic shelf and seawater temperature.
They only approximately reflected the boundaries of the
spatial distribution of the sea and ocean cryolithozone, as
well as the temperature of the bottom sediments.

|. Baranov developed ideas about the significant
influence of neotectonics on the SMP’s distribution
and conditions of occurrence. A more or less detailed
geocryological map of the continental zone and shelf of
the Russian Arctic was compiled.

Since the early 1980s, the first factual data on SMP
in the Barents and Kara Seas have been obtained based
on offshore drilling and imperfect geophysical data. The
concept of a predominantly discontinuous massive island
and the island nature of SMP distribution in the Western
Arctic has been established. In contrast, shallow drilling
data from the Eastern Arctic shelf have provided a basis for
the assumption of continuous, less frequently intermittent
SMP in this region.

The development of methods and hardware for
seismoacoustic profiling has become a powerful tool in
SMP studying. Prognostic maps of SMP distribution were
compiled to assess the probability of the occurrence
of different types of continuity. The boundaries of SMP
distribution were defined, and by the 1990s, estimates of
its thickness appeared.

As seismoacoustic methods evolved and data on the
manifestation of SMP was accumulated, including ongoing
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drilling, maps were constructed that substantiated the
boundaries of SMP distribution and the depth of the top
with factual data.

A major step in the study of shelf permafrost was the
development of methods for mathematical modeling of
the formation and evolution of SMP. Several maps were
created reflecting the distribution and conditions of the
SMP occurrence. These maps are detailed, but uncertainty
in determining the properties of the sediments on the shelf
and, most importantly, the boundary conditions leads to
significant deviations in the estimates of the thickness and

depth of the SMP top. Improvement of the models made
it possible to develop methods for predicting the current
and further degradation of the SMP under global warming
and changes in the hydrology of the Arctic seas.

Digitization of the maps of SMP of the Russian Arctic
shelf, which were created based on various approaches,
and in different periods, and the formation of an album of
GlS-oriented maps, can be used to compile more detailed
maps of the cryolithozone of the shelf and for comparison
of modeling results and actual data. ||
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ABSTRACT. Numerical weather prediction (NWP) models, coupled with urban parameterizations, play a crucial role in
understanding and forecasting meteorological conditions within urban environments. In the mesoscale NWP model COSMO,
only one urban parameterization, TERRA_URB, is available in the model’s operational version. TERRA_URB describes the
city as a flat surface with modified physical properties in accordance with the urban canyon geometry. In this study, we
have coupled the latest version 6.0 of the COSMO atmospheric model with a more sophisticated urban canopy model, TEB
(Town Energy Balance), which explicitly simulates the energy exchange between the facets of the urban canyon. Here, we
present the coupling approach and assessment of the model’s sensitivity to urban schemes of different complexity (TEB
and TERRA_URB) over the Moscow region for August 2022. Despite using the same external parameters for both schemes,
simulations demonstrate notable differences in modeled temperature, with TEB generally producing lower nighttime and
morning temperatures. This leads to a greater underestimation of the urban heat island intensity in TEB when compared with
the observations but improves the modeled diurnal cycle of the urban temperature. We attribute the observed temperature
discrepancies to the different descriptions of heat conductivity and storage within urban surfaces. Although there are no clear
advantages to using a more complex parameterization in terms of model air temperature errors, TEB offers more options to
fine-tune input parameters and takes into account additional processes, in particular those associated with building heating
and cooling, as well as with urban green infrastructure.

KEYWORDS: urban parameterizations, urban climate, atmospheric models, urban heat island, Moscow agglomeration, COSMO
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INTRODUCTION scales, it is not feasible to explicitly simulate the energy

and momentum exchange between the atmosphere

Modern numerical weather prediction (NWP) models,
employed for forecasting and studying the atmospheric
processes, operate at grid spacing down to 10 kilometers at
the global scale and the first few kilometers at the regional
scale, with pioneering high-resolution studies presenting
hectometric grid spacing [Lean et al. 2024]. At such

and specific elements of the urban environment, such
as buildings. To address this issue, numerical models
are coupled with urban parameterizations, also known
as urban canopy models (UCMs). Most UCMs are based
on the concept of the “urban canyon” [Nunez and Oke
19771, which assumes the description of the whole
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urban geometry by two main representative parameters
— the height of buildings and the width of the street
between them. Urban parameterizations differ both in
the complexity of describing physical processes and in
approaches to coupling with atmospheric models. These
include slab models or bulk parameterizations, single-
layer urban canopy models (SLUCM) and multilayer urban
canopy models (MLUCM) [Masson 2006; Grimmond et al.
2010; Garuma 2018; Tarasova et al. 2023].

Slab models, e.g., TERRA_URB [Wouters et al. 2016],
one of the urban parameterizations available in the WRF
atmospheric model as part of the Noah-LSM land surface
model [Ek et al. 2003; Liu et al. 2006], and the JULES
surface scheme [Best 2005], are incorporated into the
land surface models, modifying their basic parameters,
such as imperviousness, surface radiative, and soil thermal
properties, taking into account the features of the urban
environment.

Single-layer UCMs (SLUCMs), e.g.,, TEB (Town Energy
Balance) [Masson 2000], SLUCM developed by [Kusaka
2001], MORUSES (Met Office—Reading Urban Surface
Exchange Scheme) [Porson et al. 2010], explicitly simulate
physical processes inside the urban canyon. These models
reproduce the thermal heterogeneity of the urban
environment by separately solving the energy balance for
the roof, wall, and road surfaces. To calculate the surface
temperature, SLUCMs simulate heat transfer within the
roof, roads, and walls, dividing them into layers of certain
thickness. They also simulate shortwave and longwave
radiation balances of the mentioned surfaces, considering
the effects of shading, reflection, and emission within the
canyon. Heat and moisture turbulent fluxes are determined
using the resistance approach and are proportional to
the differences between surface and air temperatures/
humidities, wind speed, and heat and moisture transfer
coefficients. The urban canyon in the SLUCMs is assumed to
be squeezed below the bottom surface of the atmospheric
model. Therefore, SLUCMs provide lower boundary
conditions that determine the interaction between the
urban surface and the lower level of the atmospheric
model.

Multilayer UCMs, eg., BEP (Building Effect
Parameterization) [Martilli et al. 2002], DCEP (Double-
Canyon Effect Parameterization) [Schubert et al. 2012], TEB
[Schoetter et al. 2020], represent the physical processes
inside the urban canyon as well. However, unlike SLUCMs,
these models divide the urban canopy into a number
of horizontal layers that interact with the atmospheric
model, assuming the canyon is immersed into the lowest
levels of the atmospheric grid. Additional terms, which
describe the contribution of the urban surface, are added
to the prognostic equations of momentum, temperature,
humidity, and turbulent kinetic energy at the model
levels that are inside the urban canopy. These terms are
calculated at a finer vertical resolution on the urban grid
and then aggregated onto the grid of the atmospheric
model.

Modern NWP models differ in the set of available
UCMs: some provide an opportunity to choose between
parameterizations of varying degree of complexity, while
others only have a single option available. This study
focuses on the COSMO (Consortium for Small-Scale
Modeling) regional, non-hydrostatic atmospheric model
developed and maintained by the COSMO consortium
and COSMO-CLM community [Rockel et al. 2008]. Despite
the experience of including various UCMs into this
model, only the slab TERRA_URB scheme is available in
its operational version [Garbero et al. 2021]. The COSMO

model with TERRA_URB is used for operational weather
forecasts, e.g., over the Moscow region [Rivin et al. 2019;
2020], and for research tasks. The latter include modeling
of the urban heat island (UHI) [Varentsov et al. 2018; 2019],
the urban impacts on severe convective events [Platonov
et al. 2024], the assessment of ecosystem services of the
urban green infrastructure [Varentsov et al. 2023], and the
estimation of the anthropogenic heat flux contribution to
the temperature and wind regime in the city [Ginzburg
and Dokukin 20211.

Multilayer UCMs DCEP and BEP (version BEP-Tree) were
incorporated into the COSMO model in the research mode
under separate branches of the model [Schubert and
Grossman-Clarke 2014; Mussetti et al. 2020] and have not
been merged intothe latter model updates. The single-layer
UCMTEB was also implemented into the COSMO model by
[Trusilova et al. 2013]. However, simulations of the Moscow
heat island using two UCMs, TERRA_URB and TEB, within
the COSMO model revealed that the coupling between
COSMO and TEB was incorrectly implemented, leading
to unrealistic results [Varentsov et al. 2017]. The spatial
distribution of temperature anomalies demonstrated a
highly variable field, with a strong signal in the urban cells
with almost no effect transmitted to the neighboring cells
without buildings (see Fig. 4 in [Varentsov et al. 2017]).
Furthermore, the vertical structure of the thermal anomaly
induced by the city when using the TEB scheme was
inadequate; both the intensity and the vertical extent of
the response were significantly lower compared to those
simulated with TERRA_URB (see Fig. 5 in [Varentsov et al.
2017]). This suggests that the coupling of the TEB UCM
with the COSMO atmospheric model may have been
performed incorrectly, leading to a lack of transmission of
the signal from the city surface to the atmosphere.

This study is devoted to the reimplementation of the
TEB UCM into the latest operational version of the COSMO
model and its comparison with the simpler TERRA_URB
parameterization. Here we outline the technical details of
the coupling approach, demonstrating the corresponding
effects of the city’s influence on the atmosphere. To analyze
the sensitivity of COSMO to different UCMs, we compare
simulations using the single-layer TEB UCM and the
simpler slab scheme TERRA_URB with the same external
city-descriptive parameters.

The article is organized as follows. The next section
describes in detail the numerical weather forecast model
COSMO, the urban canopy model TEB, and the elaborated
coupling approach, as well as the setup of the numerical
experiments. Section Results presents the results of the
comparison of two UCMs and their assessment by the
observations. Interpretation and discussion of the revealed
differencesin simulations between two UCMs are presented
in the Discussion section, followed by conclusions in the
last section.

MATERIALS AND METHODS
COSMO model

The COSMO model is a non-hydrostatic limited-area
atmospheric model that has been vastly used both for
operational and research applications. The model solves
the hydro-thermodynamic equations for a compressible
flow in a moist atmosphere in the advection form. The
model uses the delta-two-stream method of the Ritter-
Geleyn scheme for radiative transfer [Ritter and Geleyn
1992], the Tiedtke scheme to parameterize convection,
which is not explicitly resolved [Tiedke 1989], and a
prognostic turbulent kinetic energy closure at level 2.5 to
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describe subgrid-scale turbulence [Doms et al. 2021]. The
multi-layer land surface model TERRA is used to calculate
the heat, moisture, and momentum exchange between
the surface and the atmosphere [Heise et al. 2006; Schrodin
and Heise 2001; Schulz and Vogel 2020].

To describe the interaction between the atmosphere and
the urban surface, the TERRA model has been modified by
integrating the TERRA_URB urban parameterization [Wouters
et al, 2016]. For this purpose, a tile approach has been
introduced into the COSMO model, assuming that the model
grid cell can be represented partly by the natural and by the
urban surface. The surface temperatures, heat and moisture
fluxes, and other variables are calculated for each individual
tile and then aggregated according to their areal fraction in
the grid cell.

In this study, we use the latest version of the COSMO 6.0
model.

Town Energy Balance (TEB) urban canopy model

The TEB urban parameterization is a single-layer urban
canopy model that can be used both as a standalone model
and coupled to the numerical atmospheric models [Masson
2000; Masson 2013; Meyer et al. 2020] to simulate the impact
of the urban surface on the atmospheric boundary layer. We
used the TEB_open_source_v3_sfx8.1 version' to integrate it
into the COSMO atmospheric model.

Like many other UCMs, TEB is based on the concept of the
street canyon and calculates energy balance separately for its
walls, roof, and road. To derive the surface temperature, TEB
solves the thermal conduction equation with zero flux at the
lower boundary for roads and building’s internal temperature
for roofs and walls. The model accounts for water reservoirs
and snow cover on the horizontal surfaces. The radiation
exchange considers reflections and shading effects inside
the canyon. It can be modeled as an average over numerous
canyons with an isotropic distribution of their azimuths, or
for a specified road azimuth, taking into account the different
shadings of two opposite walls [Lemonsu et al. 2012].

Turbulent sensible and latent heat fluxes are calculated
according to the resistance approach (Fig. 1), where the
transfer coefficients depend on wind speed and stability
functions [Lemonsu et al. 2004]. Heat fluxes from industry
and traffic can be added as constants, while anthropogenic
heat flux associated with building heating and cooling is
explicitly simulated at each time step using a simple model
of building indoor temperature [Masson et al. 2002] or a
more comprehensive Building Energy Model (BEM) [Bueno
etal. 2012]. BEM calculates anthropogenic heat and moisture
fluxes related to heating, ventilation, and air conditioning and
due to the presence of people or electrical devices inside the
buildings. It takes into account air supply through walls and
natural ventilation, including windows, in the energy balance

of walls. TEB has an ability to specify urban vegetation inside
the canyon, implicitly represented as a flat surface [Lemonsu
etal. 2012], along with an interface for the“green roof"module
[de Munck et al. 2013]. The simulation of solar panels on roofs
[Masson et al. 2014] and irrigation of roads, vegetation, and
“green roofs”[de Munck et al. 2013] are also possible.

Coupling approach

The coupling approach in our study is based on the
interface that was previously developed for the interaction
between COSMO and TERRA_URB. This interface assumes
that the land surface model TERRA is called twice for each
COSMO’s grid cell: once for the natural tile and once for the
urban tile, with modified bulk parameters according to the
urban geometry [Wouters et al. 2016]. Simulated fluxes are
further aggregated over the two tiles. In the case of TEB, we
call it instead of TERRA for the urban tile, but only for the grid
cells with a non-zero urban fraction. TEB's output is saved to
the model variables that are used by TERRA for the urban
tile and is further passed to the procedure that performs the
aggregation of fluxes and surface parameters over the two
tiles, as it was proposed for TERRA_URB [Wouters et al. 2016].

COSMO provides TEB with input quantities at each time
step. TEB requires the current date, latitude and longitude
of the cell, the height of the lowest model level, external
parameters describing the geometry of the urban surface and
its thermal and radiative properties, as well as atmospheric
forcing variables (Table 1). It should be noted that the TERRA_
URB slab model uses albedo, emissivity, heat capacity, and
conductivity parameters aggregated over roofs, roads, and
walls, while TEB considers these parameters for each surface
separately. We have implemented this feature into the model
code. However, in this study, we use the aggregated values for
all surfaces for a correct comparison between the two UCMs.
Based on the input data, TEB calculates output parameters
as averaged over the canyon and roofs and passes them
to the COSMO model. The main variables transferred from
TEB to COSMO are the effective urban albedo, emissivity,
surface temperature, and surface specific humidity, as well as
sensible and latent heat fluxes and heat and moisture transfer
coefficients. These variables are listed in Table 1.

Below we present a detailed description of how the fluxes
calculated by the TEB parameterization are transferred to the
COSMO atmospheric model.

Radiation Fluxes
To estimate reflected shortwave radiation, the COSMO

model uses the solar albedo aggregated over natural and
urban tiles (Eqg. 1):

- — 1
aso 5urbaso,urb+(1 5urb)aso,nat )
(b) k=2
k=1
W1~ © .
‘6: 2

Fig. 1. Schematic representation of (a) TERRA_URB slab scheme and (b) TEB single-layer urban canopy model. Notation a,
€2, and A correspond to the albedo, emissivity, aerodynamic roughness, and thermal conductivity of the urban material.
Dashed lines indicate levels of the atmospheric model. Modified after [Tarasova et al. 2023]

'https://opensource.umr-cnrm.fr/projects/teb/files
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Table 1. Variables used in the coupling of TEB UCM into the COSMO model

Variable Unit Model variable
External static parameters for TEB
Height of the lowest model level m hlev_teb*
Building areal fraction - urb_fr_bld
Building height m urb_h_bld
Canyon height-to-width ratio - urb_h2w
Volumetric heat capacity of urban materials** Jm= KT urb_hcap
Heat conductivity of urban materials** Wm~ K™ urb_hcon
Shortwave albedo of urban surfaces** - urb_alb_so
Emissivity of urban surfaces** - 1-urb_alb_th
Atmospheric forcing from COSMO to TEB
Air temperature K t
Specific humidity kg kg™ qv
Zonal component of wind velocity ms™ u
Meridional component of wind velocity ms' %
Atmospheric pressure at the surface Pa ps
Rainfall rate kgm=s™ prr_con + prr_gsp ***
Snowfall rate kgm=2s! prs_con + prs_gsp (+ prg_gsp) ****
Downwelling direct shortwave radiation flux density Wm™ swdir_s
Downwelling diffuse shortwave radiation flux density Wm™ swdifd_s
Downwelling longwave radiation flux density Wm= lwd_s
TEB outputs for COSMO
Urban surface albedo for shortwave radiation - teb_alb_so*
Urban surface emissivity - 1 -teb_alb_th*
Urban surface temperature K teb_tstown_s*
Urban surface specific humidity kg kg™ teb_gstown_s*
Heat and moisture transfer coefficient for urban surface - teb_tch_town*
Sensible heat flux for urban surface Wm= teb_shfl*
Latent heat flux for urban surface Wm~ teb_Ihfl*

* — New variables added to COSMO for its coupling with TEB. ** — Parameters can be set by the same value for all urban surfaces (roofs,
walls, and roads) or separately for each surface. *** — The precipitation explicitly resolved by the atmospheric model and precipitation
estimated by the convection parameterization are summed up. **** — The precipitation explicitly resolved by the atmospheric model
and precipitation estimated by the convection parameterization are summed up. Grain is added to the solid precipitation if appropriate

parameterization is used.

where a,is the cell-averaged solar albedo, a, is the
solar albedo of the urban tile, a is the solar albedo of the
natural tile.

As a result of shading and multiple reflections inside the
urban canyon, the effective urban albedo is reduced compared
to the albedo of individual building facets [Oke et al. 2017]. TEB
UCM calculates the effective solar albedo at each time step,
taking into account the incoming and reflected shortwave
radiation by each canyon element (Eq. 2):

S uTrb

_ )
aso, urb S l

where SuTrb is the outgoing shortwave radiation

from the urban tile, including canyon and roof, Sl is the

incoming shortwave radiation (forcing variable from the
atmospheric model).
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The reflection of shortwave radiation is considered
isotropic and is approximated as an infinite number of
efficient reflections between canyon elements [Masson
2000]. The outgoing shortwave radiation (direct and
diffuse) is computed as the difference between the
incoming shortwave radiation and the radiation absorbed
by each of the canyon elements (Eqg. 3):

N

SuTrb=Sl - ZZI 6iSnet, i

where S s the net solar radiation at the i-th surface,
6. is the ratio of the certain surface area to the area of the
urban tile, i is the surface type identifier: road ("r"), wall
("w"), roof ("R").

The outgoing longwave radiation is calculated by COSMO
based on the Stefan-Boltzmann law using surface temperature
and emissivity aggregated over the tiles (Egs. 4-5):

3)

—4 4 - 4 @
Ts \/6urst, urb + (1 6urb) Ts, nat

8:5urb8urb+ (1_5urb)8nat ©)

where T and € are the cell-averaged surface

temperature and emissivity, T. o and €, are the surface

temperature and emissivity of the urban t|Ie I .ande

are the surface temperature and emissivity of the natural
tile.

The effective surface temperature of the urban canyon
is calculated through the outgoing longwave radiation
according to the Stefan-Boltzmann law (Eq. 6):

LuTrb_Ll(l_gurb)

o€ urb

4 (6)

s, urb

where L Tb is the outgoing longwave radiation
from the urban canyon, L ¥ is the incoming longwave
radiation (forcing variable from the atmospheric model),
Ll(l _8urb) is the reflected longwave radiation, o is the

Stefan-Boltzmann constant.

The outgoing longwave radiation is calculated as the
difference between the incoming longwave radiation and
the radiation absorbed by each of the canyon elements

(Eq. 7):
N
Ll Yo 0
urb i net,i
i=1
where L is the net longwave radiation at the i-th

surface, taklng into account reflection and emission
between canyon’s surfaces.

Net longwave radiation at each canyon’s surface
consists of the atmospheric radiation coming directly from
the sky and the radiation emitted or reflected from other
canyon elements (road or walls). The reflection of longwave
radiation assumes a single reflection of incident longwave
radiation by the canyon surface.

Emissivity is calculated as a weighted average for each
surface, taking into account the fraction of each canyon
element and the sky view factor (Eq. 8):

N

€ rb: 21 5iyji—>sky8i
1=

where ¥ is the sky view factor for surface 7, €, is the
emissivity of surface i,

8)
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Turbulent Heat and Moisture Fluxes

To represent the turbulent heat and moisture exchange
between the surface and the atmosphere, the sensible and
latent heat fluxes are aggregated over the two tiles (Eqgs. 9-10):

H=5 H  + (1—5 )H 9)

urb nat

nat (10

LE=5 ,LE  + (1— 5urb)LE

where H, LE are the cell-averaged sensible and latent
heat fluxes, H, LE, are the sensible and latent heat
fluxes of the urban tile, H . LE . are the sensible and
latent heat fluxes of the natural tile. To ensure consistency
between the sensible and latent heat fluxes leaving the
soil for individual tiles and those entering the atmosphere,
additional technical adjustments are made (see Appendix).

TEB computes the turbulent fluxes from the urban
canyon as weighted averages from each individual surface,
with the addition of heat (and moisture) fluxes from traffic
and industry (Egs. 11-12):

N
; ° H + Htrafftc industry "
N
LEurb: z 5iLEi+LEtmffiC+LEindMSﬂ’y "

i=1

where H, LE are the sensible and latent heat fluxes
from the i-th surface H, .z LE, . are sensible and latent
heat fluxes from traffic, /—/mdmy LEmdusw are sensible and
latent heat fluxes from industry.

Fluxes from the roof, road, and walls are defined in
accordance with the resistance approach, where the heat
and moisture transfer coefficients are calculated by the
Monin-Obukhov theory for horizontal surfaces and under
empirical dependencies for vertical surfaces [Rowley et al.
1930; 1932]. Air temperature, humidity, and wind speed,
which are required to calculate the fluxes, are taken from
the atmospheric forcing level for the roof, and from the
canyon’s volume for the road and walls. The air temperature
and humidity are assumed to be homogeneous inside
the canyon. The wind speed for flux calculation from the
road and walls is estimated at half the canyon height,
assuming an exponential wind profile inside the urban
canopy [Rotach 1995; Arya 1988]. Despite the recent study
by [Tarasova et al. 2024] suggests using an alternative
parameterization of the in-canopy wind profile; it is not
included into the model version used in this study.

Momentum Fluxes

The calculation of momentum fluxes has been
preserved using the same approach as in the TERRA_URB
urban scheme. The urban tile is represented as a highly
rough surface, with the aerodynamic roughness length
defined proportionally to the average building height
[Sarkar and De Ridder 2010]. The thermal roughness is
described via the Reynolds roughness number, with refined
coefficients derived from experiments with outdoor urban-
scale models [Kanda et al. 2007].

Model Setup and External Data
We employ the new version of the COSMO model,

coupled with the single-layer TEB UCM, to simulate the
meteorological conditions of the Moscow agglomeration
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with 1-km grid horizontal spacing. To evaluate the
sensitivity of the model to the choice of the UCM, we
also run identical simulations using the slab TERRA_
URB scheme. Additionally, the noURB experiment was
conducted with urban parameterizations switched off.
The simulations cover the period of August 2022, which
was characterized by an extremely high urban heat island
in Moscow [Varentsov et al. 2023]. The monthly-averaged
UHI intensity at the city center was 3.4°C, which is 1°C
higher than the average value for the period 2000-2020
[Lokoshchenko et al. 2023].

We use two nested domains centered at the Moscow
region. The ERA5 reanalysis data with 0.25°x0.25° grid
spacing [Hersbach et al. 2020] is utilized to define
boundary and initial conditions for the outermost domain
with a 3-km grid spacing, covering an area of 720 x 720
km around Moscow (240 x 240 grid cells). Initial conditions
for soil temperature and humidity are taken from the
global operational analysis of the ICON model with a 13-
km resolution. According to [Varentsov et al. 2023], using
ICON initial data instead of ERA5 reanalysis allows for a
more accurate simulation of near-surface temperature and
humidity. Simulations for the outermost domain are further
used to force simulations for the innermost domain with a
horizontal grid spacing of 1 km, 240 x 240 grid cells, and
activated urban schemes (excluding noURB simulation).
The vertical resolution in COSMO is set to 50 atmospheric
levels (up to a height of 22 km), of which 10 are located in
the lower one-kilometer layer; 8 layers are set in soil. The
time integration step for the inner domain is 15 seconds.

We use the same set of external city-descriptive
parameters for both UCMs. These parameters are compiled
from different data sources, including OpenStreetMap
(OSM) cartographic data [Samsonov and Varentsov
2020; Frolkis et al. 2024], a map of Local Climate Zones
(LCZ) [Stewart and Oke 2012] available for Moscow from
[Varentsovetal.2020],and new global land cover databases:
WorldCover [Zanaga et al. 2021] and Copernicus Global
Land Cover (CGLC) [Buchhorn et al. 2020]. The fraction of
the urban tile in the model grid cells is assumed to be equal
to the impervious area fraction. The latter is estimated
based on two global land cover databases: WorldCover
with a 10-meter resolution and CGLC with a 100-meter
resolution. The need to use two databases is determined
by different physical interpretations of their urban land
cover classes. WorldCover treats urban areas as impervious
artificial surfaces, while CGLC treats them as built-up
areas including urban greenery but excluding impervious
surfaces outside built-up zones (highways, airstrip, etc.).
The urban tile is assumed to be simultaneously impervious
and built-up by both UCMs, so we define its area fraction
as the intersection of the built-up (CGLC) and impervious
(WorldCover) areas. Hence, the urban tile is treated as a
completely impervious surface that does not include any
vegetation, such as alleys or lawns between buildings, and
the urban greenery is considered part of the natural tile.

The OSM cartographic data is a valuable source for
obtaining morphometric characteristics of cities that could
be applied as external parameters in urban modeling or,
e.g., to estimate the anthropogenic heat flux (AHF) [Frolkis
et al. 2024]. Here, we use the OSM data to initially assess
the fraction of buildings and their average height. Further,
the LCZ map is used to restore information about buildings
where they are missing in the OSM data (typically in suburbs
and industrial zones) based on statistical relationships
between the building area fraction and impervious and
built-up area fractions for different LCZs [Varentsov et
al. 2023]. The height-to-width ratio of street canyons is

defined analytically based on the mean area of individual
buildings, total building area in a grid cell, and built-up area
fraction estimated according to CGLC, assuming a square
building shape and their regular arrangement [Samsonov
and Varentsov 2020]. Thermal and radiative properties of
the urban surface, such as albedo, emissivity, heat capacity,
and heat conductivity, are defined according to the LCZ
map and look-up tables. The resulting set of external
city-descriptive parameters is shown in Figs. 2 and 3. We
additionally emphasize that we use the same thermal and
radiative parameters aggregated over all canyon surfaces
for both UCM:s.

Another important external parameter is the
anthropogenic heat flux. However, it is treated differently in
the TEB and TERRA_URB schemes. TEB explicitly simulates
AHF from building heating and cooling using a Building
Energy Model (BEM) [Bueno et al. 2012] or a simpler
scheme based on limiting building’s indoor temperature
within a given range, while AHF from traffic and industry
are prescribed by the user as time-invariant 2D fields. In
TERRA_URB, the total AHF is provided as an external
parameter. To simplify mutual comparison between UCMs,
we set all external AHF sources to zero in both cases.

RESULTS

Simulations with the COSMO model coupled with two
different UCMs, TEB and TERRA_URB, were performed with
a 1 km spatial resolution for August 2022 over the Moscow
agglomeration. Both UCMs reproduce a pronounced warm
temperature anomaly over Moscow, i.e., the UHI. To assess
the quality of these simulations in terms of reproducing
the UHI, we used 2-meter temperature observations at 14
synoptic weather stations in the Moscow region. Weather
stations were classified into two samples to represent
the rural and urban conditions. The UHI intensity was
estimated as the temperature difference between stations
within Moscow and the background (suburban) stations.
The Balchug weather station, located in the center of
Moscow, characterizes the temperature regime of the city
center and is usually used to obtain the maximum UHI
intensity [Lokoshchenko et al. 2023]. In addition, the mean
UHI intensity was analyzed as the difference between
mean urban temperature, averaged over 5 Moscow
stations: Balchug, VDNKh, Moscow State University
Meteorological  Observatory (MSU  MO), Mikhelson
Observatory, and Tushino [Lokoshchenko et al. 2023].
Background conditions were assessed using observational
data from Klin, Dmitrov, Alexandrov, Pavlovsky Posad,
Kolomna, Serpukhov, Naro-Fominsk, Maloyaroslavets, and
Novo-Jerusalem stations, as referenced in [Varentsov et
al. 2023; Kuznetsova et al. 2024]. Observational data for
these stations at 1-hourly intervals were obtained from the
archives of the Hydrometeorological Research Center of
Russia. In this study, we used the nearest grid point to the
weather station when comparing with measurements.

The COSMO model nearly perfectly reproduces the
monthly-mean diurnal temperature cycle in rural areas
using both UCMs. (Fig. 4a). However, for urban stations,
there is a notable shift in the diurnal cycle: the model’s air
temperature lags relative to the observations (Fig. 4b, d),
especially in the morning hours, regardless of the urban
sample. The observed UHI intensity increases at night,
reaching up to 6°C at the city center (Fig. 4c) and up to
3.7°C when averaged over the five urban stations (Fig. 4e).
The underestimation of the modeled air temperature in
the city center is especially pronounced at night and in the
morning —the maximum UHlintensity is underestimated by
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Height-to-width ratio

Building height, m
Fig. 2. City-descriptive parameters for the central part of the model’s domain: (a) impervious area fraction, (b) building
fraction, (c) building height, (d) canyon height-to-width ratio
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Fig. 3. Thermal and radiative parameters of the urban area for the central part of the model’s domain: (a) surface albedo,
(b) surface emissivity, (c) volumetric heat capacity, (d) heat conductivity
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2°C. Differences between TEBand TERRA_URB are observed,
with TEB showing lower nighttime air temperatures by
up to 0.6°C. The mean errors (ME) of monthly-mean air
temperature for the Balchug weather station are -1.18°C
for TERRA_URB and -1.45°C for TEB, while for the average of
five Moscow stations, these values are -0.66°C for TERRA_
URB and -0.95°C for TEB. However, the root-mean-squared
errors (RMSE) for the two UCMSs are much closer, with RMSE
values of 1.99°C (TERRA_URB) and 2.06°C (TEB) for Balchug,
and 1.83°C (TERRA_URB) and 1.80°C (TEB) for the five urban
stations.

Thesimulationswere performedwithoutanthropogenic
heat flux, so agreement between observations and model
data is not as good as in previous modeling studies for
Moscow [Varentsov et al. 2020; Kuznetsova et al. 2024].
Despite the summer conditions, anthropogenic heat flux
can be significant in forming the temperature regime,
especially at nighttime [Salamanca et al. 2014].

Previous studies suggest that the vertical structure of
the UHI in the lower troposphere is a key indicator of the
correctness of coupling between UCM and the atmospheric
model [Varentsov et al. 2017; 2018]. We analyze the
vertical UHI extent as the temperature difference between
simulations with TEB/TERRA_URB UCMs and the noURB
run, in which urban effects are not taken into account, and
the city is replaced by natural land cover types.

Fig. 5 presents vertical cross-sections of such a
temperature difference through Moscow’s center for two
UCMs. Generally, results with the two UCMs are quite similar.
The temperature anomaly is highest at the surface in the
center of the urban area. The vertical extent of the daily
average anomaly over the simulation period is observed
up to 200-250 meters from the surface for both UCMs (Fig.
5a-0). In the daytime, UHI is much weaker but extends up
to 1 km, with almost no difference in temperature anomaly
between TEB and TERRA_URB (Fig. 5d-f). The differences
between the UCMs become noticeable at night, when the
model with TEB simulates weaker temperature anomalies
(Fig. 5g-i). A pronounced nocturnal UHI exists within the
100-150 m layer, and above it changes to the opposite
response, corresponding to a negative temperature
anomaly of up to 0.1°C (Fig. 5g, h). This phenomenon,

referred to the cross-over effect [Bornstein 1968] or
cold lens [Khaikine et al. 2006], coincides with mast and
radiosonde observations [Lokoshchenko et al. 2016] and
previous simulations with the COSMO model for the
Moscow region [Varentsov et al. 2017; 2018]. The presence
of this cold layer may be attributed to more intense vertical
mixing in the city center due to higher surface roughness
and less stable stratification compared to rural areas, which,
under stable stratification conditions, results in less intense
surface inversions within the city.

Despite using the same external parameters, two UCMs
reproduce the Moscow UHI with slight but noticeable
differences. Our further analysis is aimed primarily at a
deeper investigation and interpretation of the differences
between simulations with TEB and TERRA_URB UCM:s. Fig.
6a presents the differences in monthly mean 2-meter air
temperature between the numerical experiments with TEB
and TERRA_URB UCMs. The use of the TEB results in lower
simulated air temperatures, with a maximum observed
difference of 0.84°C between the UCMs. Furthermore, the
differences in surface temperature are more pronounced
than those in air temperature (Fig. 6¢). The grid cells
exhibiting the greatest differences in air temperature
largely correspond to those showing significant surface
temperature differences.

In order to find an explanation for the revealed
temperature differences between TEB and TERRA_URB
UCMs, we further analyze the components of the surface
energy balance.

Differences between the two UCMs are observed
in the effective surface albedo. The TERRA_URB model
accounts for shading and reflections of solar radiation
within urban canyons by parameterizing the effective
albedo of the urban surface using an exponential function.
This approach assumes that an increase in the height-to-
width ratio of the canyon significantly reduces the effective
albedo of the urban environment [Fortuniak 2007]. In
contrast, the TEB model computes effective surface
albedo at each time step based on the explicit account
for multiple reflections of shortwave radiation between
various canyon facets. Fig. 7 presents the cell-averaged
surface albedo differences between TEB and TERRA_URB,
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along with the diurnal cycle of albedo observed in the two
numerical experiments. The simulated surface albedo is
consistently lower in TEB compared to TERRA_URB, with
differences reaching up to 0.02. Additionally, TEB exhibits
daily variations in albedo due to uneven illumination of
different surfaces throughout the day, although these
changes are relatively low (Fig. 7b). Roads typically possess
a higher sky view factor than walls; therefore, as the sunlit
area of the road increases, the effective albedo rises. This
occurs because the surface albedo values for roads and
walls are equal in our simulations. However, if roads had
a significantly lower albedo, the opposite trend would be
expected, with increased absorption leading to a decrease
in a daytime effective albedo. The differences in surface
albedo between the urban schemes are consistent with
slightly higher maximum surface temperatures simulated
with TEB (Fig. 6d); however, these findings cannot explain
the lower daily mean and nocturnal air temperatures with
respect to TERRA_URB.

The latent heat flux from the urban tile depends
primarily onthe amount of precipitation stored in the model
over the impervious urban surface, such as water puddles.
The maximum water content on the impervious surface
in TERRA_URB is 1.31 mm, while the wet-surface fraction
is parameterized, assuming its increase with increasing
water content with an upper limit of 12% according to the
measurements in Toulouse, France [Wouters et al. 2015].
TEB accumulates water on roofs and roads using the same
approach as in TERRA_URB, with a difference in maximum
water content (1 mm according to [Grimmond and Oke
1991]) and without an upper limit for the maximum wet-
surface fraction. The excess water is assumed to form runoff
to the sewer system. Fig. 8 presents the spatial distribution
of average latent heat fluxes over August 2022 for TERRA_
URB and TEB UCMs for urban tiles. The locations of areas
with maximum latent heat flux are identified in both TEB
and TERRA_URB models on the southern periphery of
Moscow, whereas in the northern region, such spots are
only noted in TERRA_URB simulations. Such differences can
be explained by stochastic patterns of convective rainfall in

the model and do not represent the differences between
UCMs. The absolute values of latent heat flux for both urban
models are relatively low. Additionally, there is a shift in the
diurnal cycle, indicating increased evaporation during the
morning hours for TEB, with a peak occurring between
9 AM and 12 PM MSK. In contrast, TERRA_URB shows its
maximum later in the day, after noon. The cell-averaged
values of latent heat flux are nearly identical between the
experiments.

The distribution of sensible heat flux from urban tiles is
presented in Fig. 9. The average sensible heat fluxes in TERRA_
URB on the outskirts of Moscow are found to be higher than
those in the city center (Fig. 9b). This phenomenon can be
attributed to the significantly colder atmosphere in rural
and suburban areas compared to central Moscow, resulting
from a much lower urban fraction in these grid cells. Since
turbulent heat flux is proportional to the difference between
the surface and the air temperatures, the sensible heat flux is
consequently lower in highly urbanized areas. In contrast, the
TEB UCM exhibits an opposite distribution (Fig. 9a). In TEB, the
effective sensible heat flux from the urban tile is aggregated
across road, wall, and roof surfaces. The spatial distributions
of sensible heat fluxes from these surfaces reveal the same
pattern as for TERRA_URB, with higher values at the outskirts
of the city (not shown). However, the pattern changes after
the aggregation procedure, primarily due to the high wall
fractions in the city center, where they exert a greater influence
as an additional source of heat flux. In other words, for TEB,
the highest surface-air temperature differences at the city's
outskirts are compensated by a larger wall area in the central
part of the city. The integral sensible heat fluxes from urban
tiles differ between TEB and TERRA_URB, estimated as 79.6 W/
m” and 92.6 W/m?, respectively. As noted above, the primary
differences between TEB and TERRA_URB are observed in the
cells where the urban areal fraction is minimal. Consequently,
these differences have a limited impact on the aggregated flux
across the tiles. Thus, the integral cell-averaged quantities of
sensible heat flux are almost equal and amount to 26.47 W/m?
in TEB and 26.62 W/m? in TERRA_URB.
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DISCUSSION

The presented results show differences between
the slab model TERRA_URB and the single-layer urban
canopy model TEB, which are primarily expressed in the
lower air and surface temperatures simulated using TEB,
with the most pronounced differences during nighttime
and morning hours. The revealed temperature differences
between the two urban schemes can be related to the
different parameterizations representing surface albedo,
turbulent heat and moisture fluxes, and heat storage within
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artificial surfaces in TEB and TERRA_URB. However, surface
albedo is even lower in TEB and causes a slightly higher
surface temperature at midday. Turbulent sensible and
latent heat fluxes simulated by TEB and TERRA_URB differ
in diurnal cycle and spatial patterns; however, there are
only minor differences in their mean values over Moscow.

Another critical factor influencing surface temperature
isheat conduction throughthe surface anditsaccumulation
within urban materials. TERRA_URB uses the TERRA soil
model with modified thermal properties. The values of
heat capacity and heat conductivity for specific materials
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(concrete, asphalt, etc)) are multiplied by the surface area
index (SAI), which represents the total area of the road, two
walls, and the roof divided by the plan area [Wouters et al.
2016]. This approach accounts for heat flux not solely over
the horizontal surface but over an enlarged urban canyon
surface. SAl values used in our simulations locally exceed
3.0, resulting in a triple increase of the mentioned thermal
parameters, thereby enhancing surface heat conductivity
and changing the rate of heat transfer to the ground
[Wouters et al. 2016]. In contrast, TEB utilizes thermal
parameters for artificial materials directly for roads, walls,
and roofs, without applying multiplication by SAI, as the
heat fluxes through these surfaces are simulated explicitly.

To assess the effect of the described SAl-based
parameterization in TERRA_URB, we conducted an
additional numerical experiment without modifying the
materials’ thermal parameters by SAI (TERRA_URB_noSAI).
When these parameters are not multiplied by SAl, the
model simulates significantly lower monthly average air
temperatures. The mean differences between the basic
TERRA_URB configuration and TERRA_URB_noSAIl can
reach up to 1°C (Fig. 10a). Significantly smaller, yet still
noticeable, differences are observed when compared with
TEB, with the most pronounced discrepancies occurring in
central Moscow (Fig. 10b). Therefore, differences between
the two UCMs in heat conduction processes at the surface-
atmosphere interface are likely a key factor responsible
for the observed differences in simulated temperatures.
However, more specific quantification of these factors
requires further investigation.

Our results indicate that the COSMO model is sensitive
to the UCMs of different complexity, with the response
primarily revealed in the air and surface temperature.
Both the TEB and TERRA_URB UCMs successfully
simulated the UHI effect. One might expect that the more
advanced TEB UCM would enhance the accuracy of UHI
simulation; however, the current results do not support
this hypothesized improvement but also do not indicate
a significant deterioration in the results. It is important to
note that we used TEB in a simplified configuration, which
did not account for building heating and cooling via the
BEM model, nor urban greening, etc. The inclusion and
optimization of these components are expected to yield
improved outcomes in future simulations.
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Furthermore, TEB suggests a finer analysis of model
outputs due to the presence of more diagnostic variables,
such as the temperature of different canyon surfaces (Fig.
11), along with temperature, specific humidity, and wind
speed inside the urban canyon. These enhancements
not only improve analytical capabilities but also enable
more accurate validation against weather station data
located within urban areas. The current methodology
assumes comparing observations with the 2-meter
height temperature provided by the NWP model as a
diagnostic variable calculated according to the Monin-
Obukhov theory above the urban canopy. The possibility
to incorporate green spaces inside the urban canyon
could replace the traditional tile approach, allowing for
the use of canyon temperatures calculated by the UCM
for verification purposes. In addition, the new output
parameters provided by TEB enable the enhancement
of the accuracy of thermal comfort index calculations by
considering the urban canyon geometry.

In 2018, the Consortium for Small-scale Modeling
announced the transition from the limited-area COSMO
model to the global ICON model as the future operational
model. The last version of COSMO was released in 2021,
and after this, the model was not maintained and
developed officially any more. However, the COSMO-CLM
version remains in demand for long-term climate studies.
The implementation of TEB into the COSMO model, along
with sensitivity tests to UCMs of different complexity, could
be useful for ICON as well, since these NWP models share
the same land surface model.

CONCLUSIONS

The official version of the COSMO NWP model includes
only one urban scheme, TERRA_URB, which represents the
simplest class of bulk or slab urban canopy models. In this
study, we propose and describe the coupling approach
between the COSMO model and the more detailed single-
layer urban canopy model TEB. Both UCMs are supposed
to be squeezed into the model surface and provide the
NWP model with lower boundary conditions. The TERRA_
URB scheme modifies surface thermodynamic properties,
taking into account the features of urban geometry, while
TEB explicitly simulates the radiation and turbulent fluxes

(b) «TEB» - «TERRA_URB_noSAl»
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Fig. 10. The distribution of monthly mean air (2-meter height) temperature differences between the numerical
experiments with (a) COSMO+TERRA_URB and COSMO+TERRA_URB_noSAl and (b) COSMO+TEB and COSMO+TERRA _
URB_noSAI
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inside the urban canyon and heat conduction and storage
within its walls, road, and roof. The model’s sensitivity to
urban schemes of different complexity, TERRA_URB and
TEB, was assessed over the Moscow agglomeration for
August 2022. In such a comparison, we utilized TEB in a
simplified configuration with the same external parameters
as TERRA_URB and switched off anthropogenic heating in
the UCMs.

Both UCMs allowed COSMO to reproduce the observed
urban heat island of Moscow. In particular, simulations
with two UCMs almost agree in terms of the vertical
extent and intensity of the urban temperature anomaly
in the atmospheric boundary layer. When compared
with observations, both simulations demonstrate an
underestimation of nighttime and morning temperatures
in the city, which is not surprising due to the absence of
anthropogenic heat flux in the model. Additionally, the
modeled diurnal cycle of urban temperature lags with
respect to observations.

We found slight but noticeable differences in urban
air temperature between the simulations using TEB and
TERRA_URB. The COSMO model with TEB simulates slightly
lower 2-meter air temperatures compared to TERRA_URB,
with a monthly mean difference of up to 0.84°C, resulting
in a stronger underestimation of the observed UHI
intensity. Meanwhile, the use of TEB improves the accuracy
in reproducing the diurnal cycle of urban air temperatures,
reducing the model’s lag relative to observations.

A more detailed comparison between energy balance
components simulated by TEB and TERRA_URB revealed
several insights into the factors responsible for the
temperature differences. Due to the explicit calculation
of radiative fluxes within the urban canyon, the effective
urban albedo in TEB was lower than the parameterized
values in TERRA_URB, resulting in greater solar energy
absorption and higher surface temperatures during the
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day. This difference in albedo contrasts with the revealed
lower nocturnal and daily mean temperatures simulated
with TEB. For sensible and latent heat fluxes, we obtained
noticable differences between the UCMs in spatial patterns
and diurnal cycle of fluxes from urban tile, yet with almost
similar cell-average values. The primary factor contributing
to the revealed temperature differences between the
UCMs appears to be related to their different approaches
to describing the heat conductivity and storage within
urban surfaces.

Although the implementation of the TEB UCM in the
COSMO model did not result in a substantial increase in the
model quality metrics, it does open up broad opportunities
for further improvements of the model accuracy. This can
be achieved by activating and fine-tuning the components
of the TEB, such as the BEM or street vegetation module
"garden’, refining the input parameters for these modules,
and improving the parameterizations of specific processes
like the wind profile [Tarasova et al. 2024]. Moreover, TEB
greatly expands the capabilities of the COSMO model
as a tool for evaluating urban planning and adaptation
strategies, allowing for consideration of scenarios
associated with changes in urban green infrastructure,
building materials, energy management, and more.

The presented results were obtained for the warm
period of August 2022. However, we expect other
differences between the two UCMs in the cold season,
since the UCMs use different snow models, as well as
different treatments for anthropogenic heat flux, which
is a key driver of the UHI in winter [Varentsov et al. 2020].
Simulation of the temperature regime for cold weather
conditions in Moscow with TEB and TERRA_URB UCMs is
planned to be analyzed in future studies.

The code of the coupled COSMO-TEB model is available
upon request. [l
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APPENDICES

The basic aggregation algorithm of sensible and
latent heat fluxes assumes weighting each of the land-
atmosphere fluxes according to the fractions of the urban
and natural tiles by the land surface model. However, in the
latest version of COSMO, the fluxes are further re-calculated
in the model’s dynamic core based on the cell-averaged
variables: surface temperature, surface specific humidity
and heat transfer coefficient. These recalculated fluxes are
assigned to tile O (cell-averaged) and are actually used in
temperature and humidity evolution in the atmospheric
model. As expected, their values are not equal to the
weighted sum of fluxes from tiles; the difference may reach
up to 100 W/m? in our tests (note that these tests were
performed without AHF).

In the original version of the tile approach proposed
by [Wouters et al. 2016] for TERRA_URB in COSMO-CLM
5.0, the fluxes aggregation scheme was a bit different: the
heat transfer coefficient and surface specific humidity were
calculated in a specific way to ensure equality of heat fluxes
calculated in the dynamical core to the weighted sum of
the fluxes from individual tiles. However, since COSMO
version 5.05, these tricks have been removed.

To avoid discrepancy in fluxes, we have adopted
the tricks from COSMO-CLM 5.0 back to version 6.0.
The weighted average of the heat transfer coefficient is
redefined through the weighted sensible heat flux from
individual tiles (Eq. A1):

H

cell

C
p><cpd><u><(Tg ce”—Ta)

H cell = (A1)
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where C,  is the redefined weighted heat transfer
coefficient, H_, is the weighted sensible heat flux from
individual tiles, p is air density, Cpylis specific heat capacity
of dry air at constant pressure, u is wind speed, Tgc is
weighted surface temperature, T_is air temperature.

For the latent heat flux, a correction is made for the
surface specific humidity (Eq. A2):

ell

LE
cell A2
qvcell =qva -
pXvauXCH cell
where gv_, is the redefined weighted surface specific

humidity, qv_is air specific humidity, LE_, is the weighted
latent heat flux from individual tiles, L is latent heat of
vaporization.

Initially, the adaptation of these tricks led to the
appearance of errors during the model run, so we proposed
additional limitations for Corcar and qv ., (Eqgs. A3-A4):

C =min(C

H ce (A3)

1l H cell’ 1)

qv =min(qvce”, max(qvnat, qv )X 10) (A4)

cell urb

where gv ., qv . are surface specific humidity from
natural and urban tiles.

Our tests have indicated that the proposed solution
decreases the discrepancy in fluxes by an order of
magnitude. The changes in the resulting surface-
atmosphere flux sufficiently impact the simulation results,
particularly for the grid cells with a significant fraction of
both tiles.
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ABSTRACT. Global warming, driven by the rising concentration of greenhouse gases (GHGs), demands innovative, data-
driven approaches to assess emission vulnerability at regional scales. This study developed a novel framework utilizing an
unsupervised Convolutional Autoencoder (CAE) deep learning model combined with multi-sensor satellite data to map GHG
emission vulnerability. The framework integrated nine environmental indicators, including tropospheric gases, land surface
temperature, vegetation cover, anthropogenic proxies, and elevation, all sourced from freely accessible remote sensing
platforms. The CAE model effectively captured complex spatial patterns and reduced high-dimensional inputs into 128 latent
features, enabling vulnerability assessment without requiring labeled training data. Results indicated that southern coastal
regions, particularly Denpasar and Badung, exhibited the highest vulnerability due to dense urbanization and tourism-related
activities. Based on zonal statistics, 11.31% of local administrative zones were identified as having high to very high vulnerability,
while 18.72% were classified as moderate, and 69.97% as low to very low. The most vulnerable areas were concentrated along
the southern coastline, known as a hub for tourism and economic activity, with additional pockets of vulnerability found in
several northern coastal zones. These findings demonstrate the capacity of unsupervised deep learning to detect emission
hotspots and spatial variability, particularly in data-limited environments. The integration of scalable algorithms with open-
access satellite data allows for rapid, cost-efficient assessments to inform evidence-based climate planning and mitigation
strategies. This study introduces a practical and transferable approach for spatial quantification of GHG vulnerability, offering
actionable insights for advancing global climate policy and supporting the Sustainable Development Goals.
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INTRODUCTION natural greenhouse effect and contributes significantly to
global warming (Yang et al, 2022). GHGs such as carbon

Global climate change is widely recognized as one dioxide (CO), methane (CH,), nitrogen dioxide (NO,), and

of the most urgent environmental challenges of the 21 sulfur dioxide (SO,) trap outgoing longwave radiation
century, with far-reaching implications for ecological (Bhatti et al, 2024), thereby leading to an increase in
sustainability, human health, and socio-economic  Earth’s surface temperatures (Rahaman et al, 2022). The
development (Scafetta 2024). The primary cause of this accumulation of these gases is associated with a wide
phenomenon is the rising concentration of greenhouse  range of adverse effects, including more frequent extreme
gases (GHGs) in the atmosphere, which intensifies the weather events, declining air quality, and disrupted
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regional climate systems (Edo et al,, 2024). These impacts
present substantial obstacles to the achievement of the
United Nations Sustainable Development Goals (SDGs),
particularly Goal 13 on climate action.

Climate change, beyond its atmospheric implications,
also affects the structural integrity of ecosystems and
the functionality of biomes. The warming of Earth’s
climate alters species distributions, hydrological cycles,
and ecosystem services that support agriculture, forestry,
and coastal livelihoods (Dar et al, 2020; Grimm et al,
2013; Pecl et al,, 2017). The majority of GHG emissions are
anthropogenic, stemming from sectors such as energy,
industry, transportation, agriculture, land-use change,
and waste management (Priyadarshini et al, 2025).
Urbanization exacerbates these emissions, with dense
population centers contributing  disproportionately
through increased infrastructure, vehicular activity, and
energy consumption. Over time, these patterns of emission
become spatially correlated with zones of intense human
activity and temporally aligned with rapid economic
expansion (Yu et al,, 2024). To address these spatial and
systemic complexities, remote sensing and Geographic
Information Systems (GIS) have emerged as indispensable
tools for environmental analysis. Remote sensing enables
continuous monitoring of Earth’s surface parameters, while
GIS allows for spatially explicit modeling of environmental
indicators and anthropogenic pressures. These tools
provide a basis for multi-scale climate vulnerability
assessments, from local urban settings to regional and
global contexts. For example, Valjarevic¢ et al. (2022) utilized
satellite and GIS-based approaches to update global
climate classification, revealing nuanced climate dynamics
and spatial vulnerabilities.

Bali Province, Indonesia, a globally recognized tourism
hotspot, is experiencing substantial environmental stress
due to accelerated land-use transformation (Saifulloh et al,,
2025). Recent research indicates that surface temperatures
in Bali have been increasing at an average rate of 0.01°C per
year (Sunarta et al., 2022). This trend is closely associated
with the widespread conversion of natural landscapes into
built environments, including hotels, resorts, restaurants,
and urban settlements (Andyana et al,, 2023; Diara et al,
2024; Sunarta and Saifulloh, 2022a). The loss of vegetative
cover resulting from urban expansion significantly reduces
the landscape’s capacity for carbon sequestration (Sudarma
etal, 2024; Susila et al., 2024; Trigunasih and Saifulloh, 2022),
while emissions from transportation, hospitality operations,
solid waste, and agricultural practices continue to intensify.
Despite the significance of these transformations, there
remains a lack of spatially explicit data and systematic
assessments of GHG emission vulnerability for the region.
This data gap highlights the need for robust geospatial
methodologies to inform mitigation strategies and policy
interventions.

Although various studies have sought to analyze
GHG vulnerability, most have been constrained by
limited spatial, temporal, or variable coverage. For
instance, (Hassaan et al, 2023) assessed CO and PM2.5
exposure using discrete point-source data, lacking spatial
continuity. Sakti et al. (2023) employed Sentinel-5P to
monitor gaseous pollutants such as CO, NO,, and SO,,
yet failed to incorporate critical environmental metrics
such as vegetation and temperature (Pan et al, 2024).
While meteorological influences have been examined in
studies by (Ayyamperumal et al., 2024; Z. Feng et al,, 2023),
few efforts have systematically integrated these variables
within spatially scalable frameworks. In the region of
Bali Province, NO, concentrations have been examined
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for the year 2020 (Sunarta and Saifulloh, 2022b), though
such assessments were not embedded within a broader
vulnerability framework. Meanwhile, spatial machine
learning models such as fuzzy geographically weighted
clustering (Grekousis et al., 2024) have incorporated static
demographic indicators but still fall short of accounting for
dynamic spatiotemporal GHG variability.

To overcome these limitations, the present study
introduces a comprehensive approach for mapping GHG
vulnerability through unsupervised deep learning. The
framework employs a convolutional autoencoder (CAE), a
class of neural networks capable of learning latent feature
representations without requiring labeled data (Azarang et
al, 2019; Cuietal, 2018). All input variables are derived from
freely available multi-sensor satellite datasets, retrieved
via the Google Earth Engine (GEE) platform (Gorelick et
al, 2017). These include primary GHG indicators (NO,, CO,
SO, and Aerosol Optical Depth), environmental variables
(temperature and vegetation indices), human activity
proxies (population density and nighttime lights), and
topographic data.

This method enables detailed spatial and temporal
characterization of emission vulnerability, eliminating
the need for resource-intensive field data collection.
By forgoing reliance on labeled training data, the CAE
model supports rapid, cost-effective, and reproducible
assessments of environmental vulnerability. The innovation
of this research lies in the fusion of multi-source satellite
data with unsupervised deep learning to detect spatial
patterns of vulnerability, particularly in data-limited regions
such as Bali. Ultimately, this research advances both the
scientific understanding and practical management of
GHG emissions, contributing meaningfully to global
climate resilience and sustainability agendas.

MATERIALS AND METHODS
Study area

The study was conducted in Bali Province, Indonesia,
an island located in Southeast Asia with significant
ecological sensitivity and economic reliance on tourism.
Geographically, Bali lies around 8°00'S latitude and 115°40'E
longitude, covering a land area of 5,593.60 km? (Fig. 1).
Administratively, the province consists of nine regencies
and one city: Denpasar, Badung, Gianyar, Buleleng,
Tabanan, Jembrana, Klungkung, Bangli, and Karangasem,
encompassing 57 subdistricts and 716 villages. According
to the 2025 provincial census (BPS Bali, 2025), Bali has a
population of approximately 4.46 million, with an average
density of 798 people/km?. Denpasar City has the highest
population density (6,058 people/km?), followed by Gianyar
(1,447 people/km?) and Badung (1,426 people/km?), which
are the primary centers of tourism and urban development
(BPS Provinsi Bali, 2025).

In terms of long-term climatic conditions, Bali
experiences a tropical monsoon climate with a distinct
wet and dry season. Based on historical records, average
temperatures have ranged between 225 and 27.5°C,
while projections suggest future increases to 25.5-
29.5°C. Northern Bali in particular is projected to face
temperature anomalies ranging from 1.6 to 2.9°C, coupled
with declining humidity levels, especially in the north. In
contrast, southern areas may experience slight increases
in  humidity. Under the representative concentration
pathways (RCP) 4.5 climate scenario, Bali is predicted to
lose areas with comfortable climate zones (20-26°C), giving
way to predominately hot and dry conditions (Toersilowati
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et al, 2022). Similarly, long-term projections suggest
rainfall will fluctuate annually but remain within a relatively
stable range of 2,066-2,170 mm, with both maximum
and minimum temperatures continuing to rise by up to
2°C (Puspitasari and Wu, 2025). These climatic shifts pose
significant implications for urban planning, agriculture, and
environmental resilience in Bali, underscoring the urgent
need for spatially explicit assessments of greenhouse gas
vulnerability.

Workflow framework and data sources

To assess greenhouse gas (GHG) emission vulnerability
spatially, a systematic methodological framework was
developed, integrating multi-sensor satellite observations
with unsupervised deep learning. The methodological
workflow (Fig. 2) comprises three core phases: (1) data
acquisition and preprocessing using Google Earth Engine
(GEE), (2) deep learning modeling using a convolutional
autoencoder (CAE), and (3) postprocessing and
interpretation using zonal statistics.

In Phase |, remotely sensed variables were selected to
reflect GHG emission sources, environmental sensitivity,
and anthropogenic exposure. Table 1 outlines the nine
indicators used: NO2, CO, SO2 (Sentinel-5P), NDVI, LST, AOD
(MODIS), population density (WorldPop), nighttime lights
(VIIRS), and elevation (SRTM). All datasets were resampled
to 1 km? and reprojected to WGS 1984 UTM Zone 508S.

The open-source remote sensing data utilized in this
study originated from multiple sensors with native spatial
resolutions ranging from 30 meters to approximately
1,000 meters. Most of the datasets representing sources of
greenhouse gas emissions, particularly from atmospheric
sensors, are provided at a coarser resolution of around 1
km. Therefore, for consistency and compatibility within
the modeling process, all variables were resampled to a

114°40'0"E

115°0'0"E

uniform spatial resolution of 1 km?2 This harmonization
of spatial resolution is essential for feeding standardized
input into the unsupervised deep learning model,
ensuring that data dimensions are consistent (Y. Han et
al,, 2024; Li et al,, 2024). To maintain temporal consistency
across datasets, pollutant-related variables and other
emission source indicators (such as NO,, CO, SO,, AOD,
NDVI, and LST) were accessed using mean values coded
over the 2022-2024 period via GEE. In contrast, datasets
lacking temporal resolution, such as SRTM elevation and
WorldPop population data, used the most recent available
data. Given that this is a preliminary study conducted at a
regional mapping scale, a 1 km? resolution is appropriate
and consistent with similar studies implemented in other
parts of the world (Garajeh et al,, 2023; Maurya et al., 2022;
Xiong et al.,, 2021).

Data preprocessing and tensor construction

Each raster file was imported using the rasterio library
and converted to 32-bit floating-point arrays. Missing
values were replaced with zero, particularly for elevation
data beyond the study boundary. After spatial alignment,
each dataset was normalized using min-max scaling to
standardize feature ranges to [0, 1], following Eq. 1:

(%)

Bl max(xk) — min(xk)

xl.k— min

1

1
X, (M

where x’, denotes the normalized value of variable k at
pixel i, while min (x ) and max (x) represent the minimum
and maximum values observed across the entire raster for
variable kk. This ensures comparability among different

datasets during model training.
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Fig. 1. Research location in Bali Province, Indonesia
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Fig. 2. Workflow Framework of the Research
Table 1. Multi-Sensor Satellite Data and Functional Roles in Regional GHG Vulnerability Modeling

Ne Data source (GEE) Extracted variable

Spatial & temporal resolution

Functional role in the model

Sentinel-5P TROPOMI

« Pixel Size: 1113.2 meters

Proxy for traffic and industrial

(MODIS/061/MOD11A2)

« Revisit Interval: 8 Days

1 (COPERNICUS/S5P/OFFL/ Tropospheric NO, (mol/m?) . Revisit Interval: 2 Davs emissions; indicates nitrogen-
L3_NO2) ’ y based pollution intensity
Sentinel-5P TROPOMI . Pixel Size: 11132 meters Represents incomplete
2 (COPERNICUS/S5P/OFFL/ Tropospheric CO (mol/m?) - N combustion from fossil fuel and
- Revisit Interval: 2 Days : :
L3_CO) biomass burning
Sentinel-5P TROPOM| . Pixel Size: 11132 meters Emission from power plants,
3 (COPERNICUS/S5P/OFFL/ Tropospheric SO, (mol/m?) N . volcanic activity, and smelting
2 « Revisit Interval: 2 Days . .
[3_502) industries
MODIS MCD19A2 - Pixel Size: 1000 meters Indicator of atmospheric
4 (MODIS/061/MCD19A2_ Aerosol Optical Depth (unitless) . Revisit Iﬁterval' Dail particulate concentration;
GRANULES) Spaly linked to PM2.5 exposure
5 MODIS Terra MOD1 3Q1 NDVI (unitless) - Pixel Size: 250 meters ree;/igiaitr:\(/jeic;otgf;?erbon
(MODIS/061/MOD13Q1) - Revisit Interval: 16 Days g o :
sequestration capacity
e Surface heat intensity;
6 MODIS Terra MODT1A2 Land Surface Temperature (°C) - Pixel Size: 1000 meters associated with urbanization

and land energy balance

WorldPop 100m (WorldPop/
GP/100m/pop)

Population Density (people/
km?2)

- Pixel Size: 92.77 meters
- Revisit Interval: -

Proxy for population exposure
to emissions; measures human
concentration in space

VIIRS Nighttime Lights (NOAA/
8 VIIRS/DNB/MONTHLY_V1/
VCMCFG)

Nighttime Light Radiance (nW/
cm2/sr)

- Pixel Size: 463.83 meters
- Revisit Interval: Monthly

Indicator of anthropogenic
energy use and urban footprint

SRTM DEM (USGS/

SRTMGL1_003) Elevation (meters)

- Pixel Size: 30 meters
- Revisit Interval: -

Terrain factor affecting air flow
and pollutant accumulation in
lowland areas

The normalized raster stack was reshaped into a 3D
tensor £ € R where C is the number of channels (or
features), and H and W are the spatial dimensions of the
input. This tensor was further converted into a 4D tensor
X € RO 1o match the input format required by the
convolutional autoencoder.

Convolutional autoencoder (CAE) modeling

The CAE model was implemented using the PyTorch
library (Costa et al., 2024; Subramanian, 2018). It consisted
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Encoder Layers:

of an encoder that extracted feature representations and a
decoder that reconstructed the input. The architecture was
as follows.

«Conv2D (9 — 32) — BatchNorm — RelLU
- Conv2D (32 — 64) — BatchNorm — Rel.U
- Conv2D (64 — 128) — BatchNorm — RelU
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Decoder Layers:

- ConvTranspose2D (128 — 64) — BatchNorm — RelLU
- ConvTranspose2D (64 — 32) — BatchNorm — RelU
- ConvTranspose2D (32 — 9) — Sigmoid
The model was trained using the Mean Squared Error (MSE)
loss function, defined by Eq. 2:

1 n
E:;Z:(xi_)%i)z

where x, _denotes the original input tensor value at
index /i, and x is the corresponding reconstructed output.
The loss funct|on penalizes reconstruction errors, thereby
guiding the encoder to learn compact yet informative
representations. The Adam optimizer was employed with
a learning rate of 0.001 over 100 training epoch:s.

@

GHG vulnerability index

Upon convergence, the encoder output was extracted
as a latent tensor Z € R7?®" where 128 is the number of
abstract feature channels.To collapse this multidimensional
feature space into a single-band vulnerability index, mean
pooling was applied across all channels (Eq. 3):

1 128

128

where GHG, . is the final greenhouse gas emission
vulnerability index, and Z_is the activation of the ¢ feature
channel. The resulting index was again normalized to the
range [0, 1] to facilitate interpretation. Higher index values
indicate areas with a greater confluence of emission-
related stressors and limited ecological buffering.

For policy-oriented interpretation, the vulnerability
index raster was intersected with Bali's district-level
administrative boundaries. The average vulnerability score
for each administrative unit mm was calculated as Eq. 4:

GHG G)

mdex c

1

|Zm | i EZ

where V_represents the mean vulnerability index of zone m,
calculated by summing all pixel-level vulnerability values v within
the set of spatial units Z , and dividing the result by the total
number of pixels |Z_| within that zone. This procedure translated
fine-resolution pixel values into actionable administrative-level
metrics that can guide localized climate mitigation planning,
land use policy, and emission reduction initiatives.

"o v, (4)

RESULTS
Dataset from Multi-Sensor Satellite

This study utilized nine environmental variables derived
from freely available multi-sensor satellite products. These
included tropospheric gases (NO,, CO, SO, Aerosol Optical
Depth (AOD), Land Surface Temperature (LST), vegetation
indices (NDVI), anthropogenic proxies (Nighttime Light
Radiance and Population Density), and Elevation (Fig. 3). All
raster datasets were resampled to a uniform spatial resolution of
1 km2 and aligned to the WGS 1984 UTM Zone 50S coordinate
system. Each variable was normalized to a [0,1] scale to ensure
consistent input for the convolutional model.

ElevatedvaluesofNO,,CO,50,,and AOD were predominantly
observed in lowland urban regions. These concentrations
reflect intense combustion activity and atmospheric pollutant
accumulation from transportation and industrial sources. Such
hotspots were spatially clustered in urban centers and along
coastal corridors characterized by dense infrastructure and
minimal vegetative cover. Other variables, such as LST, NDVI,
population density, and nighttime lights, mirrored patterns of
urban expansion. Built-up zones displayed higher land surface
temperatures and lower vegetation greenness. Population
and light radiance levels further emphasized anthropogenic
pressure, while elevation helped determine pollutant dispersion
across terrain gradients.

NO; (umol/m?)
| High : 27.66

CO (umol/m?)
[ High : 30157

Eow:227 | Low : 23178

SO, (umolim?) >
m High : 184.68

Low : -62.30

LST (°C)
| High : 35.48

. Low : 15.82

Population

5 NTL (nW/cm?/sr
I igh:124.1 H|(g :126.33 )
Low:0.22 I Low : 0.21

Elevation (m)
High : 2820

“Llow:0

Fig. 3. Environmental variables derived from multi-sensor satellite datasets used in greenhouse gas emission
vulnerability modeling
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Multivariate Relationships and Feature Space Analysis

The correlation matrix (Fig. 4) identified strong
associations among several variables. AOD exhibited high
correlation with CO (r = 0.98), NDVI (r = 0.93), and LST
(r = 0.92), indicating that areas with higher particulate
concentrations often coincide with vegetation decline and
thermal stress. NO, also showed strong correlations with
CO (r = 0.92) and LST (r = 0.88). Additionally, nighttime
light radiance and population density were closely linked
(r = 0.89), reinforcing their combined role as indicators of
urbanization intensity.

Autoencoder Training and Latent Representation

The convolutional autoencoder was trained for 100
epochs using the Adam optimizer with a learning rate of
0.001. Training loss, calculated using mean squared error
(MSE), decreased from 0.195 to 0.0021 (Fig. 5), confirming
effective  convergence. The encoder architecture
featured three convolutional layers integrated with batch
normalization and RelU activations, compressing the
nine-band input into 128 latent features. The decoder then
reconstructed the input using transposed convolutional
layers and activation functions.

The latent feature space effectively captured non-linear
dependencies among input variables, enabling the model
to identify complex spatial patterns of vulnerability. For
example, locations with elevated LST, high NO2, and low
NDVI were consistently abstracted into high-risk zones. The
low reconstruction error confirmed the model’s capability
to retain meaningful spatial representations. A single-band
vulnerability index was generated via mean pooling across
all latent feature channels.

The GHG vulnerability index was classified using the
Jenks Natural Breaks method, which separates values
into statistically distinct classes by minimizing within-
class variance and maximizing variance between classes.
This method is widely recognized for its suitability in
environmental vulnerability assessments (Hou et al,, 2022;
Ke etal, 2023; Rzasa and Ciski, 2021). The spatial distribution
(Fig. 6) showed that very high vulnerability zones were
concentrated in southern Bali, particularly in Denpasar and
coastal Badung, where index values exceeded 0.66. These
areas exhibited characteristics such as dense urbanization,
extensive infrastructure, low vegetation cover, and
intensified human activity. High vulnerability also appeared
in segments of southern Gianyar and Klungkung. Moderate
vulnerability values were observed in transitional inland
regions, while low to very low vulnerability was dominant
in upland and northern areas with greater ecological
stability.

Further analysis of administrative-level units revealed
that 11.31% were categorized as high or very high
vulnerability, 18.72% as moderate, and 69.97% as low to
very low (Fig. 7). These village-level areas represent local
jurisdictions responsible for implementing environmental
policy. The highest vulnerability scores were recorded
in Denpasar, southern Badung, Gilimanuk (Jembrana),
and Singaraja (Buleleng), all of which are recognized for
concentrated tourism and urban development.

DISCUSSION

This study presents a significant advancement in
spatial modeling of greenhouse gas (GHG) emission
vulnerability by integrating a convolutional autoencoder
(CAE) deep learning approach with multi-sensor satellite

Correlation Matrix of Input Variables

S02 POP NTL NO2 NDVI LST co AOD

ELEV

0358

I 1 1 1
AOD co LST NDVI NO2

1.0

0.8

-0.6

-0.4

0.2

0.0
NTL

POP

S02 ELEV

Fig. 4. Correlation matrix of environmental variables used in GHG vulnerability modeling
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Fig. 5. Convergence of training loss in convolutional autoencoder over 100 epochs
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Fig. 6. Spatial distribution and proportional area of GHG emission vulnerability in Bali Province
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Fig. 7. Spatial alignment of GHG vulnerability with administrative boundaries

data.The unsupervised CAE model eliminated the need for
labeled training data, addressing a persistent challenge in
regional-scale environmental assessments where ground-
based measurements are often unavailable. Previous
research has demonstrated that autoencoders are effective
for extracting latent features and reconstructing complex
geospatial patterns in remote sensing applications (X. Han
et al, 2017; Pintelas et al, 2021). In this study, the model
achieved rapid convergence and low reconstruction
loss, affirming its ability to process and learn from high-
dimensional environmental inputs.

The resulting vulnerability index revealed distinct spatial
gradients, with high-risk zones concentrated in southern
coastal areas, such as Denpasar and southern Badung. These
regions are associated with dense urbanization, tourism-
related development, and intensive energy use. These
findings align with global studies showing that atmospheric
pollutants like NO,, CO, and AOD are often concentrated in
urban-industrial zones (Fioletov et al.,, 2025; Wang et al.,, 2025).
The integration of land surface temperature, NDVI, nighttime
lights, and population density further substantiated the
mapping of anthropogenic stressors and ecological
degradation (Liu et al, 2015; McRoberts et al,, 2020).

A key innovation of this research is its use of openly
accessible satellite data and an unsupervised deep learning
approach to generate a replicable and cost-effective GHG
vulnerability mapping framework. Designed to be compatible
with Google Earth Engine and other open-source platforms,
this methodology can be scaled to other regions lacking
the technical capacity or financial means for traditional
emissions monitoring. This approach complements previous
efforts in urban classification and land use mapping, where
autoencoder-based models have demonstrated effective
generalization across geographic contexts (Jiang, 2018).
The framework provides critical support for environmental
planning and is aligned with the objectives of SDG 13 on
climate action.
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This study also acknowledges certain methodological
constraints. The use of 1 km? spatial resolution, while
adequate for regional-scale visualization, may not capture
the fine-scale variability needed for local urban or zoning
applications. Additionally, while MODIS and Sentinel-5P
data offer global consistency, they may lack sensitivity
to site-specific emission patterns or infrastructure
dynamics. To enhance spatial detail and accuracy, future
research should incorporate higher-resolution datasets
such as Sentinel-1 and Sentinel-2 imagery. Furthermore,
integrating thematic variables like road networks, industrial
zones, localized greenhouse gas emissions inventories, and
spatially distributed land use categories would provide a
more comprehensive picture of emissions at finer scales
(Q. Feng et al, 2021). Additional consideration should be
given to incorporating landscape circulatory factors and
pollutant dispersion mechanisms using digital elevation
models and meteorological data that capture prevailing
wind directions. The findings validate the effectiveness
of combining unsupervised deep learning with multi-
sensor remote sensing for emission vulnerability mapping.
The proposed framework is transferable, cost-efficient,
and capable of identifying high-risk areas, particularly
in urbanizing regions. This method serves as a valuable
tool for supporting spatially informed climate mitigation
strategies and advancing global climate governance.

CONCLUSIONS

This study demonstrated a rapid and cost-effective
approach to mapping greenhouse gas (GHG) emission
vulnerability by integrating multi-sensor satellite data
with an unsupervised convolutional autoencoder (CAE)
deep learning model. The framework avoided the need for
field-based training data and extracted 128 latent features
from a range of environmental indicators, enabling robust
spatial characterization of emission risks. The vulnerability
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index showed distinct spatial gradients, with the highest
values concentrated in southern coastal areas experiencing
dense anthropogenic activity, particularly from tourism
and urbanization. These results confirm the effectiveness
of unsupervised deep learning in identifying emission
hotspots and spatial variability in data-limited settings.
Utilizing open-access datasets and scalable computational
methods, the framework offers a replicable solution
for other regions, especially in developing countries
where financial and technical constraints hinder regular
monitoring. It presents a practical tool to support emission
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