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WOULD CLIMATE CHANGE POSE A CHALLENGE TO 
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ABSTRACT. Renewable energy sources are critical choices for achieving long-term energy security while minimizing the 
effects of climate change. Wind energy in Egypt has received attention, however, wind power potential is dependent on 
climatic factors such as wind speed and temperature. Therefore, the wind power plan must rely on an in-depth understanding 
of wind resource sensibility to climate change to guarantee its sustainability, thereby supporting wind plan and climate 
change strategy. Using GIS analysis, the effect of climate change has been estimated on wind power density by 2065 under 
the climate change RCP 8.5 scenario. Furthermore, some criteria, such as elevation, slope, road networks, protectorates, 
archeological sites, touristic sites, and grids, have been used to identify regions that would be suitable for wind projects. The 
results revealed that wind energy potential is expected to be vulnerable to climate change, reflected in a 1% decrease in 
regions with high wind power density.  Even after considering the effect of climate change, the Suez Gulf region would be 
the most suitable. Projects can also be expanded to other suitable locations where there are no projects yet, such as the Sinai 
Peninsula and the Red Sea coast.

KEYWORDS: climate change; renewable energy; wind power potential; Egypt; GIS, site suitability
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INTRODUCTION

	 Climate change is a serious challenge that will confront 
humanity in the coming years, which will have socio-
economic and geopolitical consequences. Economic 
activities are a major driver behind the current warming 
trend, as greenhouse gas emissions (GHGs) have been 
steadily increasing since the mid-twentieth century, at 
an unprecedented rate over decades (Pachauri et al. 
2014). One of the main challenges in addressing climate 
change is how to balance the growing energy demand 
with the need to reduce CO2 emissions. Renewable 
energy is essential to reaching climate goals because of 
its crucial role in reducing emissions and meeting rising 
electricity demand in a more sustainable way, as well as its 
advantageous strategic and economic benefits (Al-Riffai et 
al. 2015). In this regard, wind energy is regarded as one of 
the most successful renewables in the world, owing to its 
cost-competitiveness and technological maturity (IRENA 
2023). Thus, wind energy supports the transition to a green 
economy, achieving sustainable development goals (SDGs), 
and international ambitions in terms of climate change 
mitigation. Climate change, on the other hand, would have 
an impact on the energy sector, including supply, demand, 

and infrastructure. Permanently rising global surface 
temperatures associated with unprecedentedly high levels 
of GHGs may considerably affect energy demand patterns 
(Clarke et al. 2022). Climate change is expected to cause 
spatial and temporal variability in wind resource, which can 
have a significant impact on extractable power output and 
production costs. Different parts of the world are likely to 
experience varying trends and magnitudes of change in 
wind power potential (Cronin et al. 2018; Fant et al. 2016; 
Ohba 2019; Pereira et al. 2013). Risks related to climate 
change, such as extreme weather, storms, hurricanes, 
temperature increases, and flooding, are anticipated to 
influence on the resilience of the power system and may 
harm the infrastructures of wind farms (Clarke et al. 2022). 
Climatic determinates of wind power potential include 
wind speed, air pressure, and temperature, hence changes 
in wind speed and temperature as a result of climate 
change impacts would have an influence on wind power 
output (El-Ahmar et al. 2017; Rao 2019).
	 In Egypt, renewable energy sources have experienced 
a noteworthy growth during the last decade. The 
total installed capacity was 6691 MW, which includes 
hydropower, onshore wind, solar PV, solar CSP, and 
biomass, accounting for 25.87 TWh of total electricity 

https://doi.org/10.24057/2071-9388-2020-136
https://doi.org/10.24057/2071-9388-2025-3669
https://crossmark.crossref.org/dialog/?doi=10.24057/2071-9388-2025-3669&domain=pdf&date_stamp=2026-10-01
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generated. This transition to renewable energy is anticipated 
to save $287.01 billion by 2050 due to decreased emissions 
(Abbas et al. 2021). Wind power represents one of the most 
promising sources of renewable energy. The installed wind 
power capacity has reached 2191 MW, contributing 3% of 
the country’s total electricity generation. With ambitious 
national strategies aiming to increase this share to 14% 
in the near future, Egypt is actively positioning itself as a 
regional leader in wind energy development. Key projects 
such as Gebel El-Zeit and Zaafrana have demonstrated 
considerable success, attracting international investment for 
large-scale wind power deployment. A clear and supportive 
governmental policy framework underpins its progress in 
wind power. The government has adopted a long-term 
Integrated Sustainable Energy Strategy (ISES) targeting 42% 
renewable energy by 2035, with wind playing a major role in 
this mix. Policy instruments such as feed-in tariffs, competitive 
bidding, and public-private partnerships have been crucial in 
mobilizing both domestic and foreign investment. In addition, 
streamlined licensing procedures and the availability of land 
in high-wind zones, such as the Gulf of Suez, have further 
accelerated project implementation (Ghanem & Elsobki 2024). 
Moreover, Egypt is fostering local manufacturing capabilities 
for wind energy components, including towers and related 
infrastructure. This is supported by competitive advantages 
such as low labor costs, favorable energy prices for industry, 
and access to raw materials (Salah et al. 2022). These factors 
enhance Egypt’s competitiveness in the global renewable 
energy market. Moreover, the development of wind power 
contributes to national goals of reducing greenhouse gas 
emissions, diversifying energy sources, and achieving long-
term sustainability.
	 Egypt has a desert climate, with hot and dry summers and 
mild winters with little rainfall. It is predicted to experience 
negative climate change consequences as it becomes hotter 
and drier. Also, climate change may make climate extremes 
more frequent and severe that are related to renewable energy 
production in the future (Abbas et al. 2021; Smith et al. 2013). 
In warmer temperatures, wind power plants, for instance, 
which are usually designed for conditions of around 250C, 
may become less effective, reducing generation efficiency. 
Egyptian electricity systems may be better able to deal with 
the negative effects of rising temperatures and heat waves 
if adaptation measures are taken, such as incorporating a 
climate change impact assessment into energy planning with 
the aim of identifying locations for the construction of future 
power plant1. 
	 Most published research on climate change’s impact has 
overlooked several critical sectors, including the energy sector, 
despite its vital importance (Hassaan 2018). Naturally, numerous 
research studies were carried out to assess the wind resource 
at multiple sites ( Agwa et al. 2023; Ahmed 2010; Ahmed 2012; 
Ahmed 2018a; Ahmed 2018b; Hamouda 2012; Lashin & Shata 
2012), as well as conducted multi-criteria suitability analysis for 
installing offshore wind farms (Mahdy & Bahaj 2018). However, 
these studies presented assessments of wind power potential 
under current wind speeds, without considering climate 
change impacts and climate change scenarios. Hence, this 
study aims to assess the impact of climate change on the 
potential for wind power generation and determine the most 
suitable area to install projects by 2065 under the climate 
change RCP 8.5 scenario. Such research work can support 
the decision-making and policymaking process in terms of 
planning wind energy projects.

Materials and Methods

	 Geographical Information System (GIS) can be used for a 
wide range of fields as they can assist in organizing, querying, 
storing, and displaying spatial and non-spatial data. Thus, it can 
support knowledgeable decisions and policymaking. Power 
generation from renewable resources depends on numerous 
spatial determinants, such as wind speed, solar radiation, 
biomass availability, locations, grids, energy demand …etc. In 
this regard, several studies have been undertaken in different 
regions of the world, applying GIS analysis tools to analyze 
wind power potential (Eshete & Abate 2022; Razeghi et al. 
2023; Samak 2023) or perform multi-criteria suitability analysis 
for siting wind power farms in either inland regions (Atici et al. 
2015; Aydin et al. 2010; Elmahmoudi et al. 2020; Pakere et al. 
2022), onshore regions (Effat 2014; Sliz-Szkliniarz et al. 2019), 
or offshore regions (Saleous et al. 2016; Tercan et al. 2020). 
Meanwhile, some previous research work used GIS to assess 
the economic impact of the turbines, in the construction and 
operation phases (Pakere et al. 2022).
	 The Arab Republic of Egypt is located in the northeastern 
part of Africa, with the Sinai Peninsula forming a land bridge 
into western Asia. Egypt is bordered by the Mediterranean 
Sea to the north, the Red Sea to the east, Libya to the west, 
Sudan to the south, and the Gaza Strip to the northeast. 
Geographically, it lies between latitudes 22° and 31° North and 
longitudes 25° and 35° East. The Nile River flows through the 
country from south to north, dividing it into distinct eastern 
and western regions. This strategic location encompasses a 
variety of climatic and topographic zones relevant to wind 
energy assessment under different climate change scenarios.
	 In this study, a four-phase methodology was implemented 
to assess the potential impacts of the climate change RCP 8.5 
scenario on wind power in Egypt and identify suitable sites for 
future development using a GIS-based approach. The phases 
include (1) data collection and manipulation, (2) assessing 
current and projected wind power potential, (3) spatial-
temporal profiling of changes in wind power, and (4) multi-
criteria suitability analysis. Fig. 1 presents an overview of the 
workflow, and the following sections describe each phase in 
detail.

Data Collection and Manipulation

	 Data on wind energy determinants were obtained from 
the Coordinated Regional Climate Downscaling Experiment 
(CORDEX)2 in February 2022 for the Middle East and North Africa 
region. Climate models are forecasts of the future state of the 
climate system and are used to understand how the climate will 
change (Abbas et al., 2021). The CORDEX provides downscaled 
climate change scenarios using Regional Climate Models 
(RCMs) alongside the Intergovernmental Panel on Climate 
Change (IPCC) Fifth Assessment Report for a variety of global 
domains. RCMs usually provide climatic data at high spatial and 
temporal resolution. The data were collected monthly, and had a 
spatial resolution of 24 km, which was achieved using the RCA4 
model (Hassaan et al. 2024; Nabipour et al. 2020). The gathered 
data included historical data on wind speed, air temperature, 
and air pressure at 10 m from 1970 to 2005, which represents 
the historical period, with 1988 being the mid-period year for 
this reference period. In addition, projected data on the same 
variables were acquired for the climate change RCP 8.5 scenario 
for 2050-2080, which represents 2065. The IPCC developed four 
Representative Concentration Pathways (RCPs) labeled based 
on possible radiative forcing in W/m2  by the end of the twenty-

Ghanem A. , Abdrabo M.A. and Hassaan M.A.	 WOULD CLIMATE CHANGE POSE A CHALLENGE ...

1IEA. (2023). Climate Resilience for Energy Transition in Egypt. International Energy Agency (IEA), 
Paris. https://www.iea.org/countries/egypt. [Accessed 16 August 2023]
2CORDEX. (2022). Coordinated Regional Climate Downscaling Experiment. https://esgdn1.nsc.liu.se/search/cordex/. [1 February 2022].
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first century, relative to the 1986-2005 period. Climate change 
scenarios represent how anthropogenic GHG concentrations 
may evolve in the future. RCP8.5 is considered the worst-case 
scenario, which has a radiative forcing of 8.5 W/m2, high-level 
emissions of more than 1000 CO2-eq, and a 3.7 °C increase in 
mean temperature by 2100, implying no further climate efforts 
(Pachauri et al. 2014). The RCP 8.5 scenario is selected, which, 
despite being the highest emission pathway, provides valuable 
insights into potential extreme impacts on wind resources. 
Given Egypt’s long-term energy planning and the critical need 
to assess site robustness under high-risk climate conditions, 
RCP 8.5 is a useful analytical boundary to explore the upper 
limits of climatic impact. 
	 Given the absence of direct long-term observational 
wind speed data across Egypt for the historical period, this 
study relied on the validation efforts of previous research that 
assessed the accuracy and performance of CORDEX-RCM 
outputs (Hassaan et al. 2024; Nabipour et al. 2020). Therefore, 
no additional bias correction or validation was conducted in 
this study, and the dataset was used as a reliable source to 
analyze climate-induced changes in wind power potential.

	 Furthermore, data on criteria for siting wind power projects 
such as elevation, roads, high voltage grids, and land use were 
downloaded from DIVA-GIS3, which provides geographical 
open access data for the world’s countries. Moreover, data on 
sensitive land uses such as archeological sites were acquired 
from (Nagi & Nagi 2002). The collected data were integrated 
into a geodatabase that included various vector and raster 
feature classes (Table 1). Using ArcGIS Software version 10.8, 
the collected data were masked and manipulated to produce 
raster layers representing monthly and annual averages of 
wind speed, air pressure, and air temperature over historical 
and future periods. 
	 To assess whether the observed changes in monthly mean 
wind speeds between the reference period (1970–2005) and 
the future period (2050–2080) under the RCP8.5 scenario are 
statistically significant, a paired sample T-test was conducted. 
The test compared the same months between the two periods, 
based on monthly mean values derived from wind speed data 
that had been spatially processed. The analysis was performed 
using SPSS software version 26.

3DIVA-GIS. (2022). DIVA-GIS. Free Spatial Data by Country. Available: https://www.diva-gis.org/gdata. [Accessed 16 November 2022].

Fig. 1. Proposed methodology of assessment wind power under climate change

Table 1. Geodatabase Structure

Feature Class Type        Description

Current_Wind_Speed Raster      Current wind speed for the reference period (1970-2005)

Current_Air_Pressure Raster      Current air pressure for the reference period (1970-2005)

Current_Air_Temperature Raster      Current air temperature for the reference period (1970-2005)

Projected_Wind_Speed Raster      Projected wind speed for the period (2050-2080) under RCP 8.5 scenario

Projected_Air_Pressure Raster      Projected air pressure for the period (2050-2080) under RCP 8.5 scenario

Projected_Air_Temperature Raster      Projected air temperature for the period (2050-2080) under RCP 8.5 scenario 

Elevation Raster      Elevation above mean sea level 

Slope Raster      Slope of land  

Roads Vector      Road network

Sensitive land uses Vector      Protectorates, archaeological sites, and touristic destinations

Grid Vector      High voltage grids
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Assessing Current and Projected Wind Power Potential

	 To find wind power potential under current conditions 
as well as projected climatic conditions in the future, the 
Eq.1 was employed: 

	 Where: P
w – Power in wind,  ρ – Air density, ν – Wind 

Speed (Sawadogo et al. 2021)
	 The air density was calculated according to the Eq. 2:

	 Where: ρ – Air density, R – The gas constant = 287 J/kg-K 
for air,  P – Air pressure, T – Air temperature in kelvin  (Tong 
2010)

Profiling Changes in Wind power Under Climate Change

	 The estimated wind power potential of the reference 
period (1970–2005) was compared to the estimated future 
wind power potentials under the RCP8.5 scenario by 
the year 2065 (2050–2080).  It is worth noting that wind 
turbulence needs to be considered when deciding to 
locate wind farms, as wind speed fluctuations may cause 
fluctuations in power output and also damage the turbine. 
Therefore, probability density functions (PDFs) were 
produced on an annual basis to determine the variance in 
wind speed in each area.

Suitability Analysis for Siting Future Utilization of Wind 
Power 

	 In general, wind power potential is critical but not 
sufficient for deciding where to locate wind power projects 
due to the existence of other factors that may raise the cost 
of the project or restrictions that prevent its construction. 
This emphasizes the importance of multi-criteria suitability 
analysis in determining the most suitable locations for wind 
farms, which are dependent on a variety of factors. Such an 
analysis involves the use of a set of criteria, including local 
topography, economic viability, and environmental aspects. 
Local topography criteria assess appropriateness for wind 
power farm construction and operation. For example, 
suitable sites for a wind farm should have a gentle slope to 
avoid difficulties in the installation and operation of wind 
turbines. In this respect, it was suggested that the slope of 
wind farm sites should not exceed 25  or more favorably 15 
. In addition, wind farms are usually installed at relatively 
high altitudes to generate more power. Nevertheless, 
installation at higher than 2000 m is not preferred because 
the air density reduces at these levels, resulting in low 
turbine efficiency. Also, moving the turbine components 

to extremely high regions is challenging (Feng 2021; 
Rediske et al. 2021). Economic viability entails identifying 
sites with the largest wind power potential as well as more 
accessible sites, allowing for easier and lower-cost wind 
farm construction and maintenance. Also, installing wind 
farms as close to the transmission power grid as possible 
to minimize power loss and grid connection costs. Wind 
farm construction and operation are usually associated 
with environmental impacts, for instance, turbine noise 
that can influence on both human health and animal life. 
Wind farms should thus be located away from sensitive 
land uses such as protectorates, archaeological sites, and 
tourism destinations. 
	 To represent the identified criteria and their relevant 
indicators, the slope was derived from the elevation digital 
model. Also, using Spatial Analyst Tools (Euclidean Distance 
Tool), several raster surfaces were created, representing 
the distance to road networks, power grids, and sensitive 
areas. As a result, six raster feature classes were produced, 
representing various indicators of the criteria considered. 
Thereafter, each of these raster surfaces was normalized 
through one of the Eqs. 3-4: 

	 Where: N
x
 – Normalized pixel value, X – Pixel value,  

X
min  

– Minimum pixel value in the raster surface, 
X

max
 – Maximum pixel value in the same raster surface 

(Hassaan et al. 2021)
	 It should be noted that the raster surfaces of those 
indicators that are positively correlated with suitability 
were normalized according to formula (3), while the raster 
surfaces of those indicators that are negatively correlated 
with suitability were normalized according to formula 
(4). Meanwhile, the raster surface of elevation, whose 
curvilinear relationship with suitability, was normalized 
according to the Eq. 5:

	 Where: N
x
 – Normalized pixel value, X – Pixel value,  

X
min

 – Minimum pixel value in the raster surface, 
X

max
 – Maximum pixel value in the same raster surface

	 These different formulae of normalization ensured 
consistent normalized raster surfaces, with pixel values 
ranging between 0 and 1 representing the least and 
highest levels of suitability, respectively. This is followed 
by calculating the composite suitability index through 
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Table 2. List of criteria and their relevant indicators

Criteria          Indicator Unit Relationship

 Local topography 
         Slope Degree Negative

         Elevation Meter Curvilinear

Cost-effectiveness 
         Wind power potential W/m2 Positive

         Distance to roads network Meter Negative

Environmental impact
         Distance to Grid Meter Negative

         Distance to sensitive land uses Meter Positive

(1)

(3)

(5)

(4)

(2)
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Fig. 3. Predicted change in monthly mean wind speed

Fig. 2. Annual wind speed by 2065 under RCP 8.5 scenario compared to the reference period (1970-2005)

aggregating various primary indicators, assuming equal 
weight of all indicators according to the Eq. 6: 

	 Where: S –  Suitability index, N
i
 –  Normalized pixel 

value of indicator i,  W
i
 – Weight of indicator N

i
	 As a result, a new raster surface was generated, representing 
different levels of suitability according to the considered 
criteria and their indicators. The resulting raster surface has 
pixel values ranging between 0 for the least suitable locations 
and 1 for the most suitable locations.  

Results and Discussion 

Projected Changes in Wind Speed

	 Annual mean wind speed in the reference period 
(1970–2005) ranged from 2.76 to 5.73 m/s at 10 m, whereas 
under the RCP8.5 scenario, annual mean wind speed would 
range from 2.74 to 5.91 m/s at 10 m (Fig. 2). This means that 
the annual mean wind speed is expected to experience a 
marginal increase. It should be noted in this respect that the 
annual mean wind speed does not reflect temporal and spatial 
variations in different locations within the country. Therefore, 

there would be a need to look more in-depth at temporal and 
spatial variations in different parts. 
	 Temporally, the monthly mean wind speed in the reference 
period (1970–2005) ranged between 3.07 and 4.20 m/s at 10 
m. Winds exceeding 4 m/s are prevalent in the summer and 
spring. Higher wind speeds indicate greater potential for 
electricity generation. It is worth noting that wind speeds 
are high during the summer, which is Egypt’s peak electricity 
demand season4. Monthly mean wind speed is expected to 
range between 3.20 and 4.22 m/s under the climate change 
scenario RC8.5. Compared to the reference period, wind speed 
on average would increase by 10% in September, while wind 
speed in February is expected to be unchanged. Some months 
would, meanwhile, experience some decline in wind speed, 
with August experiencing the largest decline, exceeding 4% 
(Fig. 3).
	 A paired sample T-test was applied to the corresponding 
monthly averages between the two periods, and the results 
showed that the difference was not statistically significant at 
the 0.05 level (p > 0.05). This minor variation can be attributed 
to natural variability and may also fall within the margin of 
error inherent in the climate model used.
	 Spatially, wind speed varies from one area to another. 
Different sites have been chosen to evaluate wind potential. 
In the Gulf of Suez region, there are already some wind power 

(6)

3CEIC. (2024). Egypt Electricity Consumption. Ceicdata. https://www.ceicdata.com/en/egypt/electricity-consumption/electricity-
consumption. [Accessed 11 April 2024].
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Fig. 5. Changes in annual mean wind speed at the selected areas

Fig. 4. Geographic location map of the eight selected sites in Egypt

projects, and more will be added in the future. Egypt intends 
to grow in the future, including the Red Sea and the West Nile 
areas. Furthermore, other sites, such as Sinia, Aswan, Sharq El 
Owainat, the Mediterranean Coast, and Kharga Oasis, have 
been selected to investigate the possibility of establishing 
future wind farms for local community development if they 
are determined to be suitable (Fig. 4).
	 Climate change is likely to cause different patterns 
in wind speed (Fig. 5). The Suez Gulf, Red Sea Coast, 
Sharq El-Owainat, and Aswan areas are expected to have 
significant increases in annual mean wind speeds ranging 
between 2.8 -1.1%.  Kharga Oasis would experience the 
largest increase in wind speed with 7.3% compared to the 
reference period. The West Nile and the Sinai Peninsula 
areas would be unchanged, while the Mediterranean coast 
would experience a 2% decrease. The expected decline 
in wind speed alongside the Mediterranean coast was 
attributed to a decrease in the temperature difference 
between the polar regions and the tropics, resulting in a 
decrease in average wind speeds in the middle latitudes 
(Ebinger & Vergara 2011).
	 In order to understand patterns of change in wind 
speed in different sites under the climate change scenario 
RCP8.5 compared to the reference period, the wind speed 
probability density function (PDFs) was estimated. It is 
obvious that PDFs vary noticeably among different sites, 
so it is crucial to choose a location with favorable wind 

conditions for wind power generation (Fig. 6). The findings 
indicate that (a) Suez Gulf is predicted to be the windiest 
site, with increased variance with high wind speed values. 
(b) The annual mean wind speed of the Red Sea Coast is 
expected to rise, which would increase the likelihood of 
higher wind speeds at low values and lower wind speeds 
at high values. Furthermore, no significant variations 
are expected in this area. (c) In the West Nile region, the 
variance in wind speed would increase without a rise in its 
annual mean. This means a lower level of reliability of wind 
power in this region. (d) In the Sharq El-Qwinat region, 
the annual mean wind speed is expected to experience 
a marginal increase with an unchanged variance in wind 
speed, indicating that there is a probability increase in 
wind speed toward high values. (e) The annual mean of 
wind speed in Aswan would increase with a low variance, 
indicating that there is an increased probability of higher 
wind speed values. (f ) In Kharga, the annual mean wind 
speed is expected to increase, with an increased probability 
of higher wind speed values and also low variance that 
indicates less fluctuation in wind speed. (g) Alongside the 
Mediterranean Sea coast, annual mean wind speed would 
decrease with unchanged variance, indicating that there 
is a decreased probability of higher wind speed values. (h) 
The variance in wind speed in Sinai would increase slightly 
without a rise in its annual mean. This generally means 
unchanged under climate change conditions.
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Expected Changes in Air Density

	 Based on temperature and air pressure for the reference 
period (1970–2005), the annual mean air density was found 
to be 1.00 – 1.22 kg/m3. Due to the inverse relationship 
between temperature and air density, an increase in 
temperature causes a decrease in air density. Under 
the RCP8.5 scenario, the annual average temperature is 
expected to increase by about 3 K on average, while air 
pressure is expected to experience an approximate decline 
compared to current levels of air pressure on average. 
Accordingly, the range of the annual average air density is 
expected to be 1.21–0.99 kg/m3, decreasing by about 3% 
(Fig. 7).

Estimated Changes in Wind Power Potential

	 Annual wind power density ranged between 12.34 
and 112.70 W/m2 during the reference period (1970–2005), 
whereas it is anticipated to be 11.99 to 122.33 W/m2 (Fig. 8). 
This, consequently, shows that climate change would have 
a slight negative impact on annual mean wind power 

density, and this decline is mainly due to a reduction in 
expected air density.
	 Wind power potential was classified into three 
categories based on wind speed in the reference period 
and under the RCP8.5 climate change scenario (Tables 
3 and 4). Land areas with high wind power potential are 
projected to decrease by 1% because of climate change 
impacts.
Annual wind power density in different locations of Egypt 
varied notably during the reference period, ranging 
between 29.35 and 53.61 W/m2, and is anticipated to 
range between 29.95 and 55.40 W/m2 under climate 
change (Fig. 9). Except for the Mediterranean Sea coast, 
all of the selected areas are predicted to increase their 
annual average wind power density. The Suez Gulf, which 
has significant potential, is anticipated to increase by 3%. 
This is consistent with (Gebaly et al. 2023) finding that wind 
power density in the Gulf of Suez would experience an 
increase under climate change scenarios. Meanwhile, sites 
with moderate wind power potential, such as Kharga Oasis, 
are expected to increase by 18%.

Fig. 6. Probability distribution function (PDFs) of wind speed in the selected areas
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Fig. 7. Annual air density by 2065 under RCP 8.5 scenario compared to the reference period (1970-2005)

Fig. 8. Annual wind power density by 2065 under RCP 8.5 scenario compared to the reference period (1970-2005)

Table 3. Classification of wind power density (1970-2005) at 10m

Table 4. Classification of wind power density under RCP 8.5 scenario at 10m

Class Wind speed (m/s) Wind power density (W/m2) Resource potential Area (%)

1 2.8 - 3.5 < 28 Low 44

2 3.5 - 4.1 28 - 47 Moderate 52

3 4.1 - 5.7 > 47 High 4

Class Wind speed (m/s) Wind power density (W/m2) Resource potential Area (%)

1 2.7 - 3.6 < 28 Low 45

2 3.6 - 4.1 28 - 47 Moderate 52

3 4.1 - 5.9 > 47 High 3
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	 Limited research publications (Gebaly et al. 2023; 
Hassaan et al. 2024) examined changes in wind resources 
under climate change scenarios that revealed multiple 
expected trends in wind power density over Egypt. This 
research article’s findings differed from those of (Gebaly et 
al. 2023), who found that wind power potential based on 
the worst scenario (SSP5-8.5) would rise between 2041 and 
2100.
 
Suitable Sites for Future Utilization of Wind Power 
Projects

	 This research paper suggested an approach to 
conducting a suitability analysis to determine the most 
suitable locations for wind power projects in light of 
climate change, which aspect has not been discussed 
in previous studies at all (Gebaly et al. 2023; Hassaan et 
al. 2024). Indicators revealed various levels of suitability 
(Fig. 10); for instance, based on slope and the distance 
to sensitive areas, western parts are more suitable than 
eastern parts. Meanwhile, the eastern parts have a higher 
level of suitability based on elevation and distance to the 
roads. This emphasizes the importance of a composite 
index, which combines several indicators into a single 

numerical value that represents the overall compatibility 
of different parts.
	 Fig. 11 depicts the composite suitability index that 
indicates the most suitable regions are predicted to be 
in the Suez Gulf, a part of Sinai, and southern Egypt, 
which together encompass around 8.8% of Egypt’s entire 
landmass. In general, depending on the criteria chosen, it is 
possible to argue that up to 75% of Egypt’s land would be 
suitable for wind power installation in the future under the 
RCP8.5 climate change scenario.
	 Expected minimization in the landmass of the most 
suitable sites, especially in the Gulf of Suez region (Table 
5), where wind power projects are highly concentrated, 
may obstruct the growth of additional wind projects there 
and necessitate expansion in other sites. There are no plans 
for installing wind power projects in the Sinai Peninsula, 
the Red Sea Coast, or  Kharga Oasis, for instance, but 
these areas may be more suitable under climate change, 
especially since technological progress ensures that 
integrating remote locations is no longer a barrier to Egypt’s 
renewables development (Elgeziry et al. 2019). There 
could be a considerable socio-economic improvement 
for the local community if a wind farm proposal is made 
there. Furthermore, it presents a chance to export energy 

Fig. 9. Predicted change in wind power density in 2065

Fig. 10. Normalized raster surfaces of the selected indicators
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production to foreign nations. The West Nile region is one 
of the planned sites for wind farms with towers of up to 
120 m for developing this area, which is expected to be 
suitable for wind project installation under climate change 
based on the selected criteria. Nevertheless, in general, it is 
preferable to expand to another much more suitable site 
with great potential for wind power. In addition, this area 
would experience significant fluctuations in wind speed, 
making it unsuitable for the installation of a wind farm 
since turbulence reduces wind turbine performance.

Conclusions

	 Climate change has become an issue of concern, with a 
wide range of impacts already observed in countries all over 
the world. The objective of this research article is to assess 
climate change impacts on wind power potential utilizing 
climatic factors such as wind speed, air pressure, and 
temperature from 1970 to 2005, as well as expected values 
under the climate change RCP 8.5 scenario (2050-2080). In 
addition, some criteria were employed to determine the 
most suitable regions for wind farm installations, including 
wind power density, elevation above mean sea level, slope 
of land, road networks, protectorates, archeological sites, 
touristic sites, and power grids. Spatial analysis was carried 
out using GIS, and the results were presented in maps, 
tables, and figures. 
	 Although the average wind speed did not exhibit a 
statistically significant change between the reference and 
future periods under the RCP8.5 climate change scenario, 

the wind power density demonstrated more spatial and 
quantitative variability. Specifically, the annual maximum 
wind power density increased from 112.70 W/m² to 
122.33 W/m², while the minimum slightly decreased from 
12.34 W/m² to 11.99 W/m². However, the overall average 
wind power density across Egypt declined. This apparent 
inconsistency is due to the nonlinear relationship between 
wind speed and wind power density, where even small 
increases in wind speed at certain locations can produce 
relatively large increases in power output. At the same time, 
this decline is mainly due to a decrease in the predicted 
air density that is greater than the rise in the expected 
wind speed under the future climate scenario (RCP8.5). 
This study demonstrates that climate change would have 
a slight adverse impact on wind power potential. Thus, it 
may not be able to produce more wind power in the future 
than it already does in current climate conditions. 
	 Meeting increased power demand in the future can be 
accomplished by installing more wind farms. The findings 
revealed that wind power potential in the different sites 
would not change greatly under climate change, with 
different patterns in each area, however, the Gulf of Suez, 
Red Sea Coast, Sinai, and Kharga would have high annual 
mean wind density. Suitability analysis revealed that 
different parts have varied levels of suitability for future 
utilization of wind power. In this respect, the Suez Gulf 
region is expected to be the most suitable region, which 
is consistent with the state’s plans for wind projects in this 
region. It can be expanded to other suitable areas, such as 
the Red Sea Coast and Sinai, for example, to establish more 

Fig. 11. Suitable sites for installing wind power projects

Table 5. Suitability level for future utilization of wind power under RCP8.5 climate change scenario

  Suitability level
Reference Period (1970-2005)    Under RCP8.5 scenario   (2050-2080)

Area (km2) (%) Area (km2) (%)

  Most suitable areas 95,167.39 9.50 88,837.18 8.85

  More suitable areas 461,043.49 45.94 450,372.7 45.15

  Moderately Suitable areas 288,279.32 28.72 298,773.12 29.95

  Less suitable areas 155,858.11 15.54 156,858.94 15.72

  Least suitable areas 2,363.28 0.23 2,458.71 0.24
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projects to reach the desired percentage of electricity from 
wind.
	 In developing a strategy for wind energy utilization, it is 
essential to take into account not only the current situation 
but also predicted conditions under climate change and 
more viable measures.
	 It is important to note that the observed changes in 
wind speed and power density may fall within the typical 
range of modeling uncertainty. Therefore, the conclusions 
and recommendations are not only based on these 
numerical differences, but also on the absence of any 
substantial decline in wind resource potential, as well as 
the strategic importance of energy diversification.
	 Maximum utilization of wind power potential in Egypt 
under climate change requires:
	 • Integrating wind power into a diversified energy 
system can enhance energy security and its resilience. By 
combining various renewable energy sources including 
wind and solar power, with energy storage systems, a 
stable supply of energy can be maintained, especially 
under climate variability.
	 • As climate change may cause an increase in the 
magnitude and frequency of extreme weather events, 
there is a need to develop and implement comprehensive 
disaster preparedness and response plans for wind farms 
to minimize damage due to extreme weather events. 
For example, wind turbines should be designed and 
constructed to withstand extreme weather conditions. This 
includes using materials and engineering techniques that 
can resist high winds, heavy precipitation, and temperature 
fluctuations. Regular maintenance and inspection of 
turbines are also essential to identify and address any wear 
and tear due to climate impacts. 
	 • Plan new wind farms or expand existing ones by 
taking into account long-term climate projections. By 
using climate data and models, developers can choose 
sites that are less vulnerable to extreme weather events, 
such as hurricanes, storms, or prolonged heatwaves.
	 • Implementing adaptive management practices 
allows for the flexibility to adjust operations in response 
to changing climate conditions. Regularly reassessing the 
risks and vulnerabilities associated with climate change can 
assist in ensuring proper and viable investment concerning 
renewable energy utilization.
	 • Promoting policy-relevant research on wind energy 
potentials under climate change can support generating 
knowledge and thus more informed policy and decision-
making process.
	 • Encouraging collaboration between climate 
researchers and renewable energy stakeholders can 
improve wind power resilience. Research can focus 
on developing advanced weather forecasting models, 
understanding climate change impacts on wind patterns, 
and optimizing wind turbine technologies.
	 • Adopting a more participatory approach actively 
engaging different stakeholders including local 
communities in decision-making processes and 
encouraging renewable energy adoption can foster 
community support and enhance the long-term 
sustainability of wind power projects.

	 • Increasing awareness of climate change impacts 
and the importance of renewable energy and promoting 
renewable energy initiatives can encourage public-
private partnerships in the renewable energy sector. This 
may require developing policies that promote renewable 
energy adoption by implementing measures such as 
providing financial incentives for climate-resilient projects.

Limitations and Future Work

	 This study provides insights into the spatial and temporal 
variability of wind power potential under projected 
climate conditions. While the findings lead  to a broader 
understanding of future wind energy resources, several 
limitations have been identified that may influence the 
interpretation of the results. Recognizing these limitations 
is essential for guiding more targeted research in the future. 
First, the analysis relied on a single regional climate model 
(RCM) under a single climate change scenario (RCP8.5), 
which may not fully capture the range of possible climate 
futures. Therefore, multiple RCMs and climate scenarios 
such as RCP4.5 or Shared Socioeconomic Pathways (SSPs) 
should be incorporated in future analyses to improve the 
robustness and generalizability of the results. Second, 
the land suitability assessment was limited to proximity 
constraints such as roads, power grids, protected areas, 
archaeological sites, and touristic destinations. Certain land 
use categories were not fully integrated, such as military 
zones, urban expansion areas, high-value agricultural lands, 
and airport zones. It is recommended that future studies 
incorporate these additional constraints to enhance the 
practical feasibility of the selected sites. Third, all suitability 
criteria were assigned equal weights, which may not reflect 
the importance of each criterion. Future studies could apply 
multi-criteria decision-making techniques, such as the 
Analytic Hierarchy Process or fuzzy logic, to assign relative 
weights. Fourth, the reference period (1970–2005) may 
not fully represent current climatic conditions, particularly 
given recent trends in climate variability, and the collected 
data are at a height of 10 meters. It is recommended to 
use more recent reference periods, such as the 2000–2020 
period, higher temporal resolution data, and extrapolate 
wind speeds to turbine hub heights, such as 50–100 meters, 
to enhance practical relevance. Fifth, wind speed modeling 
involves a degree of uncertainty, especially when using 
data from only one regional climate model and low spatial 
resolution. These uncertainties can affect how accurately 
wind power density is estimated. To improve future results, 
it is recommended to use multiple climate models and 
apply downscaling techniques to reduce uncertainty and 
increase confidence in the projections. Finally, although 
this study evaluated wind power density across Egypt 
and performed an analysis at eight selected sites using 
ArcGIS tools, these locations may not fully capture the 
local variability of wind resources. Future research could 
benefit from focusing on only a single location using 
the same methodology with higher-resolution spatial 
and climate data, possibly combined with ground-based 
measurements to enhance the local accuracy and provide 
deeper insights into wind power potential.
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ABSTRACT. Nineteen bioclimatic parameters from BIOCLIM are widely used in Species Distribution Modeling (SDM). To 
improve modeling quality, it is essential to reduce the number of parameters. Several approaches have been proposed to solve 
this challenge, but each has its own limitations. In this study, we aimed to develop an effective statistical method based on 
identifying correlation groups of parameters and selecting the least correlated ones. Several statistical techniques were used 
to ensure a reliable parameter selection: simple correlation matrix analysis, cluster analysis (HDBSCAN), and factor analysis 
(varimax and quartimax). As an example, bioclimatic parameter values for the period 1991–2020 were analyzed for the whole 
globe. The results obtained using different methods show good consistency. Several correlation groups were identified, 
ranging from four to five, depending on the interpretation of the negative correlations. One group of two parameters, BIO14 
and BIO17, can also be identified based on the results of the varimax factor analysis, although this correlation group was not 
identified by other methods. Finally, six bioclimatic parameters were selected (BIO2, BIO5, BIO7, BIO14, BIO15, and BIO18), one 
from each group that demonstrated the minimum average value of the correlation coefficient with parameters from other 
groups. The average correlation between the selected parameters was significantly lower than in the case of using previously 
applied methods with the same number of selected parameters.
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INTRODUCTION

	 Living organisms, as open systems, are affected by 
the environment. Climatic factors, particularly ambient 
temperature, are the most significant abiotic factors 
determining the existence and reproduction of individuals 
and populations. For terrestrial organisms, humidity is also 
an important factor (Bonan 2008; Schimel 2013). Climate 
change has various effects on land and marine ecosystems, 
including their structure, species composition, and 
relationships between components. The most significant 
issue is the impact of climate and climate change on species 
distribution, including shifts in their ranges (McCarty 2001; 
Gilman et al. 2010; Post 2013).
	 The assessment of potential changes in species 
distribution, particularly those important for economic 
activity and human health, presents a significant challenge 
for modern science. Currently, the main methodological 
approach to this issue is Species Distribution Modeling 
(SDM), which is a rapidly evolving field at the intersection 
of ecology, biogeography, applied climatology, and 
information technology (Franklin 2009; Peterson et al. 

2011; Araújo et al. 2019; Srivastava et al. 2019). Various 
algorithms are used to construct these models, including 
general-purpose machine learning techniques such as 
support vector machines, logistic regression, and neural 
networks, as well as specialized methods designed for 
habitat modeling, the most commonly used of which is 
MaxEnt (Phillips et al. 2004; Phillips et al. 2006).
	 Although a wide variety of environmental factors, 
both abiotic and biotic, can be used as predictors of 
species distribution in these models, climate variables 
play a major role in almost all models, as they have a 
fundamental limiting effect on organism ranges (Popova 
and Popov 2013; Popova and Popov 2019). Obviously, it is 
possible to design a huge, if not infinite, number of such 
variables. However, not all variables will correlate well with 
distribution data or be significant for range formation, and 
not all will be convenient for projecting models to other 
regions of the world. 
	 In 1984, BIOCLIM was proposed as one of the first 
methods for constructing Species Distribution Models 
(Nix 1986; Busby 1991). This software package included a 
set of 12 climatic parameters, specifically designed to be 

https://doi.org/10.24057/2071-9388-2020-136
https://doi.org/10.24057/2071-9388-2020-136
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biologically significant for most species and suitable for 
projecting models across hemispheres. The package was 
developed by a group of Australian scientists and was 
initially used to assess the invasive potential of different 
species. In 1996, a new version of this software package 
was presented, with the number of bioclimatic parameters 
increased to 19 (Booth 2018). Their list is given in Table 1. 
The names of these parameters begin with the prefix BIO, 
followed by a number from 1 to 19 (BIO1-BIO19).
	 As shown in Table 1, the first 11 parameters (BIO1-
BIO11) are related to temperature, while the remaining 8 
(BIO12-BIO19) reflect a precipitation regime. There is no 
specific mention of a particular month or season. Instead, 
periods of the year with the highest or lowest temperatures, 
or the highest or lowest precipitation, are used. This makes 
it easy to move models between regions with different 
annual climatic variation, like hemispheres. In addition, 
four parameters (BIO8, BIO9, BIO18, and BIO19) are “mixed”, 
reflecting the values of climatic factors of one type over 
a period determined by factors of another type. Such 
an arrangement can be useful for modeling the ranges 
of certain species, but it can also cause some problems 
in certain cases. For instance, they can have a very high 
gradient of spatial variability in some regions, particularly 
in equatorial and tropical areas. Some researchers 
recommend avoiding the use of these parameters or using 
them with extreme caution (Booth 2022).
	 The design of the BIOCLIM parameters has been so 
successful that they are widely used in SDM and other areas 
of ecological modeling. This set was further popularized 
with the release of the WorldClim database in 2005 and its 
second version in 20171. This database contains values for 

six continents and is interpolated onto a spatial grid with 
a step of up to 30" (Hijmans et al. 2005; Fick and Hijmans 
2017). According to the study (Bradie and Leunig 2017), 
the BIOCLIM parameters have been used significantly 
more often than other climate variables in the modeling of 
nearly 1900 species in about 2000 publications.
	 However, using a large number of potential predictors 
has several disadvantages. First, it introduces a challenge 
known as the “curse of dimensionality” in machine learning. 
As the number of independent variables increases, so does 
the distance between samples in feature space. That can 
result in inaccuracies in the classification of virtual space 
(Hastie et al. 2009) and lead to overfitting of models, when 
a model that fits too well to the training data classifies new 
data with a high error rate. Additionally, a large number of 
variables can significantly increase the computational load, 
especially when analyzing large amounts of data.
	 In addition to the above-mentioned problems, 
climate variables have a fairly strong correlation between 
each other, which can also influence the performance of 
several algorithms (for instance, in the case of MaxEnt). 
Furthermore, when it is necessary to assess the predictor 
significance for classification, which in SDM may be linked 
to their biological significance for a particular species, the 
presence of strongly correlated variables may lead to an 
inaccurate assessment of their significance, especially 
when using ensemble techniques based on decision trees 
such as “random forest” or gradient boosting.
	 One possible approach to reducing the number of 
predictors is to create new variables based on linear or 
non-linear combinations of the original variables. These 
new variables should retain as much information as 
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Table 1. Bioclimatic parameters

BIO1 annual mean temperature

BIO2 mean diurnal range (mean of monthly (max temp - min temp))

BIO3 isothermality (BIO2/BIO7) (×100)

BIO4 temperature seasonality (standard deviation ×100)

BIO5 max temperature of warmest month

BIO6 min temperature of coldest month

BIO7 temperature annual range (BIO5-BIO6)

BIO8 mean temperature of wettest quarter

BIO9 mean temperature of driest quarter

BIO10 mean temperature of warmest quarter

BIO11 mean temperature of coldest quarter

BIO12 annual precipitation

BIO13 precipitation of wettest month

BIO14 precipitation of driest month

BIO15 precipitation seasonality (coefficient of variation)

BIO16 precipitation of wettest quarter

BIO17 precipitation of driest quarter

BIO18 precipitation of warmest quarter

BIO19 precipitation of coldest quarter
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possible while being significantly smaller in number. 
Common methods for such reduction include various 
versions of Principal Component Analysis (PCA), Locally-
Linear Embedding (LLE) and Multidimensional Scaling 
(MDS), among others (Roweis and Saul 2000). In particular, 
the study (Dinnage 2023) used a neural network Variable 
Autoencoder (VAE) to reduce the set of WorldClim variables 
to 5 synthetic variables without significant information 
loss. These synthetic variables are nonlinear combinations 
of the original 19 parameters. However, the disadvantage 
of this approach is that the obtained variables are artificial. 
It complicates a biological interpretation of the results.
	 An alternative approach is to identify correlation groups 
of the actual variables, i.e., groups with a higher correlation 
within than between them. From these groups, we can 
select variables that either have the lowest correlation with 
the other groups or are particularly significant for a specific 
study. Typically, this approach eliminates variables that 
demonstrate a high level of correlation with each other; for 
example, if the value of a correlation coefficient is above a 
certain threshold (Bellard et al. 2013; Petrosyan et al. 2023; 
Zhang et al. 2023). However, such simultaneous pairwise 
reduction may result in the loss of several important 
variables since a variable that is highly correlated with one 
or more variables may also be weakly correlated with other 
variables. In addition, the choice of a selection threshold is 
not always clear.
	 As an alternative to the strategies described, we propose 
using statistical methods to identify correlation groups. 
This approach involves using algorithms that allow for the 
identification of fine structures and groups in data based 
on various types of relationships between its elements. 
For this purpose, we used a modern, highly effective 
clustering algorithm called HDBSCAN. Two methods of 
factor analysis, varimax and quartimax, were also used as 
an alternative approach to verifying the clustering results. 
These three algorithms were used for the first time to solve 
this problem.
	 After identifying the correlation groups, our approach 
involves selecting one parameter from each group with the 
least mean correlation to parameters from other groups. The 
identification of correlation groups allows us to determine 
the optimal number of selected parameters. This number 
balances the minimization of the correlation between 
parameters with their minimum sufficient quantity.
	 The aim of this study was to evaluate the effectiveness 
of the proposed approach to reducing the number of SDM 
predictors using 19 bioclimatic parameters calculated for 
the entire globe as an example.

MATERIALS AND METHODS

Climate data

	 The climate data source used in this study was the CRU TS 
4.05 database (Harris et al. 2020), which contains the results 
of meteorological observations with a monthly resolution, 
interpolated onto a regular spatial grid with a step of 0.5°. 
This database is widely used in SDM. In particular, it forms the 
basis for the popular bioclimatic database WorldClim, which 
was discussed in the introduction. The fact that CRU is based 
on meteorological observations affords it several advantages 
over reanalysis, such as ERA5. Many studies have found that 
reanalysis often produces erroneous results, especially with 
respect to precipitation data, which is of special importance 
for SDM (Purnadurga et al. 2019; Bodjrènou et al. 2025; 
Fatolahzadeh et al. 2024).

	 In total, this grid contains 67,420 nodes with values, as 
the nodes over the seas, oceans, and Antarctica do not have 
climate variables’ values. Nineteen bioclimatic parameters 
were calculated according to their description in Table 1 for 
the entire globe, using temperature variables and monthly 
precipitation amounts. These values were averaged over 
the period 1991-2020 for each node in the spatial grid.
	 As a result of the calculations, each of the 67,420 spatial 
nodes was characterized by 19 bioclimatic parameters. 
Based on this data, linear correlation coefficients were 
calculated for each pair of parameters to form a correlation 
matrix with a size of 19×19.
	 All calculations in this work were performed using the 
Python 3 programming language. A Python 3 module 
for the calculation of bioclimatic parameters is available 
in the repository2. Jupyter notebooks containing the 
calculations and some additional materials are available in 
the repository3.

Cluster analysis

	 To identify correlation groups among bioclimatic 
parameters, cluster analysis was used. This method allows 
the identification of groups of objects (in this study, sets 
of bioclimatic parameter values) that are closer together 
than other objects. In other words, it helps to detect 
areas of increased density in the space of objects. Cluster 
analysis can use different metrics to measure the distance 
between objects. In this study we used metrics based on 
the linear correlation coefficient to measure the distance 
between the values of bioclimatic parameters. This allows 
us to determine groups of parameters that have a higher 
correlation with each other than with other parameters.
	 Currently, there are many methods of cluster analysis 
(Wierzchoń and Kłopotek 2018). In this work, we used the 
HDBSCAN (Hierarchical Density-Based Spatial Clustering of 
Applications with Noise) algorithm, which is an evolution 
of the DBSCAN and OPTICS methods (Campello et al. 2013; 
McInnes and Healy 2017). A special feature of this method 
is that it can independently determine the number of 
clusters and identify noise points – samples that do not 
belong to any cluster and can be considered as single-
sized clusters. Furthermore, it does not require access to 
the original data but only a matrix of distances between 
the analyzed samples.
	 In its modern form, the HDBSCAN algorithm includes 
several stages of data processing:
	 1. Transformation of the original sample space to 
better select areas of increased density, using the method 
described and justified in the paper (Eldridge et al. 2015).
	 2. Construction of a graph where the vertices are the 
samples, and the edge weights are equal to the distance 
between the samples. The graph is then transformed into 
a minimum spanning tree, which is a graph where each 
vertex has at least one connection to other vertices, and 
the total weight of all the edges is minimized.
	 3. Construction of a hierarchical cluster tree based on 
the obtained minimum connected tree.
	 4. Transformation of the hierarchical cluster tree into 
a flat cluster system. At this stage, both user-defined 
hyperparameters (minimum cluster size and ε – minimum 
allowable distance between clusters) and several 
parameters calculated directly from the data are used. 
This distinguishes the HDBSCAN method from DBSCAN, 
which only identifies clusters based on the specified 
hyperparameters.

2https://doi.org/10.5281/zenodo.13913422
3https://doi.org/10.5281/zenodo.13970876
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	 When analyzing a small number of samples, as in this 
study, it is recommended to set the minimum cluster size 
to 2. In this case, ε becomes the only hyperparameter 
that needs to be optimized to find the optimal value that 
provides the best quality of cluster selections. (Malzer and 
Baum 2020).
	 The distance between bioclimatic parameters was 
determined using two different metrics. These metrics 
differ in their assessment of negative correlations. Negative 
correlation, like positive correlation, implies the presence 
and duplication of information about one variable in 
another variable, albeit in a different sense. This type of 
correlation can also negatively affect the quality of the 
modeling. 
	 The first metric, d1, considers negative correlation 
values as an indicator of a greater distance between 
parameters. It is calculated using the Eq. 1:

	 where r is the linear correlation coefficient.
	 This metric ranges from 0 (for parameters with a perfect 
positive correlation) to 2 (for parameters with a perfect 
negative correlation).
	 The second metric, d

2
, considers negative correlation as 

equivalent to positive correlation. It is calculated using the 
absolute value of the correlation coefficient (Eq. 2):

	 This metric ranges from 0, where the parameters have 
correlation coefficients of 1 or -1, to 1, where there is a 
complete lack of correlation between the parameters.
	 To select the optimal value for the hyperparameter ε, 
the average value of the silhouette coefficients was used 
(Rousseeuw 1987). This is one of the most commonly 
used metrics for evaluating clustering quality. The 
implementation of the HDBSCAN algorithm from the scikit-
learn machine learning library4 was used in this study.

Factor analysis

	 Another alternative approach that we used to identify 
correlation groups is factor analysis. This method is used in 
conjunction with cluster analysis to increase the reliability 
and validity of the results.
	 Factor analysis is based on the assumption that there 
are a small number of latent variables (called factors) 
underlying the observed variables. Observed variables 
can be expressed as linear or non-linear combinations 
of factors (Mulaik 2009; Gorsuch 2014). The most 
common model currently used is the linear model for the 
relationship between factors and observed variables. It can 
be expressed mathematically as (Eq. 3):

	 where X is a matrix of observed values with m rows 
and n columns, corresponding to n observed variables 
and m samples. P is a matrix of factor scores. It has a size of 
k × m (k << n) and contains columns with the coordinates 
of the observed variables in the new space of k factors. U 
is a matrix of deviations from the mean of the observed 
values, and E is an error matrix. A is called a factor matrix 
of size n × k. Its elements are called factor loadings, which 
are the coordinates of the factor space basis and reflect 
the influence of the factors on the observed variables 
(Reyment and Jöreskog 1996).
	 Before conducting factor analysis, it is common to 
standardize the values of the observed variables. This 

process leads to the matrix U becoming a zero matrix. This 
simplifies further analysis.
	 The goal of further calculations is to determine a matrix 
A in which the factor loadings of each variable for different 
factors are as distinct as possible, while minimizing the 
number of factors and the values of the elements in the 
error matrix E. The most common approach to solving this 
problem is the so-called “rotation”. It involves rotating the 
initial basis or its subset in the space of observed variables 
by a certain angle. This operation is done to satisfy the 
criteria mentioned above. The resulting factors can be 
either orthogonal or non-orthogonal, depending on the 
specific rotation method used.
	 These methods are based on a specific criterion for 
optimally choosing the factor matrix. Historically, the first 
criterion was the quartimax method proposed in the 
work (Ferguson 1954). This criterion corresponds to the 
maximization of the criterion q

4
, which is the sum of the 

factor loadings aij in the fourth power (Eq. 4):

	 A feature of this method is that it tends to produce 
factors that are too general. The number of factors produced 
is too small, and each of these factors has too great an 
influence on several observed variables simultaneously. 
Nevertheless, this criterion is still in use today.
	 As a development of the quartimax method, the 
varimax method was proposed in the work (Kaiser 1958). 
According to it, the criterion to be maximized is

	 where a
ij
 are the elements of the factor matrix A and n is 

the number of observed variables.
	 There are several other rotation methods available, both 
orthogonal (such as oblimax, equimax, and parsimax) and 
non-orthogonal (including promax and quartimin). Each 
of these methods has its set of benefits and drawbacks. 
However, varimax and quartimin, which are both orthogonal, 
are currently the most commonly used in factor analysis.
	 As can be seen, the search for a factor matrix is reduced 
to solving an optimization problem of the corresponding 
criterion. Currently, several methods are used for this 
purpose, the most effective of which is recognized as 
the Gradient Projection Algorithm (GPA) (Jennrich 2001; 
Jennrich 2004).
	 In this study, two rotation methods were used to 
identify correlation groups among bioclimatic parameters: 
quartimax and varimax. Their implementation in the scikit-
learn package was used. Before the analysis, the values of 
the bioclimatic parameters were standardized.

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY	 2025

4 https://scikit-learn.org/stable

(1)

(4)

(5)

(2)

(3)



23

Igor O. Popov and Elena N. Popova	 STATISTICAL METHOD FOR REDUCING THE NUMBER OF CLIMATIC PREDICTORS ...

	 According to the accepted approach, it was considered 
that the identified factor could be defined as the main factor 
for a certain parameter (in other words, the parameter could 
be attributed to a certain correlation group) if its loading value 
was maximum (since loadings can have negative values, we 
will talk hereinafter about their absolute values) and exceeded 
the values of the loadings of other factors by at least 30%. If 
there were one or more factors with a lower loading value and 
the difference in loadings did not exceed 30% of the maximum 
value, then a conclusion was drawn about the influence of 
several main factors on the bioclimatic parameter (Mulaik 
2009).

RESULTS

Correlation matrix analysis

	 Fig. 1 shows a heatmap of the correlation matrix for 
all 19 bioclimatic parameters. This matrix contains Pearson 
linear correlation coefficients r. As can be seen, all bioclimatic 
parameters can be divided into several groups.
	 Firstly, two groups of parameters are distinguished, 
containing temperature (BIO1-BIO11, excluding BIO4 and BIO7) 
and humidity (BIO12-BIO19, excluding BIO15) factors. Within 
these groups, the correlations are significantly higher than 
those between parameters from different groups. Within the 
first group, the correlation coefficients ranged from 0.53 to 0.99, 
with an average of 0.829. In the second group, they ranged 
from 0.45 to 0.99, averaging 0.712. The correlation coefficients 

between the groups ranged from -0.05 to 0.63, with an average 
of 0.32.
	 Secondly, two factors stand out among the temperature 
parameters: BIO4 and BIO7. These factors characterize the 
annual temperature range and have a fairly strong negative 
correlation with most other parameters, except for BIO7 and 
BIO2. There is also a strong positive correlation between BIO4 
and BIO7 (r = 0.97).
	 The BIO2 parameter also stands out, having a fairly weak 
positive correlation with the temperature parameters (ranging 
from 0.08 to 0.29), and a weak negative correlation with the 
humidity parameters (ranging from -0.14 to -0.3), except for 
BIO15 (r = 0.38).
	 The parameter BIO15, in turn, also stands out among 
the other humidity parameters. It has a negative or very 
weak positive (with BIO13) correlation with other humidity 
parameters and a low positive correlation (from 0.17 to 0.38) 
with most temperature parameters, except for the above-
described BIO4 and BIO7, with which it has r values equal to 
-0.12 and -0.03, respectively.
	 Thus, five correlation groups can be distinguished already 
at the stage of simple analysis of the correlation matrix of 
bioclimatic parameters:
	 1. BIO1, BIO3, BIO5, BIO6, BIO8-BIO11
	 2. BIO12-BIO14, BIO16-BIO19
	 3. BIO4, BIO7
	 4. BIO2
	 5. BIO15.

Fig. 1. Heatmap of the correlation matrix of bioclimatic parameters
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Results of the cluster analysis

	 The optimal value of the hyperparameter ε for the 
HDBSCAN algorithm was found by simply enumerating its 
possible values in the range from 0.01 to 0.5, with a step 
size of 0.01. For the metric d

1
, the optimal ε value was found 

to be in the range of 0.19-0.36, giving an average silhouette 
coefficient of 0.6336. For the metric d

2
, the same range of 

values (0.19-0.36) was found to provide the optimal ε, with 
an average silhouette coefficient of 0.5531.
	 Table 2 shows the obtained distribution of bioclimatic 
parameters by clusters for the two distance metrics used. 
The noise points are marked with a value of -1. As can be 
seen, when using the d

1
 metric, the HDBSCAN algorithm 

identified three clusters and two noise points. In the case 
of the d

2
 metric, two clusters and two noise points were 

identified. In both cases, the BIO2 and BIO15 parameters 
were identified as noise points. Cluster 1 was completely 
the same for both metrics. Cluster 0, obtained for the d

2
 

metric, when using the d
1
 metric, was divided into two 

clusters: 0 and 2. In this case, cluster 2 contained the 
parameters BIO4 and BIO7.
	 As can be seen, the results of the cluster analysis 
coincide completely with the results of a simple analysis 
of the correlation matrix. The noise points (BIO2 and BIO15 
parameters) were previously assigned to groups 4 and 5, 
respectively. Cluster 1 corresponds to group 2, and cluster 
0 (d

2
 metric) includes groups 1 and 3. When the d

1
 metric 

is used, clusters 0 and 2 coincide completely with these 
groups.

Results of the factor analysis

	 Table 3 shows the results of the factor analysis (factor 
matrix and identified main factors) conducted using the 
varimax method. As can be seen, varimax identifies 5 
factors. Meanwhile, for most bioclimatic parameters, it can 
be concluded that there is only one main factor.
	 The temperature parameters BIO1 and BIO3-BIO11 are 
influenced by the main factor 1, which is consistent with the 
results of the correlation matrix analysis and cluster analysis.
	 The parameters BIO4 and BIO7 are also influenced by the 
main factor 3. This conclusion is consistent with the results 
of the cluster analysis, which allocated them to cluster 2 
when using the metric d

1
 and combined them with cluster 

0, corresponding to factor 1 when using the metric d
2
. In this 

case, the loadings of factor 1 for these parameters are positive, 
unlike the loadings of the other temperature parameters, for 
which they are negative. This means a different nature of the 
influence of factor 1 on these parameters, and corresponds 
to the negative correlation of the parameters BIO4 and BIO7 
with the other temperature parameters (except BIO2). These 
circumstances allow us to allocate the parameters BIO4 and 
BIO7 to a separate group, if we take into account the nature 
of their correlation with other temperature parameters, or 
to combine them if the sign of the correlation coefficient is 
considered to be unimportant.
	 The BIO2 parameter has one main factor, 5, which is not 
the main factor for any other parameter. This corresponds to 
the allocation of this factor to a separate group 4 and to a 
separate noise point.

Table 2. Belonging of the studied bioclimatic parameters to the selected clusters according to two metrics

Bioclimatic
parameter

Cluster number

metric d
1

metric d
2

BIO1 0 0

BIO2 -1 -1

BIO3 0 0

BIO4 2 0

BIO5 0 0

BIO6 0 0

BIO7 2 0

BIO8 0 0

BIO9 0 0

BIO10 0 0

BIO11 0 0

BIO12 1 1

BIO13 1 1

BIO14 1 1

BIO15 -1 -1

BIO16 1 1

BIO17 1 1

BIO18 1 1

BIO19 1 1
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	 The humidity parameters BIO12, BIO13, BIO16, BIO18, 
and BIO19 have one main factor, 2, which corresponds to 
their assignment to cluster 1 and correlation group 2.
	 The parameters BIO14, BIO15, and BIO17 are influenced 
by one main factor, 4, which distinguishes them from the 
other parameters. At first glance, they could be combined 
into one group on this basis. However, the values of the 
loadings of factor 4 for these parameters have a peculiarity: 
the loading of the parameter BIO15 is negative, and that 
of BIO14 and BIO17 is positive. This distinction means that 
this factor determines these parameters in different senses: 
it has a negative relationship with BIO15 and a positive 
relationship with BIO14 and BIO17. This difference can also 
be seen in the correlation matrix: BIO14 and BIO17 have 
a strong positive correlation with each other (r = 0.98) 
and a moderate negative correlation with BIO15 (r = -0.47 
for both parameters). In addition, BIO14 and BIO17 have 
quite large positive loadings for factor 2. The loadings of 
the other humidity bioclimatic parameters, for which this 
factor is the main one, are also positive. At the same time, 
the loading of factor 2 for BIO15 is very low. These results 
allow us to single out the parameter BIO15 as a separate 
group, as well as the parameters BIO14 and BIO17, but this 
group has a relative proximity to the parameters that are 
influenced by factor 2, as by the main one.
Table 4 shows the factor matrix obtained as a result of 
applying the quartimax method. 
	 All temperature parameters, except BIO2, are influenced 
by factor 1. Simultaneously, the parameters BIO4 and BIO7 

have loadings of the main factor with signs opposite to the 
signs of loadings for the other parameters. This finding is 
consistent with the negative correlation between these 
groups of parameters. A similar situation was observed 
when using the varimax method, as well as cluster 
analysis, which, when using the d

1
 metric, singled out 

these parameters into a separate group, and when using 
the d

2
 metric, combined them with other temperature 

parameters.
	 The parameter BIO2 is influenced by one main factor, 
4, for which it is the only parameter with a significant load 
value.
	 All the humidity parameters are influenced by the 
main factor 2. At the same time, the parameters BIO14 
and BIO17 do not differ from other parameters, as was the 
case with the varimax method. But the parameter BIO15 is 
determined not only by the factor 2 but also by the main 
factor 3, which does not influence any other parameter. 
The loading value of factor 2 for BIO15 also has a different 
sign from the sign of the loadings of this factor for other 
humidity parameters. These results obtained on the 
basis of the quartimax method allow us to single out the 
parameter BIO15 into a separate group and to combine the 
other humidity parameters. This data is consistent with the 
results of the correlation matrix analysis, cluster analysis, 
and partly with the results of using the varimax method.
	 In general, it is possible to note the consistency of the 
results obtained from all applied methods for identifying 
correlation groups. At the same time, factor analysis is 

Table 3. Factor matrix of the bioclimatic parameters obtained using the varimax method 
(loadings of the main factors are highlighted)

Parameter
Factor loadings Main

factor1 2 3 4 5

BIO1 -0.9393 0.2066 -0.2091 0.0183 -0.0338 1

BIO2 -0.2896 -0.2246 -0.0365 -0.2483 -0.5180 5

BIO3 -0.6146 0.4194 -0.4777 0.0983 -0.1950 1

BIO4 0.6481 -0.3408 0.6066 -0.1174 0.0304 1.3

BIO5 -0.9362 0.0151 0.1118 -0.0779 -0.0902 1

BIO6 -0.8679 0.2764 -0.3608 0.0902 0.0142 1

BIO7 0.5878 -0.3902 0.6036 -0.1867 -0.0852 1.3

BIO8 -0.8371 0.2314 0.1058 -0.0916 0.0079 1

BIO9 -0.8548 0.1491 -0.3749 0.0748 -0.0605 1

BIO10 -0.9579 0.0986 0.0285 -0.0312 -0.0168 1

BIO11 -0.8915 0.2533 -0.3324 0.0422 -0.0432 1

BIO12 -0.2235 0.8269 -0.1694 0.4163 0.0242 2

BIO13 -0.3051 0.8701 -0.1482 0.1011 0.0163 2

BIO14 -0.0141 0.4509 -0.0585 0.7711 0.0280 4

BIO15 -0.3547 -0.0657 0.0470 -0.5679 -0.1909 4

BIO16 -0.2923 0.8753 -0.1525 0.1422 0.0178 2

BIO17 -0.0488 0.5216 -0.1043 0.7473 0.0183 4

BIO18 -0.1147 0.7889 -0.0327 0.2531 0.0673 2

BIO19 -0.1780 0.5949 -0.2218 0.4326 -0.0451 2
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distinguished by greater complexity in interpreting the 
results, although it allows the detection of some subtle 
properties of the data not revealed by other methods.

Selection of parameters from the identified correlation 
groups

	 On the basis of the above results, it is possible to 
identify five groups of bioclimatic parameters, the 
correlation within which is higher than the correlation with 
parameters from other groups. The composition of these 
groups is presented in Table 5.
	 In case it is assumed that the negative correlation has 
the same value as the positive one, it is possible to combine 
groups 5 and 1. Also, from the results of the factor analysis 
using the varimax method, it follows that the parameters 
BIO14 and BIO17 can be separated, if necessary, from 

group 2 into a separate group 6 (for example, if it is known 
that they are of particular importance for modeling the 
distribution of the species under study).
	 Next, a final selection of parameters was carried 
out, one from each identified group that demonstrated 
minimal correlation with parameters from other groups. 
For this purpose, the average values of the corresponding 
linear correlation coefficients and their absolute values 
were calculated (Table 6).
	 Based on the results presented in Tables 5 and 6, a list 
of selected bioclimatic parameters can be proposed as 
follows:
	 1. BIO2 (mean diurnal range (mean of monthly (max 
temp - min temp)))
	 2. BIO5 (max temperature of warmest month)
	 3. BIO7 (temperature annual range BIO5-BIO6)
	 4. BIO14 (precipitation of driest month)

Table 4. Factor matrix of bioclimatic parameters obtained using the quartimax method 
(loadings of the main factors are highlighted)

Parameter
Factor loadings Main

factor1 2 3 4

BIO1 -0.9782 0.0875 0.0013 0.0039 1

BIO2 -0.2851 -0.3667 -0.0766 -0.4936 4

BIO3 -0.7772 0.3583 -0.0554 -0.1790 1

BIO4 0.8274 -0.3108 -0.0107 0.0122 1

BIO5 -0.8659 -0.1456 0.0005 -0.0456 1

BIO6 -0.9579 0.2029 0.0282 0.0449 1

BIO7 0.7688 -0.3988 -0.0406 -0.0978 1

BIO8 -0.7973 0.0454 -0.1254 0.0440 1

BIO9 -0.9367 0.0872 0.0772 -0.0274 1

BIO10 -0.9161 -0.0458 0.0047 0.0257 1

BIO11 -0.9731 0.1523 -0.0006 -0.0096 1

BIO12 -0.3533 0.9003 -0.0335 0.0069 2

BIO13 -0.4409 0.7659 -0.3197 0.0093 2

BIO14 -0.0623 0.7781 0.4386 0.0009 2

BIO15 -0.3410 -0.3957 -0.4259 -0.1593 2, 3

BIO16 -0.4294 0.7930 -0.2879 0.0092 2

BIO17 -0.1186 0.8247 0.3872 -0.0083 2

BIO18 -0.2088 0.7885 -0.1648 0.0506 2

BIO19 -0.2984 0.7201 0.0901 -0.0608 2

Table 5. Identified correlation groups of bioclimatic parameters

Group Bioclimatic parameters

1 BIO1, BIO3, BIO5, BIO6, BIO8-BIO11

2 BIO12-BIO14, BIO16-BIO19

3 BIO2

4 BIO15

5 BIO4, BIO7
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Table 6. Average values of correlation coefficients r and average absolute values of correlation coefficients |r| between 
bioclimatic parameters and parameters from other groups (the minimum values in each group are highlighted)

Bioclimatic parameter
Average value

r | r |

Group 1

BIO1 0.121 0.409

BIO3 0.206 0.519

BIO5 0.064 0.242

BIO6 0.136 0.464

BIO8 0.117 0.303

BIO9 0.100 0.405

BIO10 0.087 0.296

BIO11 0.134 0.452

Group 1 (including BIO4 and BIO7)

BIO1 0.324 0.324

BIO3 0.443 0.443

BIO4 -0.396 0.396

BIO5 0.179 0.194

BIO6 0.367 0.367

BIO7 -0.404 0.422

BIO8 0.256 0.256

BIO9 0.308 0.308

BIO10 0.234 0.234

BIO11 0.358 0.358

Group 2

BIO12 0.127 0.409

BIO13 0.201 0.429

BIO14 -0.034 0.211

BIO16 0.190 0.427

BIO17 -0.008 0.253

BIO18 0.073 0.282

BIO19 0.100 0.342

Group 2 (without BIO14 and BIO17)

BIO12 0.219 0.462

BIO13 0.242 0.438

BIO16 0.239 0.442

BIO18 0.149 0.328

BIO19 0.179 0.386
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Group 5

BIO4 -0.544 0.554

BIO7 -0.563 0.563

Group 6

BIO14 0.145 0.389

BIO17 0.184 0.434

	 5. BIO15 (precipitation seasonality (coefficient of 
variation))
	 6. If it is necessary to separate group 6 from group 2, 
BIO18 (precipitation of the warmest quarter) can be added 
to this list, but this should be done with caution due to the 
mixed nature of this parameter and the possible negative 
effects associated with it when constructing species 
distribution models (see Introduction).
	 If the same meaning of positive and negative 
correlations is accepted, the parameter BIO7 can be 
removed from the list due to the merging of groups 2 
and 5. Scatter plots of the mutual dispersion of these six 
parameters and the values of their correlation coefficients r 
are presented in Fig. 2.

	 As can be seen in Fig. 2, the maximum value of the 
correlation coefficient between the selected parameters is 
0.389 (BIO5 and BIO15). In absolute value, it is -0.582 (BIO14 
and BIO18). Generally, the correlation between these 
selected parameters is quite low.
	 To compare the results obtained, we selected 
parameters using a method based on pairwise correlation 
threshold. Only those parameters were selected that had 
values of the linear correlation coefficient r below a certain 
value. As a result, only two parameters were selected at the 
threshold of 0.7 (BIO2 and BIO15), three parameters were 
selected at the threshold of 0.8 (BIO2, BIO15 and BIO19), 
five parameters at the threshold of 0.85 (BIO2, BIO3, BIO15, 
BIO18, and BIO19) and six parameters at the threshold of 
0.9 (BIO 2, BIO 3, BIO8, BIO15, BIO18 and BIO19). Different 

Fig. 2. Scatter plots, linear correlation coefficients r and histograms of distributions (on the diagonal) for six selected 
bioclimatic parameters
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threshold values lead to different numbers of selected 
parameters. What threshold must be used is unclear. At 
threshold 0.85 maximum value of the linear correlation 
coefficient is 0.575 (BIO3 and BIO8), which is significantly 
higher than the maximum value for the method we used 
(0.389). The number of parameters with low correlation 
coefficients with other selected parameters were lost. As 
can be seen, this comparative study indicates that the 
approach we used for the analyzed data is more effective 
than the commonly used method based on selection by 
correlation threshold.

DISCUSSION

	 As noted in the introduction, the problem of reducing 
the number of predictors in SDM, as in any classification 
problem, is an important step in reducing the overfitting 
of the constructed models. The resource for this reduction 
is the presence of redundant information in the initial set of 
predictors, expressed in a high level of correlation between 
them.
	 As can be seen in the results of this study, the statistical 
approach we proposed made it possible to reduce the 
pairwise correlation to a low level. At the same time, the 
number of selected predictors (5 or 6), as experience shows, 
is sufficient to build effective species distribution models. It 
can be noted that the number of main correlation groups 
of bioclimatic parameters identified in this study coincides 
with the number of synthetic variables obtained as a result 
of using a neural network of the Variable Autoencoder type 
in the paper (Dinnage 2023), which was mentioned in the 
introduction.
	 The use of the HDBSCAN cluster analysis algorithm 
to identify correlation groups in our study showed its 
effectiveness. With its help, a fairly large number of 
clusters with a good level of difference between them 
were identified. At the same time, the technology of 
its application and, importantly, the interpretation of 
the obtained results are easy to use and can be applied 
routinely.
	 The results of factor analysis, in general, with the 
exception of some nuances, corresponded to the results of 
the cluster analysis. This fact confirms the reliability of the 
results of the cluster analysis. The assignment of a number of 
parameters to several main factors is quite consistent with 
the presence of a high negative correlation between the 
parameters. When using factor analysis, it is important to 
pay attention to the sign of the loading. However, it should 
be noted that the sufficient complexity and ambiguity of 
the interpretation of the factor analysis results make it less 
preferable for routine use in SDM practice compared to 
cluster analysis.

	 Our proposed approach to the final selection of 
parameters from correlation groups is not the only possible 
one. Firstly, it is possible to select them based on the 
special significance of any parameter for the vital activity 
of the organism, known in advance from physiological 
or ecological studies. Secondly, it is possible to make a 
selection based on the results of a preliminary distribution 
modeling using an unreduced set of predictors, followed 
by analysis of their importance for model construction. 
Approaches based on the jackknife principle, with 
successive elimination of parameters or modeling using 
only one parameter, can be applied. Thirdly, the approach 
used in our work can also estimate the correlation in the 
final set of predictors in another way. For example, we 
can use multiple correlation metrics, such as the variance 
inflation factor (VIF).
	 In this study, the values of 19 bioclimatic parameters 
were analyzed across the globe for the period of 1991–2020. 
Obviously, even when analyzing this set of parameters for 
a narrower geographic area or for a different time period, 
different results can be obtained. The degree and nature 
of the correlation between these variables vary in time 
and space, and also depend on the spatial scale of their 
calculation (Dormann et al. 2012).
	 Reducing the number of predictors while preserving the 
information they contain as much as possible is a common 
problem in machine learning and predictive systems, as 
noted in the introduction. The approach proposed in this 
work can be applied to a wide variety of areas related to 
modeling and forecasting, including both classification 
and regression. First of all, it can be useful for climatological 
and meteorological studies, since meteorological and 
climatological parameters tend to strongly correlate with 
each other.

CONCLUSIONS

	 In the course of the conducted studies, using several 
methods, it was shown that, for the period 1991-2020, for 
the entire territory of the Earth, it is possible to identify 4-6 
correlation groups of bioclimatic parameters, depending 
on the interpretation of the negative correlation. From 
these groups, it is possible to select six bioclimatic 
parameters that demonstrate a minimum average 
correlation with parameters from other groups. The 
obtained results are an illustration of the proposed method 
for reducing bioclimatic parameters and focusing on the 
selected time period and geographical area. They are of 
a recommendatory nature. The developed approach to 
reduce the number of predictors can be used in various 
areas of statistical modeling and forecasting, both in 
classification and in regression analysis.
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ABSTRACT. The purpose of this article is to examine the distribution of natural radionuclides as well as the gamma radiation 
flux due to the variations of soil seasonal thawing depth. The study was conducted at a lumpy peat bog located within the 
catchment area of the Oma River, located within the Nenets Autonomous Okrug of Russia. The site was selected due to 
the presence of an active layer (AL) with varying depths of thawing, as well as the warming effect of the river. This feature 
enabled an initial assessment of the impact of thawing depth on radon flux, gamma radiation, and the distribution of other 
natural radionuclides along the peat profile. Field observations revealed that permafrost deposits act as a barrier to the 
intake of 222Rn from geological layers. The relationship between alterations in radiation parameters (gamma radiation flux, 
radon flux density (RFD), radionuclide composition of peat) and the thickness of the AL has been established. An increase 
in gamma radiation levels and RFD has been observed in areas exhibiting maximum seasonal thawing of the seasonally 
thawed layer. The correlation coefficients were found to be 0.70 and 0.83, respectively. The analysis of peat profiles in diverse 
permafrost settings revealed that in regions exhibiting deeper thawing of soil, there is an abundance of 210Pb relative to the 
concentration of its progenitor radionuclide, 226Ra. The observed excess of 210Pb may be attributed to radon flux from deeper 
geological layers.
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INTRODUCTION

	 Permafrost plays an integral role in the Arctic natural 
environment, exerting a considerable influence on global 
change and human activity ( Streletskiy et al. 2023). An 
increase in air temperature and snow cover parameters, 
particularly a reduction in snow depth, results in permafrost 
degradation, which is manifested as an expansion of the 
permafrost roof depth in both Arctic and mountainous 
regions (Streletskiy et al. 2023). It is observed that alterations 
in the boundaries of permafrost are occurring (Zhang et al. 
2021). The consequences of permafrost degradation are 
already evident in several significant incidents, including 
the formation of extensive sinkholes in the Yamalo-Nenets 
Autonomous Okrug (Buldovicz et al. 2018) and the collapse 
of industrial facilities in Norilsk (Koptev 2020). Furthermore, 
permafrost can exert a considerable influence on the 
distribution of chemical elements in the environment. 

Consequently, the degradation of permafrost may result in 
alterations to the chemical composition of the elements 
present, including radioactive elements, within soils and 
rocks (Shirokova et al. 2021; Pokrovsky et al. 2021; Puchkov 
et al. 2021).
	 Radon (222Rn) is a member of the radioactive 238U 
family and is ubiquitous in environmental components 
on Earth. 222Rn is continuously formed in all geological 
environments. The 222Rn decay sequence results in the 
emission of short-lived radioactive products, including 
218Po, 214Pb, and 214Bi, and long-lived 210Pb and 210Po, which 
are characterized by alpha and beta decay. The physical and 
chemical properties of 222Rn and its decay products permit 
its utilization as a tracer for the investigation of a multitude 
of geological and atmospheric processes (Sabbarese et 
al. 2021; Giustini et al. 2019; Miklyaev et al. 2010; Baskaran 
et al. 2016; Daraktchieva et al. 2021; Selvam et al. 2021). 
Concurrently, 222Rn and its decay products represent a 
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significant health risk, particularly in contexts where high 
concentrations are present, such as residential dwellings 
(Lorenzo-Gonzalez et al. 2020; Maier et al. 2021; Petrova et 
al. 2020; Rodríguez-Martínez et al. 2018; Rosenberger et al. 
2018).
	 To date, there has been a paucity of scientific literature 
devoted to the behavior of 222Rn and its decay products 
in frozen rocks and permafros, while simultaneously 
observing the thawing and alteration of phase boundaries, 
which in turn modifies the pathways for 222Rn migration 
to the surface. The majority of these studies are of a 
theoretical nature (Puchkov et al. 2021). The results of 
the theoretical synthesis presented in Zhang et al. (2024) 
highlight the dearth of relevant studies on 222Rn migration 
and its relationship in permafrost regions, underscoring 
the urgent need for further research in this area. As the 
authors observe, priority research areas include the study 
of 222Rn migration mechanisms in freezing and thawing 
soils/rocks; the response to permafrost degradation 
due to the release of 222Rn absorbed in permafrost soils; 
and 222Rn migration in groundwater systems, among 
others. Scientists have published numerous articles on 
the experimental evaluation of 222Rn migration under 
conditions of varying temperatures (Puchkov 2022; Ye 
2024). It has been demonstrated in existing scientific 
literature that permafrost serves as an effective barrier to 
the upward migration of 222Rn from the ground (Glover et 
al. 2022). This study highlights the necessity to extend these 
findings to other locations, given the heterogeneous and 
geographically distinctive nature of permafrost conditions. 
This prompts our investigation into the migration and flow 
of radioactive gases to the Earth’s surface in the event of 
permafrost thawing.
	 The objective of this scientific article is to evaluate the 
flux of gamma radiation and RFD at the peat bog surface, 
as well as the distribution of natural radionuclides along 
the peat profile, under varying conditions of AL formation.

MATERIALS AND METHODS

Study area

	 The experimental site is situated in the Kanin tundra 
territory within the Nenets Autonomous Okrug in 
northwestern Russia (Fig. 2). The experimental site is the 
lumpy peat bog situated within the Oma River basin. 
Throughout the river basin, permafrost peat soils are 
prevalent. Soils of the alluvial soddy-gley and alluvial-
boggy types are present along the riverbanks. Alluvial 
solonchak soils are found at the river mouth. In the Kanin 
tundra territory (Chizha, Nes, Vizhas and Omariver basins), 
the average AL depth is up to 0.4 m, according to Iglovsky 
(2010). Average annual soil temperatures in the study 
area can range from +1.5 to -1.3°C in the AL and down 
to -3.5°C in the upper permafrost layers (Iglovsky 2010). 
The peat deposit is characterized by an uneven degree 
of decomposition. The upper layers (10–15 cm deep) 
contain highly decomposed peat (over 40%) mixed with 
the remains of shrubs, herbaceous plants, and lichens. The 
middle layer (10–30 cm) consists of poorly decomposed 
(5–10%) sphagnum peat. The lower layer consists of 
medium-decomposed (20–25%) sedge-sphagnum peat. 
The weight moisture content of peat can vary widely, from 
tens of percent in the upper, highly decomposed layers to 
1000–2000% in the lower, weakly decomposed layers of the 
peat deposit (Prokhorenko 2013). Hillock peat ash content 
can range from 1.5 to 10%, peaking in the lower part of the 
AL. Closer to the mineral layer, the peat’s ash content can 
increase to several tens of percent (Prokhorenko 2013).  

	 The choice of the experimental site is conditioned by 
the varying thawing levels of AL, including the warming 
effect of the river. This peculiarity allows for an initial 
approximation of the influence of thawing depth on the 
222Rn flux, gamma radiation, and the distribution of other 
natural radionuclides along the peat profile. 
	 The methodology employed in the survey, along with 
the principal findings pertaining to the AL thaw depth, 
gamma radiation flux, and RFD estimation, are illustrated in 
Fig. 2. A total of 76 points were measured in the bog area, 
and two peat profile cuts were investigated. For gamma-
spectrometric measurements, peat and soil samples from 
two peat profile cuts were taken by shovel in a 20×20 cm 
plot at 5 cm horizons. Peat and soils in frozen condition 
were cut with a battery-powered electric saw. Sample 
preparation and measurements were carried out at the 
Environmental Radiology Laboratory of the Northern 
Laverov Federal Center for Integrated Arctic Research of 
the Ural Branch of the Russian Academy of Sciences (Russia, 
Arkhangelsk). The selected samples were allowed to dry 
in a BINDER E28 desiccator at 105°C. After drying, soil and 
peat samples were ashed at a temperature not exceeding 
400°C to avoid loss of radionuclides. Ashing the soil and 
peat samples is necessary to improve the radionuclide 
detection efficiency of the semiconductor detector. This is 
done by reducing the volume and weight of the sample 
and the distance between the sample and the detector. 
The radionuclide activity presented in this paper is on a dry 
weight.  

Radiometric measurement method

	 The measurement of the RFD utilizes the radon 
radiometer «Alpharad plus» (manufacturer: NTM 
Protection, Moscow city, Russia) (Fig. 1). The measurements 
were conducted in accordance with the prescribed 
algorithms and in compliance with the instructions set 
forth in the operational manuals. The equipment employs 
a semiconductor detector in which electrostatically 
charged ²¹⁸Po ions are deposited. The radiation parameters 
of 222Rn, including activity concentration and flux density, 
are determined by the number of registered alpha particles 
resulting from the decay of 218Po atoms that fall on the 
detector (Afonin 2013).
	 Prior to the installation of the samplers, the soil surface 
was leveled and a 1 cm deepening was prepared. The 
sampler was left in situ for a period of 30 minutes, after which 
the air was pumped out of it into the measuring chamber 
of the radonometer. The measurements were conducted 
for a period of 20 minutes. In light of the necessity to 
perform a considerable number of RFD measurements, it 
was deemed appropriate to utilize two radon radiometers 
with identical technical specifications.

Gamma Spectrometry Measurements

	 Gamma spectrometry is a widely used method to 
measure gamma radiation from radionuclides of natural 
origin, including 226Ra. It is a universal, non‐destructive 
and easy‐to‐use method, especially at the stage of sample 
preparation and in the measurement process (Syam et al. 
2020). The radionuclides 226Ra, 232Th, 210Pb, and 40K were 
determined using a low-background semiconductor 
gamma spectrometer manufactured by ORTEC (USA). The 
instrument is based on a coaxial detector, the GMX25, 
which is made of high-purity germanium (HPGe). The 
spectrometer is equipped with SpectraLine software. The 
relative efficiency of the gamma-ray spectrometer is 25%. 
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The calibration and quality control of gamma-spectrometric 
measurements were conducted using disc-type sources 
(OSGI-P) and special measures of volumetric activity, 
namely Marinelli beakers of varying density (RITWERZ, 
Russia-Germany). A plastic Petri dish with a diameter of 
60 mm and a counting sample volume of 5 to 25 ml was 
chosen as the geometry for peat soil measurements. For 
clay bedrock samples, a 1-liter Marinelli vessel was used.
	 To achieve an equilibrium state of 226Ra decay 
products, the counting sample was sealed for a period of 
approximately three weeks. The Petri dishes were sealed 
using a sealant and duct tape. The samples were measured 
for a minimum of 12,000 seconds. The primary gamma-
ray energies of 214Pb (351.93 keV) and 214Bi (609.32 keV, 
1120.29 keV, 1764.49 keV) were employed to detect 
226Ra and ascertain its activity concentration. The primary 
gamma-ray energies of 212Pb (238.63 keV), 228Ac (911.20 
keV) and 208Tl (583.19 keV, 2614.51 keV) were employed to 
identify 232Th and quantify its activity concentration. In this 
study, it was assumed that the decay products of 232Th and 
the parent radionuclide itself are in a state of radioactive 
equilibrium. The activity concentration of the radionuclide 
210Pb was determined from the 46.50 keV gamma ray line, 
while the activity concentration of radionuclide 40K was 
determined using the energy of 1460.82 keV.

Dosimetry measurements

	 To measure gamma radiation flux, the scintillation 
geological exploration radiometer SRP-88n was employed. 
The measurements were conducted in accordance with 
the prescribed algorithms and in compliance with the 
instructions set forth in the operational manuals. The 
height of the measurements at each point was 10 cm.

AL thaw level measurements

	 AL thawing level measurements were carried out 
using a contact thermometer TK-5.04 with a submersible 
probe of length L=500 mm. At each control point, the 

probe was immersed into the ground as far as it would go 
in at least 3 locations 10 cm apart. This method was used 
to exclude the probe stop in hard material (stone, wood). 
The parameter that indicated the level of ice in the ground 
was the probe temperature = 0 degrees Celsius. The level 
of ground thawing was measured by the depth of probe 
immersion. The average value of at least 3 immersions into 
the ground up to the ice stop was taken as the result.

Quality control of measurements

	 The determination of 222Rn, 226Ra, 232Th, 40K, 210Pb, 
and gamma ray flux was conducted utilizing the 
instrumentation of the Environmental Radiology 
Laboratory of the N. Laverov Federal Center for Integrated 
Arctic Research of the Ural Branch of the Russian Academy 
of Sciences (Russia, Arkhangelsk), which is in compliance 
with the accreditation criteria for testing laboratories as 
outlined in ISO/IEC 17025. The laboratory is equipped 
with an extensive range of reference radionuclide sources, 
which are employed for the calibration of equipment and 
the monitoring of measurement quality.
	 If the measurement result was beyond the sensitivity 
of the measuring instrument, parallel measurements 
were made at such points. The result was accepted if the 
following condition was fulfilled (Eq. 1):

	 where А
1
 and А

2
 – measurement results; δА

1,2
 – 

uncertainties of measurement results А
1
 and А

2
.

	 If the condition was not fulfilled, the measurement was 
repeated again.

Statistical analysis

	 Statistical analysis was performed using licensed 
software packages OriginPro and Microsoft Office. 
Mapping was carried out using Surfer software by Golden 
Software, Inc. (Golden, Colorado, USA).

Fig. 1. The radon radiometer “Alpharad plus”

(1)
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RESULTS

	 The study scheme and the main results of AL thaw 
depth, gamma ray flux, and RFD are summarized in Fig. 2.
	 During the study period (July 2023), the greatest depth 
of AL thawing was observed along the edge of the bog 
(band width not exceeding 1-2 m), reaching 50-60 cm 
(bedrock level). From the edge of the bog, the thawing 
depth decreased markedly, with a range of 5 to 15 cm.
	 The gamma radiation flux within the area under study 
exhibits a range of 14.4 to 30.4 impulses per second, with 
an average value of 21.7 impulses per second. The results 
of the measurements indicated a slight increase in gamma 
ray flux in areas of maximum AL thawing within the peat 
strata. A comparable distribution pattern is evident for RFD 
in the area under study. The parameter in question exhibits 
a range of 6.0 to 44.0 mBq·m-2·s-1, with an average value 
of 16.4 mBq·m-2·s-1. The highest RFD values are observed 
along the edge of the peat bog, within a band with a width 
of no more than 1-2 m.

	 Two peat profile cuts were conducted within the bog, 
one at the edge (Profile 1) and one at a distance of 100 
meters (Profile 2) (Fig. 3). The results of the assessment 
of the natural radionuclide content in samples from peat 
profile cuts are presented in Tables 1 and 2.
	 For the purposes of clarity and informative content, the 
results presented in Tables 1 and 2 are plotted in Fig. 4. As 
evidenced in Tables 1 and 2, the distribution of radionuclides 
226Ra, 210Pb, 232Th, and 40K exhibits a comparable pattern 
across the depth of peat profile cuts. In general, the values 
of these radionuclides are consistent with the available 
data for the Northwest region, as reported by Kriauciunas 
(2018), Yakovlev (2022, 2023).
	 The 210Pb activity concentration ranges from the lowest 
measured values (2.3±1.1 Bq·kg-1 for the 20-25 cm horizon) to 
330.0±60.0 Bq·kg-1 for peat profile 1 and from the lowest measured 
values (4.1±1.9 Bq·kg-1 for the 15-20 cm horizon) to 270.0±60.0 
Bq·kg-1 for peat profile 2. The maximum activity concentration 
of 210Pb (330.0±60.0 Bq·kg-1) falls on the uppermost horizon 
(0-5 cm), which is a natural phenomenon given that the 
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Fig. 3. Peat profile cuts at the edge of the bog (A, profile 1) and 100 m from the edge of the bog (B, profile 2)

Fig. 2. Distribution of gamma ray flux, RFD over peat bog surface, and AL thawing depth in the Oma River basin
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Table 1. Variation of natural radionuclide content with depth in profile 1

Table 2. Variation of natural radionuclide content with depth in profile 2

Layer, cm
Activity concentration, Bq·kg-1

Isotopic ratio 
226Ra/210Pb226Ra 210Pb 232Th 40K

0-5 < MDA 330.0±60.0 3.1±1.0 60.0±18.0 -

5-10 < MDA 65.0±18.2 2.5±1.0 51.0±19.0 -

10-15 < MDA 10.0±2.5 2.0±0.8 45.0±18.0 -

15-20 < MDA < MDA < MDA 35.0±14.0 -

20-25 0.3±0.2 2.3±1.1 1.3±0.8 23.0±9.2 0.13

25-30 1.1±0.4 8.1±3.2 4.8±0.6 78.0±12.5 0.14

30-35 2.8±0.8 7.3±2.9 4.5±0.6 62.0±11.8 0.38

35-40 2.3±0.7 12.0±5.0 5.1±0.7 155.0±21.7 0.19

40-45 10.5±1.6 16.0±6.4 20.1±1.8 330.0±29.7 0.66

45-50 14.2±2.6 21.0±8.4 25.0±2.3 370.0±33.3 0.68

50-55 16.3±2.5 17.0±6.8 25.9±2.2 530.0±47.7 0.96

Layer, cm
Activity concentration, Bq·kg-1

Isotopic ratio 
226Ra/210Pb226Ra 210Pb 232Th 40K

0-5 < MDA 270.0±60.0 < MDA 51.0±18.0 -

5-10 < MDA 22.0±18.2 < MDA 45.0±19.0 -

10-15 < MDA < MDA < MDA 35.0±18.0 -

15-20 < MDA 4.1±1.9 4.8±2.3 78.0±14.0 -

20-25 3.6±0.2 9.0±1.1 8.6±0.8 155.0±9.2 0.40

25-30 3.3±0.4 6.5±3.2 8.4±0.6 183.0±12.5 0.51

30-35 4.5±0.8 11.0±2.9 9.6±0.6 167.0±11.8 0.41

35-40 5.8±0.7 8.0±5.0 9.7±0.7 190.0±21.7 0.73

Fig. 4. Plots of radionuclide activity concentration distribution and isotopic ratios along profiles 1 and 2 
(red dashed line shows average AL level according to (Iglovsky 2010))



37

Andrey V. Puchkov and Evgeny Yu. Yakovlev	  RADIATION PARAMETERS OF THE PEAT BOG DUE TO PERMAFROST ...

only way 210Pb enters the peatland is atmospheric fallout 
(Yakovlev et al. 2022). The concentration of 210Pb at a 
depth of 15-20 cm in profile 1 and 10-15 cm in profile 2 
is below the minimum detectable activity concentration. 
In general, the 210Pb activity concentration in the studied 
profiles is comparable to other regions of Northwest Russia. 
For instance, the maximum 210Pb activity concentration 
recorded in the Ilassky peatland in the Arkhangelsk region 
was 310.8 Bq·kg-1 (Yakovlev et al. 2022). However, there are 
cases where the vertical distribution of 210Pb differs from 
the above. Cwanek and Łokas (2022) demonstrated that 
the highest activity concentration was not confined to the 
uppermost layer but occurred within intermediate depths. 
Additionally, there were significant deviations from the 
simple monotonic decrease of atmospheric components, 
which often fluctuated downward, presumably reflecting 
episodic variations in recent peat growth or decomposition 
rates.
	 The vertical distribution of 226Ra, 232Th, and 40K differs 
from the vertical distribution of 210Pb for our study area. The 
maximum values of these radionuclides are observed in 
the underlying horizons. This effect is especially noticeable 
for peat profile 1, where samples were taken including 
the bedrock, with increased sorption properties of clay 
minerals.

DISCUSSION

	 The obtained data sets of AL, RFD and gamma flux 
density differ from the normal distribution, so we used 
the nonparametric Spearman’s rank criterion to evaluate 
correlation dependencies. A correlation coefficient of 0.70 
(significant at the 0.05 p-value) was observed between 
gamma ray flux and AL thawing depth. It is likely that 
the elevated gamma ray flux is attributable to the flux of 
natural radioactive gases, including 222Rn and its decay 
products, given the absence of a permafrost barrier. 
Conversely, the observed increase in gamma radiation 
flux may be attributed to intrinsic properties of gamma 
radiation. The ability of gamma radiation to penetrate 
an object is contingent upon the energy of the gamma 
quantum and the density of the substance absorbing it. 
The thickness of the water layer at 24 cm (which, in the 
present study, is equated with the thickness of the frozen 
ground) attenuates the gamma radiation flux with an 
energy of 0.5 MeV by a factor of 10. Given the considerable 
range of gamma-radiation energies exhibited by natural 
radionuclides (Levin 1973), spanning from the X-ray zone 
to energies exceeding 2.5 MeV, ice or frozen ground can 
serve as a substantial barrier to the passage of gamma-
quanta. This phenomenon may be reflected in the findings 
of studies examining the distribution of gamma-ray flux in 
peat bogs within the Oma River basin.
I	 n contrast to gamma radiation, there is a very strong 
correlation between RFD and the AL thaw level of 0.83 
(significant at the 0.05 p-value). Concurrently, a comparison 
of RFD and gamma radiation flux reveals a relatively weak 
correlation between these parameters – 0.59 (significant at 
the 0.05 p-value)). It can be reasonably assumed that the 
greatest contribution to the gamma-quantum flux is made 
by gamma-emitting radionuclides, including 222Rn decay 
products present in the soil. 40K, a radionuclide found in 
abundance in natural environments, also emits gamma 
radiation. In the present study, its activity concentration 
exceeds that of other radionuclides, especially in the 
underlying horizons. Furthermore, the gamma-ray energy 
of 40K is notably high at 1460 keV. However, it is important 
to note that the beta decay of 40K is accompanied by 

gamma-quantum yield in only 10.6% of cases (Levin 1973). 
Consequently, the contribution of 40K to the total gamma 
radiation flux is likely to be approximately equivalent to 
that of other radionuclides.
	 The surface distribution of radiation parameters can be 
directly related to the vertical distribution of radionuclides 
in different frozen conditions. As previously mentioned, 
the concentration of 210Pb at a depth of 15-20 cm in 
profile 1 and 10-15 cm in profile 2 is below the minimum 
detectable activity concentration. This lower concentration 
is likely attributable to the absence of vertical migration 
of 210Pb, which entered via atmospheric deposition due 
to the shallow depth of the AL and its brief melt period. 
Conversely, in horizons deeper than 15-20 cm, both profiles 
demonstrate an increase in the content of 210Pb, as well as 
its parent isotope 226Ra. The results of the calculation of the 
226Ra/210Pb isotopic ratio for depths between 20 and 40 cm 
demonstrated that in profile 1, this parameter exhibited a 
range of 0.13 to 0.38, while in profile 2, it varied between 
0.40 and 0.73. The low value of the isotopic ratio in profile 
1 may be indicative of an excess of 210Pb (in comparison 
to the 226Ra content), which is likely due to the 222Rn flux 
from the underlying horizons. The application of the 
226Ra/210Pb isotope ratio method is discussed in detail by 
Tsapalov (2013). The authors demonstrate that the 210Pb 
content is excessive in conditions of active geodynamics 
due to the inflow of «deep» 222Rn. In the present study, it is 
hypothesized that in permafrost conditions, the activities of 
226Ra and 210Pb are in radioactive equilibrium, whereby their 
ratio is assumed to be 1 (one). This assumption is founded 
upon a series of indirect indications, as direct evidence 
for this phenomenon is not available within the scientific 
literature. For instance, in 1990, research was conducted 
to assess the distribution of permafrost by measuring the 
activity concentration of 222Rn as a tracer (Sellmann et al. 
1990). The results of the studies demonstrated a strong 
correlation between the 222Rn activity concentration and 
frozen areas in the permafrost distribution, with varying 
levels of permafrost roof occurrence. The necessity to take 
into account the factors such as surface ice and permafrost 
presence when assessing 222Rn distribution was pointed out 
in Evangelista et al. (2002). It has been hypothesised that 
surface ice and permafrost act as significant barriers to the 
222Rn flux reaching the Earth’s surface. Theoretical studies 
on this contentious issue were initiated in 2006-2008 
(Glover 2022). Conclusions have been drawn by Russian 
scientists (Klimshin et al. 2010) regarding the significant 
influence of the level of seasonal ground freezing (up 
to 1 m) in wintertime on 222Rn emanation to the Earth’s 
surface. The evidence suggests that 222Rn may be sealed 
within the permafrost. The absence of 222Rn migration 
can be interpreted as an absence of both 222Rn itself and 
its decay products. However, when permafrost conditions 
are disrupted, 222Rn will begin to migrate through the 
geological environment (Puchkov et al. 2021), leaving 
behind radioactive decay products, which may potentially 
result in a reduction in the value of the 226Ra/210Pb ratio.
	 In terms of the ongoing discussion of 226Ra/210Pb 
ratio violations, there is a further potential cause of the 
210Pb excess: the compression of pore waters and gases 
(including gas hydrates) containing 222Rn because of 
cryogenic concentration from the permafrost zone to 
the freezing zone (Chuvilin et al. 2000). The 222Rn does not 
form gas hydrate crystals with water independently, as it 
lacks the requisite partial pressure for hydrate formation. 
However, its atoms are actively embedded in the nodes 
of hydrate crystals of the auxiliary gas, thereby forming a 
mixed hydrate (Portman 2014).
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	 It is important to note that the discussions presented 
above do not conclusively address the issues of increased 
222Rn fluxes resulting from permafrost degradation and 
the deterioration of the radiological situation in areas 
with an unfavorable radiochemical background. These 
issues remain open for further debate and investigation. 
The results of the observed increase in 222Rn and gamma 
radiation fluxes can be interpreted not only in the 
context of permafrost conditions but also in relation to 
other factors. The measured RFD values indicate that the 
concentration of 222Rn decay daughter products in the air 
and on the soil surface is likely insufficient to significantly 
impact gamma radiation flux values. To this end, it would 
be advisable to conduct a further study in territories with 
an unfavorable radiogeochemical background. The excess 
of 210Pb compared to 226Ra may be related to the increased 
concentration of 210Pb in this layer. This level is probably 
formed in autumn and early winter during freezing of the 
AL from above. In this process, soil 222Rn cannot escape 
to the atmosphere and appears ‘sealed’ in the melted 
area between permafrost rocks and the freezing layer. 
For example, Klimshin et al. (2010) demonstrate that the 
freezing of the surface soil layer can reduce the 222Rn flux by 
up to 10 times compared to the period preceding freezing.

CONCLUSIONS

	 This paper presents the findings of field studies 
investigating the distribution of 226Ra, 222Rn, its decay 
products, and gamma radiation flux in relation to varying 
levels of AL occurrence. The studies were conducted on 
the territory of a hillocky peat bog situated within the Oma 
River basin, which is located in the Nenets Autonomous 

Okrug in Russia. A total of 76 points were sampled across the 
bog territory, and two peat profile cuts were investigated.
	 A significant correlation has been revealed between 
the gamma radiation flux and AL, which may be related, on 
the one hand, to the flux of natural radioactive gases and 
accumulation of their decay products in the absence of a 
frozen barrier. This hypothesis is further substantiated by 
the substantial correlation between RFD and AL (R = 0.83). 
Conversely, the association between gamma radiation 
and AL may be attributable to inherent characteristics of 
gamma radiation itself.
	 The vertical migration of natural radionuclides 210Pb, 
226Ra, 232Th, and 40K was studied in two selected peat 
profile cuts. The highest activity concentration of 210Pb is 
observed in the upper peat horizon (330.0±60.0 Bq·kg-1 
for profile 1 and 270.0±60.0 Bq·kg-1 for profile 2), which 
is associated with atmospheric deposition. The 210Pb 
activity concentration sharply decreases to the minimum 
detectable values in the 10-20 cm horizon, which may be 
related to the absence of vertical migration of atmospheric 
210Pb as a result of permafrost spreading and short AL 
thawing periods. In the underlying horizons of profile 1, 
where the AL thawing level is the highest, a violation of the 
226Ra/210Pb isotopic ratio is noted in favor of a 210Pb increase. 
We attribute this fact to the increased flux of 222Rn from the 
underlying horizons in the absence of a permafrost barrier. 
However, we do not exclude other possible factors of 
210Pb excess in the underlying horizons under permafrost 
thawing conditions, such as the compression of pore 
waters and gases (including gas hydrates) containing 222Rn 
because of cryogenic concentration from the permafrost 
zone to the freezing zone.

REFERENCES

		  Afonin A. and Korchunov A. (2013). Optimizing block parameters measurements for monitoring radon, thoron and their daughter 
products in various environments. ANRI, 1, 9-11. (in Russian).

		  Baskaran M. (2016). Radon: A tracer for geological, geophysical and geochemical studies. Basel: Springer, DOI: 10.1007/978-3-319-
21329-3.

		  Buldovicz S. N., Khilimonyuk V. Z., Bychkov A. Y., Ospennikov E. N., Vorobyev S. A., Gunar A. Y., Gorshkov E. I., Chuvilin E. M., Cherbunina 
M. Y., Kotov P. I., Lubnina N. V., Motenko R. G. and Amanzhurov R. M. (2018). Cryovolcanism on the Earth: Origin of a Spectacular Crater in the 
Yamal Peninsula (Russia). Scientific Reports, 8(1), DOI: 10.1038/s41598-018-31858-9.

		  Chuvilin E.M., Yakushev V.Sand Perlova E.V. (2000). Gas and gas hydrates in the permafrost of Bovanenkovo gas fi eld, Yamal Peninsula, 
West Siberia. Polarforschung, 68, 215-219.

		  Cwanek A. and Łokas E. (2022). Deposition chronologies in a peat bog from Spitsbergen (High Arctic) using the 210Pb dating method. 
Polish Polar Research, 43(4), DOI: 10.24425/ppr.2022.143310.

		  Daraktchieva Z., Wasikiewicz J. M., Howarth C. B. and Miller C. A. (2021). Study of baseline radon levels in the context of a shale gas 
development. Science of The Total Environment, 753, 141952, DOI: 10.1016/j.scitotenv.2020.141952.

		  Evangelista H. and Pereira, E. B. (2002). Radon flux at King George Island, Antarctic Peninsula. Journal of Environmental Radioactivity, 
61(3), DOI: 10.1016/S0265-931X(01)00137-0.

		  Giustini F., Ciotoli G., Rinaldini A., Ruggiero L. and Voltaggio M. (2019). Mapping the geogenic radon potential and radon risk by using 
Empirical Bayesian Kriging regression: A case study from a volcanic area of central Italy. Science of the Total Environment, 661, 449-464, DOI: 
10.1016/j.scitotenv.2019.01.146.

		  Glover P. W. J. and Blouin, M. (2022). Increased Radon Exposure From Thawing of Permafrost Due To Climate Change. Earth’s Future, 10(2), 
DOI: 10.1029/2021EF002598.

		  Iglovsky S. A., Shvartsman Y. G. and Bolotov I. N. (2010). Cryolithozone of the Dvinsko-Mezenskaya Plain and Kanin Peninsula. Ekaterinburg: 
FCIARCTIC UrB RAS (in Russian).

		  Klimshin A.V., Kozlova I.A., Rybakov E.N. and Lukovskoy M.Yu. (2010). Effect of freezing the surface layer of soil on the radon transport. 
KRAUNTS Bulletin. Series: Earth Sciences, 16(2), 146-151 (in Russian with English summary).

		  Koptev D.P. (2020). Norilsk spill: lessons and consequences. Drilling and Oil, (7-8), 3-9. (in Russian with English summary).
		  Kriauciunas V. V., Iglovsky S. A., Kuznetsova I. A., Shakhova E. V., Bazhenov A. V. and Mironenko K. A. (2018). Spatial distribution of 

natural and anthropogenic radionuclides in the soils of Naryan–Mar. Arctic Environmental Research, 18 (3), 82-89, DOI: 10.3897/issn2541–
8416.2018.18.3.82.

		  Levin V. E. and Khamyanov L. P. (1973). Registration of ionising radiation. Moscow: Atomizdat. (in Russian).
		  Lorenzo-Gonzalez M., Ruano-Ravina A., Torres-Duran M., Kelsey K. T., Provencio M., Parente-Lamelas I., Piñeiro-Lamas M., Varela-Lema L., 

Perez-Rios M., Fernandez-Villar A. and Barros-Dios J. M. (2020). Lung cancer risk and residential radon exposure: A pooling of case-control 
studies in northwestern Spain. Environmental Research, 189, DOI: 10.1016/j.envres.2020.109968.

		  Maier A., Wiedemann J., Rapp F., Papenfuß F., Rödel F., Hehlgans S., Gaipl U. S., Kraft G., Fournier C. and Frey B. (2021). Radon exposure-
therapeutic effect and cancer risk. International Journal of Molecular Sciences, 22(1), DOI: 10.3390/ijms22010316.



39

Andrey V. Puchkov and Evgeny Yu. Yakovlev	  RADIATION PARAMETERS OF THE PEAT BOG DUE TO PERMAFROST ...

		  Miklyaev P. S. and Petrova T. B. (2010). The study of radon emanation in clay. Geoecology. Engineering geology, hydrogeology, 
geocryology, (1), 13-22, (in Russian).

		  Petrova T. and Miklyaev P. (2020). Variations of indoor radon concentration in traditional russian rural wooden houses. Radiation 
Protection Dosimetry, 191(2), DOI: 10.1093/rpd/ncaa156.

		  Pokrovsky O. S., Manasypov R. M., Pavlova O. A., Shirokova, L. S. and Vorobyev S. N. (2022). Carbon, nutrient and metal controls on 
phytoplankton concentration and biodiversity in thermokarst lakes of latitudinal gradient from isolated to continuous permafrost. Science 
of the Total Environment, 806, DOI: 10.1016/j.scitotenv.2021.151250.

		  Portman A. I. and Potemkin A. M. (2014). Gas-hydrate method of radon immobilisation ANRI, 4(79), 61-64 (in Russian).
		  Prokhorenko N. B. (2013). Classification and composition of peat. Kazan: Kazan (Volga Region) Federal University (in Russian).
		  Puchkov A. V., Berezina E. V., Yakovlev E. Y., Hasson N. R., Druzhinin S. V., Tyshov A. S., Ushakova E. V., Koshelev L. S. and Lapikov P. I. 

(2022). Radon Flux Density In Conditions Of Permafrost Thawing: Simulation Experiment. Geography, Environment, Sustainability, 15(3), DOI: 
10.24057/2071-9388-2022-023.

		  Puchkov A. V., Yakovlev E. Y., Hasson N., Sobrinho G. A. N., Tsykareva Y. V., Tyshov A. S., Lapikov P. I. and Ushakova E. V. (2021). Radon Hazard 
In Permafrost Conditions: Current State Of Research. Geography, Environment, Sustainability, 14(4), DOI: 10.24057/2071-9388-2021-037.

		  Rodríguez-Martínez Á., Torres-Durán M., Barros-Dios J. M. and Ruano-Ravina, A. (2018). Residential radon and small cell lung cancer. A 
systematic review. In Cancer Letters, 426, DOI: 10.1016/j.canlet.2018.04.003

		  Rosenberger A., Hung R. J., Christiani D. C., Caporaso N. E., Liu G., Bojesen S. E., le Marchand L., Haiman C. A., Albanes D., Aldrich M. C., 
Tardon A., Fernández-Tardón G., Rennert G., Field J. K., Kiemeney B., Lazarus P., Haugen A., Zienolddiny S., Lam S. and Gomolka M. (2018). 
Genetic modifiers of radon-induced lung cancer risk: a genome-wide interaction study in former uranium miners. International Archives of 
Occupational and Environmental Health, 91(8), DOI: 10.1007/s00420-018-1334-3.

		  Sabbarese C., Ambrosino F., D’Onofrio A., Pugliese M., La Verde G., D’Avino V. and Roca V. (2021). The first radon potential map of the 
Campania region (southern Italy). Applied Geochemistry, 126, 104890, DOI:10.1016/j.apgeochem.2021.104890.

		  Sellmann P. V. and Delaney A. J. (1990). Radon measurements as indicators of permafrost distribution. Cold Regions Science and 
Technology, 18(3), DOI: 10.1016/0165-232X(90)90029-V.

		  Selvam S., Muthukumar P., Sajeev S., Venkatramanan S., Chung S. Y., Brindha K. and Murugan R. (2021). Quantification of submarine 
groundwater discharge (SGD) using radon, radium tracers and nutrient inputs in Punnakayal, south coast of India. Geoscience Frontiers, 
12(1), 29-38, DOI: 10.1016/j.gsf.2020.06.012.

		  Shirokova L. S., Chupakov A. V., Ivanova I. S., Moreva O. Y., Zabelina S. A., Shutskiy N. A., Loiko S. V. and Pokrovsky O. S. (2021). Lichen, moss 
and peat control of C, nutrient and trace metal regime in lakes of permafrost peatlands. Science of the Total Environment, 782, DOI: 10.1016/j.
scitotenv.2021.146737

		  Streletskiy D. A., Clemens S., Lanckman J. P. and Shiklomanov N. I. (2023). The costs of Arctic infrastructure damages due to permafrost 
degradation. Environmental Research Letters, 18(1), DOI: 10.1088/1748-9326/acab18.

		  Syam N. S., Lim S., Lee H. Y. and Lee, S. H. (2020). Determination of radon leakage from sample container for gamma spectrometry 
measurement of 226Ra. Journal of environmental radioactivity, 220, 106275, DOI: 10.1016/j.jenvrad.2020.106275

		  Tsapalov A. A., Miklyaev P. S. and Petrova T. B. (2013). The principle of detection of sites with active geodynamics based on the analysis 
of the ratio of Pb-210/Ra-226 activities in soil samples. ANRI, 1(72).

		  Yakovlev E., Orlov A., Kudryavtseva A. and Zykov S. (2022). Estimation of Physicochemical Parameters and Vertical Migration of Atmospheric 
Radionuclides in a Raised Peat Bog in the Arctic Zone of Russia. Applied Sciences (Switzerland), 12(21), DOI: 10.3390/app122110870.

		  Yakovlev E., Orlov A., Kudryavtseva A., Zykov S. and Zubov I. (2023). Assessment of the Impact of Anthropogenic Drainage of Raised Peat-
Bog on Changing the Physicochemical Parameters and Migration of Atmospheric Fallout Radioisotopes in Russia’s Subarctic Zone (Subarctic 
Zone of Russia). Applied Sciences (Switzerland), 13(9), DOI: 10.3390/app13095778.

		  Ye Y., Wang H., Li M. and Chen M. (2024). Experimental study of radon migration parameters in uranium tailings under frozen and non-
frozen conditions. Journal of Radioanalytical and Nuclear Chemistry, 334, 439-447, DOI: 10.1007/s10967-024-09842-7.

		  Zhang S., Jin D., Jin H., Li C., Zhang H., Jin X. and Cui J. (2024). Potential radon risk in permafrost regions of the Northern Hemisphere 
under climate change: A review. In Earth-Science Reviews, 250, DOI: 10.1016/j.earscirev.2024.104684.

		  Zhang Z. Q., Wu Q. B., Hou M. T., Tai B. W. and An Y. K. (2021). Permafrost change in Northeast China in the 1950s–2010s. Advances in 
Climate Change Research, 12(1), DOI: 10.1016/j.accre.2021.01.006.



40

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY	 2025

APPENDIX A
Table A1. RFD, AL, and gamma radiation flux at the peat bog surface

ID point RFD*, mBq·m-2·s-1 AL, cm
Gamma radiation flux*, impulses 

per second

1 30 53 25.9

2 25 52 25.8

3 29 49 29.7

4 36 50 27.9

5 32 55 23.7

6 31 50 21.9

7 35 51 22.1

8 29 54 23.8

9 28 59 26.2

10 31 50 18.3

11 36 51 20.3

12 37 54 25.9

13 32 53 24.7

14 25 55 30.4

15 26 56 28.6

16 18 14 19.9

17 10 7 18.3

18 11 8 19.6

19 12 8 22.0

20 11 10 18.4

21 15 9 21.8

22 14 9 18.5

23 16 8 16.0

24 9 10 18.0

25 9 12 18.3

26 10 12 16.3

27 12 8 22.7

28 12 9 20.1

29 14 13 18.1

30 15 15 20.3

31 14 12 22.1

32 13 11 23.7

33 10 12 22.3

34 6 11 21.4

35 7 9 20.6
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36 9 9 15.9

37 10 8 17.7

38 8 9 17.9

39 6 10 18.4

40 15 12 20.6

41 16 12 21.9

42 11 11 16.3

43 6 12 20.4

44 8 10 18.1

45 7 13 23.9

46 19 44 25.7

47 8 12 21.6

48 10 13 19.7

49 11 10 16.8

50 14 33 23.4

51 11 14 23.6

52 19 39 25.3

53 16 12 22.7

54 15 12 18.5

55 12 11 14.6

56 13 10 16.2

57 9 10 14.4

58 10 28 20.3

59 21 47 23.9

60 21 48 24.3

61 18 24 19.0

62 24 30 21.9

63 18 29 26.3

64 19 28 22.7

65 20 32 22.1

66 20 49 32.1

67 24 20 18.2

68 23 41 23.0

69 24 39 26.5

70 23 42 23.0

71 19 37 18.6

72 20 45 22.3

73 21 44 26.8



42

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY	 2025

74 20 29 22.1

75 23 26 24.9

*Notes: According to the technical documentation, the uncertainty of measurements with the scintillation geological exploration 
radiometer SRP-88n is 10%. According to the technical documentation, the uncertainty of measurements with the radon radiometer 
«Alpharad plus» is 30%.
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ABSTRACT. In the context of climate change, forests are a vital source of ecosystem services for humankind, acting primarily 
as carbon sinks. The aim of this study is to use the machine learning algorithms available in the Google Earth Engine (GEE) to 
predict the above-ground biomass of the Azrou forest in the Middle Atlas Mountains of Morocco. After a literature review, the 
work consisted of characterizing the natural features through Land Use Land Cover analysis (LULC) and forest stand types. The 
accuracy of the forest stand type classification was assessed at 81.55% using the kappa index. Analysis of vegetation cover 
time series data, derived from NASA imagery and MODIS, was carried out, focusing on four key indices: NDVI (Normalized 
Difference Vegetation Index), EVI (Enhanced Vegetation Index), LAI (Leaf Area Index), and FPAR (Fraction of Photo synthetically 
Active Radiation). The study predicted biomass using the Random Forest machine-learning model, implemented in GEE with 
JavaScript. NASA/ORNL biomass data for 2010 served as the dependent variable, while LULC, elevation, and the four indices 
were used (selected summer period) as independent explanatory variables. In addition, forest stand types were integrated to 
calculate total biomass for specific stand types and for the study area as a whole for the years 2015, 2020 and 2024. In 2024, 
the predicted biomass is 461,587 tons, compared with 501,172 tons in 2010. The biomass median values by species were 
29 tons/ha for pure Atlas cedar (Cedrus atlantica Manetti), 24 tons/ha for pure holm oak (Quercus ilex) and 31 tons/ha for a 
mixture of Atlas cedar and holm oak. The results highlight challenging conditions for the Azrou forest, with a notable decline 
in biomass over the study period. These results will serve as a basis for future forestry planning in the context of climate 
change.
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INTRODUCTION

	 In the 21st century, global climate change becomes 
more severe which is due to greenhouse gas emissions, 
which are recognized as one of the key drivers of ecosystem 
degradation and climate disruption (Scott et al. 2020). This 
phenomenon has had serious consequences, including 
global warming, ocean acidification, accelerated glacier 
melt, and an increase in the frequency and intensity of 
extreme weather events (Calvin et al., 2023).
	 In the context of climate change, the uptake of carbon 
dioxide by forest ecosystems is precarious for regulating 
it (Friedlingstein et al., 2022). They play a key role since 
maintaining and increasing the sink capacity of forests is 
essential to reduce growing greenhouse gas emissions into 
the atmosphere (Friedlingstein et al., 2022; R. B. Myneni et al., 

2001; Pan et al., 2024; Schilling et al., 2012). In December 2015, 
the COP 21 in Paris led to an agreement within the United 
Nations Convention on Climate Change with the purpose 
of keeping the increase in global surface temperature well 
under 2°C, while pursuing efforts to limit the rise to 1.5°C. In 
this concern, each party involved in the agreement has to 
establish a national goal to limit greenhouse gas emissions 
(Erickson & Brase, 2020; Ourbak & Magnan, 2018). Biomass 
carbon pools act as a sink for atmospheric CO2 and, in the 
Mediterranean region, carbon sequestration by forests 
ranges between 0.01 and 1.08 t C ha-1 annually (Merlo & 
Croitoru, 2005). The ability to quantify forest carbon stock 
at the regional and local levels is expected to support 
compliance with the treaty and its goals.
	 Forests are a vital source of ecosystem services for humans 
and mainly act as carbon sinks (FAO, 2020). Nonetheless, forest 
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improvement activities and changes in land and forest use 
emanate directly from forests and account for all emissions 
from agriculture and other related uses (Laaribya et al., 2024; 
Nourelbait et al., 2016; Rudel et al., 2005). In addition, activities 
linked to deforestation, reforestation, and forest conservation 
are important. Combined with the effects of deforestation and 
acceptable sustainable harvesting, forests can also act as a 
source of carbon long before the agreement. In this context, 
the reduction of greenhouse gas emissions from deforestation 
and increased forest degradation is part of a sustainable 
development approach and enhances carbon storage (Alaoui 
et al., 2021; Forsell et al., 2016; García et al., 2010; Laaribya et al., 
2021; Sinha, 2022).
	 Although much research has been carried out on the Atlas 
cedar forest to assess its state of conservation, much remains 
to be discovered about its capacity to store carbon in biomass 
and the long-term sustainability of this emblematic Moroccan 
ecosystem (Boulmane et al., 2015; El Mderssa, 2022; El Mderssa 
et al., 2019; Laaribya, 2024; Laaribya et al., 2024; Linares et al., 
2011; Terrab et al., 2006; Zaher et al., 2020a). This work has 
highlighted the need to improve conservation strategies to 
preserve this ecosystem, as its ability to act as a carbon sink 
is highly dependent on its sustainability and maintenance. 
Indeed, this remarkable ecosystem plays an essential role in 
carbon sequestration, helping to mitigate climate change.
	 The aim of this study is to use the available machine 
learning techniques, adapted inside the GEE environment, to 
assess the cover dynamic and to predict the above-ground 
biomass of the Azrou Cedar Atlas forest in the Middle Atlas 
Mountains in Morocco. 
	 Satellite imagery, coupled with the power of Artificial 
Intelligence (AI) and cloud-based platforms like GEE, has 
revolutionized the way environmental monitoring is 
conducted, making it possible to analyze vast forest landscapes 
over extended periods efficiently (Laaribya & Alaoui, 2025; 
Mutanga & Kumar, 2019; Zhao et al., 2021). Indeed, given that 
traditional methods are difficult to meet the requirements in 
this field due to the long period of experimentation in the field, 
the availability of timber cuttings, and the high cost. Nowadays, 
machine learning (ML) is emerging as a new research paradigm 
to facilitate research in the field of machine learning for forest 
biomass prediction.

MATERIALS AND METHODS

Study area

	 The Azrou forest is located on the northern edge of the 
Middle Atlas plateau (Morocco) and covers an area of 17,807 ha. 
Contrasting relief characterizes it, with altitudes ranging from 
1,100 m to 2,100 m. Precipitation is relatively high and comes 
in the form of rain or snow. Annual rainfall varies between 563 
mm and 1122 mm, while maximum temperatures range from 
30.3°C to 43°C, with July and August being the hottest months 
(Laaribya, 2024).
	 The bioclimate is humid Mediterranean with a cold 
variant and subhumid with a temperate variant. Atlas 
Cedar (Cedrus atlantica Manetti) is the main species in 
this forest, and depending on the nature of the substrate, 
it forms pure stands or a mixture with holm oak (Quercus 
ilex) (Laaribya, 2024). The topographic characteristics of the 
study area are shown in Fig. 2.
	 Referring to the International Soil Classification System 
(WRB 2014), the study area offers three main soil groups 
(Fig. 3). 
In our study area, analysis of the Gaussen Index (Bagnouls 
& Gaussen, 1953) (Fig. 4) reveals a dry period lasting 
approximately four months, from June to September 
(1985-2022). This prolonged aridity significantly affects 
vegetation cover and tree growth in the Azrou forest.

Data collection

	 To achieve our objectives, we used a dual approach 
to analyze environmental changes and biomass evolution 
over time (Fig. 5). This study relies on various data from 
reliable and verified sources. All thematic maps were 
produced using software tools ArcGIS 10.8. 

Forest stand types mapping and accuracy assessment

	 The accuracy of the forest stand types classification is 
assessed using a confusion matrix, which compares the 
stand type results to a set of reference data (ground truth 
or other high-quality datasets). 
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Fig. 1. Study area (the Azrou forest)

Fig. 2. Topographic maps of the study area
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Fig. 3. Soil type in the study area (map based on the soil maps (INRA 2000) not published)

Fig. 4. Bagnouls and Gaussen climate diagrams (1985-2022)

Fig. 5. Methodological Framework
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	 User’s accuracy: Measures the accuracy of classification 
from the user’s perspective (correctly classified instances 
out of all instances predicted for a given class) (Eq. 1).

	 Producer’s accuracy: Evaluates the accuracy of the 
classification from the producer’s perspective (correctly 
classified instances out of all instances belonging to a 
given class) (Eq. 2).

	 Kappa coefficient (K): A statistical measure that assesses 
the overall accuracy of the classification, accounting for 
random chance (Eq. 3).

	 Spatio-temporal comparisons of vegetation 
conditions (2001-2024)

	 Monitoring and change detection for indices used 
throughout the year (mean for 4 seasons) all over the 2001-
2024 period.
	 For analyzing the vegetation conditions across time, 
global MODIS vegetation indices (NDVI, EVI, LAI and FPAR) 
were used (Table 1). The two indices provide insights into 
vegetation health and productivity:
	 Normalized Difference Vegetation Index (NDVI): Used 
to assess vegetation density and health, where higher 
values correspond to denser vegetation.
	 The Normalized Difference Vegetation Index (NDVI) 
(Tucker, 1979) is the most commonly used vegetation 
index for observe greenery globally (Eq. 4):

	 where NIR - Near-Infrared reflectance, R - Red reflectance
	 Enhanced Vegetation Index (EVI): Similar to NDVI but 
includes corrections for atmospheric and soil variations, 
making it particularly useful in areas with dense vegetation.
The Enhanced Vegetation Index (Huete, 1997) is an 
improved version of the NDVI, designed to minimize the 
influence of atmospheric conditions and soil reflectance, 
particularly in areas with dense vegetation (Eq. 5):

	 where:  NIR: Near-Infrared reflectance,  R: Red reflectance,  
Blue: Blue reflectance, G: Gain factor, C1: Coefficient for 
the red band, C2: Coefficient for the blue band, L: Canopy 
background adjustment 
	 Leaf Area Index (LAI) : LAI (Eq. 6) is broadly defined as 
the amount of leaf area (m2) in a canopy per unit ground 
area (m2) (Watson, 1958). Leaf area index (LAI) is one of the 
most frequently used parameters for the analysis of canopy 
structure and is an important structural characteristic of 
crop monitoring and crop productivity (Behera et al., 2010).

	 Variables: LA: Leaf area m2), P: Ground area (m2)
	 Note also that if LAI is the mean leaf area per plant, and 
n is the plant density, then also (Eq. 7)

Variables: LA: Leaf area of a single plant (in m² or cm²),
n: Plant density the number of plants per unit ground area 
(e.g., plants/m²)
	 Fraction of photosynthetic active radiation (FPAR): 
Photosynthetic active radiation used by plants in the 
photosynthesis process. PAR knowledge can provide key 
inputs for modeling biomass and forestry production 
(Aguiar et al., 2012; García-Rodríguez et al., 2021). 
	 The two indices LAI and FPAR were used from the 
MOD15A2H V6.1 (MODIS product) combining leaf area 
index (LAI) and fraction of photosynthetically active 
radiation (FPAR) in an 8-day composite dataset at 500 m 
resolution (R. Myneni et al., 2021).

Trend analysis and change detection for NDVI and EVI 

	 To detect trends and changes in vegetation conditions, 
the following statistical methods were applied especially 
to NDVI and EVI indices:
	 Sen’s slope estimator: A non-parametric method for 
estimating the slope of a trend in time series data. It is 
widely used for trend analysis when dealing with datasets 
that may contain non-linear trends or outliers (Sen, 1968).

Random forest machine learning algorithm in GEE

	 To to apply biomass prediction over 3 years (2015, 
2020 and 2024), we have used the summer period (month 
5 to month 9) to calculate the biomass explanatory indices 
NDVI, EVI, LAI, and FPAR. The median was used to perform all 
those parameters. Indeed, the summer period is generally 
the best time to calculate the values of these indices, 
making it easier to identify patterns, assess vegetation 
health, and monitor changes.
	 Given the model’s robustness in prediction, we 
have used the Random Forest Machin Learning 
algorithm. The dependent variable is biomass 2010 (ee.
ImageCollection(‘NASA/ORNL/biomass_carbon_density/
v1’). This is the carbon stock density of the above-ground 
living biomass of the combined woodland and herbaceous 
cover in 2010. This includes carbon stored in living plant 
tissues above the earth’s surface (stems, bark, branches, 
and twigs) (Spawn et al., 2020). 
	 The random forest is an ensemble learning method 
mainly used for modeling. Its principle is to build a multitude 
of decision trees during training and merge their results to 
improve overall accuracy and control overfitting (Schonlau 
& Zou, 2020). Random forests are a combination of tree 
predictors such that each tree depends on the values of a 
random vector sampled independently and with the same 
distribution for all trees in the forest (Breiman, 2001). The 
model parameters and their characteristics are presented 
in Table 1 below. Other parameters (excluding indices) are 
also included in the Random Forest model as independent 
variables.

Biomass = f (NDVI, EVI, LAI, FPAR, LULC, Elevation)
Var dataset = ee.Image.cat([NDVI, EVI, LAI, FPAR, LULC, 

Elevation])

RESULTS

Lund Use Land Cover 

Analysis of the LULC map shows that our study area 
is marked by a diversity of vegetation cover, mainly 
grassland, which accounts for more than half the surface 
area (57%). Forest cover appears to be open and in a state 
of degradation all over the study area (Fig. 6 and Table 2). 

(4)

(5)

(1)

(2)

(3)

(6)

(7)
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Table 1. Parameters and data collection

Parameters Collection Snippet Resolution (m) Date

Biomass (‘agb’ Band)
NASA/ORNL/biomass_carbon_density/v1

(Global Aboveground and Belowground Biomass Carbon Density Maps)
300 2010 

NDVI MOD13Q1.061 (Terra Vegetation Indices 16-Day Global 250m) 250 2001-2024

EVI MOD13Q1.061 (Terra Vegetation Indices 16-Day Global 250m) 250 2001-2024

LAI (Leaf Area Index)
FPAR (Fraction of 

Photosynthetically Active 
Radiation)

MOD15A2H.061 (Terra Leaf Area Index/FPAR 8-Day Global 500m) 500 2001-2024

Elevation USGS/GTOPO30
30 arc seconds 

(equiv 1 km)
1996

LULC
MODIS/061/MCD12Q1

Land Cover Type Yearly Global
500 2010/2022

Fig. 6. Landover map 2022
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Table 2. LULC 2022 area (ha)

LULC Area (Ha) %

Water 404 2.3%

Evergreen Needleleaf Forest 2,468 13.9%

Open Shrublands 660 3.7%

Woody Savannas 511 2.9%

Savannas 2,064 11.6%

Grasslands 10,148 57%

Permanent Wetlands 106 0.6%

Croplands 1,404 7.9%

Urban and Built-up Lands 43 0.2%

Total 17,807 100%

	 To deepen the analysis and prepare data for the 
prediction of forest biomass, we prepared a map of forest 
stand types based on data from the National Forest 
Inventory. An accuracy assessment was carried out to 
determine the validity of the classification of the results of 
this inventory in the field.
	 The composition of the forest species in our study 
area includes pure stands of Atlas cedar (Cedrus atlantica) 
(8.4%), Atlas cedar mixed mainly with holm oak (Quercus 
ilex) (40.3%), pure holm oak stands (24.8%) and other areas 
(24.7%) (Secondary species and non-wooded areas) (Fig. 7 
and Table 3). 
	 The Atlas cedar is a noble Moroccan species with a 
much more majestic and imposing appearance than other 
species.
	 The higher Kappa (81.55%) coefficient obtained in our 
analysis (Table 4) is a strong validation of the classification 
accuracy, allowing us to confidently focus our study on 
Forest stand. This robust classification framework forms 
the basis for assessing spatio-temporal trends in the main 
indices and corresponding land cover classes, in particular 
trees, crops, and pasture, over the selected study period 
(2001-2024).

Time series analysis during 2001-2024

	 The vegetation assessment parameters NDVI and EVI 
are widely used to analyze the condition of forest areas. 
According to the results obtained for the period 2001-2024, 
NDVI values are generally higher than EVI values over time 
in the study area (Figs. 9 and 10). In addition to the NDVI 
index, the use of the EVI index offers additional benefits by 
mitigating the effects of saturation and correcting for soil 
and atmospheric influences. The two vegetation indices 
complement each other and improve the detection of 
changes in vegetation. 
	 Analysis of the descriptive statistics for the two series 
(2001-2024) confirms the results of the LULC classification, 
where vegetation cover is generally sparse and in a 
degraded state. The coefficient of variation varies by 13 
and 15% for NDVI and EVI, respectively (relatively low 
variability), with relatively low mean values of 0.53 and 0.27 
(Table 5).
	 The coefficient of variation varies from 32% to 17% for 
LAI and FPAR indices, respectively, with relatively low mean 
values of 0.99 and 4.13 (Table 5).These results show that the 
LAI index is the most variable, reflecting direct changes in 

leaf area over time or space. FPAR is slightly more variable 
than NDVI and EVI but less than LAI, representing small 
fluctuations in vegetation productivity (Figs. 11 and 12).
In conclusion, overall vegetation cover and greenness in 
the study area remain relatively low and stable in space 
and time in the period 2001-2024.
	 The differences in dynamics between the two indices 
(NDVI and LAI) are normal, as they are sensitive to different 
vegetation characteristics. NDVI reflects chlorophyll 
content and greenness, but it reaches saturation in dense 
or mature vegetation. However, LAI continues to increase 
with leaf growth and vegetation cover stratification, linking 
it more directly to leaf areas and biomass. NDVI reacts 
more quickly to greening at the beginning of the season, 
while LAI shows more gradual and sustained growth. 
During senescence, NDVI decreases more rapidly, while LAI 
continues to increase until significant leaf loss occurs.

Spatio-temporal analysis / change detection

	 For further statistical evaluation, we applied Sen’s 
slope spatio-temporal trend analysis to both the NDVI 
and EVI series (2001-2024). This method was chosen for 
its robustness in detecting monotonic trends, making it 
particularly suitable for analyzing vegetation dynamics 
over time. The results of this analysis, detailed below, offer 
an explanation for the spatial evolution of vegetation over 
the study period.. A summary of results is presented in the 
following Table 6. 
	 Spatio-temporal analysis carried out over the entire 
study area reveals both positive and negative trends in 
vegetation dynamics (NDVI and EVI) (Figs. 13 and 14). These 
trends vary and cover the entire study area. The decreasing 
values of Sen’s slope in the study area confirm the findings 
of forest degradation and the impact of climate change 
in the area. The two vegetation indices complement each 
other and improve the detection of changes in the study 
area. 
Degradation is occurring mainly in forest ecosystems 
conquered by Atlas cedar (Cedrus atlantica), as well as in 
mixed stands of Atlas cedar and holm oak (Quercus ilex). 
These forest ecosystems are predominantly vulnerable 
due to a combination of natural and anthropogenic 
pressures.	
	 Spatio-temporal analysis carried out over the entire 
study area reveals both positive and negative trends in 
vegetation dynamics (NDVI and EVI) (Figs. 13 and 14). These 
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Fig. 7. Classification of the forest stand types in the study area 

Table 3. Classification of the forest stand types in the study area

Stand type Area (ha) %

Pure Atlas cedar (Cedrus atlantica) 1497 8.4

Pure holm oak (Quercus ilex) 4420 24.8

Cedar mixed with holm oak 7182 40.3

Others 4708 24.7

Total 17,807 100

Table 4. Forest stand Accuracy assessment

Landuse
Pure Atlas 

cedar (Cedrus 
atlantica)

Pure holm oak 
(Quercus ilex)

Cedar mixed 
with holm oak

Others
Total 
(user)

User accuracy (%)

Pure Atlas cedar (Cedrus atlantica) 23 0 3 0 26 88%

Pure holm oak (Quercus ilex) 3 9 1 0 13 69%

Cedar mixed with holm oak 1 2 17 1 21 81%

Others 0 0 0 21 21 100%

Total (producer) 27 11 21 22 81  

Producer accuracy (%) 85% 82% 81% 95%  
Overall Accuracy = 

86.44%

          Kappa = 81.55%

Table 5. Descriptive statistics for the time series indices (2001-2024)

Indices Min Max Mean Median St dev Coefficient of variation (%)

NDVI 0.196 0.65 0.53 0.54 0.07 13

EVI 0.11 0.37 0.27 0.27 0.04 15

LAI 0.04 1.84 0.99 1.02 0.32 32

FPAR 0.25 5.59 4.13 4.23 0.72 17
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Fig. 8. Box plot for studied vegetation parameters (2001-2024)

Fig. 9. NDVI time series (2001-2024)

Fig. 10. EVI time series (2001-2024)
trends vary and cover the entire study area. The decreasing 
values of Sen’s slope in the study area confirm the findings 
of forest degradation and the impact of climate change 
in the area. The two vegetation indices complement each 
other and improve the detection of changes in the study 
area. 
	 Degradation is occurring mainly in forest ecosystems 
conquered by Atlas cedar (Cedrus atlantica), as well as in 
mixed stands of Atlas cedar and holm oak (Quercus ilex). 
These forest ecosystems are predominantly vulnerable due 
to a combination of natural and anthropogenic pressures.

Biomass prediction using Machine Learning in GEE

	 Biomass estimation models based on remote sensing 
data (NDVI, EVI, LAI, FPAR) are sensitive to changes in 
vegetation structure and vigor, which can decrease without 
any visible change in land cover type. Biomass modelling 
provided an assessment of the mass in the forest area 
studied, expressed in dry weight, of the woody parts (stem, 
bark, branches and twigs) of all living trees, excluding 
stumps and roots (Spawn et al., 2020). The Random Forest 
model designed for our prediction (correlation = 0, 7 with a 
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p-value < 0, 05) has enabled us to obtain the first results by 
period (2010, 2015, 2020 and 2024) in the forest study area 
for data based on the satellite dataset (Fig. 15).  
	 The results obtained showed a decrease in value (-8%) 
between 2010 and 2024, with a biomass of 501,172 tons/ha in 
2010 versus 461,587 tons/ha predicted by our model for 2024. 
	 In 2024, the biomass median values by species were 29 
tons/ha for pure Atlas cedar, 24 tons/ha for pure holm oak, 
and 31 tons/ha for a mixture of Atlas cedar and holm oak 
(Table 7, Figs. 16 and 17).  
	 Generally, between holm oak (Quercus ilex) and Atlas cedar 
(Cedrus atlantica), above-ground biomass potential depends 
on several factors such as region, ecological conditions (soil 
type, climate, elevation), stand density and tree age.
	 These results further confirm that Atlas cedar produces 
a higher above-ground biomass than holm oak, particularly 
under favorable conditions. These results provide a 
comprehensive approach to mapping biomass estimation in 
forestry and suggest guidelines for forest planning. 

DISCUSSION

	 In addition to vegetation condition over time and 
space, this research work examines the assessment of 
forest biomass by machine learning algorithms in GEE. 
This innovative approach replaces the use of costly field 
investigations. The biomass values obtained are reference 
values for the main forest species in the area, namely Atlas 
cedar and holm oak. 
	 A negative evolution was highlighted, in biomass 
values, between 2010 and 2024, materializing the negative 
trend in vegetation parameters studied in the area. In 
2024, the predicted biomass is 461,587 tons, compared 
with 501,172 tons in 2010. This measurement is the carbon 
stock density of the above-ground living biomass of the 
combined woodland and herbaceous cover. The biomass 
median values by species were 29 tons/ha for pure Atlas 
cedar, 24 tons/ha for pure holm oak, and 31 tons/ha for a 
mixture of Atlas cedar and holm oak. According to the FAO 
(2006) in (Oubrahim et al., 2016), carbon stocks in forests 

Fig. 11. LAI time series (2001-2024)

Fig. 12. FPAR time series (2001-2024)

Table 6. Sen’s slope class for NDVI and EVI

Indices/Sen’s slope Decreasing Stable Increasing

NDVI -2.23 to 0 0-1 1 to 3.6

EVI -1.4 to 0 0-1 1 to 3.4
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Fig. 13. NDVI Sen’s slope (2001-2024)

Fig. 14. EVI Sen’s slope (2001-2024)
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Table 7. Biomass predicted by period in the study area 

(Units of measurement are expressed in megagrams (Mg) per hectare. 1 Mg = 1 metric ton)

Biomass 
Stand type

 Atlas cedar 
(Cedrus atlantica)

Holm oak 
(Quercus ilex)

Atlas Cedar mixed 
with holm oak

Others Total

Area (ha) 1,497 4,420 7,182 4,708 17,807

Biomass 2010  
Median (Mg/ha) 32 26 34 20 ---- 

Total (Mg) 47,904 114,920 244,188 94,160 501,172

Biomass 
predicted 2015

Median (Mg/ha) 31 26 33 20  ---- 

Total (Mg/ha) 46,407 114,920 237,006 94,160 492,493

Biomass 
predicted 2020

Median (Mg/ha) 30 24 32 19 ----  

Total (Mg) 44,910 106,080 229,824 89,452 470,266

Biomass 
predicted 2024

Median (Mg/ha) 29 24 31 19 ----  

Total (Mg) 43,413 106,080 222,642 89,452 461,587

Fig. 15. Biomass 2010 and biomass prediction 2015, 2020 and 2024 (Megagrams (Mg) per hectare)



55

Said Laaribya and Assmaa Alaoui	 BIOMASS PREDICTION USING MACHINE LEARNING ...

in North Africa (the total carbon in biomass, dead wood, 
forest floor and the first 30 cm of the soil profile) were on 
average 64.9 tons/ha.
	 In the Middle Atlas cedar area, in four reservoirs, i.e., 
aboveground biomass, belowground biomass (roots), 
necromass (litter and deadwood) and the soil, carbon 
stocks were esteemed at 395.37 Mg/ha for the natural 
cedar Atlas and 76.05 Mg/ha for the cleared area. Analysis of 
the carbon stock distribution in the ecosystem discovered 
that soil was the largest reservoir. Indeed, the soil carbon 
stock varies from 46.4% to 93.5%, that of the biomass 
(aboveground and belowground) fluctuates between 4.3% 
and 52.7% and in the necromass, it is between 0.8 and 2.2% 
(Zaher et al., 2020b).
	 The highest carbon stocks are found in the most densely 
wooded areas (dense forests). This finding is confirmed 
by other studies on the subject (Le Clec’h et al., 2013; 
Oubrahim et al., 2016). In addition to aboveground biomass, 

assessing the contribution of forest soils makes it possible 
to estimate the total biomass level of the ecosystem. Forest 
soils are a significant reservoir of carbon; more than 40% 
of the total organic carbon in terrestrial ecosystems is 
stored in forest soils (Wei et al., 2014; Weston & Whittaker, 
2004). In the banj oak forests (Quercus leucotrichophora) of 
the Central Himalaya, tree biomass declined by 62% from 
undisturbed to degraded forests, the carbon sequestration 
rate decreased by 73%, peaking in moderately disturbed-A 
forests, while total soil carbon fell by 79% (Pandey et al., 
2020).
	 The decline in biomass values in our increasingly 
fragile ecosystem is attributed to several interdependent 
processes and factors that do not necessarily involve a 
change in LULC classification. Firstly, we can note the 
degradation of forest areas, such as the excessive logging 
of precious Atlas cedar wood and overgrazing that exceeds 
the carrying capacity, which can significantly reduce 

Fig. 16. Biomass (Mg) predicted by period

Fig. 17. Median biomass predicted by period
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biomass even though the overall forest cover appears 
unchanged. Secondly, reduced tree density and stress 
can also lead to lower biomass estimates. Known climatic 
stress factors in recent decades (droughts and rising 
temperatures, etc.) have limited tree growth and health, 
thereby reducing biomass accumulation. 
	 The increased stress on vegetation in the area was 
highlighted by analyzing spatial and temporal variations in 
vegetation indices (NDVI, EVI, LAI and FPAR). These indices 
are reliable indicators of vegetation health and are sensitive 
to changes in vegetation cover and structural properties 
(González‐Alonso et al., 2006; Shammi & Meng, 2021). 
	 The negative trends observed for NDVI and EVI 
indices reflect a reduction in photosynthetic activity and 
vegetation density in the forest study area. Shortened 
vegetation affects carbon sequestration, biodiversity, and 
ecosystem services in the study area.
	 Models based on remote sensing and machine-
learning techniques have made it possible to detect subtle 
changes in biomass, even in areas where LULC cover does 
not appear to have changed visibly. We can therefore 
conclude that these tools are powerful for monitoring and 
assessing the state of forest ecosystems beyond simple 
changes in land use.
	 The downward trends observed in biomass, particularly 
in cedar forests and mixed oak and cedar forests, reflect both 
local degradation processes and regional environmental 
pressures. In our area, carbon stocks vary considerably 
depending on the type of forest. The ecosystem is vulnerable 
to degradation, which reduces its carbon sequestration 
potential. Overgrazing and deforestation not only reduce 
above-ground biomass but also lead to soil erosion and loss 
of organic matter, contributing to a decrease in soil carbon 
stocks. In a regional context marked by human pressures 
and climate change (Del Río et al., 2017; Gómez et al., 2012; 
Vayreda et al., 2012), intensified land use, and difficulties 
in natural regeneration, similar trends in biomass decline 
and carbon loss are observed, suggesting that these trends 
may be regional. Globally, these findings are consistent 
with broader concerns about the declining carbon storage 
capacity of dry Mediterranean forests, pointing to the 
importance of sustainable management strategies.
	 It would be interesting to take into account local data 
validation (forest inventories or biomass measurements 

in the field) for a more accurate comparison. Assessment 
of biomass by species would be more interesting if we 
focused on results by station type, taking into account the 
main ecological (soil, climate, stand age, elevation) and 
local socio-economic factors. In fact, human and pastoral 
pressure on the environment would have a negative 
impact on the forest ecosystem in question. 

CONCLUSIONS 

	 Today, the adoption of innovative approaches offered 
by Google Earth Engine (GEE) combined with GIS and 
remote sensing tools is playing an increasingly central 
role in the analysis, monitoring, and management of forest 
ecosystems. Indeed, the use of these platforms in our work 
has provided very useful results for assessing the evolution 
of canopy dynamics and the prediction of aerial biomass in 
the study area.
	 This study reveals that between 2010 and 2024, biomass 
values in the Azrou forest studied showed a decline over 
time and space. This negative trend reflects a more general 
deterioration in vegetation vigor and health indicators. 
The main vegetation indices studied in the model, notably 
NDVI, EVI, LAI, and FPAR, followed descending trends. These 
trends are due to natural and human factors that have 
caused environmental stress. Overall, the results confirm 
a marked degradation of the ecosystem during the study 
period.
	 Significant spatio-temporal negative trends in 
vegetation indices and biomass levels underline the need 
for adaptive management strategies in the context of 
climate change. Future research should focus more on field 
investigations and the integration of socio-economic data 
to better understand the interactions of the studied forest 
ecosystem. Assessment of canopy and biomass dynamics 
would benefit from the integration of other environmental 
factors related to local sites (soil type and physico-chemical 
characteristics, stand structure, age, density). 
	 Future research should also focus on integrating 
local socioeconomic data to better understand human-
environment interactions and develop predictive models 
that promote effective mitigation and adaptation 
measures.
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ABSTRACT. This paper explores the use of 137Cs derived from Chernobyl as an indicator of sediment supply and transport 
within small agricultural catchments by analyzing the depth distribution of radionuclides, with a focus on post-Chernobyl 
changes in the activity concentration of radionuclides. To this end, depth-incremental sampling was carried out along routes 
of sediment transport within a small agricultural catchment subject to intense radioactive contamination in the Tula region. 
Some points were set to repeat the position of those made 27 years earlier and to understand the dynamics of deposition 
and the 137Cs content in the sediment load. It has been suggested that a decrease in the activity concentration of 137Cs can be 
used as an indicator of the relative age of deposits. Assuming this, the pattern of erosion product deposition on the sides and 
bottom of the dry valley was determined. This pattern was found to be stable and consistent with the observed geomorphic 
features and climate trends: the rate of accumulation in the valley bottom over the past 27 years has dropped almost twice, 
coinciding with a decrease in snowmelt runoff during springtime and no increase in intense rainfall. Grain-size analysis of the 
collected samples showed that selective transfer of clay particles may occur, but over a short delivery distance, it is unlikely 
that the sorting process will significantly alter the downward trend of 137Cs concentrations. The proposed approach has the 
potential to significantly improve the accuracy of sediment budget estimations and environmental quality assessments.
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INTRODUCTION

	 Due to anthropogenic impact, which results in 
disturbances of the natural canopy, accelerated erosion 
on the interfluve slopes plays a major role in the sediment 
budget (Vanwalleghem et al. 2017). Yet, the products of 
erosion are mostly re-deposited along pathways from 
cultivated slopes to the river channels (Sidorchuk 2018). 
Emerging sediment fluxes are discontinuous; they begin 
with single events of short erosion periods on the slopes, 
continue along the thalwegs of hollows and valleys toward 
permanent watercourses, and extend beyond the outlets 
of river catchments, where they partly mix with products of 
riverbed deformations and become trapped by floodplains 
and reservoirs. Exploration of accumulated deposits using 
high-resolution chronomarkers and tracers along the 
routes of sediment transport may help understand the 

transformation of sediment budgets due to changes in 
the intensity of erosion and sediment delivery processes 
(Owens 2020).  
	 Several artificial compounds that are brought into the 
environment are successfully used to investigate erosion 
and sedimentation, including heavy metals (Dai et al. 
2013; Wang et al. 2019; Elbaz-Poulichet et al. 2020;), fly 
ash (Olson et al. 2008; Davis & Fox 2009; Gennadiev et al. 
2010), and radioactive isotopes (Zapata 2003; Alewell et al. 
2017). The latter is closely linked to regular and occasional 
discharges from nuclear facilities (UNSCEAR report 2000) 
and nuclear weapons tests (Aoyama et al. 2006). Among 
other anthropogenic fallout radionuclides 137Cs is most 
often used as a tracer (Zapata 2002). 
	 The highest 137Cs activity concentration usually 
occurs during the 137Cs fallout from the atmosphere, 
unless the soil has been affected by perturbations and 
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erosion, intense migration of radionuclides (Jagercikova 
et al. 2015), and material from a more contaminated area 
has been transported and deposited at the sediment 
sinks. Considering the pointed limitations, precise dating 
of sediments becomes possible by using 137Cs depth 
distribution (Foucher et al. 2020). 
	 The distribution of radionuclides above the layer 
associated with massive fallout, such as that from the 
Chernobyl accident, can be seen as a record of changes in 
activity concentrations in sediments carried and deposited 
after the event. These variations are determined by activity 
concentration in the material from a specific sediment 
source, the proportion of sources contributing to the 
sediment flux, and the possible sorting of particles and 
aggregates during transportation. If the long-term trend in 
the behavior of 137Cs in mobilized sediment for a selected 
location is predictable, then it is possible to link activity 
concentrations with the age of the accumulated sediment.
	 The aim of this research is to assess the potential use 
of the Chernobyl-derived 137Cs depth distribution not only 
as an accurate chronomarker but also as a geochemical 
indicator of sediment fluxes in a small agricultural 
catchment affected by intense Chernobyl fallout in Central 
Russia. To this end, the following questions were raised:
	 1. How did the 137Cs activity concentration change 
in sediments that reached the lower boundary of the 
cultivated fields and then entered a dry valley bottom over 
the post-Chernobyl period?
	 2. Is there a significant difference in the grain-size 
composition of material deposited in different geomorphic 
units, indicating the potential influence of sorting during 
transport on the radionuclide content?
	 3. What is the sedimentation rate in the dry valley along 
different sediment transfer routes, and can it be related to 
the activity concentration values of sediment believed to 
be older than 1986?
	 4. How long does it take for sediment to move from the 
arable slope to the catchment outlet, considering changes 
in erosion and sediment load from the slopes?

Materials and methods

	 The study area is located in the southern part of the Tula 
region near Plavsk town in the central part of a zone heavily 
contaminated with 137Cs following the Chernobyl accident 
in 1986 (Fig. 1A). The chosen catchment has been studied 
over the past few decades using Chernobyl-derived 137Cs 
as a soil erosion tracer (Golosov et al. 1999a,b; Golosov et 
al. 2000; Ivanova et al. 2000; Panin et al. 2001; Ivanov 2017; 
Ivanov, Ivanova 2023; Ivanov et al. 2023, 2024a). Despite 
this, the catchment still has high potential for in-depth 
exploration of erosion and sediment transport processes. 
Surveys from different years allow us to observe the long-
term transformation of sediment and contaminant fluxes. 
	 The area of the study site is 0.25 km2, and the elevation 
difference is 52 m: from 187 m asl near its mouth (see Fig. 1B) 
to almost 236 m on the watershed surface. A major part of 
the drainage area is occupied with arable interfluve slopes 
of 1°–7°. The rest of the catchment area is represented by 

steep (up to 25°) sides and a gently sloping bottom of a dry 
valley (Fig. 1B).
	 The bedrock represented by Carboniferous limestone is 
covered by a loess-like loam (Ratnikov 1960) that serves as a 
soil-forming deposit for leached (Luvic Chernic Phaeozems) 
and podzolized (Luvic Greyzemic Chernic Phaeozems) 
according to the WRB-22 classification. According to the 
Plavsk weather station, the average annual precipitation is 
approximately 650 millimeters. Since the early 1990s, there 
has been a clear trend towards an increase in average winter 
air temperatures and a decrease in snowmelt runoff, up to 
its complete disappearance in some years (Barabanov et al. 
2018), due to the lower depth of soil freezing and the higher 
infiltration capacity of the soil during the snowmelt season. 
	  The lower boundary of arable slopes is usually outlined 
with lynchets: a ramparts emerged due to ploughing. 
Therefore, the transfer of mobilized sediments outside the 
slope occurs mainly through slope hollows, where slope 
runoff is concentrated (Panin et al. 2001). Before plowing 
ramparts (lynchets), erosion products accumulate at the foot 
of arable slopes. Accumulation in this zone plays a significant 
role in the sediment budget, comparable to the sediment 
load entering receiving watercourses (Ivanov et al. 2024b). 
The material that is carried outside the slope is deposited in 
the form of slopewash fans and covers on the sides of the 
valley. The rest of the sediments are transferred along the 
fluvial network and mainly deposited inside valleys.
	 As far as water flow is predominantly controlled by local 
topographic features, the specific routes of sediment transfer 
can be identified and studied separately. In our study, three 
routes were investigated with depth incremental sampling 
points (Fig. 1D., Table 1).
	 The first route is located in the western part of the 
catchment. The slope runoff from the neighboring slopes 
is concentrated along the lynchet, so its transfer to the 
valley bottom is observed in the corner of the cultivated 
field. Two sampling points were selected here: one at the 
foot of the slope before the fulfilled lynchet (LF-1) and one 
on the side of the dry valley (LS-1), where conveyance of 
mobilized material was expected. The second route passes 
through the central part of the study area and includes 
three sampling points: on the slope of the fulfilled lynchet 
(LF-2), on the side of the dry valley (LS-2), and in the upper 
reaches of the valley’s bottom (LB-1). The third route starts 
at the lower reach of the bottom of a large slope hollow 
(LF-3), passes through a well-defined slopewash fan on the 
side of the valley (LS-3), and continues along the bottom dry 
valley bottom, where two sampling points were selected: in 
the upper reaches (LB-2) and near the mouth (LB-3). In the 
central part of the valley bottom, there is a local area with 
bottom gully incision. The position of the gully head has not 
changed significantly since it was first observed in 1997. The 
locations of LB-2 and LB-3 were selected to be close to the 
soil sections examined in 1997 by Golosov et al. (1999a) for 
comparison purposes within the 1997-2024 time window 
(see Fig. 1C).
	 The depth incremental sampling was conducted in 
two ways. Soil cores were collected using a hand auger at 
points LF-1, LF-2, LS-2, LF-3, and LS-3. At points LS-1, LB-1, 
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Table 1. The routes of sediment delivery reaching the foot of arable slope

*after Ivanov et al. 2024b 

Route Sampling points Soil losses 1986-2022, t*

1 LF-1–LS-1 483.4

2 LF-2–LS-2–LB-1 358.3

3 LF-3–LS-3–LB-2–LB-3 7379.2
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LB-2, and LB-3, we dug pits to describe the soil profile and 
collect samples from the walls of the soil sections. Sampling 
was performed at 3-5 centimeter intervals: either from the 
wall of the soil section or by cutting a core directly with the 
hand auger. All samples were delivered to the laboratory 
and dried out. They were then weighed and ground before 
being placed in petri dishes for further examination of 137Cs 
activity, using a gamma spectrometer with a high-purity 
germanium (HPG) detector manufactured by ORTEC (USA) 
with an error not exceeding 10%. All activity values were 
recalculated for 1986, taking into account radioactive 
decay. For the samples of Route 3 (LF-3, LS-3, LB-2 and 
LB-3) the grain-size composition was determined using a 
Malvern Mastersizer 3000 particle size analyzer to figure 
out any sorting during transport.

Results

	 After examining samples from set points along 
the first route, it was learned that some of the material 
was accumulated at the foot of the slope during the 
post-Chernobyl period, while the rest was deposited 
downstream in the valleys. The depth distribution of 
137Cs from LS-1 demonstrates heavily contaminated 
strata, whose thickness is several times greater than the 
depth of ploughing. Due to the intensive deposition, the 
sampling depth  at this site was insufficient to collect all 
the soil material containing Chernobyl 137Cs (Fig. 2A). On 
the valley`s side, accumulation also occurred. The layer 
with highest activity concentration corresponding to the 
fallout was identified at depth of 25-30 cm. The upper 25 
cm strata is argued to be deposited later (Fig. 2B). 
	 Obviously, the concentration of activity in the 
accumulated material shows a downward trend. As can 
be seen from LF-1 (Fig. 2A), despite repeated cultivation 
resulting in mixing of the upper layer of soil, values 

dropped from 2124±34 to 1386±27 Bq kg-1. Given no 
disturbance after the accumulation in point LS-1, the 
activity concentration dropped by almost two times, from 
2564±101 to 1324±30 Bq kg-1. Assuming that the sediments 
redeposited at the studied points have the same origin, 
the activity concentration can be used as a parameter to 
correlate the 137Cs depth distributions. Thereby the almost 
equal range of concentration indicates that accumulation 
in LF-1 and LS-2 took place simultaneously. Even if the 
lynchet had been morphologically pronounced sometime 
after the Chernobyl fallout, the concentration of runoff was 
enough to deliver sediment beyond the cultivated field.
	 For the second route, the situation is quite different. At 
the point LF-2, activity concentrations of 137Cs exceeding 
1500 Bq kg-1 are only seen in the upper 30 centimeters and are 
distributed almost evenly. Downwards in the soil profile, 137Cs 
content starts to drop (Fig. 3A). Therefore, it can be concluded 
that there has been no significant accumulation before the 
cultivated field boundary. On the adjacent side of the valley 
(point LS-2), the accumulation during the post-Chernobyl 
period has been no more than 9 cm (Fig. 3B). In addition, the 
concentration of 137Cs in the upper 6 cm of sediment, which 
can be linked to post-Chernobyl accumulation, turned out 
to be higher than in the material deposited at the foot of 
the slope: 2392±132–2752±168 Bq kg-1 versus 1791±167–
1940±173 Bq kg-1 (Fig. 3B). It may indicate that sediment 
deposition on the valley side occurred when the activity 
concentration of 137Cs in the sediment runoff was higher. 
Currently, no accumulation is detected. Down by the route 
in the valley`s bottom examination of sediments at the 
point LB-1 showed that a maximum of 137Cs activity lies 
almost on the surface (Fig. 3C). The only upper 3 cm layer 
which can be argued to have accumulated after 1986 has 
a very high concentration of 3352±72 Bq kg-1. This is much 
higher than the concentrations in sediments that were 
accumulated nearby at the LS-2 point. Considering that 

Fig. 1. The map of 137Cs Chernobyl fallout (after Izrael et l., 1996) and location of the study area (A). The photo of 
the mouth of the Lapki catchment was made in 2021 (B). Observed routes of sediment transport (D): 1 – catchment 

boundary; 2 – steep eroded slopes; 3 – observed routes of sediment transport; 4 – arable slopes; 5 – dry valley`s sides; 
6 – dry valley`s bottom; 7 –slopewash fans and covers; 8 – counter lines, a.s.l.; sampling points with depth incremental 

sampling on different geomorphic units: 9 – foot of arable slopes, 10 – dry valley sides and slopewash fans, 11 – dry 
valley bottom
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samples near the surface are subject to vertical migration 
of radionuclides, including that along plant roots, it is more 
likely that there was no accumulation in this location.
	 At the foot of the slope, at point LF-3, the distribution is 
similar to that seen in the previously described example at LF-1 
(Fig. 2A), indicating intensive accumulation due to high values 
of slope runoff delivered through the slope hollow (see Table 
1). The activity concentration varies between 1263±118 and 
1484±114 Bq kg-1, and there is no obvious decreasing trend 
observed (Fig. 4A). 
	 High accumulation is also seen on the surface of the 
slopewash fan at point LS-3, with more than 39 centimeters 
accumulated between 1986 and 2022 (Fig. 4B). The upper 24 
cm of the sediment are characterized by a gradual increase in 
137Cs concentration moving down, with values that lie close to 
those observed in LF-3, ranging from 1188±77 to 1437±98 Bq 
kg-1. In the deeper part (24-39 cm), this growth becomes more 
intense: from 1580±112 to 2651±172 Bq kg-1 and indicates 
older material than observed at the point LF-3. 
	 In upper reach of the valley bottom (LB-2), the thickness 
of post-Chernobyl accumulation drops to 27 cm. Here, there is 
a clear increase in 137Cs concentration, starting at the surface. 
It is likely that most of the accumulation occurred during a 
short period after the fallout, when the concentration did not 
decrease to levels observed in LS-3 and the upper part of LF-3: 
from 3469±173 to 1380±76 Bq kg-1 (Fig. 4C).
	 Along the valley bottom, the rate of accumulation 
continues to decline, and near the mouth of the valley (LB-3), 
the accumulation is less than 18 cm over the period 1986-2024. 
The concentration of activity in the accumulated sediments 
ranges from 1664±98 to 3416±159 Bq kg-1 (Fig. 4D). This range 
is almost like that observed at the upper reach (LB-2), indicating 
the same age of the deposited material. It turns out that 
modern products of soil erosion are hardly represented here.

	 Grain-size analysis of the collected samples suggests 
that there has been a selective transfer of clay particles. The 
percentage of particles smaller than 2 microns gradually 
decreases from 12.48% at the foot of the arable slope to 
9.66% near the dry valley’s mouth. At the same time, the 
proportion of particles thicker than coarse silty (16 microns) 
shows an increase as they move downstream (Fig. 5). 
	 The grain-size composition shows no clear trend in the 
vertical distribution. At the observed points, each fraction 
has random fluctuations which show (Fig. 6). 
	 Comparison of 137Cs depth distributions obtained in 
1997 (Golosov et al., 1999a) and in 2024 showed that the 
depth of the peak of activity concentration has changed: 
in LB-2 from 12-15 cm in 1997 (Fig. 7A) to 27-30 cm in 
2024 (Fig. 7B) and in LB-3 from 7-9 cm (Fig. 7C) to 15-18 
in 2024 (Fig. 7D). Accordingly, in both locations, the rate of 
accumulation over 27 years decreased almost twice: from 
1.1–1.4 cm year-1 to 0.7–0.8 cm year-1 in LB-2, and from 0.6–
0.8 cm year-1 to 0.4–0.5 cm year-1 in LB-3. The deposition 
was still much higher in the valley’s upper part (LB-2 
compared to LB-3), but the ratio of the accumulation rates 
of LB-2 to LB-3 was stable, at 1.4–2.3 in 1997 and 1.4–2.0 in 
2024. Also, the mean activity concentration in the upper 
samples, 1798 Bq kg-1 in LB-2 versus 2358 Bq kg -1 in LB-3, 
indicates a different age of sediment (Fig. 7 A, C). 

DISCUSSION

	 Summarizing the results presented, the following 
points can be made. The transport of sediment and 
radioactive isotopes from agricultural slopes is primarily 
determined by the concentration of slope runoff. This, in 
turn, is influenced by both the topography of the slope and 
the microrelief at its foot. It is clearly indicated by the depth 
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Fig. 2. The depth distribution of 137Cs at points LF-1 (A) and LS-1 (B)

Fig. 3. The depth distribution of 137Cs at points LF-2 (A), LS-2 (B) and LB-1 (C)
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Fig. 4. The depth distribution of 137Cs at points LF-3 (A), LS-3 (B), LB-2 (C) and LB-3 (D)

Fig. 5. Mean grain-size composition of sediments from Route 3: 1 – LF-3; 2 – LS-3; 3 – LB-2; 4 – LB-3
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Fig. 6. Depth distribution of grain-size composition of sediments from Route 3: A – LF-3; B – LS-3; C – LB-2; D – LB-3

Fig. 7. The depth distribution of 137Cs at points LB-2: in 1997 (A) (after Golosov et al., 1999a), in 2024 (B), 
and LB-3: in 1997 (C) (after Golosov et al., 1999a), in 2024 (D)



65

Ivanov M. M., Golosov V. N., Ivanova N. N. et al.	  GEOCHEMICAL INDICATION OF SEDIMENT FLUXES USING ...

distribution of 137Cs in sediments on both sides of the lower 
boundary of the cultivated field. The decrease in 137Cs 
activity concentrations in sediments mobilized on arable 
slopes and redeposited downstream is typical for all cases 
observed. This decrease was not linear, with a rapid decline 
shortly after fallout, becoming smoother over decades until 
relatively stable values recently. The selective transport of 
clay particles could affect activity concentration during 
transportation. The depth distribution of 137Cs suggests an 
increase in accumulation in the buffer zone on the slopes 
of the dry valley and in the upper reach of the dry valley. 
This pattern is consistent with observed climate trends: 
decreasing snowmelt runoff and no increase in intense 
rainfall. 
	 The obtained picture is consistent with the current 
understanding of the lateral migration of particulate 137Cs 
in areas with intense fallout. The Chernobyl incident was 
followed by a sharp increase in the contamination of the 
subsurface soil layer. Within the arable slopes, activity 
concentration dropped shortly after plowing, which depth 
was recommended to increase for remediation purposes 
(Alexakhin et al. 1992). A similar situation was observed 
in the affected areas of Fukushima, where the activity 
concentration of 137Cs in terrestrial environments decreased 
rapidly relative to expectations due to active land use and 
decontamination efforts (Onda et al., 2020). Afterwards, it 
was expected that concentration would decrease due to a 
number of factors. 
	 There would be a loss of upper, highly contaminated 
soil layers due to erosion and harvesting, which would result 
in the involvement of deeper and cleaner material during 
plowing. Freeze-thaw processes can lead to unstable 
soil surfaces and the development of intense rill erosion 
in springtime, which in turn causes a decrease in activity 
concentrations in mobilized sediment (Wakiyama et al. 
2019; Igarashi et al. 2021). However, given the increasing 
average temperature and the reduction of snowmelt 
runoff in the beginning of the XXI century (Baranov et al. 
2018), this factor does not seem to play a significant role. 
Also, activity concentration values would decline as a result 
of the complex migration of radionuclides primarily down 
through the soil profile. However, the latter effect was 
expected to be negligible (Golosov et al. 2013). 
	 The sorting of material occurs along the entire 
transportation pathway and can potentially affect the 
concentration of 137Cs in sediments. Shamshurina et al. 
(2011) found that activity concentration correlates with the 
share of soil aggregates. In the soils of the upper and middle 
slopes, approximately 50% of the total 137Cs inventory is 
associated with aggregates larger than 2 mm. In the lower 
part of slopes, this share rises to about 70%. As the material 
moves and aggregates break down, sorting occurs primarily 
based on the size of individual particles. The selective 
deposition of larger particles leads to the enrichment of the 
sediment load with clay and fine silt (Golosov et. 2000). In 
turn, the selective transport of clay and silt particles may 
lead to the intensive migration of bound radionuclides 
(Evrard et al. 2015; Konoplev et al. 2016). However, over 
a short delivery distance, it is unlikely that the sorting 
process will significantly alter the downward trend of 137Cs 
concentrations. Given a single sediment source, the activity 
concentration of 137Cs can be used as an indicator for the 

relative age of the deposited sediment. 
	 As the number of sediment sources increases, the 
picture of contamination is likely to become more 
complicated, but changes in activity concentrations may be 
used for fingerprinting tasks (Schuller et al. 2013; Evrard et 
al. 2020). If the radiocesium content from different sources 
is varying, it is possible to understand their contributions by 
comparing the 137Cs depth distribution in deposits before 
and after the confluence of sediment fluxes. 
	 Panin et al. (2001) reported that the long profile of the 
valley gradually decreases from its upper reaches to its mouth 
but has some slight convexities along the way, indicating 
separate episodes during the period of cultivation. As it has 
been declared, for the valley that receives sediment load 
from the explored catchment, the main way that deposits 
can be mobilized is through the incision of bottom gullies. 
Otherwise, the valley bottom provides long-term storage 
for eroded sediment and radionuclides. This statement may 
be supported by the fact that the activity concentrations in 
the upper samples in soil sections along the slope and at 
the bottom of the selected valley have different values, and 
consequently, sediments are of different ages. Sediments 
downstream are found to be older than those upstream, as 
can be seen in the example of LB-2 and LB-3 (Fig. 4C, D). 
This pattern has been consistent over decades (Fig. 5). Thus, 
distribution of the 137Cs activity concentration may act as a 
geochemical indicator of geomorphic disconnectivity. 
	 Using the distribution of activity concentration as a 
proxy for the age of sediment mobilization may help us to 
better understand sediment accumulation by correlating 
it with specific time periods. Sediment budget studies on 
small catchments are a useful way to validate estimations 
of soil erosion and sediment delivery from cultivated slopes 
to dry valleys and further along fluvial networks (Walling 
et al. 2002; Reid and Dunne 2016; Zhidkin et al. 2023) 
obtained results may be used to calibrate existing models. 
As accelerated erosion is a major source of sediment-
associated contaminants, including radioactive ones (Lal 
1994; Quinton and Catt 2007; Konoplev et al. 2021; Rashmi 
et al. 2022), the rate at which eroded material is delivered to 
watercourses is critical for assessing current environmental 
quality and forecasting future scenarios. 

CONCLUSION

	 Since intrabasin sediment deposition constitutes a 
significant part of the sediment budget in river catchments 
with intensive anthropogenic influence, any additional time 
markers to explore sedimentation would be instrumental 
and should be included in the toolbox. The study conducted 
has shown that the pattern of Chernobyl-derived 137Cs 
contamination has a close relationship to sediment 
redistribution in almost all decades after the fallout. The 
decrease of activity concentration during the post-Chernobyl 
period demonstrates high potential as a surrogate of relative 
age. This finding is consistent with previous research and 
sheds light on the potential use of 137Cs depth distribution 
as a proxy of the sediment age during post-Chernobyl 
accumulation. However, the proposed approach requires 
a clear understanding of the long-term variation in the 
radionuclide content in material eroded from slopes and 
transported into the fluvial system. 
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ABSTRACT. As urban areas grow, understanding the impact of built environments on aerosol distribution is crucial for 
accurate monitoring and forecasting of urban air quality and for the development of mitigation strategies. This study 
uses Large Eddy Simulation approach combined with Local Climate Zones (LCZ) classification to simulate the transport of 
Lagrangian aerosol particles in different urban configurations. The study simulates several urban configurations based on LCZ 
classification, specifically LCZ 4 (open high-rise), LCZ 5 (open mid-rise), and LCZ 6 (open low-rise), varying in building height 
and density. Both regular and randomized urban development configurations were examined to understand the impact 
of building geometry on particle dispersion. The study reveals that building orientation significantly influences particle 
distribution, with structures parallel to the wind adding horizontal dispersion and those perpendicular promoting vertical 
mixing. In randomized configurations, variations in particle concentrations highlight the role of architectural heterogeneity 
in turbulence development and aerosol dispersion. The findings suggest that aggregated block- or district-scale building 
geometry properties strongly influence aerosol transport. For randomized urban configurations, without idealized regular 
structures, the difference in the large-scale morphometric characteristics of specified LCZ types has a significantly greater 
impact on the particle dispersion process than the local geometric differences between configurations of the same LCZ type. 
Future research taking into account diverse meteorological conditions and more LCZ types is recommended to enhance the 
accuracy and applicability of this approach.
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INTRODUCTION

	 With the rise of urbanization, the problem of aerosol 
air pollution in cities has become more challenging, which 
has required the use of advanced modeling techniques 
to assess the dispersion of particulate matter in the urban 
environment. Understanding and being able to forecast 
this process is crucial for estimating health risks and 
developing mitigation strategies, as urban air pollution is 
associated with serious health consequences, including 
respiratory and cardiovascular diseases (Pope and Dockery 
2006; Kampa and Castanas 2008; Kasimov et al. 2024). The 
impact of PM2.5 concentrations on mortality has a global 
effect and is especially evident in low- and middle-income 
countries (Cohen et al. 2017), where urbanization is usually 
very active.
	 The complexity of urban landscapes, characterized by a 
variety of architectural forms and types of land use, requires 
models with high spatial resolution to ensure effective 
analysis and forecasting (Baklanov et al. 2007). At the same 
time, processes of a wide range of scales are important 
for the physics of atmospheric processes in urban areas, 
from an individual building to a meteorological mesoscale, 
necessitating the use of models with different depths of 
process description and resolution depending on the 
task (Blocken 2015). Currently, there is a trend towards 
multi-scale modeling of meteorological processes and air 
pollution, as this approach allows for a more comprehensive 
analysis of processes and more efficient decision-making; 
however, it requires more complex verification of models 
and the development of new recommendations and 
standards for modeling (Kadaverugu et al. 2019; Baklanov 
and Zhang 2020). 
	 Historically, aerosol dispersion modeling has relied on 
a Gaussian or plume approach (Berlyand 1991), which is 
computationally simple but does not allow for detailed 
consideration of the features of urban development and 
the underlying surface (Britter and Hanna 2003; Holmes 
and Morawska 2006). The development of computing 
technologies and computational fluid dynamics (CFD) 
models, primarily RANS (Reynolds-Averaged Navier-Stokes) 
and LES (Large Eddy Simulation) approaches, has allowed 
us to move to a qualitatively new level for simulation of 
atmospheric processes in cities. Such models reproduce 
the complex structure of an airflow and turbulent eddies 
inside urban areas (Blocken et al. 2012). The influence of 
urban development on microclimate and thermal comfort 
has been actively studied for a long time using CFD 
(Chatzidimitriou and Axarli 2017; Lee and Mayer 2018), 
but air quality is not ignored either. It has been shown 
that taking into account the geometry of buildings and 
streets has a pronounced effect on particle dispersion and 
allows us to obtain results that differ significantly from 
simulations using plume models (Oke et al. 2017). At the 
same time, building geometry exerts complex nonlinear 
effects on particle concentrations (Starchenko et al. 2023) 
and provides notable impact on other components of 
the urban environment, including the air quality, e.g., via 
greening of roofs (Wu and Liu 2023; Venter et al. 2024). 
	 One of the methods to tackle the issues listed above 
is the use of LES models, since with sufficient computing 
resources they can provide a more accurate representation 
of air flows and turbulence in urban areas than the more 
popular RANS models (Zheng and Yang 2021). This 
approach is already used for real urban development on 
the scale of an entire city and allows us to draw conclusions 
about the influence of street orientation on the dispersion 
of pollutants (Zhang et al. 2021). In addition, LES models are 

used to verify simpler models or parameterizations used 
for operational forecasting of air quality and atmospheric 
composition (Grylls et al. 2019). Of particular interest are 
studies using LES models with Lagrangian tracking of 
pollutants as individual particles (Glazunov 2018), which 
accounts for the interaction of solid particles with the 
urban atmosphere and buildings in a more explicit way 
compared to Eulerian models; e.g., this approach was 
used to assess the impact of building development and 
atmospheric stratification on particle dispersion in Helsinki 
(Kurppa et al. 2018).
	 An important achievement in the field of urban 
meteorology is the creation of the concept of local 
climate zones (LCZ) and its use in hydrodynamic models 
of various scales. LCZ classifies urban areas based on 
building and street parameters, vegetation cover, and 
surface properties - these variables strongly affect the local 
microclimate and the structure of air flows (Stewart and 
Oke 2012). Studies using the LCZ classification are primarily 
focused on quantifying urban morphology impact on air 
or surface temperature (Varentsov and Samsonov 2020; 
Aslam and Rana 2022), however, there are more and more 
works on the topic of air quality, which demonstrate that 
the characteristics of urban development strongly affect 
the concentrations and surface deposition of pollutants 
(Kosheleva et al. 2018), and many classifications of the 
underlying surface are not relevant to urban morphology, 
which is presented in the LCZ (Jiang et al. 2023). It has been 
repeatedly shown that there is a relationship between the 
LCZ types and the concentration patterns of solid particles 
(Shi et al. 2019; Lin et al. 2024; Nourani et al. 2024), however, 
conclusions about the specific nature of this relationship 
vary depending on the city and research methods. 
	 The aim of this study is to apply a novel approach 
combining Large Eddy Simulation with Local Climate Zones 
classification to analyze the impact of urban development 
geometry on air pollution at various scales, from district 
level to individual buildings. This approach not only 
deepens our understanding of atmospheric environment 
dynamics in urban settings but also paves the way towards 
projecting more resilient urban infrastructures and 
healthier living environments.

MATERIALS AND METHODS

Large Eddy Simulation

	 As the main tool, we used the model developed 
at the RCC MSU (Lomonosov Moscow State University 
Research Computing Center) and the INM RAS (G.I. 
Marchuk Institute of Numerical Mathematics of the Russian 
Academy of Sciences) based on a unified hydrodynamic 
code combining LES (Large Eddy Simulation), DNS (Direct 
Numerical Simulation) and RANS (Reynolds Averaged 
Navier-Stokes) approaches for modeling geophysical 
turbulent flows with high spatial resolution (Mortikov 
et al. 2019; Kadantsev et al. 2021; Tkachenko et al. 2022; 
Debolskiy et al. 2023, Suiazova et al. 2024). In this work, the 
LES configuration of the model was used, which allows 
for a detailed reproduction of turbulent airflows in the 
presence of complex urban geometry.
	 This model calculates the dynamics of a thermally 
stratified fluid defined using filtered Navier-Stokes 
equations in the Boussinesq approximation. To 
parameterize the subgrid stress tensor, the Smagorinsky 
eddy viscosity model is used, in which the Smagorinsky 
constant and the subgrid Prandtl number (which depend 
on time and spatial coordinates) are determined using a 
dynamical procedure (Germano et al. 1991). The numerical 
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model utilizes conservative finite-difference schemes 
of second-order accuracy for spatial approximation on 
rectangular meshes. A fractional step method is used to 
integrate the equations of motion and continuity over 
time and to ensure the incompressibility condition, and 
an explicit third-order Adams-Bashforth scheme is used to 
approximate the momentum and heat equations.
	 An important feature of this model is explicit 
representation of the buildings (Tarasova et al. 2024). 
The surface of buildings can be given its roughness 
and temperature, which allows us to make simulations 
including complex scenarios when different buildings 
have different properties.

Lagrangian particle model

	 To model particulate matter transport in the urban 
atmosphere, a Lagrangian particle transport module was 
introduced to the LES model. The main advantage of the 
Lagrangian approach is its ability to track the trajectories 
of individual particles in detail, which allows explicitly 
describing their interaction with the diverse elements of the 
urban environment. In complex urban environments where 
buildings, streets, and green spaces create heterogeneous 
airflow patterns, the Lagrangian method can account 
for the effects of turbulence, particle sedimentation on 
buildings surfaces, and changing atmospheric conditions 
near surfaces, resulting in more accurate predictions of 
local concentrations compared to the Eulerian framework.
	 In this paper, the Lagrangian approach is used for 
numerical modeling of aerosol transport. Each particle is 
tracked through its entire trajectory, as well as the particle’s 
velocity and other state variables. This approach is used 
to track a limited number of particles but allows us to 
explicitly consider the forces acting on the particle. Using 
the Lagrangian approach, the change in position of each 
individual particle is described by the Eq. (1) (Thomson and 
Wilson 2012):

	 where xp  – particle position, up  – its velocity, t – time. 
The developed model allows to consider inertial (‘’heavy’’) 
particles, whose velocity may not coincide with the 
velocity of the ambient air at particle position. Therefore, 
changes of both particle’s position and its velocity have 
to be calculated – Eq. (1) is supplemented with Eq. (2) for 
velocity based on Newton’s second law:

	 where g=(0,0,-g) – gravitational acceleration (g>0) 
in Cartesian coordinates, ρ

p
  – particle density, ρ  – air 

(medium) density, u=(u
1
,u

2
,u

3
) – ambient flow (medium) 

velocity, F
D
 – drag coefficient.

	 To account for the interaction with buildings, 
parameterization of collisions with hard (impermeable) 
surfaces has been implemented, in which both reflection 
of a particle from the surface of a building and deposition 
on it are possible. It is implemented by representing 
buildings as impenetrable surfaces of the computational 
grid.
	 The Lagrangian transport module also takes into 
account the effect on particle motion of the turbulent 
eddies which are subgrid for LES model. The total flow 
velocity   from Eq. (2) is represented as the sum of the 
averaged and subgrid components (Eq. 3):

	 where u – velocity explicitly resolved at the numerical 
grid of LES model, u, – subgrid velocity fluctuation which 
is evaluated using the Lagrangian stochastic model (LSM). 
The 1st order LSM is used in this work, for which the change 
of fluctuation component along the trajectory of a fluid 
parcel (coinciding with the particle path for light particles) 
can be calculated as Eq. (4) (Reynolds and Cohen 2002):

	 where i=1,2,3 is the Cartesian coordinate index, 
 – subgrid velocity variance,  C0=6.0 – 

Kolmogorov’s constant, ε – the rate of dissipation of 
turbulent kinetic energy, diagnosed by LES model, ξ

i
  – 

independent delta-correlated (in time) Gaussian random 

variables with standard deviation .

	 The developed Lagrangian transport module was 
previously verified on analytical solutions for light and 
heavy particles (Varentsov et al. 2020; Varentsov et al. 2023).

Urban configurations

	 Since a limited number of numerical experiments 
cannot cover the entirety of urban geometry variability, to 
select urban geometry configurations for LES experiments, 
it was necessary to choose building development types 
that are both idealized enough to be described by a small 
set of properties and easily reproduced in other studies 
and relevant to the real urban settings so that they could 
describe urban areas in different cities of Russia and the 
world. The classification of Local Climate Zones (LCZ), 
proposed in (Stewart and Oke 2012), is increasingly used 
as such a universal tool for identifying characteristic 
types of homogeneous (in terms of mean morphological 
characteristics) urban development within a city.
	 We restrict our study to 3 types of LCZ – the selected 
configurations are LCZ 4, LCZ 5, and LCZ 6. The parameters 
defining each type are shown in Table 1. These types of 
LCZ are widespread both in Russia and in the world, as 
evidenced by the global LCZ map (Demuzere et al. 2022). 
Configurations LCZ 1, LCZ 2, LCZ 3, and LCZ 7 require 
calculations with more detailed resolution and higher 
computational cost due to the very high density of 
buildings, and LCZ 8, LCZ 9, and LCZ 10 are not so common 
in residential areas of Russian cities – so these types are 
planned to be considered not now, but in further studies.
	 LCZ 4 is an open high-rise building zone. In Russian 
cities, a common example of such development is Soviet-
era housing, which typically consists of tower blocks with 
8 to 12 floors in park-like surroundings. LCZ 5 is an open 
medium–rise building zone. The typical example is the 
neighborhoods of Soviet five–storey apartment buildings 
(e.g., so-called “khrushevka”), typical of almost any Russian 
city. LCZ 6 is an open low–rise building zone, and it can 
include areas with both individual private houses and low-
rise apartment buildings. Common examples in Russia are 
suburbs with private houses and city districts built up with 
two-storey communal housing.
	 To generate building geometry so that the whole 
domain corresponds to one of the selected LCZs, 
two methods were used: manual specification of the 
geometry with a regular pattern and automatic generation 
of the geometry with a randomized pattern using 
specially developed generator software. Hereafter, the 

(1)

(3)

(2)

(4)
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configurations of these two types are called “regular” and 
“randomized”, respectively.
	 As a result of the manual generation of regular 
geometry, 9 configurations were prepared (Fig. 1), with 3 
variants for each of the selected LCZ. The only differences 
between the LCZs in these configurations were building 
height and aspect ratio, while the shape and orientation of 
the buildings differed between LCZ variants. The first two 
options (LCZ 4 (a-b), LCZ 5 (a-b), LCZ 6 (a-b)) are regular 
patterns with long buildings forming urban canyons 
stretching from South to North or from West to East, such 
scenarios mimic areas of Soviet residential districts, newly 
built according to the cities’ master plans (Engel 2022). The 
third option (LCZ 4 (c), LCZ 5 (c), LCZ 6 (c)) is the regular 
pattern of square buildings, typical for some urban areas 
of the 21st century in Russia and for many cities around the 
world, especially in developing countries.
	 Urban development rarely has a perfectly periodic 
structure, so the regular geometry of identical buildings 
and streets presented above is an idealized option. A 
pseudorandom pattern of buildings of similar scale 
can be found in almost any city. To consider more 
realistic scenarios, we have created randomized building 
geometries in which the structure of streets, blocks, and 
buildings is present, but their location and parameters are 
random within acceptable values for a particular LCZ. 
	 The approach of generating building geometry based 
on specified characteristics is used both in atmospheric 
flow simulations in general (Sutzl et al. 2020) and specifically 

for LCZ classification (Zhou et al. 2023). However, the 
available generation methods are usually limited in 
setting or selecting parameters. Therefore, to generate a 
randomized building geometry, we developed a generator 
tool that takes as input the area size and the morphological 
characteristics of the selected LCZ, including parameters 
from Table 1 and manually selected restrictions on building 
sizes. Next, the fractal geometry of urban development is 
generated in several stages.
	 At the first stage, the minimum and maximum sizes of 
streets and blocks and their number are calculated based 
on the LCZ parameters. The area is randomly divided 
into a corresponding number of streets (along the X and 
Y axes) and rectangular blocks; all random values have a 
uniform distribution within the minimum and maximum 
sizes mentioned above. A block refers to an area with a 
width of 1 to 3 buildings and a length of at least 1 building. 
At the second stage, rectangular building objects are 
generated in each of the obtained blocks, taking into 
account the LCZ parameters and the selected building size 
restrictions. The third stage of the generation is to check 
the correspondence of the generated geometry and the 
selected LCZ. The morphological characteristics (height 
and area of buildings, aspect ratio) are checked separately 
for each block. If any of the parameters deviate by more than 
5% from the required value, the buildings in this block are 
generated again. If in a certain quarter it is not possible to 
achieve the required values in several generation attempts, 
or all blocks are approved, but a deviation of more than 5% 
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Table 1. LCZ parameters used to generate the building geometries for numerical experiments

LCZ Buildings height Building areal fraction Aspect ratio (the ratio of building height to street width)

LCZ 4 > 25 m 20-40 % 0.75-1.25

LCZ 5 10-25 m 20-40 % 0.3-0.75

LCZ 6 3-10 m 20-40 % 0.3-0.75

Fig. 1. Elevation maps for manually created regular building configurations corresponding 
to Local Climate Zones LCZ 4, LCZ 5, and LCZ 6
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is obtained for the entire region, then the entire region is 
being regenerated, that is, streets and blocks.
	 In this way, 12 building configurations were generated, 
4 for each LCZ (Fig. 2). The main differences between 
randomized and regular configurations are the variation 
in building sizes and heights, the different shape and 
orientation of buildings within even one block, the lack 
of a regular structure, and the different number and 
width of streets. The building sizes for LCZ 4 and LCZ 5 are 
quite similar for both generation methods. However, the 
randomized LCZ 6 configurations have significantly more 
buildings, and their size is smaller than in the regular LCZ 
6 configurations, which is caused by the limitations of the 
generation method.
	 Although such a random building pattern may not 
have exact real-world analogues, it can be called more 
realistic, since perfectly regular geometry is extremely 
rare in cities (even cities built according to master plans 
usually have a heterogeneous structure), and randomized 
buildings of the same scale can be found in almost any city.

Numerical experiments setup

	 For each building configuration (for 9 regular and 12 
randomized ones), a numerical experiment was conducted 
to compute aerosol transport. The experiments simulated 

the spread of atmospheric pollutants emitted from the 
street in the form of vehicle emissions and fine road 
dust. The spread of such pollutants within urban areas 
was assessed under common meteorological conditions: 
low wind and neutral atmospheric stratification, which 
together provide ventilation of the city and vertical mixing, 
but with low intensity.
	 The characteristic meteorological conditions of the 
experiments included the wind speed and direction at 
the upper boundary, as well as the vertical temperature 
gradient. The wind boundary conditions were set to 4 m/s 
at an altitude of 120 m and above, and the wind direction 
was westerly (along X-axis). For temperature, the boundary 
conditions were set to +15 °C at an altitude of 120 m and +16 
°C on the surface of the earth and buildings, which ensured 
neutral temperature stratification of the atmosphere 
when vertical air mixing, unlike stable stratification, is 
significant but not as active as with unstable stratification. 
The lateral boundaries were set with periodic conditions 
for atmospheric parameters, allowing the airflow to be 
adapted to the geometry of urban development as if a 
similar pattern of buildings surrounded the entire domain 
area. The graphical representation of the experiment setup 
is shown in Fig. 3.
	 Spherical solid particles with a diameter of 1 µm 
and a material density of 1000 kg/m3 were defined as 

Fig. 2. Elevation maps for randomized building configurations corresponding 
to Local Climate Zones LCZ 4, LCZ 5, and LCZ 6
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aerosols, which correspond to the widely used aerosol 
category PM2.5 (Zwozdziak et al. 2017). The particles we 
are considering are relatively light and weakly affected by 
inertia and gravitational subsidence. Heavier and larger 
particles (PM10 and larger) are planned to be considered 
in future studies. The source of particles in all experiments 
was a volumetric source having a width of 8 meters (along 
X) and a height of 4 meters (from 0 to 4 m along Z) and 
elongated through the entire Y axis, that is, simulating 
emissions from a long street perpendicular to the wind 
direction. In configurations with regular geometry, the 
source was located at coordinates from X=21.0 to X=29.0 
meters from the western border of the domain; that is, it 
was located in the first left canyon. In configurations with 
randomly generated geometry, the source occupied the 
south-north strip at coordinates from X=4.0 to X=12.0 
meters, i.e., it was also located in the first left canyon. 
Particles escaped domain on the western, eastern, and 
upper borders of the computational domain, periodic 
conditions were set on the southern and northern borders 
(particles appear at the southern margin while crossing 
the northern, and vice versa), and deposited on the earth’s 
surface.
	 The dimensions of the computational domain 
were 400 (X) m by 200 (Y) m by 161.29 (Z) m for regular 
configurations and 400 (X) m by 400 (Y) m by 161.29 (Z) m 
for randomized ones. The horizontal grid spacing along the 
X and Y axes was 2 m, the vertical resolution was 2 m inside 
bottom 80-meter layer, and above it the cell size increased 
by 4% with each grid step up to 5.12 m. In total, the vertical 
domain extent was divided into 64 cells. The experiments 
were carried out for a period of 12 hours, sufficient for the 
flow to achieve a quasi-stationary equilibrium state and 
gather statistics (mean and fluxes) in the last 4 hours of the 
simulation. The time step of the LES model was fixed in all 
cases and equal to 0.04 seconds.

RESULTS AND DISCUSSION

Regular configurations

	 Based on the results of numerical experiments, 
the distribution of particle concentrations and the 
characteristics of their propagation were analyzed. For 
regular building configurations, Fig. 4 shows the average 
concentrations at the ground level (0-4 m above surface), 
demonstrating the removal of particles from the source 

through the streets. In the plots of time-averaged near-
surface concentrations, plumes of higher concentrations 
can be clearly traced along the streets through which the 
particles are carried horizontally. The maximum average 
concentrations are observed in LCZ 4 (a-c), which can 
be explained by the highest height of buildings among 
the selected LCZs and, as a result, the greatest resistance 
to airflow, which negatively affects the street ventilation. 
At the same time, there is no significant difference in 
average concentrations and standard deviation (SD) of 
concentrations between LCZ 5 (a-c) and LCZ 6 (a-c), despite 
the twofold difference in the height of buildings.
	 Significant differences are noticeable among the 
various building configurations that belong to the same 
LCZ (between (a), (b) and (c) configurations of each 
same LCZ). For each of the LCZs, it can be seen that the 
lowest concentrations were obtained in configuration 
(a), elongated buildings perpendicular to the wind, 
which is associated with the formation of vertical vortices 
(Glazunov 2018) inside the canyons and the active removal 
of particles into the layer above the buildings. At the same 
time, configurations (b) show average concentrations that 
are 10-15% higher, which is associated with a lower vertical 
mixing effect and a more active removal of particles 
along the streets at the same height near the surface. The 
highest average concentrations and SD are observed in 
configurations (c) – these are the variants with the highest 
building density, which affects the weakening of vertical 
mixing and a decrease in wind speed inside the urban 
canopy.

Randomized configurations

	 For randomly generated configurations, the average 
concentrations at the ground level (0-4 m in height) 
are shown in Fig. 5. Due to the random nature of the 
building patterns, there are much more significant 
differences between LCZs and, as before, noticeable 
differences between realizations of a single LCZ. The 
most noticeable difference from the experiments with 
regular configurations (Fig. 4) is that the highest average 
concentrations were obtained for LCZ 6 with the lowest 
building height, while the values for LCZ 4 and LCZ 5 are 
similar. Such a drastic difference can be explained by the 
fact that in the case of randomized geometry, the airflow 
becomes more turbulent, and the role of vertical mixing 

Fig. 3. Schematic of the experiment setup
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and removal of particles into the air layer above buildings 
increases. At the same time, in the case of LCZ 6, the urban 
environment is lower and denser than in LCZ 4 and LCZ 5. 
This, in turn, reduces the exchange between the air layers 
inside it and above the buildings.
	 If we compare different configurations within the same 
LCZ, then there is a very strong influence of geometry near 
the source – concentrations at different points at the same 
distance from the source may differ by an order of magnitude, 
but at large enough distances, this is smoothed out due to the 
random nature of the urban development.
	 From the above results, it can be concluded that 
buildings parallel to the wind (regular configurations (b), Fig. 
4) contribute to the horizontal removal of particles without 
active vertical mixing, while perpendicular buildings (regular 
configurations (a), Fig. 4) contribute to the vertical removal 
of air into the layer above buildings. However, these effects 
have been tested under conditions of neutral stratification. In 
cities with frequent stable stratification, i.e., at high latitudes 
and in winter (Varentsov et al. 2023), the removal of aerosols 
requires the presence of well-ventilated streets and courtyards. 
With frequent daytime unstable stratification, particle removal 
will also be accelerated by wind-obstructing structures that 
activate vertical mixing. However, from the point of view of 
aerosol removal, randomized building configurations have 
been proven to be the best, in which streets parallel to the 
wind and buildings perpendicular to the wind are combined, 
but low building density remains – in total, all this leads to 
increased turbulence and active horizontal and vertical mixing.

Configurations intercomparison

	 To assess the LCZ classification relevance to pollution 
dispersion in urban environments, we determined how 
large the differences in concentration and particle transport 
patterns are between variations in geometry within a single 
LCZ type.

	 Fig. 6 shows vertical profiles of particle concentrations 
averaged over the eastern half of the region (coordinates 
[200:400 m, 0:400 m] on the X and Y axis respectively), that is, 
over the part of the building as far away from the sources as 
possible, where the concentration field is already significantly 
mixed by buildings and less dependent on the position of 
buildings compared to the latter located directly next to the 
source. The general shape of the profiles is similar for most 
configurations. The maximum concentrations are observed 
at a height close to the average building height, since inside 
the urban canopy, vertical mixing lifts particles up, but above 
the roofs, it is not so active, and particles are carried away by 
horizontal flows. At the same time, particles sediment on the 
ground, so surface concentrations are not high at a distance 
from the source. For some configurations, high concentrations 
are observed not only at the roof level but also up to the 
upper boundary of the domain. This effect can be caused 
by the severe turbulence that occurs over tall and highly 
heterogeneous urban development.
	 For regular geometries (Fig. 6a, 6c, 6e), the profiles and the 
spread between them are very similar – the standard deviation 
of concentration ranges from 0.23 to 0.27 (in dimensionless 
units relative to the maximum concentration among the 
profiles), and the shape of the profiles for the same buildings’ 
configurations but for different LCZs is the same (with profiles 
normalized by building heights), e.g., for (c) configurations 
of all LCZs. For each of the LCZs, there is a large variation in 
concentrations between different versions of its geometry, 
which suggests that the LCZ cannot be approximated by any 
single geometry configuration – it is necessary to consider 
various options and take into account the influence of the 
shape and orientation of buildings.
	 For randomized geometries, similar conclusions were 
obtained for LCZ 4 and LCZ 5 (Fig. 6b, 6d) – the profiles for 
different configurations of the same LCZ differ significantly 
from each other. However, for LCZ 6 (Fig. 6f ), extremely low 
variability was obtained between the geometry variants – due 

Fig. 4. Simulated surface (altitude 0-4 m) particle concentrations for regular building configurations corresponding to 
Local Climate Zones LCZ 4, LCZ 5, LCZ 6
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Fig. 5. Simulated surface (altitude 0-4 m) particle concentrations for randomized building configurations corresponding 
to Local Climate Zones LCZ 4, LCZ 5, LCZ 6

(a) (b)
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to the low height and small size of the buildings, unlike LCZ 
6 regular configurations with longer and wider buildings, the 
geometry of buildings is more homogeneous and does not 
generate large disturbances in the wind flow.
	 Fig. 7 shows concentration profiles similar to Fig. 6, 
but averaged over all configurations of the same LCZ. In 
the case of regular geometries (Fig. 7a), the difference 
between different LCZ types is minimal at the surface 
and only significantly manifests itself at the roof level and 
in the layer above the buildings. The maximum standard 
deviation (0.2) turned out to be less than when comparing 
different geometry configurations within a single LCZ. 
Thus, for regular building configurations, the shape and 
orientation of buildings had a greater impact on the spread 
of aerosols than the different LCZ parameters: the height of 
the building and the aspect ratio of urban canyons.

	 For the randomized configurations (Fig. 7b), on the 
contrary, significant differences were found between the 
profiles for different LCZs. The maximum standard deviation 
values observed at heights of 15-20 m were approximately 
1.5 times higher than the maximum standard deviation 
values for various configurations within the same LCZ. The 
average concentrations also vary significantly at the surface 
level – for LCZ 6, they were almost 2.5 times higher than 
for LCZ 4. The results for the randomized configurations 
demonstrate that in the absence of an ideal periodic 
structure of the city and the presence of heterogeneity 
in the size, shape, and height of buildings, the spread of 
aerosols in the urban environment is determined by the 
general morphometric parameters of the area much more 
strongly than the specific location of buildings and their 
orientation.

(c)

(e)

(d)

(f )

Fig. 6. Vertical particle concentration profiles, averaged over the eastern half of the region, for regular (a, c, e) and 
randomized (b, d, f) building configurations corresponding to Local Climate Zones LCZ 4 (a-b), LCZ 5 (c-d), LCZ 6 (e-f)
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(a) (b)

Fig. 7. Vertical particle concentration profiles in the eastern half of the region averaged over 
the implementations of each LCZ, for regular (a) and randomized (b) building configurations

CONCLUSIONS

	 In this paper, the analysis and comparison of aerosol 
particle dispersion within the city were carried out 
depending on the following parameters. Firstly, depending 
on the type of urban development based on the LCZ 
classification. Secondly, depending on the specifics of 
the geometry implementation for the selected LCZ type. 
Thirdly, depending on the randomization and periodicity 
of the geometry configuration. The results of numerical 
calculations using a large-eddy simulation model with 
a Lagrangian particle transport model allowed us to 
draw conclusions for a finely dispersed urban aerosol 
distribution under typical meteorological conditions: 
neutral stratification and low wind.
	 When generating regular geometry with identical 
buildings, the influence of the features of a particular 
configuration (primarily, the shape and orientation of 
buildings) turned out to be comparable, and in some 
cases more significant, than the influence of large-
scale morphometric parameters of buildings, which are 
determined by LCZ types and characterize qualitatively 
different types of urban development. However, such LCZ 
implementations are highly idealized and have very few 
analogues in real cities, which motivates the creation of 
configurations with a limited range of building parameters 
and a random contribution to their location relative to 
each other.
	 Using the developed LCZ generator, building 
configurations were created taking into account the 
random contribution to the parameters and location 
of each building but corresponding to the large-scale 
morphometric characteristics of the selected LCZ types. 
Such configurations are more realistic, as they reflect 
the quasi-random nature of real urban development at 
the level of individual buildings but retain the typical 

scale of blocks and streets for most cities. Experiments 
with these configurations showed a significant variation 
in concentrations between specific implementations 
of a single LCZ for high-rise and medium-rise buildings 
(LCZ 4, LCZ 5) and a slight variation for low-rise buildings 
(LCZ 6), while for all LCZs the scale of variation between 
implementations was smaller than in the case of regular 
configurations. The differences between LCZs in this 
case turned out to be one and a half times greater than 
the maximum scale of differences between individual 
implementations of a single LCZ.
	 Thus, in urban areas, which are highly distinct from the 
single, regular, periodic structures, it is possible to describe 
the features of aerosol distribution by considering the 
aggregated type of urban development – for example, 
the LCZ type. This result opens up new prospects for the 
development of global and regional models of atmospheric 
dynamics and pollution dispersion by more accurately 
accounting for the urban underlying surface and its effect 
on the spread of aerosols.
	 Based on the results of this work, the following 
recommendations can be proposed for developers and 
urban planners. With low and medium building densities, 
one of the ways to increase air mixing and remove polluting 
aerosols from the surface level may be to increase the 
height spread of buildings and make their location and 
orientation more random, avoiding the construction of 
identical regular structures. 
	 Further research on this topic is required to analyze the 
differences more accurately between all existing types of 
LCZ and to take into account a larger number of factors: 
atmospheric stratification, wind speed, aerosol size and 
composition, interaction of different LCZ types on the city 
scale, etc. Also, in further research, it is worth considering in 
more detail the influence of model parameters, especially 
spatial resolution.
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ABSTRACT. Various anthropogenic impacts alter the structure and functioning of natural components, and the process of 
self-recovery in a damaged environment is more relevant than ever. Water quality worsens due to pollution with organic 
and inorganic chemical substances, and understanding the ability of aquatic streams to self-purify is a key challenge facing 
the scientific community. This article, dedicated to the Osam River (Bulgaria), provides knowledge on how eight physico-
chemical elements change their concentrations from upper to lower reaches and to what extent the river manages to self-
purify of pollutants. The paper is based on information concerning the values of DO2, N-NH4, N-NO3, N-NO2, N-tot, P-PO4, 
P-tot, and BOD5, recorded at four sampling sites from 2015 until 2021. Water quality is classified into one of three classes of 
physico-chemical status (excellent, good, or moderate) following the guidelines in Regulation H-4/14.09.2012 for surface 
water characterization. The self-purification coefficient of Tumas (α) is computed to determine the extent to which the river is 
able to rid itself of pollutants. The results indicate that water quality changes from upstream to downstream due to the inflow 
of untreated wastewater discharged from various sources and the ongoing self-purification processes. In the upper section, 
the river fails to get rid of phosphate pollution caused by households and industry, while in the lower sector, nitrate loading 
from agriculture is most disturbing. The current research focuses on the ability of rivers to restore their natural conditions 
under various anthropogenic impacts and points to the need for more effective control of unregulated discharges.
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INTRODUCTION

	 Water is one of the components of the environment that 
is most strongly and complexly subjected to a multivariate 
anthropogenic impact. The disruption of the normal aquatic 
ecosystem functioning is a consequence of water pollution, 
primarily resulting from anthropogenic pressures (Hishe et 
al. 2020; Sakke et al. 2023). The prolonged and continuous 
discharge of polluting substances is associated with a 
decrease in the water’s self-purification ability, causing a 
hydro-ecological imbalance (Midyurova et al. 2021). The 
main sources of water loading with substances of various 
origins and compositions include agriculture, industry, 
the communal-household sector, transport, tourism, the 
character of land use, etc. (Zhang M et al. 2022), and rarely, 
some natural processes, such as erosion (Chalov et al. 2024).

	 According to the ecosystem approach, applied 
in the hydro-ecological practice, watercourses under 
certain conditions are able to restore their initial quality 
based on the ongoing biological, physical, chemical, and 
hydrodynamic processes. There are different definitions 
regarding the river water’s self-purification. For example, 
it can be expressed as a partial or a complete restoration 
of the original state of water masses through natural 
processes (Benoit 1971). Another definition of self-
purification states that it involves reduction in the content 
of pollutants entering in the water after a certain period 
or distance from the point of entry (Ignatova 1992) or 
that the aquatic environment responds to the entry of 
pollutants through a number of mechanisms aimed at 
restoring its original state (Vismara 1992). The process of 
self-purification consists of various complex phenomena, 
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involving numerous physical, chemical, and biological 
factors, acting and interacting more or less effectively. The 
scientific expression of the ability of river streams to self-
purify (Bukaveckas 2007; Alexander et al. 2009), as well as 
the quantification of the water’s self-purification capacity 
today is a relevant and complex research issue (Zhang X et 
al. 2022). 
	 The review of the scientific publications addressing 
the problem of the rivers’ self-restoration indicates 
the application of various methods, approaches, and 
techniques in determining their self-purification capacity. 
Vagnetti et al. (2003) found a significant reduction in 
the content of pollutants in water samples taken at the 
beginning and end of the Sile River in the Veneto Region, 
Italy, through statistical processing of existing data. The 
researchers draw conclusions about which elements show 
a significant reduction in values and formulate possible 
interpretations. Fisenko (2006) presents a model of a 
process for self-purifying river streams along the Mimico 
Creek in the Ontario Province, Canada, through a natural 
foam formation. To determine the self-purification capacity 
of river flows, Mala and Maly (2009) focus on assessing 
the toxic effect of heavy metals on biochemical oxygen 
demand (BOD5) in surface waters of the Svratka River in 
the Brno District, Czech Republic. Self-purification of rivers 
occurs at a certain distance from the point where polluting 
substances enter and involves several processes (dilution, 
sedimentation, reaeration, adsorption, absorption, and 
both chemical and biological reactions). This complex 
mechanism of cleaning polluted water can be evaluated 
through various mathematical models. Menezes et al. 
(2015) and Salih et al. (2021), dealing with river basins at 
different spatial scales in Brazil and Iraq, use models that 
focus on the content of dissolved oxygen (DO2), which is 
one of the crucial indicators for aquatic ecosystems and 
the water’s self-purification processes. Hishe et al. (2020), 
applying the Streteer-Phelps model, assess the impact of 
point source pollutants from industry on the water’s self-
purification ability along the Abay River, Ethiopia. Zhang 
X et al. (2022), using the SWAT model, estimate the effect 
of non-point source pollutants on water’s self-purification 
of the Yiluo River, China. Medupe and Letshwenyo (2025) 
leverage advanced predictive models and algorithms to 
offer real-time insights and future projections regarding 
self-purification for a tributary of the Limpopo River, 
Botswana. Gurjar and Tare (2019) and Xu et al. (2019), 
working with Bayesian Networks, evaluate the influence 
of land use and sewage outfalls on water’s self-purification 
capabilities for tributaries of the Ganges River (India) and 
the Yangtze River (China), respectively. The surface water’s 
self-purification by determining the distribution of nitrate 
(NO3) and phosphate (PO4) concentrations for natural and 
regulated stretches along the Nemunas River, Lithuania has 
been studied by Šaulys et al. (2020). The method proposed 
by the authors for comparing the amount of pollutants 
entering and leaving a certain section is, in practice, the 
most objective way to assess the self-purification capacity 
along the course of a given river.
	 Like a number of river systems in the Republic of Bulgaria, 
the catchment area of the Osam River is characterized 
by diverse natural conditions and the development of 
different socio-economic activities (agricultural, industrial, 
communal-household, etc.) (Gartsiyanova et al. 2023). The 
past studies (Gartsiyanova 2015; Gartsiyanova and Varbanov 
2015) on the water quality of this river reported continuous 
pollution with chemical substances of various origins and 
compositions whose concentrations are changing from 
upstream to downstream (Seymenov 2022). This, in turn, 

implies variable self-purification ability along the river’s 
course.
	 The present article builds on previous studies dealing 
with the water quality of the Osam River and is the first 
to focus on its capacity to dilute the entering pollutants. 
This paper aims to evaluate the Osam River’s water self-
purification ability by analyzing selected physico-chemical 
elements in three sections along its course for the period 
2015–2021.

MATERIALS AND METHODS

Study area

	 The Osam River is the second longest tributary of the 
Danube River in the Republic of Bulgaria, with a total length 
of 314 km and a catchment area of 2824 km2 (Hristova 
2012) (see Fig. 1).  
	 The main river is formed from the tributaries Beli 
Osam River (a left branch) and Cherni Osam River (a right 
branch), merging at the northern outskirts of the town of 
Troyan. The longer of them, the Cherni Osam River, has a 
total length of 36 km and takes its source on the western 
foothills of the Levski Peak (2166 m a.s.l), Central Balkan 
Mountains (Hristova 2012). In this part, the river runs north 
in a deep, narrow valley. Later, the river enters the Central 
Fore-Balkans, where between the towns of Lovech and 
Levski flows northeastern in a canyon-like valley through 
a karst terrain. Downstream after the town of Levski, the 
river crosses the Central Danube Plain in a northwesterly 
direction and forms an asymmetrical valley with flat left 
and steeper right slopes. The riverbed widens and, due 
to the low gradient, meanders in all directions. The Osam 
River empties into the Danube River not far from the village 
of Cherkovitsa at 22 m a.s.l. (Hristova 2012). The Osam 
River receives mostly short left- and right-bank tributaries, 
forming a narrow-shaped drainage basin with an expanded 
middle part (see Fig. 1). 
	 The region is characterized by temperate-continental 
climatic conditions with a transition to mountainous with 
increasing altitude. The mean annual air temperature 
ranges from 9.0°C to 11.5°C. Winter temperatures are around 
-2.5°C, but decrease to -5.0°C toward the river’s source, 
while summer temperatures reach 23°C. The annual sum 
of precipitation varies from 550–600 mm to 1000–1200 
mm. The rainiest month is May or June, while the driest is 
February (Velev 2010). The Osam River has a mixed-type 
feed of snow, rain, and karst water (Hristova 2012). Snow 
and rain feed is prevalent in the Balkan Mountains, rain 
in the Danube Plain, and karst water in the Fore-Balkans. 
The average annual streamflow is increasing in a flowing 
direction, varying from 3.42 m3/s (the Beli Osam River at 
Troyan) up to 14.10 m3/s (the Osam River at Sanadinovo). 
The runoff regime is marked by a high water level in spring 
(April and May) and a low flow phase in late summer and 
autumn (September and October) (Hristova 2012). The 
water resources of the Osam River are utilized for irrigation, 
household, and industrial needs. There are also several 
small hydropower plants and balneological complexes. 
In the Balkan Mountains, the drainage basin is covered 
by deciduous forests, transitioning to low-stemmed 
woods and bushes in the Fore-Balkans and arable lands in 
the Danube Plain. The catchment area occupies parts of 
Lovech and Pleven Districts and concentrates a total of 88 
settlements.
	 The combination of steep slopes, persistent snow 
cover, hydrothermal springs, and forest vegetation in the 
mountainous section, on the one hand, and flat relief 
with fertile soils in the plain sector, on the other hand, 
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is a prerequisite for the development of various socio-
economic activities that are potential sources of surface 
water pollution (Gartsiyanova et al. 2023). The different 
natural conditions and anthropogenic practices in the 
upper and lower sections of the catchment area imply 
variable self-purification capacity for the river.

Data and Methodology

	 Water samples were collected according to the 
requirements of the Water Framework Directive 2000/60/
EC and their equivalent criteria, transposed into Regulation 
H-4/14.09.2012 for surface water characterization. The 
concentrations of eight physico-chemical elements: 
dissolved oxygen (DO2), ammonium nitrogen (N-
NH4), nitrate nitrogen (N-NO3), nitrite nitrogen (N-NO2), 
total nitrogen (N-tot), orthophosphates (P-PO4), total 
phosphorus (P-tot), and biochemical oxygen demand 
(BOD5) were used. The time-series data consists of 28 
measurements taken from 2015 until 2021, with sampling 
four times per year or at least once per season. The output 
information was collected and published by the Executive 

Environment Agency (EEA) and processed using standard 
statistical procedures by the authors.
	 According to the mean annual values of each 
variable, water quality is assigned to one of the three 
classes of physico-chemical status following Regulation 
H-4/14.09.2012 for surface water characterization (see 
Table 1).
	 The observations were conducted at four water 
sampling sites (see Table 2). The measuring points, 
falling within surface water bodies of types R4 (Semi-
mountainous streams in a Pontic province) and R7 (Large 
tributaries of the Danube River), were selected so that they 
cover parts of the upstream, midstream, and downstream 
of the examined river (see Fig. 1).
	 For an assessment of the self-purification ability, three 
stretches along the investigated river were distinguished 
(see Fig. 1, Table 3).
	 The water’s self-purification coefficient of Tumas 
(2003), comparing the amount of pollutant entering and 
leaving a certain river section, and being in practice the 
most objective way to assess the self-restoration capacity 
along the course of a river, was applied in this study. The 

Fig. 1. Map of the Osam River Basin showing the location of settlements, water measuring points, and river stretches
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Table 1. Status classification according to the physico-chemical elements as stated in Regulation H-4/14.09.2012 for 
surface water characterization

Table 2. Information about water measuring points

Water body 
types

Status

Physico-chemical elements

DO2, 
mg/L−1

N-NH4, 
mg/L−1

N-NO3,
 mg/L−1

N-NO2,
 mg/L−1

N-tot, 
mg/L−1

P-PO4, 
mg/L−1

P-tot, 
mg/L−1

BOD5,
mg/L−1

R4

Excellent >8.0 <0.04 <0.5 <0.01 <0.5 <0.02 <0.025 <1.2

Good 8.0–6.0 0.04–0.4 0.5–1.5 0.01–0.03 0.5–1.5 0.02–0.04 0.025–0.075 1.2–3.0

Moderate <6.0 >0.4 >1.5   >0.03 >1.5 >0.04 >0.075 >3.0

R7

Excellent >7.0 <0.1 <0.7 <0.03 <0.7 <0.07 <0.15 <2.0

Good 7.0–6.0 0.1–0.3 0.7–2.0 0.03–0.06 0.7–2.5 0.07–0.15 0.15–0.3 2.0–4.0

Moderate <6.0 >0.3 >2.0 >0.06 >2.5 >0.15 >0.3 >4.0

Type of the 
water body

Number of the water 
body

Location of the measuring point

Description
Geographic coordinates

X (°E) Y (°N)

R4 BG1OS700R1001 The Osam River after the town of Troyan 24.686 42.957

R4 BG1OS700R1001 The Osam River after the town of Lovech 24.804 43.195

R7 BG1OS700R1011 The Osam River after the town of Levski 25.163 43.371

R7 BG1OS130R1015 The Osam River at the village of Cherkovitsa 24.848 43.674

coefficient was calculated for each of the eight physico-
chemical variables, using the Eq. 1:

	 where: C
0
 – a concentration (mg/L−1) of a physico-

chemical element at the beginning of the river stretch; 
CL – a concentration (mg/L−1) of a physico-chemical 
element at the end of the relevant stretch; L – length of 
the river stretch (km); ln – natural logarithm, and α – a self-
purification coefficient.
	 This coefficient is preferred due to its simplicity of 
operation, sensitivity of parameters, and informative 
results. So far, it has been applied by Šaulys et al. (2020) to 
compare the water’s self-purification capacity in terms of 
NO3 and PO4 for natural and regulated river stretches along 
the Nemunas River (Baltic Sea Basin, Lithuania). Montreuil 
et al. (2010) used a modified version of this coefficient to 
evaluate the impact of riparian wetlands on the values of 
NO3 along the course of the Scorff River (Atlantic Ocean 
Basin, France). The authors concluded for which stretches 
the reduction in the monitored concentrations was 
significant and formulated possible interpretations. The 
coefficient has not been used in the Republic of Bulgaria 
until now. 
	 A key point using this coefficient is the selection 
of river stretches, their beginning, end, and length. It is 

assumed that the length of the river stretch has a direct 
impact on the results obtained. In general, rivers need a 
certain distance to dilute pollutants, and selecting too 
short segments can lead to worse results (Tumas 2003). If 
conditions allow, the stretches should have approximately 
equal length. The slope gradients, soil types, topography, 
vegetation species and distribution, and anthropogenic 
practices could also influence the value of the self-
purification coefficient (Tumas 2003). A higher value, for 
example, could be impacted by the adjacent permanent 
grasslands and forests. The dilution of polluted water with 
surface flow and groundwater can also affect it (Šaulys et al. 
2020). On the other hand, a lower value typically indicates 
an uncontrolled discharge of untreated wastewater from 
industrial activities, which has a direct, often deleterious 
effect on water quality (Šaulys et al. 2020). If obtained 
ratings are less than zero, the stream fails to dilute the 
entering pollutants. Negative scores indicate that excessive 
amounts of chemical contaminants are disposed of in the 
river, so it is incapable of treating itself (Montreuil et al. 
2010).

RESULTS and DISCUSSION
 
	 Statistical processing of monitoring data demonstrates 
spatial and temporal variations in the values of the physico-
chemical elements along the Osam River (see Tables 4-5).

Table 3. Information about river stretches

River stretches
Altitude (m) of the river stretch Slope (‰) of the 

river stretch 
Length (km) of 
the river stretchAt the beginning At the end

The Osam River after Troyan – the Osam River after Lovech 380 200 3.50 52

The Osam River after Lovech – the Osam River after Levski 200 50 2.00 76

The Osam River after Levski – the Osam River at Cherkovitsa 50 30 0.16 122

(1)
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	 The physico-chemical variables most often failing to 
meet the requirement of Regulation H-4/14.09.2012 for 
surface water bodies of type R4 are N-tot, P-PO4, P-tot, 
and BOD5 with average values falling within the numerical 
ranges for “moderate” status. Due to the increase/decrease 
in pollutant concentrations, as well as the more liberal 
reference standards, the failed variables for surface water 
bodies of type R7 include mostly N-NO3 and N-tot (see 
Tables 4-5)1.
	 The analysis of the temporal variability of the physico-
chemical elements, as well as the review of past studies, 
shows that the Osam River’s water fails to achieve “good” 
status for the last three decades. Gartsiyanova (2015) and 
Gartsiyanova and Varbanov (2015), exploring the water 
quality status at the measuring point after Lovech during 
the period 1990–2014, reported an elevated content of 
N-NH4 and N-NO3 from 1990 to 1993, N-NO2 between 
1994 and 2007, and P-PO4 from 1998 to 2009. The cited 
authors found continuous pollution with N-NH4 and 
P-PO4 between 1996 and 2005 at the measuring sites 
after Levski and near Cherkovitsa, and stated that the 
highest observed concentrations of these elements 
exceeded from 10 to 25 times the reference norms for 
“good” status pointed in Regulation H-4/14.09.2012 for 
surface water characterization. The deteriorated water 
quality for the reported periods was mainly influenced 
by the unregulated discharge of untreated wastewater 
from households, industrial enterprises, and agricultural 
lands. The current results show another situation – the 
mean annual values of the failed variables for 2015–2021 
exceed no more than three times the reference standards. 
This contradiction confirms the positive tendency in the 
water quality status, already established by Gartsiyanova 
(2015) and Seymenov (2022), and suggests that the Osam 
River’s water continues to improve its physico-chemical 
conditions between 2015 and 2021. Recently, the study 
area has been strongly affected by the negative natural 
population growth, depopulation and emigration, the 
closure of industrial factories, and the crisis in agriculture. 
All of these adverse socio-economic processes contributed 
to reducing of the anthropogenic impact on water quality.
	 The analysis of spatial variations of the physico-chemical 
elements finds that the content of N-NO3 and N-tot is 
increasing in a flowing direction, while the concentrations 
of the rest of the variables are increasing/decreasing from 
one measuring point to another (see Tables 4-5). This result 
partially confirms the study of Seymenov (2022), dealing 
with the spatial distribution of biogenic substances along 
the river. 
	 As per the location of water measuring points, the 
river’s course could be divided into three stretches (see Fig. 

1, Table 3). The first sector is marked by increasing content 
of DO2, N-NO3, N-tot, P-tot, P-PO4, and BOD5 and declining 
values of N-NH4 and N-NO2. The second stretch has rising 
concentrations of all elements, excluding P-PO4 and P-tot. 
The third sector is characterized by growing content of 
N-NO3, P-PO4, and P-tot and falling values of the rest of the 
variables (see Table 4).
	 The changes in the average concentrations, determined 
at the beginning and the end of the river stretches, as 
well as the computed self-purification coefficient values, 
show that the Osam River’s water self-purifies better in the 
downstream section (see Fig. 2, Table 6).
	 In the upper part between Troyan and Lovech, almost 
all the time the river fails to dilute N-NO3, N-tot, P-PO4, and 
P-tot (see Fig. 2, Table 6). Although the entire river stretch 
is surrounded by permanent forests and natural grasslands 
covering steep mountainous terrain, i.e., the bank erosion 
is prevented, the flow rate is higher, and the detention of 
pollutants is lower, concentrations of polluting substances 
are gradually increasing. The untreated or partly treated 
domestic and industrial effluents released from settlements 
with incompletely developed sewage systems are the 
main factors deteriorating upstream water quality. In the 
mid-stretch between Lovech and Levski, the river manages 
to self-purify regarding P-PO4 and P-tot but worsens its 
status as per N-NH4, N-NO3, N-NO2, and N-tot (see Fig. 2, 
Table 6). In this part, the river enters flat terrain with arable 
lands, whereat it slows down its flow, which to some extent 
explains the growing values of nitrogenous compounds. 
In the lower unit between Levski and Cherkovitsa, the 
river self-purifies in terms of almost all elements, especially 
N-NH4, N-NO2, and BOD5 (see Fig. 2, Table 6). Although the 
entire river stretch is abundant in meanders, i.e., the flow 
rate is lower and the detention of pollutants is higher, the 
river restores its water quality. Moreover, the surrounding 
farmlands release waste masses containing fertilizers 
and pesticides, but despite this, pollutant concentrations 
are decreasing. The higher rates of the self-purification 
coefficient can be explained by the dilution of wastewater 
with the surface flow and their connection with 
groundwater. It should be mentioned the relatively greater 
length of this stretch compared to the remaining two, but 
nevertheless, the river water’s diluting ability is obvious.
	 The temporal analysis does not find a trend toward 
a decrease or increase in the water’s self-purification 
capacity throughout the period. The upstream stretch is 
characterized by a worse ability to restore its condition in 
2021, with the lowest coefficient ratings for three of the 
eight elements, and a better capacity to self-purify in 2016 
and 2020, with positive scores for half of the indicators. 
Conversely, the mid-stretch achieved more negative results 

Table 4. verage multi-annual values of physico-chemical elements for 2015–2021 and status assessment according to 
Regulation H-4/14.09.2012 for surface water characterization

Note: Status of water: excellent (blue), good (green), and moderate (yellow)

1Such assessments were also reported in the second edition of the River Basin Management Plan (2016–2021), published by the Danube River 
Basin Directorate. Available from: www.bd-dunav.org/ (last accessed: 16.08.2025).

Measuring points

Physico-chemical elements

DO2, 
mg/L−1

N-NH4,
mg/L−1

N-NO3,
mg/L−1

N-NO2

 mg/L−1 
N-tot, 

mg/L−1

P-PO4, 
mg/L−1

P-tot, 
mg/L−1

BOD5, 
mg/L−1

The Osam River after Troyan 8.037 0.152 0.648 0.017 1.138 0.027 0.038 3.079

The Osam River after Lovech 8.150 0.146 0.970 0.015 1.524 0.088 0.105 3.463

The Osam River after Levski 8.512 0.223 2.258 0.042 3.110 0.054 0.069 4.102

The Osam River at Cherkovitsa 7.435 0.187 2.355 0.020 3.048 0.057 0.078 3.758
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in 2016 and positive ones in 2021. The downstream section 
generally demonstrates a higher ability to self-purify over 
the years (see Table 6). This variability confirms that river 
water’s self-purification is a complex process involving 
multiple factors acting simultaneously and interacting 
more or less effectively.

CONCLUSIONS 

	 The conducted research focused attention on a 
relatively poorly studied issue related to the capacity of 

rivers to restore their natural conditions under various 
anthropogenic pressures. The obtained results showed 
continuous pollution along the selected river, but with a 
general trend toward improvement in water quality. The 
applied self-purification coefficient was an informative 
and easy-to-use approach for assessing the ability of the 
watercourse to get rid of contaminants. The calculated 
ratings revealed that in the upper stretch the river is unable 
to self-purify, while in the lower section the streamflow and 
inflowing groundwater dilute the entering pollutants and 
thus contribute to the decrease in their concentrations.

Note: Status of water: excellent (blue), good (green), and moderate (yellow)

Table 5. Average annual values of physico-chemical elements and status assessment according to Regulation 
H-4/14.09.2012 for surface water characterization

Measuring points Years

Physico-chemical elements

DO2, 
mg/L−1

N-NH4, 
mg/L−1

N-NO3, 
mg/L−1

N-NO2, 
mg/L−1 

N-tot, 
mg/L−1

P-PO4, 
mg/L−1

P-tot, 
mg/L−1

BOD5, 
mg/L−1

The Osam River after 
Troyan

2015 9.800 0.088 0.675 0.012 1.115 0.044 0.051 3.475

2016 10.100 0.090 0.570 0.006 0.680 0.037 0.044 2.100

2017 7.066 0.086 0.381 0.022 0.669 0.016 0.028 3.600

2018 7.338 0.120 0.906 0.012 1.219 0.022 0.030 2.650

2019 6.500 0.226 0.546 0.025 1.607 0.032 0.041 2.766

2020 6.630 0.247 0.790 0.020 1.308 0.021 0.046 4.500

2021 10.750 0.227 0.465 0.015 1.000 0.015 0.021 1.185

The Osam River after 
Lovech

2015 10.675 0.070 0.907 0.014 1.965 0.082 0.090 5.900

2016 7.200 0.060 0.670 0.012 0.750 0.031 0.040 3.200

2017 7.433 0.087 0.693 0.008 0.937 0.095 0.108 2.160

2018 7.527 0.097 1.587 0.010 1.985 0.073 0.092 2.025

2019 6.333 0.246 0.733 0.012 1.830 0.092 0.105 3.100

2020 6.966 0.289 1.206 0.013 1.790 0.012 0.016 5.430

2021 9.275 0.147 0.698 0.034 1.215 0.095 0.106 1.916

The Osam River after 
Levski

2015 10.800 0.195 2.300 0.051 3.970 0.049 0.061 4.525

2016 11.500 0.070 1.800 0.018 1.900 0.045 0.052 2.800

2017 6.300 0.220 2.113 0.045 2.443 0.074 0.085 3.283

2018 7.425 0.136 2.657 0.030 3.385 0.054 0.056 4.510

2019 6.067 0.402 1.953 0.051 2.696 0.057 0.088 3.453

2020 7.433 0.253 2.270 0.047 3.073 0.044 0.069 4.900

2021 7.900 0.120 1.872 0.036 2.430 0.058 0.077 2.320

The Osam River at 
Cherkovitsa

2015 10.400 0.075 2.600 0.022 4.150 0.050 0.066 3.530

2016 8.500 0.067 2.100 0.015 2.310 0.057 0.058 6.300

2017 5.525 0.159 2.863 0.016 2.900 0.058 0.070 3.600

2018 5.550 0.178 2.443 0.019 3.292 0.069 0.100 2.175

2019 6.530 0.276 1.906 0.018 2.436 0.054 0.065 6.266

2020 7.700 0.428 2.460 0.024 3.130 0.084 0.104 5.020

2021 8.475 0.113 1.963 0.023 2.525 0.046 0.073 2.225
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Fig. 2. Self-purification coefficient ratings based on the average multi-annual values of physico-chemical 
elements for 2015–2021

Table 6. Self-purification coefficient ratings based on the annual values of physico-chemical elements

River stretches Years
Physico-chemical elements

DO2 N-NH4 N-NO3 N-NO2 N-tot P-PO4 P-tot BOD5

The Osam River after 
Troyan – the Osam River 

after Lovech

2015 -0.002 0.003 -0.006 -0.003 -0.011 -0.012 -0.011 -0.010

2016 0.007 0.008 -0.003 -0.013 -0.002 0.003 0.002 -0.008

2017 -0.001 0.000 -0.012 0.019 -0.006 -0.034 -0.026 0.010

2018 0.000 0.004 -0.011 0.004 -0.009 -0.023 -0.022 0.005

2019 0.001 -0.002 -0.006 0.014 -0.002 -0.020 -0.018 -0.002

2020 -0.001 -0.003 -0.008 0.008 -0.006 0.011 0.020 -0.004

2021 0.003 0.008 -0.008 -0.016 -0.004 -0.035 -0.031 -0.009

The Osam River after 
Lovech – the Osam River 

after Levski

2015 0.000 -0.013 -0.012 -0.017 -0.009 0.007 0.005 0.004

2016 -0.006 -0.002 -0.013 -0.005 -0.012 -0.005 -0.003 0.002

2017 0.002 -0.012 -0.015 -0.023 -0.013 0.003 0.003 -0.006

2018 0.000 -0.005 -0.007 -0.015 -0.007 0.004 0.007 -0.011

2019 0.001 -0.007 -0.013 -0.019 -0.005 0.006 0.002 -0.001

2020 -0.005 0.002 -0.008 -0.017 -0.007 -0.018 -0.019 0.001

2021 0.002 0.003 -0.013 -0.001 -0.009 0.007 0.004 -0.003

The Osam River after 
Levski – the Osam River at 

Cherkovitsa

2015 0.000 0.008 -0.001 0.007 0.000 0.000 -0.001 0.002

2016 0.002 0.000 -0.001 0.001 -0.001 -0.002 -0.001 -0.007

2017 0.001 0.003 -0.002 0.009 -0.001 0.002 0.002 -0.001

2018 0.002 -0.002 0.001 0.004 0.000 -0.001 -0.005 0.006

2019 -0.001 0.003 0.000 0.009 0.001 0.000 0.002 -0.005

2020 0.002 -0.004 -0.001 0.006 0.000 -0.005 -0.003 0.000

2021 -0.001 0.000 0.000 0.004 0.000 0.002 0.000 0.000
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	 The study concludes that active actions are needed to 
prevent pollutants from entering the riverbed and to improve 
the self-purification capacity of surface water. The so-called 
soft naturalization measures are proposed. These include 
planting riparian protection zones along the riverbanks with 
connection to the surrounding wetlands in floodplains, 
maintaining well-aerated water by allowing woody vegetation 
to grow on river slopes, forming natural barriers and obstacles 
to water flow, etc. Stricter measures should be considered to 
limit the inflow of untreated wastewater into the river from 
agricultural, industrial, and residential sources.

	 This article evaluates the water quality status only in 
terms of averaged annual and multi-annual concentrations, 
but monthly and seasonal variations of physico-chemical 
elements are also significant factors that should be taken 
into account to fully assess the self-purification ability. This 
fact necessitates more frequent and regular monitoring of 
water quality elements. In the future, this work could be 
extended with additional indicators, such as river runoff, 
water temperature, etc., to obtain a comprehensive 
understanding of the self-purification mechanism.
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ABSTRACT. Mangrove forests provide critical ecosystem services, including coastal protection, habitat for biodiversity, and 
carbon sequestration. Monitoring these ecosystems is essential for their conservation and sustainable management. This 
study was conducted on Pramuka Island, Indonesia, focusing on high-density Rhizophora stylosa vegetation. Data was 
collected using the DJI M300 RTK UAV equipped with the Zenmuse L1 LiDAR sensor, which generated a Canopy Height 
Model (CHM) and identified treetops. Various kernel sizes (3×3, 5×5, 9×9, 11×11, 21×21) and Local Maximum Filter (LMF) 
window sizes (0.5, 1, 3 meters) were applied to analyze mangrove tree density. The study found that the combination of a 3×3 
kernel with a 0.5 meter window size yielded the best results, achieving the highest F-score and balancing precision and recall. 
However, despite the optimized settings, LiDAR still struggled to detect individual trees in dense mangrove stands, resulting 
in the underestimation of tree counts compared to field data. This highlights the challenges LiDAR faces in dense vegetation 
environments. The study emphasizes the need for optimized kernel and window size configurations for more accurate tree 
detection and calls for further development of LiDAR-based algorithms to improve detection in mangrove forests. Improved 
methodologies will enhance the effectiveness of mangrove forest conservation and management efforts.
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INTRODUCTION

	 Mangrove forests are vital coastal ecosystems that 
provide a wide range of ecological services. They play a 
crucial role in carbon sequestration, capturing CO2 and 
storing it in their biomass and soil (Mumby et al. 2004; Himes-
Cornell 2018; Sharifi 2022). These unique ecosystems act as 
natural barriers against storm surges and coastal erosion, 
safeguarding coastal communities and infrastructure (Sahu 
2015; Giri et al. 2015; Carugati et al. 2018; Giri 2021; Sharifi 
2022). Additionally, mangroves support many marine and 
terrestrial species, making them biodiversity hotspots 
(Mumby et al. 2004; Sahu 2015; Giri 2021). The role of 
mangroves in carbon sequestration is particularly vital in 

mitigating climate change, as they can store up to four 
times more carbon per unit area than terrestrial forests.
	 Monitoring mangrove forests is crucial for their 
conservation and sustainable management. Traditional 
methods of counting mangrove trees using ground surveys 
are labor-intensive, time-consuming, and expensive. These 
methods often require significant human resources, 
making them less feasible for large-scale monitoring (Tran 
et al. 2022). Moreover, the challenging muddy terrain 
and dangerous wildlife in mangrove ecosystems pose 
significant risks to researchers, further complicating ground 
surveys (Rajpar and Zakaria 2014; Saini et al. 2020).
	 Remote sensing techniques have been widely 
employed for mangrove monitoring, with satellite imagery 

https://doi.org/10.24057/2071-9388-2020-136
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playing a prominent role. Early studies applied terrestrial 
vegetation indices to mangrove environments (Green et al. 
1998), followed by advancements in mangrove classification 
(Lasalle et al., 2023), development of mangrove-specific 
indices (Gupta et al. 2018; Diniz et al. 2019; Prayudha 
et al. 2024), and carbon and biomass estimation from 
satellite data (Suardana et al. 2023). However, satellite-
based methods face limitations in spatial resolution and 
temporal frequency, constraining their ability to provide 
detailed information at the scale of individual trees or 
small clusters. To address these limitations, advancements 
in remote sensing technologies such as unmanned aerial 
vehicles (UAVs) have enabled the collection of high-
resolution imagery and data over targeted areas with 
greater efficiency and reduced cost (Jones et al. 2020; 
Tian et al. 2023; Yin et al. 2024). UAVs reduce the need for 
extensive ground surveys, minimizing risks and logistical 
challenges (Tamimi and Toth 2024), and provide access to 
areas difficult to survey on foot.
	 Among UAV-based technologies, Light Detection and 
Ranging (LiDAR) is particularly promising for mangrove 
monitoring. LiDAR employs laser pulses to measure distances 
between the sensor and objects on the Earth’s surface, 
providing accurate and detailed data on forest structure1. The 
system calculates the time taken for the laser pulses to travel 
to the object and back, using this information to determine 
the distance with high precision. In mangrove forests, LiDAR 
can capture detailed images of canopy height, density, 
and tree distribution, which provide important information 
regarding the forest’s health and composition (Wang et al. 
2019; Yin and Wang 2019; Tian et al. 2023; Yin et al. 2024).
	 LiDAR technology has proven effective in various forest 
monitoring applications. For instance, studies that specifically 
utilize LiDAR for mangrove detection have been conducted 
by various researchers to observe, both to estimate the 
number of trees and tree height (Kasai et al. 2024; Yin et al. 
2024) as well as to calculate mangrove biomass (Fatoyinbo 
et al. 2018; Qiu et al. 2019; Wang et al. 2019; Wang et al. 2022; 
Salum et al. 2020; Tian et al. 2021). However, the application of 
this technology still faces challenges in terms of accuracy and 
efficiency, particularly in areas with high vegetation density, 
where under-detection of trees occurs (Yin and Wang 2019).
	 The Seribu Islands, particularly Pramuka Island, serve as 
the focus of this study due to their characteristic mangrove 
plantations. The area consists primarily of a single species, 
Rhizophora stylosa, planted in clusters through community 
reforestation efforts2. This clustered planting results in 
high tree density, relatively short trees due to nutrient 
competition, and limited electromagnetic wave penetration, 
which complicates data acquisition and individual 
tree discrimination. These conditions provide a unique 
opportunity to evaluate and optimize the effectiveness of 
UAV-based LiDAR for individual tree detection in mangrove 
plantations.
	 Our research is expected to make a contribution to the 
conservation and sustainable management of mangrove 
forests by addressing the challenge of individual tree 
detection in dense mangrove plantations using UAV LiDAR 
data. Specifically, we investigate how the smoothing process 

and detection window size can affect the accuracy of 
individual tree detection in this challenging environment. By 
optimizing these parameters, we seek to enhance detection 
performance, providing more precise data on mangrove 
forest structure to support sustainability and environmental 
management.

MATERIALS AND METHODS

Study Area

	 The data was collected on Pramuka Island, a small island 
in the Seribu Islands, Indonesia (Fig. 1). The observed area 
covers approximately 0.6 ha (6,000 m2), delineated using 
a rectangular boundary. It consists of a single mangrove 
species, Rhizophora stylosa, resulting from community 
planting efforts. The planting technique involved grouping 
seedlings in clusters, leading to a high-density stand of trees3. 
As a result, the trees are relatively short due to competition 
for nutrients. The density of the mangroves also causes low 
penetration of electromagnetic waves, resulting in limited 
information availability for ground data. Furthermore, the 
relatively homogeneous tree height across the plantation 
makes it difficult to discriminate between individual canopies. 
These circumstances are interesting to observe, as they 
provide an opportunity to test the effectiveness of the LiDAR 
sensor applied in the mangrove plantation community.

Data collection

	 Aerial imagery was acquired using the DJI M300 RTK 
UAV equipped with the Zenmuse L1 LiDAR sensor. The 
LiDAR sensor provides high-resolution point cloud data, 
which is crucial for accurately mapping and analyzing forest 
structures. The sensor is capable of a pulse repetition rate of 
up to 240,000 pulses per second, enabling high-density data 
recording. Additionally, the sensor integrates data with Global 
Navigation Satellite System (GNSS) and Inertial Measurement 
Unit (IMU) systems4, providing very high georeferencing 
accuracy and resulting in highly detailed and accurate data. 
Table 1 presents the aircraft specifications and sensor used for 
the acquisition.
	 The data collection was conducted at 10:00 a.m. local 
time under clear sky conditions (minimal cloud cover) with a 
flying altitude of 80 meters. This acquisition process resulted 
in a total of 339,316 points, providing sufficient detail to 
capture the structural complexity of the mangrove canopy. 
Details of the flight settings are provided in Table 2. 
	 Ground truth data were collected through a 10m2 transect, 
encompassing measurements of tree density (including 
trees, saplings, and seedlings), diameter at breast height 
(DBH), average tree height, substrate type, and mangrove 
species composition. GPS was used solely to mark the 
transect location without recording the exact coordinates of 
individual trees. This limitation hindered the direct validation 
of LiDAR data. However, the ground truth data were utilized 
to estimate tree density and average height as a reference 
for evaluating the accuracy of individual tree detection (ITD) 
from the Canopy Height Model (CHM). 
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1Codex Y. (2023). Predicting Species Distributions using High-Resolution Remote Sensing Data: A Comprehensive Review and 
Assessment. Available at: https://codex.yubetsu.com/article/c004a755544b427a942af6ed2580f3f7 [Accessed 10 January 2025]
2Kementerian Lingkungan Hidup dan Kehutanan (KLHK) (2023). Penanaman mangrove dengan sistem rumpun berjarak di Kepulauan 
Seribu. Available at: https://itjen.menlhk.go.id/berita/penanaman-mangrove-dengan-sistem-rumpun-berjarak-di-kepulauan-seribu 
[Accessed 10 January 2025]
3Kementerian Lingkungan Hidup dan Kehutanan (KLHK) (2023). Penanaman mangrove dengan sistem rumpun berjarak di Kepulauan 
Seribu. Available at: https://itjen.menlhk.go.id/berita/penanaman-mangrove-dengan-sistem-rumpun-berjarak-di-kepulauan-seribu 
[Accessed 10 January 2025].
4DJI (2024). Zenmuse L1 specifications. Available at: https://enterprise.dji.com/zenmuse-l1/specs [Accessed: 6 August 2024].
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Data pre-processing

	 Fig. 2 illustrates the entire process conducted in this 
study. The captured LiDAR data was initially processed 
using WebODM, an open-source photogrammetry and 3D 
reconstruction tool, to generate the 3D point cloud data 
(LAS file). Processing began with the lidR package (Roussel 
and Auty 2024) in an R environment5.
	 The LAS file was first converted into a Digital Surface 
Model (DSM) using the Point-to-Raster (P2R) tool. This step 
involves transforming the LiDAR points into a 2D raster grid, 
where each cell (with a pixel size of 0.1 meter) represents 

the maximum elevation from the points within the cell. The 
resulting DSM captures the elevation, both terrain and all 
above-ground objects, such as vegetation and structures.
	 To generate a Digital Terrain Model (DTM) a more 
detailed workflow was applied. The original point cloud 
was then classified, separating bare earth from vegetation 
and other non-ground features. The ground-classified 
points were then interpolated using the Inverse Distance 
Weighting (IDW) method. This interpolation imparts more 
weight to nearby ground points, ensuring a smooth and 
accurate terrain surface (Mohan et al. 2021). 

5R Core Team (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 
Available at: https://www.R-project.org/. [Accessed: 10 August 2024]

Fig. 1. The study site is located on Pramuka Island. The red box indicates the selected area for this study

Table 1. Aircraft and sensor specifications1

DJI M300 RTK (Aircraft) DJI Zenmuse L1 (Camera)

RTK Positioning Accuracy
RTK enabled and fixed:

1 cm + 1 ppm (horizontal)
1.5 cm + 1 ppm (vertical)

Point Rate
Single return: 2,400,000 pts/s

Multiple returns: 480,000 pts/s

Hovering Accuracy (P-mode with GPS)
Vertical:

±0.1 m (Vision system enabled)
±0.5 m (GPS enabled)
±0.1 m (RTK enabled)

Horizontal:
±0.3 m (Vision system enabled)

±1.5 m (GPS enabled)
±0.1 m (RTK enabled)

System Accuracy
Horizontal: 10 cm @ 50 m

Vertical: 5 cm @ 50 cm

Operating Frequency
2.4000 - 2.4835 GHz

5.725 - 5.850 GHz

Field of View (FOV)
Repetitive line scan: 70.4° × 4.5°

Non-repetitive line scan: 70.4° × 77.2°

Max Wind Resistance
12 m/s

Scan Modes
Repetitive line scan mode

Non-repetitive petal scan mode

GNSS
GPS + GLONASS + BeiDou + Galileo

Maximum Return Supported: 3
Ranging Accuracy: 3 cm @ 100 m
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	 Following this, the CHM was produced by normalizing 
DSM with DTM, specifically by subtracting the DSM 
with DTM (Pertille et al. 2024). This process removes the 
ground elevation from the DSM, leaving only the height 
of vegetation or other objects above the ground. Once 
the basic data was prepared, the next step was to detect 
individual trees.

Individual tree detection

Filtering treatment

	 In tree detection using CHM data, the process typically 
involves an initial smoothing stage to reduce noise and 
minor irrelevant variations in the canopy height data. 
This reduction in noise results in more representative and 
accurate peak detection. Smoothing also clarifies treetops 
by diminishing minor variations, making the highest points 
that represent the treetops more prominent and distinct. 
Additionally, smoothing helps eliminate minor anomalies or 
outliers that may not be part of the tree structure, ensuring 
that irrelevant data does not disrupt peak detection (Pertille 
et al. 2024).
	 In this study, the Gaussian method was applied as a 
filtering treatment. The application of Gaussian filtering 
plays a crucial role in refining the CHM and improving the 
accuracy of individual tree detection. In this study, we tested 
a range of square-shaped kernel sizes, including unfiltered 
CHM and 3×3, 5×5, 9×9, 11×11, and 21×21 kernel sizes. 
These filters were used to smooth the CHM and remove 
noise while retaining critical information for detecting 
individual mangrove trees (Pertille et al. 2024).

Local maxima method and window size treatment

	 A relatively straightforward method for detecting 
individual trees on the LiDAR-derived CHM is the Local Maxima 
(LM) algorithm. The LM method assumes that local height 
maxima in the CHM represent treetops (Korpela 2006). This 
method is relatively simple and uses two main parameters: 
a smoothing parameter, often referred to as the smoothing 
window size (SWS), and a fixed window size (FWS) for tree 
detection (Silva et al. 2016). As the FWS increases, the number 
of detected trees decreases (Mohan et al. 2017). Applying 
smoothing filters helps eliminate invalid local maxima caused 
by significant, spreading tree branches, thereby reducing 
the number of detected local maxima and improving the 
algorithm’s accuracy (Lindberg and Hollaus 2012).
	 In this study, we tested various combinations of CHM 
smoothing kernel sizes and LMF window sizes to evaluate 
their effect on individual tree detection performance. The 
smoothing kernel sizes included unfiltered, 3×3, 5×5, 9×9, 
11×11, and 21×21, each applied with LMF window sizes of 0.5 
m, 1 m, and 3 m.

F-score calculation

	 To evaluate the accuracy of individual tree detection, this 
study employed the F-score (F1) as a performance metric. The 
F-score is the harmonic mean of precision and recall, which 
balances the trade-off between detecting true positives (TP) 
while minimizing false positives (FP) and false negatives (FN) 
(Power 2011). This metric has also been widely adopted in 
similar studies related to UAV-based tree detection (Mohan et 
al. 2017; Ahmadi et al. 2022)
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Table 2. General flight setting

Parameters Setting

Fly height 80 m

Drone speed (while recording) 8 m/s

Side overlap 50%

Fig. 2. Workflow of LiDAR data pre-processing and local-maxima-based individual tree detection (ITD) methodology. (A) 
LiDAR data pre-processing steps include filtering, normalization, point classification, noise removal, and data fusion to 
prepare the data for analysis. (B) Local-maxima-based individual tree detection involves the generation of the Canopy 

Height Model (CHM), followed by the detection of local maxima to identify tree tops and subsequent clustering to 
delineate individual trees
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Fig. 3. 3D RGB LiDAR data of mangrove in Pramuka Island

	 Given that UAV-based tree detection can result in both 
overestimation (FP > 0) and underestimation (FN < 0), this 
metric provides a comprehensive measure of detection 
effectiveness. The precision (P), recall (R), and F-score (F1) 
were calculated using the following Eqs. 1-3 (Power 2011):

	 True positives (TP) represent the number of trees 
detected by the UAV that match the expected tree count 
in the field. False negatives (FN) refer to trees that were 
present in the field but were not detected by the UAV. On 
the other hand, false positives (FP) indicate trees that were 
counted by the UAV but do not correspond to trees in the 
field. These definitions help evaluate the accuracy of the 
UAV-based tree detection system by assessing how well the 
detected trees align with the actual tree count in the field. 
Since ground-truth data on tree positions were unavailable, 
TP, FP, and FN were estimated based on the total number of 
trees recorded in the field rather than a tree-to-tree spatial 
validation. This is a clear limitation of the study, as the lack 
of spatial correspondence between UAV-detected trees 
and field-observed trees prevents the accurate matching 
of individual trees. As an alternative, TP, FP, and FN were 
approximated using total tree counts per plot. A detection 
was considered a true positive if it occurred within the 
plot area and the total number of UAV-detected trees did 
not exceed the field count. In underestimation cases (UAV 
count < field count), all detected trees were assumed to be 
true positives, and FP was set to zero. In contrast, if the UAV 
count exceeded the field count, the surplus detections 
were considered false positives. While this method does 
not allow spatially explicit matching between detected and 
actual trees, it does not replace precise spatial validation 
and should be interpreted accordingly.

RESULT

	 The UAV-acquired imagery was precisely cropped at 
the observation site to obtain more accurate and reliable 
data. This cropping process was designed to exclude non-
target objects such as buildings, water bodies, or non-
mangrove vegetation. By eliminating these elements, the 
precision of the CHM information was enhanced, resulting 
in cleaner data with minimal external interference. This 
process ensures that the analytical results have a high 
level of accuracy and are relatively free from errors, thereby 
improving the reliability of the data for this study. Fig. 3 

shows the results of the 3D point cloud cropped specifically 
for the selected area.

CHM Normalization

	 The DSM showed elevation values ranging from 25.6 to 
34.10 meters, capturing both ground and above-ground 
features such as vegetation and structures. In contrast, 
the DTM exhibited a narrower elevation range of 25.6 to 
26.853 meters, indicating minimal elevation difference 
across the terrain. This relatively flat ground surface is 
consistent with typical mangrove habitats. However, in 
several areas, the DTM failed to fully represent the terrain 
due to limited ground returns. These gaps are not visually 
apparent in DTM figures but should be taken into account 
when interpreting the CHM result. Despite the limitation, 
the CHM was successfully generated by normalizing DSM 
with DTM (Gomroki et al. 2017), producing a height range 
from -0.24 to 7.59 meters. Fig. 4 illustrates the difference in 
height patterns before and after normalization.

Effects of Kernel and Window Size on Tree Detection 
Accuracy

	 The unfiltered CHM produced a noisy image with 
numerous local maxima that did not correspond to actual 
tree tops, primarily due to variations in the canopy structure, 
such as large branches or small gaps. This excessive noise 
compromised tree detection accuracy using the Local 
Maxima (LM) algorithm (Lisiewicz et al. 2022). In contrast, 
the 3×3 kernel applied a light smoothing filter, effectively 
reducing noise while preserving important canopy details. 
It eliminated minor irregularities and allowed for more 
accurate tree detection, especially in dense and uniform 
canopy structures. Visually, the CHM with a 3×3 kernel 
would show a more controlled and smoother image, with 
less color variation between areas, preserving the essential 
tree structures while softening the noise (Fig. 5). 
	 As the kernel size increased to 5×5, 9×9, 11×11, 
21×21, the CHM became progressively smoother. The 5×5 
kernel removed additional noise and minor fluctuations, 
providing a balance between smoothing and preserving 
canopy details. However, larger kernel sizes like 9×9, 
11×11, and 21×21 introduced excessive smoothing, 
which led to the merging of nearby treetops and a 
significant underestimation of the number of detected 
trees. The 21×21 kernel, in particular, overgeneralized the 
canopy, removing critical details about individual trees 
and rendering it unsuitable for dense mangrove forests 
(Tanhuanpaa et al. 2019; Quan et al. 2021).
	 Various combinations of kernel sizes (unfiltered, 
3×3, 5×5, 9×9, 11×11, 21×21) and Local Maximum Filter 
(LMF) window sizes (0.5, 1, and 3 meters) were applied to 
analyze mangrove tree density (Fig. 6). The results indicate 
that smaller window sizes detect more trees due to their 

(1)

(2)

(3)
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Fig. 4. Visualization of data at different stages: A) Digital Surface Model (DSM) before normalization; 
B) Digital Terrain Model (DTM); and C) Canopy Height Model (CHM) after normalization – in meter

Fig. 5. Gaussian filtering for different pixel kernel – in meter
sensitivity to local variations. However, these findings may 
lead to overestimation in dense mangrove stands, where 
the algorithm may misidentify non-tree objects as treetops 
(Yan et al. 2024).
	 On the other hand, larger kernels and window sizes 
smooth out local variations, producing more refined 
estimates by reducing over-detection errors. While such 
practices may reduce the risk of excessive detection 
errors, using large kernels and window sizes can obscure 
important local details and lead to underestimating the 
number of trees (Balsi et al. 2018).
	 Given the limited field data obtained specifically from 
Pramuka Island, we attempted to broaden the scope of 
analysis by incorporating field data from several observation 

points on other islands within the Seribu Islands (Table 
3). This approach is feasible due to the homogeneity of 
mangrove ecosystems across the Seribu Islands, where 
most of the mangroves are cultivated, predominantly 
consisting of Rhizophora mucronata and Rhizophora 
stylosa, and planted using a clustered spacing system6. This 
uniformity results in relatively similar structural patterns 
across the mangrove areas in the region.
	 The detection results show that using a window size 
of 0.5 meters, supported by kernels 3×3, 5×5, and 9×9, 
provides more accurate detection of mangroves, aligning 
with the average number of tree-phase mangroves found 
in the Seribu Islands (Fig. 7). This smaller window size is 
particularly effective in dense mangrove conditions, where 

6Kementerian Lingkungan Hidup dan Kehutanan (KLHK) (2023). Penanaman mangrove dengan sistem rumpun berjarak di Kepulauan 
Seribu. Available at: https://itjen.menlhk.go.id/berita/penanaman-mangrove-dengan-sistem-rumpun-berjarak-di-kepulauan-seribu 
[Accessed 10 January 2025].
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it can detect individual trees more accurately, especially 
in high-density areas (Kim et al., 2020). In contrast, using 
larger window sizes, such as 1 and 3 meters, tends to 
result in underestimates, except for the 1-meter window 
size combined with the 3×3 kernel, which aligns well 
with field data. Larger window sizes often lead to over 
smoothing, which hinders the detection of smaller or 
hidden trees beneath larger canopies (Balsi et al., 2018). 
Additionally, unfiltered data combined with a 0.5×0.5 
meter window size leads to an overestimate, as unfiltered 
data does not distinguish well between mangrove trees 
and other objects, resulting in more trees being detected 
than are actually present. Despite these configurations 
yielding better results, all detection outcomes (except for 

the unfiltered configuration with kernel 0.5×0.5) are still 
underestimated compared to mangrove plots at specific 
locations on Pramuka Island. This highlights that LiDAR 
still struggles to distinguish individual mangrove trees 
with homogeneous heights, as this condition creates a 
bias where crowns overlap, making it difficult to clearly 
define the boundaries between individual trees (Galvincio 
& Popescu, 2016).
	 The analysis revealed that mangrove plots that 
had reached the tree growth stage—where tree-stage 
mangroves are the only ones detectable via drone imagery, 
unlike saplings and seedlings, which are often obscured by 
the tree canopy—contained between 19 and 63 individuals 
per 100 m2. Additionally, the areas observed by drone 

Fig. 6. Tree detection using the Local Maxima function with different window sizes for each kernel. In every kernel, 
a window size of 1 meter provides more detailed and numerous tree point information compared to larger window sizes 

(3 and 5 meters)
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Fig. 7. Treetop Detection Density (ind./100m2) Across Different Kernel Sizes and Window Sizes Compared to Field Data 
(Pramuka 1: 63 ind/100m2)

Table 3. Field Data of 10 mangrove plot points in the Seribu Islands, including substrate type, trees, saplings, and 
seedlings measurements

Plot Code Lat (°) Lon (°) Substrate Type Trees (ind./plot) Saplings (ind./plot) Seedlings (ind./plot)

Panggang 1 -5.74243 106.6041 Sandy mud 57 56 0

Panggang 2 -5.74196 106.6039 Sandy mud 21 96 4

Kelapa 1 -5.64895 106.5671 Sandy mud 0 390 0

Kelapa 2 -5.6568 106.5639 Sandy mud 25 216 0

Kelapa-Harapan -5.65228 106.5743 Muddy sand 9 229 0

Harapan -5.65379 106.5808 Muddy sand 9 243 0

Pari -5.85288 106.6208 Sandy mud 43 4 10

Pramuka 1 -5.74391 106.6162 Sandy mud 63 65 2

Pramuka 2 -5.74527 106.615 Sandy mud 61 66 0

Pramuka 3 -5.74874 106.6116 Sandy mud 6 209 0

specifically consisted of tree-stage mangroves, as this is the 
only stage where accurate observation and counting from 
aerial imagery are feasible, given the limitations of drone 
detection for saplings and seedlings (Hsu et al., 2020; Bakar 
et al., 2024).
	 Conversely, plots containing mangroves at the seedling 
stage exhibited much higher densities, with over 200 
individuals per 100 m2. This is due to the clustered spacing 
planting method7, which supports mangrove growth up to 
the seedling stage. 

Evaluation of F-score in UAV-based tree detection

	 This study applied various combinations of smoothing 
kernel sizes and local maxima filtering (LMF) window sizes 
to optimize individual tree detection from CHM (Table 
4). The F-score was calculated for each combination 
to determine which method yielded the best balance 
between minimizing false positives (FP) and maximizing 
true positives (TP) while reducing false negatives (FN). 

A higher F-score indicates that the method correctly 
identifies trees and minimizes errors.
	 The highest F-score was achieved using the Kernel 
3×3/WS 0.5 method (F1-score = 0.854), which provided 
the best trade-off between precision and recall. This 
method detected 47 of the 63 trees recorded in the field, 
resulting in a relatively high recall (0.746). This combination 
effectively minimized FN, making it the most balanced 
approach in the study. In contrast, methods with larger 
smoothing kernels and window sizes (e.g., Kernel 9×9/WS 
3, Kernel 21×21/WS 3) had extremely low recall (0.031–
0.047), leading to F-scores below 0.1. These methods failed 
to detect a significant portion of the trees due to excessive 
smoothing, which merged adjacent treetops and resulted 
in severe under detection.

DISCUSSION

	 This study aimed to detect and analyze individual 
mangrove trees using LiDAR-derived Canopy Height 

7Kementerian Lingkungan Hidup dan Kehutanan (KLHK) (2023). Penanaman mangrove dengan sistem rumpun berjarak di Kepulauan 
Seribu. Available at: https://itjen.menlhk.go.id/berita/penanaman-mangrove-dengan-sistem-rumpun-berjarak-di-kepulauan-seribu 
[Accessed 10 January 2025].
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Model (CHM) in a dense mangrove forest. The challenge 
of accurately extracting tree heights and positions 
in such complex environments is well-known due to 
structural variability and occlusions in the canopy. LiDAR 
data processing, including Digital Terrain Model (DTM) 
generation and smoothing of CHM data, plays a critical 
role in minimizing errors and improving tree detection 
accuracy.
	 One significant limitation encountered was the dense 
mangrove canopy, which likely obstructed the LiDAR 
sensor’s ability to penetrate through to the ground, 
resulting in interpolation gaps and uneven terrain surfaces 
(Wannasiri et al. 2013; Balsi et al. 2018; Yin & Wang 2019; 
Li et al. 2023; Wijaya et al. 2023). This limited ground 
return coverage can affect the accuracy and reliability of 
the DTM, which in turn impacts the derived CHM and its 
interpretation. Although these interpolation gaps are not 
visually apparent in the DTM figures, they may lead to 
underestimation or spatial inconsistency in canopy height 
measurements. Future studies could consider integrating 
additional ground-based surveys or complementary 
remote sensing data to improve terrain representation in 
dense mangrove environments.
	 The unfiltered CHM’s noise was mainly caused by 
structural variations in the canopy, such as large branches 
or small gaps, leading to numerous false local maxima and 
reduced tree detection accuracy with the Local Maxima 
algorithm (Lisiewicz et al. 2022). Applying a 3×3 Gaussian 
kernel offered light smoothing, which effectively reduced 
noise while preserving essential canopy features, thus 
improving detection in dense mangrove canopies.
	 Increasing kernel sizes progressively smoothed 
the CHM but introduced trade-offs. The 5×5 kernel 

balanced noise reduction and detail preservation, while 
larger kernels (9×9 and above) excessively smoothed 
the canopy, causing merging of adjacent treetops and 
underestimation of tree counts. The 21×21 kernel was 
particularly overgeneralizing, losing vital individual tree 
information and making it unsuitable for dense mangrove 
forests. This excessive smoothing reduces color and height 
variation, impairing the ability to distinguish individual 
trees in complex environments (Tanhuanpaa et al. 2019; 
Quan et al. 2021).
	 Choosing an appropriate kernel size is therefore critical 
to optimize the balance between noise suppression and 
canopy detail preservation in mangrove tree detection. 
These findings indicate a significant trade-off in selecting 
kernel and window sizes for optimal tree detection. Smaller 
LMF window sizes, while sensitive to minor variations, may 
not be appropriate in dense mangrove conditions, as 
they increase the likelihood of detecting false positives. 
Conversely, larger kernels and window sizes improve 
robustness against noise but risk underestimating true tree 
counts by merging individual tree signals and suppressing 
fine-scale canopy variation. While the 3×3 kernel and 
0.5-meter window size yielded the best results in this study, 
this outcome should be interpreted with caution. The 
performance of these parameters is strongly influenced 
by the CHM pixel resolution (10 cm) and the relatively 
high density and structural uniformity of mangrove trees 
in the Seribu Islands. Parameter effectiveness may vary in 
different contexts, such as areas with lower tree density, 
heterogeneous canopy structures, or different CHM 
resolutions. Therefore, selecting kernel and window sizes 
should be context-specific, reflecting both the spatial 
resolution and vegetation characteristics of the study area.

Table 4. F1-score for all of the configuration

Method UAV Count TP FP FN Precision Recall F1-Score

Kernel 3×3/WS 0.5 47 47 0 16 1 0.746 0.8545

Unfiltered/WS 0.5 101 63 38 0 0.6238 1 0.7683

Kernel 5×5/WS 0.5 34 34 0 29 1 0.54 0.701

Kernel 9x9/WS 0.5 23 23 0 40 1 0.365 0.5349

Unfiltered/WS 1 21 21 0 42 1 0.333 0.5

Kernel 11×11/WS 0.5 19 19 0 44 1 0.302 0.4634

Kernel 3×3/WS 1 17 17 0 46 1 0.27 0.425

Kernel 5×5/WS 1 17 17 0 46 1 0.27 0.425

Kernel 9×9/WS 1 10 10 0 53 1 0.159 0.2739

Kernel 11×11/WS 1 7 7 0 56 1 0.111 0.2

Kernel 21×21/WS 0.5 7 7 0 56 1 0.111 0.2

Unfiltered/WS 3 3 3 0 60 1 0.048 0.0909

Kernel 3×3/WS 3 3 3 0 60 1 0.048 0.0909

Kernel 5×5/WS 3 3 3 0 60 1 0.048 0.0909

Kernel 9×9/WS 3 2 2 0 61 1 0.032 0.0615

Kernel 11×11/WS 3 2 2 0 61 1 0.032 0.0615

Kernel 21×21/WS 1 2 2 0 61 1 0.032 0.0615

Kernel 21×21/WS 3 1 1 0 62 1 0.016 0.0313
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	 Due to the lack of spatial ground-truth data containing 
exact tree positions, the F-score calculation in this study 
was based solely on the total number of detected trees 
rather than a one-to-one comparison of detected and 
actual trees. As a result, precision remained at 1.0 for all 
methods except Unfiltered/WS 0.5 since false positives (FP) 
were assumed to be zero in all underestimated cases. This 
means that every detected tree was considered correct 
despite the potential presence of undetected trees (false 
negatives, FN). Consequently, although precision appears 
perfect, recall remains significantly lower in most cases, 
leading to low F-scores for many methods. This highlights 
the limitations of relying solely on precision when 
evaluating detection performance in an underestimation 
scenario.

CONCLUSION

	 This study successfully demonstrated the potential of 
UAV LiDAR technology in monitoring mangrove forests. 
The optimum configuration, using a 3×3 kernel with a 0.5 
meter window size, achieved the best balance between 
detection accuracy and noise reduction. These findings 
highlight that parameter tuning is critical to optimize 

detection performance, especially in complex and dense 
vegetation environments like mangroves. Despite its 
potential, LiDAR’s limited ability to penetrate dense 
vegetation is a significant challenge. Thick foliage and 
branches obstruct the sensor’s signal, making it difficult 
for the signal to reach the ground, which in turn limits the 
availability of accurate ground elevation. The selection of 
kernel and window sizes plays a key role in tree detection 
accuracy. Smaller window sizes tend to capture more trees 
by focusing on finer local details. However, smaller windows 
might lead to overcounting trees or misidentifying non-
tree objects as treetops in areas with dense vegetation. 
On the other hand, using larger kernels and window sizes 
can reduce the level of detail and smooth the data, which 
may lead to a loss of local variations and a decrease in the 
accuracy of tree detection.
	 Future research should to refine measurement 
parameters to enhance tree detection in dense mangrove 
forests. It is also critical to develop more advanced 
algorithms that consider the specific conditions of the 
study area. By integrating LiDAR data with other monitoring 
methods, the overall quality and accuracy of the data can 
be improved, further supporting the conservation and 
management of mangrove forests.
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ABSTRACT. Unique karst evolution in Siberia is attributed to climatic factors and the presence of permafrost. Climatic 
fluctuations in Northern Eurasia had occurred during the Quaternary period and significantly influenced the processes 
of permafrost aggradation and degradation, as well as the karst activity. Despite their wide popularity and impressive 
manifestations, the karst landforms on the Prilenskoe Plateau still remain tenuously studied in terms of landform classification 
and obtaining their morphometric characteristics. The article presents the results of field studies of karst terrain in the Sinyaya 
River valley in Central Yakutia. Based on field observations and the analysis of the generated digital surface models, we have 
determined the median relative heights of different types of karst ridges in the Sinyaya River valley: “incipient ridges” - 34 m, 
“young ridges” - 42 m, “mature ridges” - 79 m and “old ridges” - 58 m. Most ridges that exceed 100 m are “mature and old”. The 
highest ridges are located on the concave parts of river meanders and belong to the type of “mature ridges”. In addition, our 
observations in the Sinyaya River valley have shown “old ridges” are the most common, accounting for over 58% of the overall 
ridge length. “Mature ridges” make up approximately 25%, “young ridges” 13%, and “incipient” ridges only 4% of the total. 
This distribution reflects the long history of topographic development in the valley and the significant influence of erosion 
processes on these features. The most prominent forms of this landscape include karst ridges, which present as rock pillars 
formed through physical and chemical weathering, with very active frost shattering, gravitational, and erosion processes. 
Using field surveys conducted with unmanned aerial vehicles (UAVs) and subsequent processing in a geographic information 
system (GIS), it was determined that the highest ridges are located in the lower reaches of the Sinyaya River, where it cuts 
through the axial, most elevated part of the Prilenskoe Plateau. The morphometric characteristics of the identified types of 
karst ridges and their spatial change along the river meanders are associated mainly with the activity of lateral river erosion, 
which ensures the removal of weathering material and slope deposits. 

KEYWORDS: karst landforms, Siberia, Sinsky Pillars, Prilenskoe Plateau, karst ridges, weathering

CITATION: Torgovkin N. V., Kizyakov A. I., Gavrilova A. A., Sivtsev J. E., Breitenbach S. F. M.  (2025). Karst Landforms Of The 
Sinyaya River Valley, Prilenskoe Plateau. Geography, Environment, Sustainability, 3 (18), 99-106
https://doi.org/10.24057/2071-9388-2025-3966

ACKNOWLEDGEMENTS: This research was supported by the Grant of the Republic of Sakha (Yakutia) for young scientists, 
specialists, and students, MPI SB RAS Project № 122011800064-9, and MSU Project № 121051100164-0.

Conflict of interests: The authors reported no potential conflict of interests.

INTRODUCTION

	 Modern karst study is conducted in a wide range of 
disciplines, including both the study of karst landform 
entanglement with lithology and tectonics and a 
set of environmental problems associated with karst 
development, land and soil degradation, changes in 
vegetation cover, and connections with water supply 
(Gillieson et al. 2022; Zhang et al. 2022; Saroli et al. 2022). 
Researchers use new methods to study karst topography, 
such as unmanned aerial vehicle (UAV) surveys for 
constructing digital elevation models and obtaining 

detailed karst landform characteristics (Silva et al. 2017; 
Doumit and Ghanem 2021; Kim and Hong 2024). The 
studies are mainly devoted to the tropical and subtropical 
karst or karst landforms in temperate climate. There is a lack 
of modern publications on karst in permafrost.
	 Sinsky Pillars within the Prilenskoe Plateau were 
inscribed on the List of UNESCO World Heritage1 in 2016 
as a part of National Park Lena Pillars. In the middle and 
lower reaches of the Sinyaya River, various karst forms are 
present, including high pillars (Fig. 1a). Karst ridges are 
confined to both sides of the meandering river (Fig. 1b, c). 
Sinsk Pillars are not directly related to the SDGs (Sustainable 

1UNESCO World Heritage Convention (2012), https://whc.unesco.org/en/list/1299/documents/
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Development Goals)2 themselves. However, their 
significance as a UNESCO World Heritage Site, particularly 
for their geological and paleontological value, indirectly 
contributes to several SDGs, especially those related to 
environmental sustainability and knowledge, Sinsk Pillars 
connect to the SDGs. SDG 15 Life on Land serves as a prime 
example of geological formations and ecosystems that 
deserve protection and preservation. They showcase the 
planet’s history and contribute to biodiversity conservation. 
SDG 13 Climate Action. The study of the Sinsk Pillars can 
offer new perspectives on past climate changes and the 
long-term impacts of environmental processes, aiding in 
understanding and mitigating current climate challenges. 
SDG 4 Quality Education - National Park Lena Pillars offers 
opportunities for educational and research initiatives, 
raising awareness about the importance of natural 
heritage and promoting scientific understanding. SDG 11 
Sustainable Cities and Communities - National Park Lena 
Pillars supports ecotourism and sustainable development 
in local communities, providing economic opportunities 
while preserving the environment. SDG 17 Partnerships 
for the Goals - National Park Lena Pillars’ inclusion on 
the UNESCO World Heritage List demonstrates the 
international collaboration needed to safeguard natural 
sites and promote sustainable practices (UN SDGs).

STUDY AREA

	 The distinctive characteristics of the Prilenskoe Plateau 
karst are attributable to its formation under permafrost 
conditions, with a thickness reaching up to 500 m (The 
Foundation… 2011). According to S.S. Korzhuev (1961), 
permafrost does not stop karst but only slows it down, and 
water moves freely in strongly fractured limestones and 
dolomites. In the middle reaches of the Lena River between 
the mouth of the Vitim River and the town of Pokrovsk, S.S. 
Korzhuev (1961) identified underground and surface forms 
of karst: 1) sinkholes, saucers, and baths; 2) caves, niches, 
canopies, and corridors; 3) disappearing streams and karst 
springs; 4) karst lakes; 5) ditches of slope subsidence; 6) 
spots of limestone scaling; 7) clay karst.
	 In Prilenskoe Plateau, the karst is developed in the 
Lower Cambrian limestones and dolomites 400-500 m 
thick (State geologic… 2022), covered by Quaternary 
deposits in the valleys and on the interfluve area of the 
Lena, Buotama, and Sinyaya Rivers (Fig. 2a, b). During the 
Middle Pleistocene ~400 ka Prilenskoe Plateau has been 
uplifted 150–300 m above the regional base level of 
erosion (Tolstikhin and Spektor 2004; Lena Pillars… 2012).
	 The climate of the region is strongly continental; as 
reported by the Pokrovsk meteorological station, there has 
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2UN THE 17 GOALS, Sustainable Development, https://sdgs.un.org/goals

Fig. 1. Study area. a - the area of karst landform field studies in the Sinyaya River valley in 2023 and key sites with UAV 
surveys. ArcticDEM Mosaic (Porter, Claire et al., 2023) is used as elevation data, b - spatial distribution of ridges of 

various types along the Sinyaya River valley (a red rectangle on a). The map is based on ESRI Basemap World Imagery; 
c - areas of surface karst with ridge formation are confined to the areas of undercutting of the valley sides of the actively 

meandering Sinyaya River valley
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been an increase in the average annual air temperature 
from -9.4 to -7.5°C between 2006 and 2023. The long-
term average temperature of the coldest month, January, 
is -38.1°C, while the warmest month, July, has an average 
temperature of +19.2°C. The annual precipitation on 
average is 268 mm, with more than half of this amount 
falling during the warm season. The northern part of the 
Prilenskoe Plateau is distinguished by the presence of 
continuous permafrost, with a thickness of up to 400 m. 
In this region, the mean annual ground temperature is 
recorded to be -5°C. In contrast, the central part of the 
Prilenskoe Plateau exhibits a discontinuous permafrost, 
with a thickness ranging from 50 to 300 m. The mean 
annual ground temperature in this area varies from -1 to 
-4°C (Spektor et al. 2009).
	 For the Lena Pillars (and they are similar for Sinsky Pillars) 
M. Veress obtained 4 phases of development (Veress et al. 
2014). Phase 1 – process of karstification occurred during 
a period of warmer climate conditions than are observed 
today, a time before the development of permafrost. 
Consequently, it was possible to form a karst water zone 
within the rock formation. The karst water level was situated 
close to the surface, with the karst surface exhibiting a 
height that was only marginally higher than the base level 
of erosion. The surface’s altitude was therefore low, and 
the Lena had not yet undergone downcutting processes. 
Consequently, the development of caverns occurred in 
close proximity to the surface, with the formation of these 

caverns being driven by the presence of fractures. The 
process of karstification gave rise to a fracture-controlled 
phreatic network, which in turn gave rise to the formation 
of narrow, vertically developed corridor networks. These 
networks were characterized by the development of grikes 
on the surface, which were aligned perpendicular to the 
fracture systems. This resulted in the rock being dissected 
into clints, bordered by a grikes system. Phase 2 – the karst 
water table sank due to the uplift of the area. The deepening 
of the grikes resulted in the floors of some grikes reaching 
the caverns. The coalescence of the caverns and grikes 
occurred due to the caverns exceeding the water surface 
during this period. Consequently, the formation of giant 
grikes was initiated. The development of pinnacles from 
one part of the clints occurred during the dissolution of 
grike walls. Phase 3 – grikes were filled and buried. Phase 
4 – the Lena River underwent a period of development, 
resulting in the destruction of some grikes and clints due 
to its downcutting activity. This process exposed the 
feature assemblage, leading to the partial destruction of 
the filling sediment in the remaining grikes. The walls of the 
exposed grikes exhibited potential for widening through 
frost weathering. The development of newer pinnacles was 
observed, indicating a transformation in the rock features of 
the pillars and the remaining karstic features. These features 
underwent destruction or transformation due to frost 
weathering, mass movements, sheet wash, and gully erosion. 
This ongoing process is a contemporary phenomenon.

Fig. 2. Pre-Quaternary geology of the key site: a - fragment of the geological map scale 1:1 000 000; b - deposit cross-
section. 1 Early Jurassic Ukugut formation; 2-6 Early Cambrian formations: Keteme, Kutorgin, Sinsk, Perekhod, Pestrocvet; 

7-9 Precambrian formations: Udoma, Amga, Iengra; 10 Late Devonian diabase dykes; 11 Fault lines
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	 The karst landforms in the Sinyaya River valley are 
concentrated in the part where it crosses the Prilenskoe 
Plateau. Various surface and underground karst features 
are prevalent along the Sinyaya River valley, including 
funnels, ponors, karst lakes, karren, karst niches, canopies, 
caves, sinkholes, and karst remnants (Trofimova 2012). 
Morphological classification of karst landforms of Lena Pillars 
was performed by E.V. Trofimova (2012, 2013, 2017, and 2018). 
She identified 4 types of karst ridges, using a description 
of their morphological features without numerical 
characteristics, which could be collected only on the basis 
of processing a significant number of sites. E.V. Trofimova 
noted that a comprehensive geomorphological survey and 
mapping of morphometric characteristics of karst features 
is still lacking (Trofimova 2012). In our research, we decided 
to rely on the classification proposed by E.V. Trofimova, since 
this is currently the most relevant classification developed 
specifically for the study area. It should be noted that Veress 
et al. (2014) conducted a morphological classification but for 
individual karst landforms - rock pillars.
	 The objective of this research is to provide a 
comprehensive description of the karst features found 
in the Sinaya River Valley, which exhibit various stages 
of development. The specific tasks include: 1) acquiring 
quantitative morphometric data regarding karst ridges; 2) 
validating the distinctions among the types identified by 
E.V. Trofimova based on this data; 3) identifying patterns 
in the spatial distribution of the different ridge types; and 
4) characterizing the array of processes that influence the 
topography in karst regions.

MATERIALS AND METHODS

	 In June 2023, field route observations were conducted on 
the lower section of the Sinyaya River that passes through the 
Prilenskoe Plateau. (Fig. 1a). During the rafting expedition on 
the river, field descriptions and mapping of karst formations 
were conducted, along with photo documentation with GPS 
tracking and the capture of key sites using a UAV. The total 
length of the route was 126 km. The field studies utilize the 
approaches related to the stages of relief formation (Davis, 
1899) and morphometric analysis of the relief (Simonov 1998; 
Simonov 1999). A UAV survey was undertaken at 21 key sites 
without ground control points. We captured high-resolution 
images of karst features using the DJI Mavic 3 drone with a 20 
mpx Hasselblad 4/3 CMOS camera. Vertical and perspective 
shooting modes were used. UAV survey data were processed 
using Agisoft PhotoScan software based on Structure-

from-Motion (SfM) photogrammetry. This way, point-cloud 
models, 3D and digital surface models (DSMs) were created 
with a spatial resolution of 0.1–0.2 m for each key site. The 
relative accuracy of the adjustment of the created point 
clouds, as reported by Agisoft for all key sites, is as follows: 
the root mean square (RMS) for reprojection errors ranges 
from 0.1 to 0.13 m, while the maximum errors range from 0.3 
to 0.4 m. These DSMs were used to analyzed morphometric 
characteristics, such as the relative heights of ridges and rock 
pillars. Measurements of relative heights of karst ridges and 
rock pillars in our study were carried out with an accuracy of 
1 m, ensured by the accuracy of the created point clouds and 
DSMs. To extract the heights from DSMs, the standard ArcGIS 
Pro Profile tool was used.
	 Through analysis of field data, including information from 
UAV surveys, photographs, and field descriptions, as well as 
very-high-resolution satellite imagery from the ESRI basemap 
(World Imagery), areas of rock ridges along the Sinyaya River 
Valley have been identified. Additionally, the segmentation 
of karst features by age, morphometric, and morphological 
characteristics has been carried out (Fig. 1). To characterize 
the topography of the area along the Sinyaya River valley, we 
used ArcticDEM Mosaic data with a spatial resolution of 2 m 
(Porter, Claire, et al., 2023). Ridge heights for the non-drone 
surveyed areas were measured using the Profile tool module 
in QGIS software. Elevation differences from the top of the 
ridge to the bottom of the slope were extracted from the 
profiles. Statistical analyses were performed in R (Samsonov 
2024). The tidyverse package was used to determine the 
spatial distribution of ridges along the river. The ggplot2 
package was used to construct the graphs.

RESULTS

	 Following the classification introduced by E.V. Trofimova 
(2013), two distinct groups of karst features have been 
identified: surface and underground features. Surface 
features encompass positive forms like ridges, individual 
rock remnants, and pinnacles, along with negative forms 
such as cracks, corridors, and sinkholes. On the other hand, 
underground features include canopies, niches, caves, and 
tunnels. According to E.V. Trofimova (2013, 2017), positive 
landforms such as ridges can be classified based on their 
age, morphometric, and morphological characteristics. 
These categories include “incipient”, “young”, “mature”, and 
“old” ridges (Fig. 3). Table 1 (Appendix) provides photographs 
that depict the distinct features and differences between 
these identified ridge types.
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Fig. 3. Categories of ridges on the Sinyaya River Valley: a – incipient; b – young; c - mature; d – old
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	 The “incipient ridges” are linear morphostructural 
elements that delineate the limestone cliffs. They are 
minimally cut by denudation and present nearly continuous 
cliffs with rare cracks. The altitude difference of “incipient 
ridges” between the summit and their base can reach 52 
m with the rock’s blocks from 15 to 28 m height. Primarily 
situated along the Sinyaya River banks, these ridges are 
located in places where the riverbed has arrived recently. 
“Incipient ridges” are directly cut by the river erosion, often 
resulting in the absence of a stable accumulative beach.
	 The “young ridges” are the next stage of the landform’s 
transformation process due to denudation. These ridges 
mainly look like subvertical cliffs that are divided into 
blocks by cracks and erosion cuts. The height of” young 
ridges” can reach 113 m above the water, and the height 
of rock pillars can be up to 60 m. As well as “incipient”, the 
“young ridges” are also located along the river bank.
	 “Mature ridges” mark the stage of significant separation 
of the limestone massif by karst and other denudation 
processes, which leads to the formation of a series of rock 
remnants. “Mature ridges” represent the most impressive 
positive karst landforms, including pronounced groups of 
banshee-shaped pinnacle pillars of various morphologies 
as needle-shaped, cylindrical, cone-shaped. They can 
be either standing alone or merged in the base, forming 
peculiar brushes or short ridges. Even within the same area, 
pinnacles differ in both morphology and height. In the 
studied areas, the relative heights of the pillars vary widely, 
from 20 to 124 m (the maximum heights of the “mature 
ridges” pillars are discovered within the key-site № 11).
	 For “old ridges”, a characteristic feature is the presence 
of remnants or single pillars on the slopes, surrounded by a 
debris cover. “Old ridges” can be found either at a distance 
from the current position of the riverbed, such as on the 
periphery of meanders, or in areas where lateral erosion 
is not active now. Initially, “incipient ridges” are aligned 
along the meandering riverbed. Due to karst, slope, and 
erosion processes, these ridges divide into blocks that 
form short transverse micro-ridges perpendicular to the 
riverbed. Such a series of linear, elongated, halted ridges 
without mutual orientation can often be found within “old 
ridges” with an uphill gradient of up to 30-35°. Remnants 
can be represented by low cones and pillars. The relative 
height of pillars above the surface of the slopes, varies 
mainly depending on the age of the ridges, ranging from 
a few up to 92 m (the highest pillars of “old ridges” are 
discovered within the key-site № 14). It should be noted 
that local “rejuvenation” of ridges can occur in areas where 
the riverbed, as a result of meandering, begins to erode the 
base of an “old ridge” intensively, leading to the removal of 
the debris cover and the formation of a subvertical cliff of 
limestone at the base of the slope directly near the river.
	 In addition to the selected types of ridges, there are also 
intermediate states. Often, within the same extensive ridge, 
transitions between these selected types are observed, 
as well as alternating fragments. Several intermediate 
stages between “mature” and “old” ridges cover areas 
with varying degrees of erosion of limestone massif, their 
relative elevation above the surface of the slopes, and the 
proportion of areas of rock remnants compared to the 
debris covered slopes around them.
	 The median height for “mature ridges” is 79 m (the 
maximum is 134 m), and for “old ridges” - 58 m and 125 m, 
respectively. If for “mature ridges” these values characterize, 
among other things, the height of steep cliffs and pillars 
(which sometimes approach the full height of the ridge), 
then for “old ridges” this is the difference in height from the 
foot of the slopes (often covered with clastic material) to 

bedrock outcrops in the upper parts of the valley slopes. 
The heights of rock pillars within the “old ridges” are much 
lower and range from a few meters to a few tens of meters 
(Appendix).
	 “Incipient” and “young ridges” are lower than the other 
two types, which is reflected both in the maximum values 
(86 m and 104 m) and in fairly similar median heights (34 m 
and 42 m for “incipient” and “young ridges”, respectively).
	 The “incipient ridges” are mainly localized in the 
middle part and the beginning of the second half of the 
observed part of the Sinaya River valley (Appendix), which 
corresponds to the most elevated part of the Prilenskoe 
Plateau. In this part, the river is intensively meandering, and 
along the bends, a long section of karst ridges is formed, 
which, according to morphological and morphometric 
characteristics, are segmented into several types. “Incipient 
ridges” with steep, weakly dissected cliffs mark the areas 
where the river channel has shifted relatively recently.
	 “Young ridges” are distributed along almost the 
entire length of the study part of the valley, mainly in the 
beginning and middle, the median value of appearance 
is located in the first half. Karst ridges of this type are 
beginning to appear in the upper part of the river. Closer 
to the mouth of the Sinyaya River, this type of ridges 
disappears; “mature” and “old ridges” prevail there. We 
assume that such a change in the occurrence of ridges of 
different types along the river is associated with a change 
in the intensity of lateral erosion and the restructuring of 
meanders due to the flattening of the longitudinal profile 
of the river as it approaches the mouth.

DISCUSSION

	 The methods we applied to obtain data on the 
morphometric characteristics of the landforms, using UAVs 
and GIS analysis, enabled us to gather information about 
both the height of karst ridges and rock pillars, as well as 
the spatial distribution of landforms and the relationship 
with a complex of relief-forming processes in the study 
area. The use of optical and LIDAR survey data from UAVs 
is widely used to study the topography, also in areas with 
karst landforms (Silva et al 2017; Kim and Hong 2024). Our 
study also fits into this context. Methods of morphometric 
data extraction and landform classification based on DSM 
are actively developing (Cao et al. 2023). A similar approach 
and automation of algorithms for remote sensing data 
processing and DSM analysis is a promising direction for 
further research.
	 The study area topography is the result of the joint 
development of relief-forming processes: 1) karst related 
to dissolution of carbonate rocks, 2) physical weathering, 3) 
fluvial processes, and 4) gravitational (slope) processes.
	 Karst activity is facilitated by fracturing limestones in the 
area of supra-permafrost groundwater. Deeper penetration 
of cracks contributes to the formation of vertical karst 
features because water dissolves minerals along the cracks 
and warms the permafrost. The cryogenic factor of physical 
weathering is most clearly manifested during cycles of 
systematic freezing and thawing. There are two main 
mechanisms of cryogenic weathering (Konishchev 1981) 
here: 1) frost weathering, when ice freezing in cracks splits 
frozen rocks into coarse fragments - blocks, rubble, debris; 2) 
cryohydration weathering, when the disjoining pressure of 
capillary water in microcracks when changing the phase state 
of water crushes and grinds the clastic material into small 
fractions of silty and fine sand grain sizes. Rock fragments 
disintegrated by physical weathering are thus prepared for 
further movement by other relief-forming processes.
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Fig. 5. Lateral river erosion expressed as niches on the base of limestone wall (at the «young ridge” site)

Fig. 4. Landslide (debris avalanche) of coarse clastic material in the section of the «old» ridge. The yellow line indicates 
the headscarp, the dashed yellow line - the transit zone, the red line - the accumulative landslide body borders

	 Clastic rocks are moved on slopes under the influence of 
gravity in various forms and are transported by the action of 
flowing water in streams and rivers. Within the fragments of 
“old ridges”, the slopes surrounding isolated rocky outcrops 
are covered with a stone coarse clastic cover. Various types 
of mass movements are observed. These debris fields creep 
like kurum stones due to the accumulation and melting 
of ice under the active layer. In sites where coarse clastic 
material is presented with finely dispersed loamy filler, in 
the case of local excessive water saturation, some types of 
landslides occur in the forms of translational landslides or 
debris avalanches (Fig. 4).
	 Among the fluvial processes determining morphological 
features of the karst landforms of the Sinyaya River valley, it 
is necessary to highlight the lateral erosion leading to the 
undercutting of carbonate rock outcrops on the concave 
parts of modern river meanders (Fig. 1c).
	 In some sites there is no beach, and a vertical rock cliff 
goes below the river’s water level. In these cases, dissolution 
of limestone complements the activity of lateral erosion 
(Fig. 5). On the apex of the river meanders, significant karst 
landforms with rock pillars are located (Appendix, Table 1).
	 On the periphery of modern river meanders, along 
the sides of the valley with adjoining floodplain terraces, 

the absence of lateral erosion activity in the river leads to 
a decrease in the dissection of the terrain. More “mature” 
ridges are located here, the modern development of which 
is dominated by the role of karst proper, physical weathering 
of rock, gravitational processes which determine the 
movement of clastic material on slopes.
	 In spatial terms, ridges alternate on the left and right 
sides of the valley without a clearly expressed prevalence. 
The extent of ridge fragments is determined by the 
dimensions, primarily the radius, of the river meanders 
along which they are located. In the transverse profile of 
the Prilenskoe Plateau, the absolute elevations increase 
in the middle part, slightly closer to the Lena River valley. 
This pattern is also manifested in the relative heights of 
karst ridges. Within the study area, the highest karst ridge 
height, exceeding 100 m, are located in the second half of 
the Sinyaya River valley, closest to the mouth (Fig. 6a). Such 
significant heights are most typical for “mature” and some 
“old ridges” (Fig. 6b, c).
	 Within the studied area of the Sinyaya River valley, “old” 
ridges predominate, their length is 52.2 km, which is more 
than 58% of the total length of the studied ridges. The 
length of “mature” ridges is 21.9 km, which is about 25% 
of the length of all ridges; “young” ridges is 11.6 km (13%), 
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“incipient” ridges is 3.7 km (4%). Such distribution indicates 
a long history of the valley topography formation and a 
significant impact of denudation processes on the ridges.
	 There is a unity in the morphology of karst landforms 
and ridge types with the nearby Lena Pillars, which are 
included in one generalized region of karst development 
within permafrost (Spektor and Spektor 2009; Veress et 
al. 2014). The Lena Pillars region is also characterized by a 
significant diversity of karst landforms, and E.V. Trofimova 
(2013) identified ridge types similar to the Sinsky ones. 
The height of ridges, including rock remnants with vertical 
walls, reaches 200 m (Trofimova 2013), within which 
pinnacles up to 100 m high are located (Veress et al. 2014). 
Such karst landforms are quite rare for temperate latitudes. 
Alone-standing limestone towers (pillars or pinnacles) 
are most typical of tropical karst. In Guangxi Province, 
China, the Guilin karst is characterized by standing alone 
steep pillar towers up to 100 m high (Tang and Day 2000; 
Waltham 2008). These rock pillars are rising from an alluvial 
plain between Yangshuo and Fuli. On the Siberian platform, 
ancient buried karst is widespread; however, it lacks the 
striking positive landforms found in the Lena and Sinsky 
Pillars. On the Patom Plateau, the Proterozoic limestones 
are dominated by sinkholes, partly transformed into lakes. 
In the Aldan-Timpton interfluve and in the neighboring 
regions of southern Yakutia, where karst is developed in 
the carbonate rocks of the Cambrian, landforms of modern 
karst are widespread as sinkholes, depressions, funnels, 
and other negative landforms (Korzhuev 1961; Tolstikhin 
and Spektor 2004; Spektor and Spektor 2009; Veress et al. 
2014; Trofimova 2018; Vaks et al. 2020).

CONCLUSIONS 

	 The karst landforms in the Sinyaya River valley are 
the result of karst, river erosion, and slope processes 
paragenesis. These processes interact in a complex way to 

create a diverse range of landforms and to set their spatial 
distribution. Each process has varying degrees of influence 
on the formation of the terrain characteristics, leading to a 
unique landscape.
	 As a result of field observations and analysis of the 
created DSMs, morphometric characteristics of the 
previously identified types of karst ridges of the Sinyaya 
River valley were obtained: 1) “incipient ridges” with a 
median height of 34 m; 2) “young ridges” with a median 
height of 34 m, 3) “mature ridges” with a median height 
of 79 m; and 4) “old ridges” with a median height of 58 m. 
Most of the ridges with a height exceeding 100 m are of 
“mature” type. In spatial terms, the greatest heights of the 
ridges are observed where the valley cuts through the 
most elevated part of the Prilenskoe Plateau. Here, the 
highest single standing pinnacle pillars reaching 124 m are 
observed, located within the “mature ridges” (Appendix).
	 In the Sinyaya River valley “old” ridges are the most 
prevalent over 58% of the overall length of the examined 
ridges. “Mature” ridges represented approximately 25% of 
the total ridge length; “young” ridges 13%; while “incipient” 
ridges were 4%. This distribution reflects the extensive 
history of topographic development in the valley and 
highlights the significant influence of denudation 
processes on the ridges.
	 Within the river meander, a consistent change in the 
types of ridges is observed. “Incipient ridges” are located 
where the river channel came relatively recently. “Young” 
and “mature ridges” are located at the concave eroded river 
banks. “Old ridges” are usually located on the periphery 
of meanders where the river channel has gone or lateral 
erosion is not active.
	 The obtained data could be used in further studies on 
the stages of karst landform development in permafrost, as 
well as in regional studies on the terrain dynamics within 
the Prilenskoe Plateau, providing detailed morphometric 
characteristics of karst landforms.

Fig. 6. Spatial analysis of ridge types according to E.V. Trofimova (2013) and their morphometric characteristics in the 
studied area from the mouth of the Matta River to the mouth of the Sinyaya River: a - location, length, and relative height 
of all ridge’s types; b - height difference from the top level of the ridge to the foot of the slope; c - remoteness of the ridge 
in the downstream direction from the mouth of the Matta River to the Lena River. Check the Fig. 1 for the ridges’ location
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ABSTRACT. The article presents the results of digitizing the maps of submarine permafrost on the shelf of the Arctic seas 
of Russia. Submarine permafrost mapping relies heavily on expert knowledge because there is a lack of data regarding the 
structure and thickness of permafrost. Maps compiled by different authors vary significantly due to the use of different 
approaches, paleogeographic scenarios, ideas about the geological structure, evolution of shelf permafrost, sea level and 
climatic changes. The first maps were based on the analysis of shelf morphology and seawater temperature; they represent 
only the assumed boundaries of the submarine permafrost distribution. Later, the distribution of submarine permafrost was 
associated with neotectonic movements on the modern shelf. As the first drilling and seismoacoustic data were received, 
more detailed maps were compiled, and the discontinuous distribution of submarine permafrost was substantiated, especially 
in the Western Arctic. By now, a large amount of seismoacoustic and drilling data has been accumulated, which has made 
it possible to create new maps based on these data. In recent decades, methods of mathematical modeling the formation 
and evolution of submarine permafrost have been rapidly developed. Calculated maps of the distribution and depth of 
submarine permafrost top in the Russian Arctic have been compiled. For the first time, it has become possible to predict the 
rate of degradation of submarine permafrost under climate warming.
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INTRODUCTION

	 The study of submarine permafrost (SMP) is of interest 
in connection with the discovery of promising oil and gas 
fields on the shelf of the Russian Arctic and the development 
of the Northern Sea Route. Another important problem 
associated with SMP is the assessment of the role of 
permafrost in the formation of methane flows on the shelf 
of the Arctic seas (Bogoyavlensky et al. 2023a,b; Koshurnikov 
et al. 2020; Shakhova et al. 2015) and the overall impact of 
climate change on the Arctic environment.
	 Permafrost is formed when the shelf drains up during 
sea regression. During sea transgression, permafrost 
transitions to a subaqueous state, and its degradation 
occurs. New permafrost formation also occurs within 
currently developing marine accumulative forms (Grigoriev 
1987).
	 The distribution and evolution of SMP in the Arctic 
have been the subject of many publications (Antipina et al. 
1979; Zhigarev 1997; Kassens et al. 2000; Chen et al. 2022; 
Romanovskii et al. 1997; Romanovskii et al. 1999; Rokos et 
al. 2023 and many others).
	 Direct observations of the space distribution, thickness, 
state, and thermal regime of SMP are extremely limited. By 

2024, only 17 boreholes had been drilled in the Barents 
and Kara Seas, which have exposed SMP. Drilling on the 
East Siberian Shelf commenced in 1953 (Grigoriev 1966) 
and has continued to the present day. Moreover, most of 
the boreholes are located in shallow coastal areas. At the 
same time, geophysical methods for studying SMP are 
increasingly advancing; among these, high-resolution 
seismic methods hold the greatest promise (Rekant and 
Vasiliev 2011; Kulikov et al. 2014; Overduin et al. 2015). 
Seismoacoustic profiling has become an almost mandatory 
task during marine expeditions. By now, a substantial 
number of seismoacoustic profiles have been completed 
in the Arctic seas. Methods of electrical exploration for 
the study of SMP are successfully developed by A.V. 
Koshurnikov (2023).
	 As our understanding of SMP evolves, attempts 
have been made to map its distribution, properties, and 
thickness. Due to limited data, most of the maps are 
based on expert assessments and reflect the authors’ 
perspectives on the potential distribution and conditions 
of the occurrence of SMP. Currently, there are several 
maps illustrating the potential distribution of subaqueous 
permafrost on the shelf based on the analysis of bottom 
temperature, bathymetry, and sea level rise data. Until 
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recently, all these maps were available only in paper form. 
Some of these maps are currently unavailable for use, as 
they were only included in scientific and technical reports.
	 Recently, digital SMP maps compiled based on 
mathematical modeling of SMP formation and evolution 
have become increasingly widespread (Malakhova 2019; 
Smirnov et al. 2024; Nicolsky et al. 2012; Gavrilov et al. 
2020; Malakhova and Eliseev 2020). The main drawback 
of such maps is an incomplete accounting of actual SMP 
data. The SMP parameters displayed on digital maps 
are calculated and can sometimes contradict even the 
limited factual information available. This issue is due to 
a lack of information, mainly on the boundary conditions 
used in mathematical models. Nonetheless, modeling the 
formation and evolution of SMP has resulted in a distinct 
and rapidly advancing field of SMP research.
	 This work is dedicated to the collection, processing, 
and analysis of approaches of published and archived 
maps of the SMP and the compilation of a GIS album, 
including SMP maps, some of which were previously 
inaccessible and unknown to researchers. Maps containing 
information about permafrost on the shelf of the Russian 
Arctic from published data, archives of the Institute of the 
Earth Cryosphere SB RAS, other institutes, and Rosgeolfond 
were processed. The purpose of the work is to ensure the 
availability of many published or unpublished (archived) 
maps of the SMP of the Russian Arctic.

MATERIALS AND METHODS

	 The QGIS geographic information system (GIS) was 
used. Today, it is among the most dynamically developing 
and functional desktop GIS applications. The main task 
was to digitize original paper maps. To work with GIS, it 
is essential to establish a correspondence between the 
internal coordinate system of the raster (graphic image) 
and the external (target) coordinate system used in the 
GIS project; in other words, it is necessary to perform raster 
referencing. Referencing consists of determining two pairs 
of coordinates for a certain number of points: coordinates 
in the internal coordinate system of the raster and 
coordinates in the target coordinate system. The reference 
points should be evenly distributed across the image (or at 

least the part used in the study) and not on the same line.
	 The Lambert Azimuthal Equal Area Projection (WGS 
84/North Pole LAEA Russia) was selected as the coordinate 
system for the GIS project, as it is the most suitable for 
the cartographic representation of the Russian Arctic 
SMP. However, the created maps can easily be converted 
to any other projection. Additionally, one advantage of 
working in QGIS is the availability of base maps – coastline, 
hydrological network, and simplified topographic maps. 
	 When digitizing the maps, we aimed to preserve the 
original legends as much as possible, as they reflect the 
authors’ approaches to constructing the maps and their 
content. However, in some cases, the legend had to be 
modified.
	 Here we offer the visual representation of the maps; if 
needed, GIS projects can be obtained from the publication’s 
authors. 

RESULTS

	 By now, all available geocryological maps have been 
digitized. One of the first publications in 1972 was A.L. 
Chekhovsky’s forecast scheme for the distribution of the 
subaqueous cryolithozone in the Asian sector of the Arctic 
(Chekhovsky 1972). In conditions of insufficient information, 
the author, in fact, displayed the spatial distribution of water 
temperature in the Arctic seas, considering the shelf relief. 
The scheme does not illustrate subaqueous permafrost but 
rather the cryolithozone, understood as sediments that 
presumably have a negative temperature (Fig. 1). It should 
be noted that, when applied to the western sector of the 
Russian Arctic, the boundaries of the cryolithozone and the 
distribution area of subaqueous permafrost containing ice 
differ significantly from the modern data. A.L. Chekhovsky 
identified two types of cryolithozone in the Arctic seas: shelf 
cryolithozone, extending to a depth of 200 m, and oceanic 
cryolithozone, found at depths greater than 200–800 m. 
Within the shelf cryolithozone, with ground temperatures 
ranging from 0 to –1.8°C, areas with positive summer 
temperatures have been identified in the estuaries of large 
rivers. The oceanic cryolithozone, located to the north of 
the shelf, has temperatures of –0.7°C in the Atlantic sector 
of the Arctic and –0.35°C in the Pacific.
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Fig. 1. Image of the forecast map of the distribution of cryolithozone in the Asian sector of the Arctic (Chekhovsky 1972). 
Legend: 1 – shelf cryolithozone, MAGT 0…-1°C with a positive summer water temperature; 2 – the same, but with a 

constant negative temperature; 3 – oceanic cryolithozone with MAGT -0.7°C; 4 – also with MAGT -0.35°C; 5 – unfrozen 
sediments with MAGT 0.6-2.0°C; 6 – isobaths, m
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	 Later, the same approach to assessing the distribution 
of the shelf cryolithozone based on the spatial distribution 
of the temperature of the bottom water layer was used 
by L.A. Zhigarev in his monograph (1997). By the time 
the monograph was published, new data on seawater 
temperatures in the Arctic seas and, most importantly, 
the results of SMP studies in the coastal zones of the 
Laptev Sea, East Siberian Sea, and Chukchi Sea had 
been obtained. The monograph includes a schematic 
map of the cryolithozone in the Arctic seas of Russia. 
The map illustrates the boundaries of the distribution of 
alongshore permafrost (established and assumed), relict 
permafrost (established and assumed), seasonally frozen 
sediments (established), perennially and seasonally non-
frozen sediments with temperatures below 0°C, cryotic 
sediments, and average annual isotherms (established 
and assumed). The author selected this classification of 
cryolithozone as a basis for identifying areas and regions 
that differ in the conditions of heat exchange between 
bottom sediments and seawater. The schematic map is 
created on a small scale, accompanied by an ineffective 
legend, making its practical use exceedingly challenging. 
The significant advantage of the schematic map was that it 
outlined the boundaries of the distribution of frozen rocks 
on the sea shelf of the Eastern Arctic. This schematic map 
has not been digitized.
	 In the 1950 and 1970s, the content was developed 
(Baranov 1960; 1972), and in 1977, the geocryological 
map of the USSR was published under the editorship of I. 
Ya. Baranov at a scale of 1:5,000,000. The map covers both 
the continental and shelf regions of the Russian Arctic. The 
construction of the marine part of the map was based on 
the concept of shelf drainage, freezing, and subsequent 
submersion and flooding of the shelf, along with the 
active involvement of tectonic movements (Fig. 2). The 
map for the first time reflected the boundaries of the SMP 
distribution in sufficient detail (Geocryo… 1977).
	 Surprisingly, the boundaries of the SMP distribution in 
the Kara Sea on this map align closely with modern ones 
derived from drilling and seismic acoustic data.
	 As ideas about the SMP’s conditions, formation history, 
and evolution developed, more detailed maps began to be 
compiled using limited drilling data and high-resolution 
seismic data. One example is the map created by V.A. 
Soloviev for the Barents and Kara Seas (Fig. 3) (Soloviev et 
al. 1981).

	 For the first time, the map reflects different SMP 
types and their continuity and provides estimates of their 
thickness. The legend uses the concepts of cryolithozone 
and frozen zone. Apparently, the term “cryolithozone” 
is used to designate negative-temperature sediments 
without ice inclusions, and the term “frozen zone” refers 
to frozen sediments that contain ice. The non-continuous 
nature of the SMP distribution in the Barents and Kara 
Seas is substantiated for the first time. Later, the map was 
improved, and became more detailed, and the legend was 
slightly changed.
	 The ideas about the SMP distribution developed by 
Ya.V. Neizvestnov and V.A. Solovyov were implemented in 
compiling the well-known and accessible Geocryological 
Map of the USSR at a scale of 1:2,500,000 (1996). When it 
was created, drilling and seismoacoustic research data 
from the Arctic seas were considered. However, the map’s 
legend in the part of the Arctic shelf turned out to be heavily 
overloaded and difficult to read. As a result, the practical 
utilization of the map for evaluating the distribution and 
conditions of SMP occurrence is quite challenging.
	 Later, the same authors tried to implement a qualitative 
assessment of the probability of the distribution of the 
SMP of different continuity – ranging from less probable to 
probable and then to more probable. When creating the 
map, in addition to considering the probability distribution 
of SMP, greater emphasis was placed on the morphology 
of the shelf and the temperature regime of the bottom 
layer of water. The map is characterized by a high level of 
spatial resolution, as the analysis of the distribution and 
conditions of occurrence of SMP was conducted for each 
sheet of the international sheet numbering on a scale of 
1:1,000,000. Unfortunately, the map was not published and 
exists only in paper form in a report in the Rosgeolfond 
archive (Neizvestnov et al. 1991). The appearance of the 
map is shown in Fig. 4.
	 In creating a circumpolar map of Arctic permafrost 
and ground ice, developed by an international team of 
researchers (Broun et al. 2001), the Russian part of the map 
is based on the previously published Geocryological Map of 
the USSR at a scale of 1:2,500,000 (1996). The production of a 
comprehensive circumpolar map depicting the distribution 
and thickness of SMP was undertaken at the initiative of 
the IPA as part of the European project NUNATARYUK. 
For the shelf permafrost of the Russian Arctic seas, the 
boundaries of the SMP distribution were clarified, and the 

Fig. 2.  Image of the marine part of the geocryological map of the USSR, edited by I. Baranov (1977). Legend: 1 – 
submarine permafrost in the inner part of the shelf, underlain by unfrozen saline sediments with a negative temperature; 

2 – submarine permafrost in the outer part of the shelf partially thawed from above, underlain by unfrozen saline 
sediments with a negative temperature; 3 – unfrozen saline sediments with a negative temperature



110

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY	 2025

Fig. 3. Image of the SMP map of the Barents and Kara Seas (Soloviev et al. 1981). Legend: 1 – zone of positive 
temperatures; SMP: 2 –with a thickness of more than 50 m with cryopeg interlayers; 3 – with a thickness of 25-50 m with 
cryopeg interlayers; 4 – with a thickness of less than 25 m with cryopeg interlayers; 5 – seasonal submarine permafrost; 

6 – episodically unfrozen area; 7 – area of sparse insular relict permafrost; 8 – insular relict permafrost with a thickness of 
less than 50 m; 9 – insular relict permafrost with a thickness of more than 100 m; 10 – insular relict permafrost beneath 

the episodically unfrozen zone; 11 – insular relict permafrost beneath the positive temperature zone

Fig. 4.  Image of the forecast map of the cryolithozone of the shelf and islands of the Arctic seas of the USSR (Neizvestnov 
et al. 1991). Legend: 1 – continuous (newly formed) and relict permafrost zones turning into an island one; 2 – separate 

large massifs of frozen sediments within the island permafrost zone; 3 – island permafrost zone (more probabilistic 
distribution); 4 – island permafrost zone (probabilistic distribution); 5 – island permafrost zone (less probabilistic 

distribution); 6 – continuous relict permafrost zone under positive-temperature sediments; 7 – island relict permafrost 
zone under positive-temperature sediments (more probabilistic); 8 – island relict permafrost zone under positive-

temperature sediments (probabilistic); 9 – island relict permafrost zone under positive-temperature sediments (less 
probabilistic); 10 – negative-temperature thawed non-frozen zone; 11 – positive-temperature zone; 12 – boundary of 

continuous permafrost, turning into an island permafrost; 13 – the boundary of the island permafrost; 14 – the boundary 
of the negative temperature thawed (not frozen) cryolithozone; 15 – the boundary of the intermediate island permafrost 

zone
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Fig. 6. Map of the distribution of submarine permafrost in the Barents and Kara Seas based on drilling and seismoacoustic 
profiling data (Rekant and Vasiliev 2011). Legend: 1 – seismoacoustic profiles; 2 – boreholes and their respective 

numbers; 3 – permafrost limit

Fig. 5. Distribution and thickness of the submarine permafrost on the IPA map (Permafrost in the Northern Hemisphere 
2020, based on Overduin et al. 2019). In the legend, the SMP thickness is as follows: 1 – 0-100 m; 2 – 100-300 m; 3 – 300-

500 m; 4 – 500-700 m; 5 – 700-900 m

map’s legend and content were considerably simplified. 
This map illustrates the spatial distribution of the SMP 
along with the thickness estimations of the added SMP. It is 
available on the GRID-Arenda website (Fig. 5). It should be 
noted that the permafrost thickness was estimated based 
on the depth of the 0°C isotherm. For the eastern sector of 
the Arctic, the thickness estimates are generally satisfactory 
and correspond to other calculations (Romanovskii et al. 
1997; Nicolsky et al. 2012; Koshurnikov et al. 2020), while 
for the western sector, the values of the SMP thickness are 
extremely overestimated. Quaternary deposits on the shelf 
of the western Arctic are represented by a thick stratum of 
saline sandy-clayey soils of predominantly marine origin. 
The onset temperature for freezing and thawing can 
vary from 0 to –1.5°C, depending on the salt content and 
lithological composition. In this case, the SMP permafrost 
occupies only the upper portion of the section with 
temperatures below the phase transition temperature; 
beneath, it is underlain by non-frozen sediments.
	 This same map was later used to model the submarine 
permafrost evolution from the Pleistocene to the Holocene. 
This was done to clarify the boundaries of the submarine 
permafrost’s distribution and to calculate its thickness and 
ice content (Overduin et al. 2019; Angelopoulos et al. 2020; 

Chen et al. 2022). Both the original map and the model 
may not only overestimate the SMP thickness but also 
exaggerate the boundaries of its distribution. In particular, 
in the Barents Sea, the SMP is present north of Kolguev 
Island. However, according to seismoacoustic profiling 
data, the SMP was not detected in this area, and the SMP 
boundary is situated south of what is indicated on the map. 
In the same way, the SMP map in the Kara Sea indicates 
a large submarine permafrost massif to the west of the 
Severnaya Zemlya archipelago. Detailed seismoacoustic 
observations revealed a widespread distribution of Late 
Pleistocene marginal moraines framing the ice shelf here 
(Polyak et al. 2008). Thus, there were no conditions for the 
SMP formation (Gusev et al. 2012).
	 With the acquisition of new drilling and seismoacoustic 
profiling data in the Kara and Barents Seas, it became 
possible to utilize this information not only to interpret the 
geological structure of the Quaternary strata but also to 
analyze the distribution of SMP. All available seismoacoustic 
profiling and drilling data were gathered and reinterpreted 
to search for SMP manifestations (Rekant and Vasiliev 2011). 
Thus, a database of manifestations and occurrence depths 
of SMP in these seas was developed, and a GIS-oriented 
map of their distribution was constructed (Fig. 6).
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Fig. 7. An image of the SMP map of the Russian Arctic, VNIIokeangeologiya (Shcherbakov et al. 2018). Legend: 1 – relict 
and newly formed continuous, turning into an island, frozen submarine cryolithozone; 2 – island relict submarine frozen 
zone; 3 – rare island submarine frozen zone; 4 – negative-temperature frozen submarine cryolithozone with sediments 
temperature of 0…-1°C; 5 – positive-temperature zone; 6 – negative-temperature unfrozen submarine cryolithozone 

with sediment temperature of -1…-2°C; 7-9 –permafrost thickness: 7 – from 0 to 100 m, 8 – from 100 to 200 m, 9 – more 
than 200 m; 10 – submarine taliks; 11 – geocryological boundaries; 12 – zones of tectonic faults with endogenous 

through submarine taliks with the base of the permafrost layer raised by 100-200 m; 13 – supposed areas of modern 
permafrost formation; 14 – accumulative coasts; 15 – thermoerosional coasts; 16 – shelf boundary

	 The peculiarity of this map is the possibility of its 
continuous improvement and development as new 
seismoacoustic data become available and boreholes are 
drilled.
	 In 2025, V. Bogoyavlensky and co-authors published 
an article that provides a map of the SMP distribution in 
the Laptev Sea and the East Siberian Sea based on drilling 
data and, mainly, the results of deep seismic interpretation 
(Bogoyavlensky et al. 2025). The area of SMP distribution 
on this map is much smaller in the Laptev Sea, and SMP 
is completely absent in the East Siberian Sea. The authors 
explain these features of the SMP distribution through 
permafrost degradation, up to its complete thawing. 
This hypothesis contradicts all existing ideas about the 
distribution of SMP in the East Siberian seas. The Laptev 
and the East Siberian Seas shelves have a similar geological 
structure, a common paleogeographic history and a 
similar modern thermal regime of seawater. Therefore, the 
presence of permafrost in the Laptev Sea suggests that 
there are no reasons for it to completely thaw in the East 
Siberian Sea. Most likely, the source of the discrepancy is 
the incorrect interpretation of deep seismic data.
	 A detailed map of the distribution of SMP in the Russian 
Arctic was created at VNIIokeangeologiya (Shcherbakov et 
al. 2018). It considered all the drilling data and the results of 
our own seismoacoustic profiling in both the western and 
eastern sectors of the Arctic that were available at that time. 
The map reveals for the first time the spatial distribution 
of SMPs in various percentages of the permafrost area 
and offers more substantiated estimates of the thickness 
and temperature of frozen sediments than previous 
assessments. (Fig. 7). The water area of the Russian Arctic 
seas is divided into zones according to cryolithozone types. 
The boundaries of the SMP itself and non-frozen sediments 
are plotted. The VNIIokeangeologiya map illustrates the 
distribution of SMP in the seas of the Eastern Arctic with 
much greater detail. For the first time, potential new SMP 
formation areas are indicated on the shelf of the Arctic 
seas, based on the presence of bottom temperatures that 
fall below the phase transition temperature. However, 

according to direct observations (Dubrovin 2015; Rokos et 
al. 2023), a decrease in bottom temperatures only leads to 
the formation of frozen crusts with a thickness of no more 
than 0.2...0.5 m in the near-surface part of the section, 
which completely thaws during the summer season. 
Stable permafrost formation under current conditions is 
impossible in any area of the Arctic shelf.
	 In 2023, the Arctic Permafrost Atlas was published, 
which contains several maps characterizing the SMP 
(Westerveld et al. 2023). As an example, Fig. 8 shows a 
fragment of the distribution map of the Russian Arctic 
SMP based on modeling. In fact, the album repeats the 
maps (Fig. 5) given in the publications (Overduin et al. 
2019; Angelopoulos et al. 2020). Contradictions regarding 
the distribution boundary of the SMP and its thickness 
remained unresolved when the atlas was published.
	 A promising method for studying the SMP using 
electrical exploration is being developed by A.V. 
Koshurnikov. Based on marine profiles in the Arctic seas of 
Russia, he showed that the specific electrical resistance of 
frozen strata and potential gas hydrates under permafrost 
are close to each other. The proximity does not allow them 
to be separated on the profiles. A map of the distribution 
of the SMP and the total thickness of SMP and gas hydrates 
has been developed (Koshurnikov, 2023). When digitizing 
the map, the legend was simplified (Fig. 9), and a different 
color scheme was used. The areas of distribution of the 
SMP and the total thickness of SMP and gas hydrates for 
the Barents and Kara Seas shown on the map differ greatly 
from other maps. The author explains these differences 
by the widespread development of saline Quaternary 
deposits on the shelf of the Western Arctic, which greatly 
complicates the interpretation of field observations.
	 Geoelectric surveys by magnetotelluric and transient 
electromagnetic methods have good prospects for 
subaqueous permafrost mapping (Yakovlev et al. 2018). 
The application of the method in the Khatanga Gulf has 
shown its effectiveness in determining the depth of the 
SMP top. 
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	 In recent decades, the construction of submarine 
permafrost maps based on mathematical modeling 
has been actively developing. Permafrost formation is 
considered a result of a long geological history of shelf 
development, with periodic stages of cooling and warming, 
transgressions, and regressions in the Arctic Ocean. As a 
rule, a heat exchange model based on the solution of the 
Stefan problem is used here. The primary issue with this 
modeling is to consider the characteristics of the geological 
structure of the Arctic shelf, as well as the composition, ice 
content, salinity, and temperature of phase transitions. 
The upper boundary conditions are established according 
to the chosen paleogeographic scenarios. In this case, 
specific paleotemperatures of the air are often assigned 
based on indirect data. The temperature on the Earth’s 
surface is set equal to the air temperature. However, actual 
observations of modern air temperatures (MAAT) and 
permafrost temperatures (MAGT) show that the ratio of 
MAGT and MAAT ranges from 0.1 to 1.0 depending on the 
landscape conditions that determine the heat exchange at 
the surface. The average ratio between modern MAGT and 
MAAT for the western sector of the Russian Arctic is about 
0.7 (Malkova et al. 2022).

	 An example of SMP maps constructed through 
mathematical modeling can be the map of the distribution 
and thickness of the SMP in the Kara Sea (Gavrilov et al. 
2020) (Fig. 10).
	 When creating the map, the authors considered the 
125 Kyr history of the Kara Sea shelf development. The 
model takes into account not only the change in sea level 
during the Late Pleistocene but also the eustatic uplift of 
the dried shelf surface during the postglacial transgression. 
Since the model contains several uncertainties in the 
properties of freezing bottom sediments, the temperature 
of the bottom water layer, paleoclimate, etc., the authors 
adopted broad ranges of the SMP thickness shown on 
the map in the legend. This enabled the identification of 
areas with sharply contrasting calculated thickness values. 
The map highlights a region with a SMP thickness of 100-
300 m. However, A. Portnov showed that under the most 
severe climatic conditions of the Last Glacial Maximum in 
the Kara Sea, the submarine permafrost thickness cannot 
exceed 270 m (Portnov et al. 2014). Considering the SMP 
degradation from above and below, its maximum thickness 
cannot exceed 200-250 m. The area of SMP distribution in 
the southern part of the Kara Sea is underestimated when 
compared to seismoacoustic profiling data, whereas it is 

Fig. 8. Image of the Russian Arctic SMP distribution map according to (Westerveld et al. 2023). Legend: 1 – SMP 
distribution area

Fig. 9. An image of the SMP and gas hydrate distribution and total thickness in the Russian Arctic (Koshurnikov 2023). 
Legend: 1-7 – thickness of the cryogenic strata, m: 1 – 100-200, 2 – 200-300, 3 – 300-400, 4 – 400-500, 5 – 500-600, 6 – 

800-900, 7 – more than 1000; 8 – high-temperature cryogenic strata
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overestimated in the central and northern parts of the sea. 
Later, an analogous map was compiled for the Laptev Sea 
(Gavrilov et al. 2024).
	 More efficient but also more complex modeling of the 
SMP is being developed in the Institute of Computational 
Mathematics and Mathematical Geophysics SB RAS 
(Malakhova 2019; Malakhova et al. 2020; Malakhova 2023; 
Malakhova and Eliseev 2023). This model uses both climate 
and heat exchange models in the Arctic Ocean. This 
approach allowed V. Malakhova, for the first time, to not 
only establish the modeled boundaries of the distribution 
of the SMP and its thickness (Fig. 11) but also to assess 
the current and projected trends of its degradation in the 
Russian Arctic. Under the RSP scenario of 8.5, the average 
rates of SMP degradation were 1-2 cm per year for 1950-
2015, 5 cm per year for 2015-2100, and 10 cm per year for 
2100-2300.
	 The map was not digitized due to its small scale.
	 Yu. Smirnov and co-authors (Smirnov et al. 2024) 
modeled the SMP, taking into account the climate zonality 
and spatial distribution of salinity in the seas of the Russian 
Arctic.
	 The boundaries of the distribution of the SMP on the 
map by Yu. Smirnov et al. for the central and southern 
Kara Sea demonstrate good agreement with those 
previously established based on seismoacoustic profiling 
and drilling data on the shelf (Rekant and Vasiliev 2011; 
Overduin et al. 2019), but for the Barents Sea, the area of 
the SMP distribution is clearly underestimated (see Fig. 
6). Furthermore, in both seas, the depth of the SMP top is 
significantly underestimated. This is attributed to both the 
model’s imperfections and the uncertainties regarding the 
characteristics of the soils on the shelf and the boundary 
conditions.

CONCLUSIONS 

	 The conducted studies made it possible to ensure the 
availability of many published and unpublished (archive) 
maps of the Russian Arctic submarine permafrost. All maps 
were digitized and integrated into a single GIS format, 
enabling comparison. The review indicates that as the 
ideas about the distribution, conditions of occurrence, 
and thickness of the submarine permafrost developed, the 
content of the maps also changed.
	 The first maps were based on an analysis of the 
morphology of the Arctic shelf and seawater temperature. 
They only approximately reflected the boundaries of the 
spatial distribution of the sea and ocean cryolithozone, as 
well as the temperature of the bottom sediments.
	 I. Baranov developed ideas about the significant 
influence of neotectonics on the SMP’s distribution 
and conditions of occurrence. A more or less detailed 
geocryological map of the continental zone and shelf of 
the Russian Arctic was compiled.
	 Since the early 1980s, the first factual data on SMP 
in the Barents and Kara Seas have been obtained based 
on offshore drilling and imperfect geophysical data. The 
concept of a predominantly discontinuous massive island 
and the island nature of SMP distribution in the Western 
Arctic has been established. In contrast, shallow drilling 
data from the Eastern Arctic shelf have provided a basis for 
the assumption of continuous, less frequently intermittent 
SMP in this region.
	 The development of methods and hardware for 
seismoacoustic profiling has become a powerful tool in 
SMP studying. Prognostic maps of SMP distribution were 
compiled to assess the probability of the occurrence 
of different types of continuity. The boundaries of SMP 
distribution were defined, and by the 1990s, estimates of 
its thickness appeared.
	 As seismoacoustic methods evolved and data on the 
manifestation of SMP was accumulated, including ongoing 
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Fig. 10. Image of the submarine permafrost distribution and thickness map constructed based on mathematical 
modeling (Gavrilov et al. 2020). Legend: 1 – continuous SMP with a thickness of 100-300 m; 2 – discontinuous massive 
island and island SMP with a thickness of 0-100 m; 3 – island SMP with a thickness of 0-100 m; 4 – non-frozen cryotic 

sediments; 5 – thawed sediments; 6 – depth of the SMP top: a – 0-30 m, b – 25-50 m or more: 7 – isobaths; 8 – boundaries 
of the study area
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drilling, maps were constructed that substantiated the 
boundaries of SMP distribution and the depth of the top 
with factual data.
	 A major step in the study of shelf permafrost was the 
development of methods for mathematical modeling of 
the formation and evolution of SMP. Several maps were 
created reflecting the distribution and conditions of the 
SMP occurrence. These maps are detailed, but uncertainty 
in determining the properties of the sediments on the shelf 
and, most importantly, the boundary conditions leads to 
significant deviations in the estimates of the thickness and 

depth of the SMP top. Improvement of the models made 
it possible to develop methods for predicting the current 
and further degradation of the SMP under global warming 
and changes in the hydrology of the Arctic seas.
	 Digitization of the maps of SMP of the Russian Arctic 
shelf, which were created based on various approaches, 
and in different periods, and the formation of an album of 
GIS-oriented maps, can be used to compile more detailed 
maps of the cryolithozone of the shelf and for comparison 
of modeling results and actual data.

Fig. 11. Modeled submarine permafrost in the XX century. (a) The depth of the lower subsea permafrost boundary (in m). 
(b) The depth of the upper submarine permafrost boundary (in m) (Malakhova 2023)

Fig. 12. Distribution and depth of the top of the submarine permafrost of the Kara and Barents Seas (Smirnov et al. 2024)
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ABSTRACT. Numerical weather prediction (NWP) models, coupled with urban parameterizations, play a crucial role in 
understanding and forecasting meteorological conditions within urban environments. In the mesoscale NWP model COSMO, 
only one urban parameterization, TERRA_URB, is available in the model’s operational version. TERRA_URB describes the 
city as a flat surface with modified physical properties in accordance with the urban canyon geometry. In this study, we 
have coupled the latest version 6.0 of the COSMO atmospheric model with a more sophisticated urban canopy model, TEB 
(Town Energy Balance), which explicitly simulates the energy exchange between the facets of the urban canyon. Here, we 
present the coupling approach and assessment of the model’s sensitivity to urban schemes of different complexity (TEB 
and TERRA_URB) over the Moscow region for August 2022. Despite using the same external parameters for both schemes, 
simulations demonstrate notable differences in modeled temperature, with TEB generally producing lower nighttime and 
morning temperatures. This leads to a greater underestimation of the urban heat island intensity in TEB when compared with 
the observations but improves the modeled diurnal cycle of the urban temperature. We attribute the observed temperature 
discrepancies to the different descriptions of heat conductivity and storage within urban surfaces. Although there are no clear 
advantages to using a more complex parameterization in terms of model air temperature errors, TEB offers more options to 
fine-tune input parameters and takes into account additional processes, in particular those associated with building heating 
and cooling, as well as with urban green infrastructure.
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INTRODUCTION

	 Modern numerical weather prediction (NWP) models, 
employed for forecasting and studying the atmospheric 
processes, operate at grid spacing down to 10 kilometers at 
the global scale and the first few kilometers at the regional 
scale, with pioneering high-resolution studies presenting 
hectometric grid spacing [Lean et al. 2024]. At such 

scales, it is not feasible to explicitly simulate the energy 
and momentum exchange between the atmosphere 
and specific elements of the urban environment, such 
as buildings. To address this issue, numerical models 
are coupled with urban parameterizations, also known 
as urban canopy models (UCMs). Most UCMs are based 
on the concept of the “urban canyon” [Nunez and Oke 
1977], which assumes the description of the whole 
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urban geometry by two main representative parameters 
– the height of buildings and the width of the street 
between them. Urban parameterizations differ both in 
the complexity of describing physical processes and in 
approaches to coupling with atmospheric models. These 
include slab models or bulk parameterizations, single-
layer urban canopy models (SLUCM) and multilayer urban 
canopy models (MLUCM) [Masson 2006; Grimmond et al. 
2010; Garuma 2018; Tarasova et al. 2023]. 
	 Slab models, e.g., TERRA_URB [Wouters et al. 2016], 
one of the urban parameterizations available in the WRF 
atmospheric model as part of the Noah‐LSM land surface 
model [Ek et al. 2003; Liu et al. 2006], and the JULES 
surface scheme [Best 2005], are incorporated into the 
land surface models, modifying their basic parameters, 
such as imperviousness, surface radiative, and soil thermal 
properties, taking into account the features of the urban 
environment.
	 Single-layer UCMs (SLUCMs), e.g., TEB (Town Energy 
Balance) [Masson 2000], SLUCM developed by [Kusaka 
2001], MORUSES (Met Office–Reading Urban Surface 
Exchange Scheme) [Porson et al. 2010], explicitly simulate 
physical processes inside the urban canyon. These models 
reproduce the thermal heterogeneity of the urban 
environment by separately solving the energy balance for 
the roof, wall, and road surfaces. To calculate the surface 
temperature, SLUCMs simulate heat transfer within the 
roof, roads, and walls, dividing them into layers of certain 
thickness. They also simulate shortwave and longwave 
radiation balances of the mentioned surfaces, considering 
the effects of shading, reflection, and emission within the 
canyon. Heat and moisture turbulent fluxes are determined 
using the resistance approach and are proportional to 
the differences between surface and air temperatures/
humidities, wind speed, and heat and moisture transfer 
coefficients. The urban canyon in the SLUCMs is assumed to 
be squeezed below the bottom surface of the atmospheric 
model. Therefore, SLUCMs provide lower boundary 
conditions that determine the interaction between the 
urban surface and the lower level of the atmospheric 
model.
	 Multilayer UCMs, e.g., BEP (Building Effect 
Parameterization) [Martilli et al. 2002], DCEP (Double-
Canyon Effect Parameterization) [Schubert et al. 2012], TEB 
[Schoetter et al. 2020], represent the physical processes 
inside the urban canyon as well. However, unlike SLUCMs, 
these models divide the urban canopy into a number 
of horizontal layers that interact with the atmospheric 
model, assuming the canyon is immersed into the lowest 
levels of the atmospheric grid. Additional terms, which 
describe the contribution of the urban surface, are added 
to the prognostic equations of momentum, temperature, 
humidity, and turbulent kinetic energy at the model 
levels that are inside the urban canopy. These terms are 
calculated at a finer vertical resolution on the urban grid 
and then aggregated onto the grid of the atmospheric 
model.
	 Modern NWP models differ in the set of available 
UCMs: some provide an opportunity to choose between 
parameterizations of varying degree of complexity, while 
others only have a single option available. This study 
focuses on the COSMO (Consortium for Small-Scale 
Modeling) regional, non-hydrostatic atmospheric model 
developed and maintained by the COSMO consortium 
and COSMO-CLM community [Rockel et al. 2008]. Despite 
the experience of including various UCMs into this 
model, only the slab TERRA_URB scheme is available in 
its operational version [Garbero et al. 2021]. The COSMO 

model with TERRA_URB is used for operational weather 
forecasts, e.g., over the Moscow region [Rivin et al. 2019; 
2020], and for research tasks. The latter include modeling 
of the urban heat island (UHI) [Varentsov et al. 2018; 2019], 
the urban impacts on severe convective events [Platonov 
et al. 2024], the assessment of ecosystem services of the 
urban green infrastructure [Varentsov et al. 2023], and the 
estimation of the anthropogenic heat flux contribution to 
the temperature and wind regime in the city [Ginzburg 
and Dokukin 2021].
	 Multilayer UCMs DCEP and BEP (version BEP-Tree) were 
incorporated into the COSMO model in the research mode 
under separate branches of the model [Schubert and 
Grossman-Clarke 2014; Mussetti et al. 2020] and have not 
been merged into the latter model updates. The single-layer 
UCM TEB was also implemented into the COSMO model by 
[Trusilova et al. 2013]. However, simulations of the Moscow 
heat island using two UCMs, TERRA_URB and TEB, within 
the COSMO model revealed that the coupling between 
COSMO and TEB was incorrectly implemented, leading 
to unrealistic results [Varentsov et al. 2017]. The spatial 
distribution of temperature anomalies demonstrated a 
highly variable field, with a strong signal in the urban cells 
with almost no effect transmitted to the neighboring cells 
without buildings (see Fig. 4 in [Varentsov et al. 2017]). 
Furthermore, the vertical structure of the thermal anomaly 
induced by the city when using the TEB scheme was 
inadequate; both the intensity and the vertical extent of 
the response were significantly lower compared to those 
simulated with TERRA_URB (see Fig. 5 in [Varentsov et al. 
2017]). This suggests that the coupling of the TEB UCM 
with the COSMO atmospheric model may have been 
performed incorrectly, leading to a lack of transmission of 
the signal from the city surface to the atmosphere.
	 This study is devoted to the reimplementation of the 
TEB UCM into the latest operational version of the COSMO 
model and its comparison with the simpler TERRA_URB 
parameterization. Here we outline the technical details of 
the coupling approach, demonstrating the corresponding 
effects of the city’s influence on the atmosphere. To analyze 
the sensitivity of COSMO to different UCMs, we compare 
simulations using the single-layer TEB UCM and the 
simpler slab scheme TERRA_URB with the same external 
city-descriptive parameters.
	 The article is organized as follows. The next section 
describes in detail the numerical weather forecast model 
COSMO, the urban canopy model TEB, and the elaborated 
coupling approach, as well as the setup of the numerical 
experiments. Section Results presents the results of the 
comparison of two UCMs and their assessment by the 
observations. Interpretation and discussion of the revealed 
differences in simulations between two UCMs are presented 
in the Discussion section, followed by conclusions in the 
last section.

MATERIALS AND METHODS

COSMO model

	 The COSMO model is a non-hydrostatic limited-area 
atmospheric model that has been vastly used both for 
operational and research applications. The model solves 
the hydro-thermodynamic equations for a compressible 
flow in a moist atmosphere in the advection form. The 
model uses the delta-two-stream method of the Ritter-
Geleyn scheme for radiative transfer [Ritter and Geleyn 
1992], the Tiedtke scheme to parameterize convection, 
which is not explicitly resolved [Tiedke 1989], and a 
prognostic turbulent kinetic energy closure at level 2.5 to 
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describe subgrid-scale turbulence [Doms et al. 2021]. The 
multi-layer land surface model TERRA is used to calculate 
the heat, moisture, and momentum exchange between 
the surface and the atmosphere [Heise et al. 2006; Schrodin 
and Heise 2001; Schulz and Vogel 2020].
	 To describe the interaction between the atmosphere and 
the urban surface, the TERRA model has been modified by 
integrating the TERRA_URB urban parameterization [Wouters 
et al., 2016]. For this purpose, a tile approach has been 
introduced into the COSMO model, assuming that the model 
grid cell can be represented partly by the natural and by the 
urban surface. The surface temperatures, heat and moisture 
fluxes, and other variables are calculated for each individual 
tile and then aggregated according to their areal fraction in 
the grid cell.
	 In this study, we use the latest version of the COSMO 6.0 
model.

Town Energy Balance (TEB) urban canopy model

	 The TEB urban parameterization is a single-layer urban 
canopy model that can be used both as a standalone model 
and coupled to the numerical atmospheric models [Masson 
2000; Masson 2013; Meyer et al. 2020] to simulate the impact 
of the urban surface on the atmospheric boundary layer. We 
used the TEB_open_source_v3_sfx8.1 version1 to integrate it 
into the COSMO atmospheric model.
	 Like many other UCMs, TEB is based on the concept of the 
street canyon and calculates energy balance separately for its 
walls, roof, and road. To derive the surface temperature, TEB 
solves the thermal conduction equation with zero flux at the 
lower boundary for roads and building’s internal temperature 
for roofs and walls. The model accounts for water reservoirs 
and snow cover on the horizontal surfaces. The radiation 
exchange considers reflections and shading effects inside 
the canyon. It can be modeled as an average over numerous 
canyons with an isotropic distribution of their azimuths, or 
for a specified road azimuth, taking into account the different 
shadings of two opposite walls [Lemonsu et al. 2012].
	 Turbulent sensible and latent heat fluxes are calculated 
according to the resistance approach (Fig. 1), where the 
transfer coefficients depend on wind speed and stability 
functions [Lemonsu et al. 2004]. Heat fluxes from industry 
and traffic can be added as constants, while anthropogenic 
heat flux associated with building heating and cooling is 
explicitly simulated at each time step using a simple model 
of building indoor temperature [Masson et al. 2002] or a 
more comprehensive Building Energy Model (BEM) [Bueno 
et al. 2012]. BEM calculates anthropogenic heat and moisture 
fluxes related to heating, ventilation, and air conditioning and 
due to the presence of people or electrical devices inside the 
buildings. It takes into account air supply through walls and 
natural ventilation, including windows, in the energy balance 

of walls. TEB has an ability to specify urban vegetation inside 
the canyon, implicitly represented as a flat surface [Lemonsu 
et al. 2012], along with an interface for the “green roof” module 
[de Munck et al. 2013]. The simulation of solar panels on roofs 
[Masson et al. 2014] and irrigation of roads, vegetation, and 
“green roofs” [de Munck et al. 2013] are also possible.

Coupling approach

	 The coupling approach in our study is based on the 
interface that was previously developed for the interaction 
between COSMO and TERRA_URB. This interface assumes 
that the land surface model TERRA is called twice for each 
COSMO’s grid cell: once for the natural tile and once for the 
urban tile, with modified bulk parameters according to the 
urban geometry [Wouters et al. 2016]. Simulated fluxes are 
further aggregated over the two tiles. In the case of TEB, we 
call it instead of TERRA for the urban tile, but only for the grid 
cells with a non-zero urban fraction. TEB’s output is saved to 
the model variables that are used by TERRA for the urban 
tile and is further passed to the procedure that performs the 
aggregation of fluxes and surface parameters over the two 
tiles, as it was proposed for TERRA_URB [Wouters et al. 2016].
	 COSMO provides TEB with input quantities at each time 
step. TEB requires the current date, latitude and longitude 
of the cell, the height of the lowest model level, external 
parameters describing the geometry of the urban surface and 
its thermal and radiative properties, as well as atmospheric 
forcing variables (Table 1). It should be noted that the TERRA_
URB slab model uses albedo, emissivity, heat capacity, and 
conductivity parameters aggregated over roofs, roads, and 
walls, while TEB considers these parameters for each surface 
separately. We have implemented this feature into the model 
code. However, in this study, we use the aggregated values for 
all surfaces for a correct comparison between the two UCMs. 
Based on the input data, TEB calculates output parameters 
as averaged over the canyon and roofs and passes them 
to the COSMO model. The main variables transferred from 
TEB to COSMO are the effective urban albedo, emissivity, 
surface temperature, and surface specific humidity, as well as 
sensible and latent heat fluxes and heat and moisture transfer 
coefficients. These variables are listed in Table 1.
	 Below we present a detailed description of how the fluxes 
calculated by the TEB parameterization are transferred to the 
COSMO atmospheric model.

Radiation Fluxes

	 To estimate reflected shortwave radiation, the COSMO 
model uses the solar albedo aggregated over natural and 
urban tiles (Eq. 1):

1https://opensource.umr-cnrm.fr/projects/teb/files

Fig. 1. Schematic representation of (a) TERRA_URB slab scheme and (b) TEB single-layer urban canopy model. Notation α, 
ε,z

0
, and λ correspond to the albedo, emissivity, aerodynamic roughness, and thermal conductivity of the urban material. 

Dashed lines indicate levels of the atmospheric model. Modified after [Tarasova et al. 2023]

(1)
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	 where α
so

 is the cell-averaged solar albedo, α
so, urb

 is the 
solar albedo of the urban tile, α

so, nat
 is the solar albedo of the 

natural tile.
	 As a result of shading and multiple reflections inside the 
urban canyon, the effective urban albedo is reduced compared 
to the albedo of individual building facets [Oke et al. 2017]. TEB 
UCM calculates the effective solar albedo at each time step, 
taking into account the incoming and reflected shortwave 
radiation by each canyon element (Eq. 2):

	 where  is the outgoing shortwave radiation 

from the urban tile, including canyon and roof,  is the 

incoming shortwave radiation (forcing variable from the 
atmospheric model).
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* – New variables added to COSMO for its coupling with TEB. ** – Parameters can be set by the same value for all urban surfaces (roofs, 
walls, and roads) or separately for each surface. *** – The precipitation explicitly resolved by the atmospheric model and precipitation 
estimated by the convection parameterization are summed up. **** – The precipitation explicitly resolved by the atmospheric model 
and precipitation estimated by the convection parameterization are summed up. Grain is added to the solid precipitation if appropriate 
parameterization is used.

Table 1. Variables used in the coupling of TEB UCM into the COSMO model

Variable Unit Model variable

External static parameters for TEB

Height of the lowest model level m hlev_teb*

Building areal fraction – urb_fr_bld

Building height m urb_h_bld

Canyon height-to-width ratio – urb_h2w

Volumetric heat capacity of urban materials** Jm−3 K−1 urb_hcap

Heat conductivity of urban materials** Wm−1 K−1 urb_hcon

Shortwave albedo of urban surfaces** – urb_alb_so

Emissivity of urban surfaces** – 1 - urb_alb_th

Atmospheric forcing from COSMO to TEB

Air temperature K t

Specific humidity kg kg−1 qv

Zonal component of wind velocity m s−1 u

Meridional component of wind velocity m s−1 v

Atmospheric pressure at the surface Pa ps

Rainfall rate kg m−2 s−1 prr_con + prr_gsp ***

Snowfall rate kg m−2 s−1 prs_con + prs_gsp ( + prg_gsp) ****

Downwelling direct shortwave radiation flux density Wm−2 swdir_s

Downwelling diffuse shortwave radiation flux density Wm−2 swdifd_s

Downwelling longwave radiation flux density Wm−2 lwd_s

TEB outputs for COSMO

Urban surface albedo for shortwave radiation – teb_alb_so*

Urban surface emissivity – 1 - teb_alb_th*

Urban surface temperature K teb_tstown_s*

Urban surface specific humidity kg kg−1 teb_qstown_s*

Heat and moisture transfer coefficient for urban surface – teb_tch_town*

Sensible heat flux for urban surface Wm−2 teb_shfl*

Latent heat flux for urban surface Wm−2 teb_lhfl*

(2)
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	 The reflection of shortwave radiation is considered 
isotropic and is approximated as an infinite number of 
efficient reflections between canyon elements [Masson 
2000]. The outgoing shortwave radiation (direct and 
diffuse) is computed as the difference between the 
incoming shortwave radiation and the radiation absorbed 
by each of the canyon elements (Eq. 3):

	 where S
net, i

 is the net solar radiation at the i-th surface,   
δ

i
 is the ratio of the certain surface area to the area of the 

urban tile, i is the surface type identifier: road (“r”), wall 
(“w”), roof (“R”).
	 The outgoing longwave radiation is calculated by COSMO 
based on the Stefan-Boltzmann law using surface temperature 
and emissivity aggregated over the tiles (Eqs. 4-5):

	 where T
s
 and ε are the cell-averaged surface 

temperature and emissivity, T
s,urb

 and ε
urb

 are the surface 
temperature and emissivity of the urban tile, T

s, nat
 and ε

nat
 

are the surface temperature and emissivity of the natural 
tile.
	 The effective surface temperature of the urban canyon 
is calculated through the outgoing longwave radiation 
according to the Stefan-Boltzmann law (Eq. 6):

	 where  is the outgoing longwave radiation 
from the urban canyon,  is the incoming longwave 
radiation (forcing variable from the atmospheric model), 

 is the reflected longwave radiation, σ is the 

Stefan-Boltzmann constant.
	 The outgoing longwave radiation is calculated as the 
difference between the incoming longwave radiation and 
the radiation absorbed by each of the canyon elements 
(Eq. 7):

	 where L
net,i

 is the net longwave radiation at the i-th 
surface, taking into account reflection and emission 
between canyon’s surfaces.
	 Net longwave radiation at each canyon’s surface 
consists of the atmospheric radiation coming directly from 
the sky and the radiation emitted or reflected from other 
canyon elements (road or walls). The reflection of longwave 
radiation assumes a single reflection of incident longwave 
radiation by the canyon surface.
	 Emissivity is calculated as a weighted average for each 
surface, taking into account the fraction of each canyon 
element and the sky view factor (Eq. 8):

	 where Ψ
i➝sky

 is the sky view factor for surface i , ε
i
 is the 

emissivity of surface  i.

Turbulent Heat and Moisture Fluxes

	 To represent the turbulent heat and moisture exchange 
between the surface and the atmosphere, the sensible and 
latent heat fluxes are aggregated over the two tiles (Eqs. 9-10):

	 where H, LE are the cell-averaged sensible and latent 
heat fluxes, H

urb
, LE

urb
 are the sensible and latent heat 

fluxes of the urban tile, H
nat

, LE
nat

 are the sensible and 
latent heat fluxes of the natural tile. To ensure consistency 
between the sensible and latent heat fluxes leaving the 
soil for individual tiles and those entering the atmosphere, 
additional technical adjustments are made (see Appendix).
	 TEB computes the turbulent fluxes from the urban 
canyon as weighted averages from each individual surface, 
with the addition of heat (and moisture) fluxes from traffic 
and industry (Eqs. 11-12):

	 where H
i
, LE

i
 are the sensible and latent heat fluxes 

from the i-th surface, H
traffic

, LE
traffic

 are sensible and latent 
heat fluxes from traffic, H

industry
, LE

industry
 are sensible and 

latent heat fluxes from industry.
	 Fluxes from the roof, road, and walls are defined in 
accordance with the resistance approach, where the heat 
and moisture transfer coefficients are calculated by the 
Monin-Obukhov theory for horizontal surfaces and under 
empirical dependencies for vertical surfaces [Rowley et al. 
1930; 1932]. Air temperature, humidity, and wind speed, 
which are required to calculate the fluxes, are taken from 
the atmospheric forcing level for the roof, and from the 
canyon’s volume for the road and walls. The air temperature 
and humidity are assumed to be homogeneous inside 
the canyon. The wind speed for flux calculation from the 
road and walls is estimated at half the canyon height, 
assuming an exponential wind profile inside the urban 
canopy [Rotach 1995; Arya 1988]. Despite the recent study 
by [Tarasova et al. 2024] suggests using an alternative 
parameterization of the in-canopy wind profile; it is not 
included into the model version used in this study.

Momentum Fluxes

	 The calculation of momentum fluxes has been 
preserved using the same approach as in the TERRA_URB 
urban scheme. The urban tile is represented as a highly 
rough surface, with the aerodynamic roughness length 
defined proportionally to the average building height 
[Sarkar and De Ridder 2010]. The thermal roughness is 
described via the Reynolds roughness number, with refined 
coefficients derived from experiments with outdoor urban-
scale models [Kanda et al. 2007].

Model Setup and External Data

	 We employ the new version of the COSMO model, 
coupled with the single-layer TEB UCM, to simulate the 
meteorological conditions of the Moscow agglomeration 

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(11)
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with 1-km grid horizontal spacing. To evaluate the 
sensitivity of the model to the choice of the UCM, we 
also run identical simulations using the slab TERRA_
URB scheme. Additionally, the noURB experiment was 
conducted with urban parameterizations switched off. 
The simulations cover the period of August 2022, which 
was characterized by an extremely high urban heat island 
in Moscow [Varentsov et al. 2023]. The monthly-averaged 
UHI intensity at the city center was 3.4°C, which is 1°C 
higher than the average value for the period 2000-2020 
[Lokoshchenko et al. 2023].
	 We use two nested domains centered at the Moscow 
region. The ERA5 reanalysis data with 0.25°×0.25° grid 
spacing [Hersbach et al. 2020] is utilized to define 
boundary and initial conditions for the outermost domain 
with a 3-km grid spacing, covering an area of 720 × 720 
km around Moscow (240 × 240 grid cells). Initial conditions 
for soil temperature and humidity are taken from the 
global operational analysis of the ICON model with a 13-
km resolution. According to [Varentsov et al. 2023], using 
ICON initial data instead of ERA5 reanalysis allows for a 
more accurate simulation of near-surface temperature and 
humidity. Simulations for the outermost domain are further 
used to force simulations for the innermost domain with a 
horizontal grid spacing of 1 km, 240 × 240 grid cells, and 
activated urban schemes (excluding noURB simulation). 
The vertical resolution in COSMO is set to 50 atmospheric 
levels (up to a height of 22 km), of which 10 are located in 
the lower one-kilometer layer; 8 layers are set in soil. The 
time integration step for the inner domain is 15 seconds.
	 We use the same set of external city-descriptive 
parameters for both UCMs. These parameters are compiled 
from different data sources, including OpenStreetMap 
(OSM) cartographic data [Samsonov and Varentsov 
2020; Frolkis et al. 2024], a map of Local Climate Zones 
(LCZ) [Stewart and Oke 2012] available for Moscow from 
[Varentsov et al. 2020], and new global land cover databases: 
WorldCover [Zanaga et al. 2021] and Copernicus Global 
Land Cover (CGLC) [Buchhorn et al. 2020]. The fraction of 
the urban tile in the model grid cells is assumed to be equal 
to the impervious area fraction. The latter is estimated 
based on two global land cover databases: WorldCover 
with a 10-meter resolution and CGLC with a 100-meter 
resolution. The need to use two databases is determined 
by different physical interpretations of their urban land 
cover classes. WorldCover treats urban areas as impervious 
artificial surfaces, while CGLC treats them as built-up 
areas including urban greenery but excluding impervious 
surfaces outside built-up zones (highways, airstrip, etc.). 
The urban tile is assumed to be simultaneously impervious 
and built-up by both UCMs, so we define its area fraction 
as the intersection of the built-up (CGLC) and impervious 
(WorldCover) areas. Hence, the urban tile is treated as a 
completely impervious surface that does not include any 
vegetation, such as alleys or lawns between buildings, and 
the urban greenery is considered part of the natural tile.
	 The OSM cartographic data is a valuable source for 
obtaining morphometric characteristics of cities that could 
be applied as external parameters in urban modeling or, 
e.g., to estimate the anthropogenic heat flux (AHF) [Frolkis 
et al. 2024]. Here, we use the OSM data to initially assess 
the fraction of buildings and their average height. Further, 
the LCZ map is used to restore information about buildings 
where they are missing in the OSM data (typically in suburbs 
and industrial zones) based on statistical relationships 
between the building area fraction and impervious and 
built-up area fractions for different LCZs [Varentsov et 
al. 2023]. The height-to-width ratio of street canyons is 

defined analytically based on the mean area of individual 
buildings, total building area in a grid cell, and built-up area 
fraction estimated according to CGLC, assuming a square 
building shape and their regular arrangement [Samsonov 
and Varentsov 2020]. Thermal and radiative properties of 
the urban surface, such as albedo, emissivity, heat capacity, 
and heat conductivity, are defined according to the LCZ 
map and look-up tables. The resulting set of external 
city-descriptive parameters is shown in Figs. 2 and 3. We 
additionally emphasize that we use the same thermal and 
radiative parameters aggregated over all canyon surfaces 
for both UCMs.
	 Another important external parameter is the 
anthropogenic heat flux. However, it is treated differently in 
the TEB and TERRA_URB schemes. TEB explicitly simulates 
AHF from building heating and cooling using a Building 
Energy Model (BEM) [Bueno et al. 2012] or a simpler 
scheme based on limiting building’s indoor temperature 
within a given range, while AHF from traffic and industry 
are prescribed by the user as time-invariant 2D fields. In 
TERRA_URB, the total AHF is provided as an external 
parameter. To simplify mutual comparison between UCMs, 
we set all external AHF sources to zero in both cases.

RESULTS

	 Simulations with the COSMO model coupled with two 
different UCMs, TEB and TERRA_URB, were performed with 
a 1 km spatial resolution for August 2022 over the Moscow 
agglomeration. Both UCMs reproduce a pronounced warm 
temperature anomaly over Moscow, i.e., the UHI. To assess 
the quality of these simulations in terms of reproducing 
the UHI, we used 2-meter temperature observations at 14 
synoptic weather stations in the Moscow region. Weather 
stations were classified into two samples to represent 
the rural and urban conditions. The UHI intensity was 
estimated as the temperature difference between stations 
within Moscow and the background (suburban) stations. 
The Balchug weather station, located in the center of 
Moscow, characterizes the temperature regime of the city 
center and is usually used to obtain the maximum UHI 
intensity [Lokoshchenko et al. 2023]. In addition, the mean 
UHI intensity was analyzed as the difference between 
mean urban temperature, averaged over 5 Moscow 
stations: Balchug, VDNKh, Moscow State University 
Meteorological Observatory (MSU MO), Mikhelson 
Observatory, and Tushino [Lokoshchenko et al. 2023]. 
Background conditions were assessed using observational 
data from Klin, Dmitrov, Alexandrov, Pavlovsky Posad, 
Kolomna, Serpukhov, Naro-Fominsk, Maloyaroslavets, and 
Novo-Jerusalem stations, as referenced in [Varentsov et 
al. 2023; Kuznetsova et al. 2024]. Observational data for 
these stations at 1-hourly intervals were obtained from the 
archives of the Hydrometeorological Research Center of 
Russia. In this study, we used the nearest grid point to the 
weather station when comparing with measurements.
	 The COSMO model nearly perfectly reproduces the 
monthly-mean diurnal temperature cycle in rural areas 
using both UCMs. (Fig. 4a). However, for urban stations, 
there is a notable shift in the diurnal cycle: the model’s air 
temperature lags relative to the observations (Fig. 4b, d), 
especially in the morning hours, regardless of the urban 
sample. The observed UHI intensity increases at night, 
reaching up to 6°C at the city center (Fig. 4c) and up to 
3.7°C when averaged over the five urban stations (Fig. 4e). 
The underestimation of the modeled air temperature in 
the city center is especially pronounced at night and in the 
morning – the maximum UHI intensity is underestimated by 
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Fig. 2. City-descriptive parameters for the central part of the model’s domain: (a) impervious area fraction, (b) building 
fraction, (c) building height, (d) canyon height-to-width ratio

Fig. 3. Thermal and radiative parameters of the urban area for the central part of the model’s domain: (a) surface albedo, 
(b) surface emissivity, (c) volumetric heat capacity, (d) heat conductivity
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Fig. 4. The diurnal cycles of monthly mean (a) rural and (b) urban air (2-meter height) temperature at the Balchug weather 
station and (d) averaged over 5 Moscow weather stations, and (c, e) urban heat island (UHI) intensity during 1-31 August 

2022 according to observations and simulation data

2°C. Differences between TEB and TERRA_URB are observed, 
with TEB showing lower nighttime air temperatures by 
up to 0.6°C. The mean errors (ME) of monthly-mean air 
temperature for the Balchug weather station are -1.18°C 
for TERRA_URB and -1.45°C for TEB, while for the average of 
five Moscow stations, these values are -0.66°C for TERRA_
URB and -0.95°C for TEB. However, the root-mean-squared 
errors (RMSE) for the two UCMs are much closer, with RMSE 
values of 1.99°C (TERRA_URB) and 2.06°C (TEB) for Balchug, 
and 1.83°C (TERRA_URB) and 1.80°C (TEB) for the five urban 
stations.
	 The simulations were performed without anthropogenic 
heat flux, so agreement between observations and model 
data is not as good as in previous modeling studies for 
Moscow [Varentsov et al. 2020; Kuznetsova et al. 2024]. 
Despite the summer conditions, anthropogenic heat flux 
can be significant in forming the temperature regime, 
especially at nighttime [Salamanca et al. 2014].
	 Previous studies suggest that the vertical structure of 
the UHI in the lower troposphere is a key indicator of the 
correctness of coupling between UCM and the atmospheric 
model [Varentsov et al. 2017; 2018]. We analyze the 
vertical UHI extent as the temperature difference between 
simulations with TEB/TERRA_URB UCMs and the noURB 
run, in which urban effects are not taken into account, and 
the city is replaced by natural land cover types.
	 Fig. 5 presents vertical cross-sections of such a 
temperature difference through Moscow’s center for two 
UCMs. Generally, results with the two UCMs are quite similar. 
The temperature anomaly is highest at the surface in the 
center of the urban area. The vertical extent of the daily 
average anomaly over the simulation period is observed 
up to 200-250 meters from the surface for both UCMs (Fig. 
5a-c). In the daytime, UHI is much weaker but extends up 
to 1 km, with almost no difference in temperature anomaly 
between TEB and TERRA_URB (Fig. 5d-f ). The differences 
between the UCMs become noticeable at night, when the 
model with TEB simulates weaker temperature anomalies 
(Fig. 5g-i). A pronounced nocturnal UHI exists within the 
100-150 m layer, and above it changes to the opposite 
response, corresponding to a negative temperature 
anomaly of up to 0.1°С (Fig. 5g, h). This phenomenon, 

referred to the cross-over effect [Bornstein 1968] or 
cold lens [Khaikine et al. 2006], coincides with mast and 
radiosonde observations [Lokoshchenko et al. 2016] and 
previous simulations with the COSMO model for the 
Moscow region [Varentsov et al. 2017; 2018]. The presence 
of this cold layer may be attributed to more intense vertical 
mixing in the city center due to higher surface roughness 
and less stable stratification compared to rural areas, which, 
under stable stratification conditions, results in less intense 
surface inversions within the city.
	 Despite using the same external parameters, two UCMs 
reproduce the Moscow UHI with slight but noticeable 
differences. Our further analysis is aimed primarily at a 
deeper investigation and interpretation of the differences 
between simulations with TEB and TERRA_URB UCMs. Fig. 
6a presents the differences in monthly mean 2-meter air 
temperature between the numerical experiments with TEB 
and TERRA_URB UCMs. The use of the TEB results in lower 
simulated air temperatures, with a maximum observed 
difference of 0.84°C between the UCMs. Furthermore, the 
differences in surface temperature are more pronounced 
than those in air temperature (Fig. 6c). The grid cells 
exhibiting the greatest differences in air temperature 
largely correspond to those showing significant surface 
temperature differences.
	 In order to find an explanation for the revealed 
temperature differences between TEB and TERRA_URB 
UCMs, we further analyze the components of the surface 
energy balance.
	 Differences between the two UCMs are observed 
in the effective surface albedo. The TERRA_URB model 
accounts for shading and reflections of solar radiation 
within urban canyons by parameterizing the effective 
albedo of the urban surface using an exponential function. 
This approach assumes that an increase in the height-to-
width ratio of the canyon significantly reduces the effective 
albedo of the urban environment [Fortuniak 2007]. In 
contrast, the TEB model computes effective surface 
albedo at each time step based on the explicit account 
for multiple reflections of shortwave radiation between 
various canyon facets. Fig. 7 presents the cell-averaged 
surface albedo differences between TEB and TERRA_URB, 
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Fig. 5. Vertical sections through the center of Moscow from South to North, difference between (a-c) the daily average, 
(d-f) daytime average, and (g-i) nighttime average air temperature over the August of 2022 between experiments with 

switched-on and -off UCMs of the COSMO-CLM model with (a, d, g) the TEB scheme, (b, e, h) the TERRA-URB scheme, and 
(c, f, i) differences between them. The horizontal axis is directed from South to North; the location of the Balchug weather 

station corresponds to zero. The black solid line indicates the urban area

Fig. 6. Monthly mean (a) distribution of the air temperature (2-meter height) differences between the numerical 
experiments with COSMO+TEB and COSMO+TERRA_URB UCMs and (b) diurnal cycle of the air temperature for cells with 

urban fractions > 0.7 (183 cells). The same applies to the surface temperature (c) and (d)
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along with the diurnal cycle of albedo observed in the two 
numerical experiments. The simulated surface albedo is 
consistently lower in TEB compared to TERRA_URB, with 
differences reaching up to 0.02. Additionally, TEB exhibits 
daily variations in albedo due to uneven illumination of 
different surfaces throughout the day, although these 
changes are relatively low (Fig. 7b). Roads typically possess 
a higher sky view factor than walls; therefore, as the sunlit 
area of the road increases, the effective albedo rises. This 
occurs because the surface albedo values for roads and 
walls are equal in our simulations. However, if roads had 
a significantly lower albedo, the opposite trend would be 
expected, with increased absorption leading to a decrease 
in a daytime effective albedo. The differences in surface 
albedo between the urban schemes are consistent with 
slightly higher maximum surface temperatures simulated 
with TEB (Fig. 6d); however, these findings cannot explain 
the lower daily mean and nocturnal air temperatures with 
respect to TERRA_URB.
	 The latent heat flux from the urban tile depends 
primarily on the amount of precipitation stored in the model 
over the impervious urban surface, such as water puddles. 
The maximum water content on the impervious surface 
in TERRA_URB is 1.31 mm, while the wet-surface fraction 
is parameterized, assuming its increase with increasing 
water content with an upper limit of 12% according to the 
measurements in Toulouse, France [Wouters et al. 2015]. 
TEB accumulates water on roofs and roads using the same 
approach as in TERRA_URB, with a difference in maximum 
water content (1 mm according to [Grimmond and Oke 
1991]) and without an upper limit for the maximum wet-
surface fraction. The excess water is assumed to form runoff 
to the sewer system. Fig. 8 presents the spatial distribution 
of average latent heat fluxes over August 2022 for TERRA_
URB and TEB UCMs for urban tiles. The locations of areas 
with maximum latent heat flux are identified in both TEB 
and TERRA_URB models on the southern periphery of 
Moscow, whereas in the northern region, such spots are 
only noted in TERRA_URB simulations. Such differences can 
be explained by stochastic patterns of convective rainfall in 

the model and do not represent the differences between 
UCMs. The absolute values of latent heat flux for both urban 
models are relatively low. Additionally, there is a shift in the 
diurnal cycle, indicating increased evaporation during the 
morning hours for TEB, with a peak occurring between 
9 AM and 12 PM MSK. In contrast, TERRA_URB shows its 
maximum later in the day, after noon. The cell-averaged 
values of latent heat flux are nearly identical between the 
experiments.
	 The distribution of sensible heat flux from urban tiles is 
presented in Fig. 9. The average sensible heat fluxes in TERRA_
URB on the outskirts of Moscow are found to be higher than 
those in the city center (Fig. 9b). This phenomenon can be 
attributed to the significantly colder atmosphere in rural 
and suburban areas compared to central Moscow, resulting 
from a much lower urban fraction in these grid cells. Since 
turbulent heat flux is proportional to the difference between 
the surface and the air temperatures, the sensible heat flux is 
consequently lower in highly urbanized areas. In contrast, the 
TEB UCM exhibits an opposite distribution (Fig. 9a). In TEB, the 
effective sensible heat flux from the urban tile is aggregated 
across road, wall, and roof surfaces. The spatial distributions 
of sensible heat fluxes from these surfaces reveal the same 
pattern as for TERRA_URB, with higher values at the outskirts 
of the city (not shown). However, the pattern changes after 
the aggregation procedure, primarily due to the high wall 
fractions in the city center, where they exert a greater influence 
as an additional source of heat flux. In other words, for TEB, 
the highest surface-air temperature differences at the city’s 
outskirts are compensated by a larger wall area in the central 
part of the city. The integral sensible heat fluxes from urban 
tiles differ between TEB and TERRA_URB, estimated as 79.6 W/
m² and 92.6 W/m², respectively. As noted above, the primary 
differences between TEB and TERRA_URB are observed in the 
cells where the urban areal fraction is minimal. Consequently, 
these differences have a limited impact on the aggregated flux 
across the tiles. Thus, the integral cell-averaged quantities of 
sensible heat flux are almost equal and amount to 26.47 W/m² 
in TEB and 26.62 W/m² in TERRA_URB.

Fig. 7. The distribution of monthly mean cell-averaged surface albedo in (a) COSMO+TEB, (b) COSMO+TERRA_URB 
numerical experiments, and (c) differences between (a) and (b), (d) the monthly mean diurnal cycles of cell-averaged 

surface albedo for cells with urban fractions > 0.7 (183 cells)
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DISCUSSION

	 The presented results show differences between 
the slab model TERRA_URB and the single-layer urban 
canopy model TEB, which are primarily expressed in the 
lower air and surface temperatures simulated using TEB, 
with the most pronounced differences during nighttime 
and morning hours. The revealed temperature differences 
between the two urban schemes can be related to the 
different parameterizations representing surface albedo, 
turbulent heat and moisture fluxes, and heat storage within 

artificial surfaces in TEB and TERRA_URB. However, surface 
albedo is even lower in TEB and causes a slightly higher 
surface temperature at midday. Turbulent sensible and 
latent heat fluxes simulated by TEB and TERRA_URB differ 
in diurnal cycle and spatial patterns; however, there are 
only minor differences in their mean values over Moscow.
	 Another critical factor influencing surface temperature 
is heat conduction through the surface and its accumulation 
within urban materials. TERRA_URB uses the TERRA soil 
model with modified thermal properties. The values of 
heat capacity and heat conductivity for specific materials 

Fig. 8. The distribution of monthly mean latent heat flux for the urban tile in (a) COSMO+TEB, (b) COSMO+TERRA_URB 
numerical experiments, and (c) differences between (a) and (b), (d) the monthly mean diurnal cycles of cell-averaged 

latent heat fluxes for cells with urban fractions > 0.7 (183 cells)

Fig. 9. The distribution of monthly-mean sensible heat flux for the urban tile in (a) COSMO+TEB and (b) COSMO+TERRA_
URB numerical experiments, and (c) differences between (a) and (b), (d) the monthly mean diurnal cycles of cell-averaged 

sensible heat fluxes for cells with urban fractions > 0.7 (183 cells)
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(concrete, asphalt, etc.) are multiplied by the surface area 
index (SAI), which represents the total area of the road, two 
walls, and the roof divided by the plan area [Wouters et al. 
2016]. This approach accounts for heat flux not solely over 
the horizontal surface but over an enlarged urban canyon 
surface. SAI values used in our simulations locally exceed 
3.0, resulting in a triple increase of the mentioned thermal 
parameters, thereby enhancing surface heat conductivity 
and changing the rate of heat transfer to the ground 
[Wouters et al. 2016]. In contrast, TEB utilizes thermal 
parameters for artificial materials directly for roads, walls, 
and roofs, without applying multiplication by SAI, as the 
heat fluxes through these surfaces are simulated explicitly. 
	 To assess the effect of the described SAI-based 
parameterization in TERRA_URB, we conducted an 
additional numerical experiment without modifying the 
materials’ thermal parameters by SAI (TERRA_URB_noSAI). 
When these parameters are not multiplied by SAI, the 
model simulates significantly lower monthly average air 
temperatures. The mean differences between the basic 
TERRA_URB configuration and TERRA_URB_noSAI can 
reach up to 1°C (Fig. 10a). Significantly smaller, yet still 
noticeable, differences are observed when compared with 
TEB, with the most pronounced discrepancies occurring in 
central Moscow (Fig. 10b). Therefore, differences between 
the two UCMs in heat conduction processes at the surface-
atmosphere interface are likely a key factor responsible 
for the observed differences in simulated temperatures. 
However, more specific quantification of these factors 
requires further investigation.
	 Our results indicate that the COSMO model is sensitive 
to the UCMs of different complexity, with the response 
primarily revealed in the air and surface temperature. 
Both the TEB and TERRA_URB UCMs successfully 
simulated the UHI effect. One might expect that the more 
advanced TEB UCM would enhance the accuracy of UHI 
simulation; however, the current results do not support 
this hypothesized improvement but also do not indicate 
a significant deterioration in the results. It is important to 
note that we used TEB in a simplified configuration, which 
did not account for building heating and cooling via the 
BEM model, nor urban greening, etc. The inclusion and 
optimization of these components are expected to yield 
improved outcomes in future simulations.

	 Furthermore, TEB suggests a finer analysis of model 
outputs due to the presence of more diagnostic variables, 
such as the temperature of different canyon surfaces (Fig. 
11), along with temperature, specific humidity, and wind 
speed inside the urban canyon. These enhancements 
not only improve analytical capabilities but also enable 
more accurate validation against weather station data 
located within urban areas. The current methodology 
assumes comparing observations with the 2-meter 
height temperature provided by the NWP model as a 
diagnostic variable calculated according to the Monin-
Obukhov theory above the urban canopy. The possibility 
to incorporate green spaces inside the urban canyon 
could replace the traditional tile approach, allowing for 
the use of canyon temperatures calculated by the UCM 
for verification purposes. In addition, the new output 
parameters provided by TEB enable the enhancement 
of the accuracy of thermal comfort index calculations by 
considering the urban canyon geometry.
	 In 2018, the Consortium for Small-scale Modeling 
announced the transition from the limited-area COSMO 
model to the global ICON model as the future operational 
model. The last version of COSMO was released in 2021, 
and after this, the model was not maintained and 
developed officially any more. However, the COSMO-CLM 
version remains in demand for long-term climate studies. 
The implementation of TEB into the COSMO model, along 
with sensitivity tests to UCMs of different complexity, could 
be useful for ICON as well, since these NWP models share 
the same land surface model.

CONCLUSIONS 

	 The official version of the COSMO NWP model includes 
only one urban scheme, TERRA_URB, which represents the 
simplest class of bulk or slab urban canopy models. In this 
study, we propose and describe the coupling approach 
between the COSMO model and the more detailed single-
layer urban canopy model TEB. Both UCMs are supposed 
to be squeezed into the model surface and provide the 
NWP model with lower boundary conditions. The TERRA_
URB scheme modifies surface thermodynamic properties, 
taking into account the features of urban geometry, while 
TEB explicitly simulates the radiation and turbulent fluxes 
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Fig. 10. The distribution of monthly mean air (2-meter height) temperature differences between the numerical 
experiments with (a) COSMO+TERRA_URB and COSMO+TERRA_URB_noSAI and (b) COSMO+TEB and COSMO+TERRA_

URB_noSAI
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inside the urban canyon and heat conduction and storage 
within its walls, road, and roof. The model’s sensitivity to 
urban schemes of different complexity, TERRA_URB and 
TEB, was assessed over the Moscow agglomeration for 
August 2022. In such a comparison, we utilized TEB in a 
simplified configuration with the same external parameters 
as TERRA_URB and switched off anthropogenic heating in 
the UCMs.
	 Both UCMs allowed COSMO to reproduce the observed 
urban heat island of Moscow. In particular, simulations 
with two UCMs almost agree in terms of the vertical 
extent and intensity of the urban temperature anomaly 
in the atmospheric boundary layer. When compared 
with observations, both simulations demonstrate an 
underestimation of nighttime and morning temperatures 
in the city, which is not surprising due to the absence of 
anthropogenic heat flux in the model. Additionally, the 
modeled diurnal cycle of urban temperature lags with 
respect to observations.
	 We found slight but noticeable differences in urban 
air temperature between the simulations using TEB and 
TERRA_URB. The COSMO model with TEB simulates slightly 
lower 2-meter air temperatures compared to TERRA_URB, 
with a monthly mean difference of up to 0.84°C, resulting 
in a stronger underestimation of the observed UHI 
intensity. Meanwhile, the use of TEB improves the accuracy 
in reproducing the diurnal cycle of urban air temperatures, 
reducing the model’s lag relative to observations.
	 A more detailed comparison between energy balance 
components simulated by TEB and TERRA_URB revealed 
several insights into the factors responsible for the 
temperature differences. Due to the explicit calculation 
of radiative fluxes within the urban canyon, the effective 
urban albedo in TEB was lower than the parameterized 
values in TERRA_URB, resulting in greater solar energy 
absorption and higher surface temperatures during the 

day. This difference in albedo contrasts with the revealed 
lower nocturnal and daily mean temperatures simulated 
with TEB. For sensible and latent heat fluxes, we obtained 
noticable differences between the UCMs in spatial patterns 
and diurnal cycle of fluxes from urban tile, yet with almost 
similar cell-average values. The primary factor contributing 
to the revealed temperature differences between the 
UCMs appears to be related to their different approaches 
to describing the heat conductivity and storage within 
urban surfaces.
	 Although the implementation of the TEB UCM in the 
COSMO model did not result in a substantial increase in the 
model quality metrics, it does open up broad opportunities 
for further improvements of the model accuracy. This can 
be achieved by activating and fine-tuning the components 
of the TEB, such as the BEM or street vegetation module 
“garden”, refining the input parameters for these modules, 
and improving the parameterizations of specific processes 
like the wind profile [Tarasova et al. 2024]. Moreover, TEB 
greatly expands the capabilities of the COSMO model 
as a tool for evaluating urban planning and adaptation 
strategies, allowing for consideration of scenarios 
associated with changes in urban green infrastructure, 
building materials, energy management, and more.
	 The presented results were obtained for the warm 
period of August 2022. However, we expect other 
differences between the two UCMs in the cold season, 
since the UCMs use different snow models, as well as 
different treatments for anthropogenic heat flux, which 
is a key driver of the UHI in winter [Varentsov et al. 2020]. 
Simulation of the temperature regime for cold weather 
conditions in Moscow with TEB and TERRA_URB UCMs is 
planned to be analyzed in future studies.
	 The code of the coupled COSMO-TEB model is available 
upon request.

Fig. 11. Model simulations of COSMO+TEB for 2-meter height (T_2M), air canyon (T_CANYON), roof surface (T_ROOF), 
road surface (T_ROAD), and wall surface (T_WALL) temperature during the week of 23-31 August 2022 for the nearest to 

the Balchug weather station grid cell
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	 The basic aggregation algorithm of sensible and 
latent heat fluxes assumes weighting each of the land–
atmosphere fluxes according to the fractions of the urban 
and natural tiles by the land surface model. However, in the 
latest version of COSMO, the fluxes are further re-calculated 
in the model’s dynamic core based on the cell-averaged 
variables: surface temperature, surface specific humidity 
and heat transfer coefficient. These recalculated fluxes are 
assigned to tile 0 (cell-averaged) and are actually used in 
temperature and humidity evolution in the atmospheric 
model. As expected, their values are not equal to the 
weighted sum of fluxes from tiles; the difference may reach 
up to 100 W/m2 in our tests (note that these tests were 
performed without AHF).
	 In the original version of the tile approach proposed 
by [Wouters et al. 2016] for TERRA_URB in COSMO-CLM 
5.0, the fluxes aggregation scheme was a bit different: the 
heat transfer coefficient and surface specific humidity were 
calculated in a specific way to ensure equality of heat fluxes 
calculated in the dynamical core to the weighted sum of 
the fluxes from individual tiles. However, since COSMO 
version 5.05, these tricks have been removed.
	 To avoid discrepancy in fluxes, we have adopted 
the tricks from COSMO-CLM 5.0 back to version 6.0. 
The weighted average of the heat transfer coefficient is 
redefined through the weighted sensible heat flux from 
individual tiles (Eq. A1):

	 where C
H cell

 is the redefined weighted heat transfer 
coefficient, H

cell
 is the weighted sensible heat flux from 

individual tiles, ρ is air density, c
pd

 is specific heat capacity 
of dry air at constant pressure, u is wind speed, T

g cell
 is 

weighted surface temperature, T
a
 is air temperature.

	 For the latent heat flux, a correction is made for the 
surface specific humidity (Eq. A2):

	 where qv
cell

 is the redefined weighted surface specific 
humidity, qv

a
 is air specific humidity, LE

cell
 is the weighted 

latent heat flux from individual tiles, L
v
 is latent heat of 

vaporization.
	 Initially, the adaptation of these tricks led to the 
appearance of errors during the model run, so we proposed 
additional limitations for C

H cell
 and qv

 cell
 (Eqs. A3-A4):

	 where qv
 nat

, qv
 urb

 are surface specific humidity from 
natural and urban tiles.
	 Our tests have indicated that the proposed solution 
decreases the discrepancy in fluxes by an order of 
magnitude. The changes in the resulting surface-
atmosphere flux sufficiently impact the simulation results, 
particularly for the grid cells with a significant fraction of 
both tiles.

APPENDICES
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ABSTRACT. Global warming, driven by the rising concentration of greenhouse gases (GHGs), demands innovative, data-
driven approaches to assess emission vulnerability at regional scales. This study developed a novel framework utilizing an 
unsupervised Convolutional Autoencoder (CAE) deep learning model combined with multi-sensor satellite data to map GHG 
emission vulnerability. The framework integrated nine environmental indicators, including tropospheric gases, land surface 
temperature, vegetation cover, anthropogenic proxies, and elevation, all sourced from freely accessible remote sensing 
platforms. The CAE model effectively captured complex spatial patterns and reduced high-dimensional inputs into 128 latent 
features, enabling vulnerability assessment without requiring labeled training data. Results indicated that southern coastal 
regions, particularly Denpasar and Badung, exhibited the highest vulnerability due to dense urbanization and tourism-related 
activities. Based on zonal statistics, 11.31% of local administrative zones were identified as having high to very high vulnerability, 
while 18.72% were classified as moderate, and 69.97% as low to very low. The most vulnerable areas were concentrated along 
the southern coastline, known as a hub for tourism and economic activity, with additional pockets of vulnerability found in 
several northern coastal zones. These findings demonstrate the capacity of unsupervised deep learning to detect emission 
hotspots and spatial variability, particularly in data-limited environments. The integration of scalable algorithms with open-
access satellite data allows for rapid, cost-efficient assessments to inform evidence-based climate planning and mitigation 
strategies. This study introduces a practical and transferable approach for spatial quantification of GHG vulnerability, offering 
actionable insights for advancing global climate policy and supporting the Sustainable Development Goals.
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INTRODUCTION

	 Global climate change is widely recognized as one 
of the most urgent environmental challenges of the 21st 
century, with far-reaching implications for ecological 
sustainability, human health, and socio-economic 
development (Scafetta 2024). The primary cause of this 
phenomenon is the rising concentration of greenhouse 
gases (GHGs) in the atmosphere, which intensifies the 

natural greenhouse effect and contributes significantly to 
global warming (Yang et al., 2022). GHGs such as carbon 
dioxide (CO2), methane (CH4), nitrogen dioxide (NO2), and 
sulfur dioxide (SO2) trap outgoing longwave radiation 
(Bhatti et al., 2024), thereby leading to an increase in 
Earth’s surface temperatures (Rahaman et al., 2022). The 
accumulation of these gases is associated with a wide 
range of adverse effects, including more frequent extreme 
weather events, declining air quality, and disrupted 
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regional climate systems (Edo et al., 2024). These impacts 
present substantial obstacles to the achievement of the 
United Nations Sustainable Development Goals (SDGs), 
particularly Goal 13 on climate action.
	 Climate change, beyond its atmospheric implications, 
also affects the structural integrity of ecosystems and 
the functionality of biomes. The warming of Earth’s 
climate alters species distributions, hydrological cycles, 
and ecosystem services that support agriculture, forestry, 
and coastal livelihoods (Dar et al., 2020; Grimm et al., 
2013; Pecl et al., 2017). The majority of GHG emissions are 
anthropogenic, stemming from sectors such as energy, 
industry, transportation, agriculture, land-use change, 
and waste management (Priyadarshini et al., 2025). 
Urbanization exacerbates these emissions, with dense 
population centers contributing disproportionately 
through increased infrastructure, vehicular activity, and 
energy consumption. Over time, these patterns of emission 
become spatially correlated with zones of intense human 
activity and temporally aligned with rapid economic 
expansion (Yu et al., 2024). To address these spatial and 
systemic complexities, remote sensing and Geographic 
Information Systems (GIS) have emerged as indispensable 
tools for environmental analysis. Remote sensing enables 
continuous monitoring of Earth’s surface parameters, while 
GIS allows for spatially explicit modeling of environmental 
indicators and anthropogenic pressures. These tools 
provide a basis for multi-scale climate vulnerability 
assessments, from local urban settings to regional and 
global contexts. For example, Valjarević et al. (2022) utilized 
satellite and GIS-based approaches to update global 
climate classification, revealing nuanced climate dynamics 
and spatial vulnerabilities.
	 Bali Province, Indonesia, a globally recognized tourism 
hotspot, is experiencing substantial environmental stress 
due to accelerated land-use transformation (Saifulloh et al., 
2025). Recent research indicates that surface temperatures 
in Bali have been increasing at an average rate of 0.01°C per 
year (Sunarta et al., 2022). This trend is closely associated 
with the widespread conversion of natural landscapes into 
built environments, including hotels, resorts, restaurants, 
and urban settlements (Andyana et al., 2023; Diara et al., 
2024; Sunarta and Saifulloh, 2022a). The loss of vegetative 
cover resulting from urban expansion significantly reduces 
the landscape’s capacity for carbon sequestration (Sudarma 
et al., 2024; Susila et al., 2024; Trigunasih and Saifulloh, 2022), 
while emissions from transportation, hospitality operations, 
solid waste, and agricultural practices continue to intensify. 
Despite the significance of these transformations, there 
remains a lack of spatially explicit data and systematic 
assessments of GHG emission vulnerability for the region. 
This data gap highlights the need for robust geospatial 
methodologies to inform mitigation strategies and policy 
interventions.
	 Although various studies have sought to analyze 
GHG vulnerability, most have been constrained by 
limited spatial, temporal, or variable coverage. For 
instance, (Hassaan et al., 2023) assessed CO and PM2.5 
exposure using discrete point-source data, lacking spatial 
continuity. Sakti et al. (2023) employed Sentinel-5P to 
monitor gaseous pollutants such as CO, NO2, and SO2, 
yet failed to incorporate critical environmental metrics 
such as vegetation and temperature (Pan et al., 2024). 
While meteorological influences have been examined in 
studies by (Ayyamperumal et al., 2024; Z. Feng et al., 2023), 
few efforts have systematically integrated these variables 
within spatially scalable frameworks. In the region of 
Bali Province, NO2 concentrations have been examined 

for the year 2020 (Sunarta and Saifulloh, 2022b), though 
such assessments were not embedded within a broader 
vulnerability framework. Meanwhile, spatial machine 
learning models such as fuzzy geographically weighted 
clustering (Grekousis et al., 2024) have incorporated static 
demographic indicators but still fall short of accounting for 
dynamic spatiotemporal GHG variability.
	 To overcome these limitations, the present study 
introduces a comprehensive approach for mapping GHG 
vulnerability through unsupervised deep learning. The 
framework employs a convolutional autoencoder (CAE), a 
class of neural networks capable of learning latent feature 
representations without requiring labeled data (Azarang et 
al., 2019; Cui et al., 2018). All input variables are derived from 
freely available multi-sensor satellite datasets, retrieved 
via the Google Earth Engine (GEE) platform (Gorelick et 
al., 2017). These include primary GHG indicators (NO2, CO, 
SO2, and Aerosol Optical Depth), environmental variables 
(temperature and vegetation indices), human activity 
proxies (population density and nighttime lights), and 
topographic data.
	 This method enables detailed spatial and temporal 
characterization of emission vulnerability, eliminating 
the need for resource-intensive field data collection. 
By forgoing reliance on labeled training data, the CAE 
model supports rapid, cost-effective, and reproducible 
assessments of environmental vulnerability. The innovation 
of this research lies in the fusion of multi-source satellite 
data with unsupervised deep learning to detect spatial 
patterns of vulnerability, particularly in data-limited regions 
such as Bali. Ultimately, this research advances both the 
scientific understanding and practical management of 
GHG emissions, contributing meaningfully to global 
climate resilience and sustainability agendas.

MATERIALS AND METHODS

Study area

	 The study was conducted in Bali Province, Indonesia, 
an island located in Southeast Asia with significant 
ecological sensitivity and economic reliance on tourism. 
Geographically, Bali lies around 8°00'S latitude and 115°40'E 
longitude, covering a land area of 5,593.60 km2 (Fig. 1). 
Administratively, the province consists of nine regencies 
and one city: Denpasar, Badung, Gianyar, Buleleng, 
Tabanan, Jembrana, Klungkung, Bangli, and Karangasem, 
encompassing 57 subdistricts and 716 villages. According 
to the 2025 provincial census (BPS Bali, 2025), Bali has a 
population of approximately 4.46 million, with an average 
density of 798 people/km2. Denpasar City has the highest 
population density (6,058 people/km2), followed by Gianyar 
(1,447 people/km2) and Badung (1,426 people/km2), which 
are the primary centers of tourism and urban development 
(BPS Provinsi Bali, 2025).
	 In terms of long-term climatic conditions, Bali 
experiences a tropical monsoon climate with a distinct 
wet and dry season. Based on historical records, average 
temperatures have ranged between 22.5 and 27.5°C, 
while projections suggest future increases to 25.5–
29.5°C. Northern Bali in particular is projected to face 
temperature anomalies ranging from 1.6 to 2.9°C, coupled 
with declining humidity levels, especially in the north. In 
contrast, southern areas may experience slight increases 
in humidity. Under the representative concentration 
pathways (RCP) 4.5 climate scenario, Bali is predicted to 
lose areas with comfortable climate zones (20–26°C), giving 
way to predominately hot and dry conditions (Toersilowati 
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Fig. 1. Research location in Bali Province, Indonesia

et al., 2022). Similarly, long-term projections suggest 
rainfall will fluctuate annually but remain within a relatively 
stable range of 2,066–2,170 mm, with both maximum 
and minimum temperatures continuing to rise by up to 
2°C (Puspitasari and Wu, 2025). These climatic shifts pose 
significant implications for urban planning, agriculture, and 
environmental resilience in Bali, underscoring the urgent 
need for spatially explicit assessments of greenhouse gas 
vulnerability.
 
Workflow framework and data sources

	 To assess greenhouse gas (GHG) emission vulnerability 
spatially, a systematic methodological framework was 
developed, integrating multi-sensor satellite observations 
with unsupervised deep learning. The methodological 
workflow (Fig. 2) comprises three core phases: (1) data 
acquisition and preprocessing using Google Earth Engine 
(GEE), (2) deep learning modeling using a convolutional 
autoencoder (CAE), and (3) postprocessing and 
interpretation using zonal statistics.
	 In Phase I, remotely sensed variables were selected to 
reflect GHG emission sources, environmental sensitivity, 
and anthropogenic exposure. Table 1 outlines the nine 
indicators used: NO2, CO, SO2 (Sentinel-5P), NDVI, LST, AOD 
(MODIS), population density (WorldPop), nighttime lights 
(VIIRS), and elevation (SRTM). All datasets were resampled 
to 1 km2 and reprojected to WGS 1984 UTM Zone 50S. 
	 The open-source remote sensing data utilized in this 
study originated from multiple sensors with native spatial 
resolutions ranging from 30 meters to approximately 
1,000 meters. Most of the datasets representing sources of 
greenhouse gas emissions, particularly from atmospheric 
sensors, are provided at a coarser resolution of around 1 
km. Therefore, for consistency and compatibility within 
the modeling process, all variables were resampled to a 

uniform spatial resolution of 1 km2. This harmonization 
of spatial resolution is essential for feeding standardized 
input into the unsupervised deep learning model, 
ensuring that data dimensions are consistent (Y. Han et 
al., 2024; Li et al., 2024). To maintain temporal consistency 
across datasets, pollutant-related variables and other 
emission source indicators (such as NO2, CO, SO2, AOD, 
NDVI, and LST) were accessed using mean values coded 
over the 2022–2024 period via GEE. In contrast, datasets 
lacking temporal resolution, such as SRTM elevation and 
WorldPop population data, used the most recent available 
data. Given that this is a preliminary study conducted at a 
regional mapping scale, a 1 km2 resolution is appropriate 
and consistent with similar studies implemented in other 
parts of the world (Garajeh et al., 2023; Maurya et al., 2022; 
Xiong et al., 2021).

Data preprocessing and tensor construction

	 Each raster file was imported using the rasterio library 
and converted to 32-bit floating-point arrays. Missing 
values were replaced with zero, particularly for elevation 
data beyond the study boundary. After spatial alignment, 
each dataset was normalized using min-max scaling to 
standardize feature ranges to [0, 1], following Eq. 1:

	 where x'
ik
 denotes the normalized value of variable k at 

pixel i, while min (x
k
) and max (x

k
) represent the minimum 

and maximum values observed across the entire raster for 
variable kk. This ensures comparability among different 
datasets during model training.

(1)
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Fig. 2. Workflow Framework of the Research

Table 1. Multi-Sensor Satellite Data and Functional Roles in Regional GHG Vulnerability Modeling

№ Data source (GEE) Extracted variable Spatial & temporal resolution Functional role in the model

1
Sentinel-5P TROPOMI 

(COPERNICUS/S5P/OFFL/
L3_NO2)

Tropospheric NO2 (mol/m2)
• Pixel Size: 1113.2 meters
• Revisit Interval: 2 Days

Proxy for traffic and industrial 
emissions; indicates nitrogen-

based pollution intensity

2
Sentinel-5P TROPOMI 

(COPERNICUS/S5P/OFFL/
L3_CO)

Tropospheric CO (mol/m2)
• Pixel Size: 1113.2 meters
• Revisit Interval: 2 Days

Represents incomplete 
combustion from fossil fuel and 

biomass burning

3
Sentinel-5P TROPOMI 

(COPERNICUS/S5P/OFFL/
L3_SO2)

Tropospheric SO2 (mol/m2)
• Pixel Size: 1113.2 meters
• Revisit Interval: 2 Days

Emission from power plants, 
volcanic activity, and smelting 

industries

4
MODIS MCD19A2

(MODIS/061/MCD19A2_
GRANULES)

Aerosol Optical Depth (unitless)
• Pixel Size: 1000 meters
• Revisit Interval: Daily

Indicator of atmospheric 
particulate concentration; 
linked to PM2.5 exposure

5
MODIS Terra MOD13Q1 
(MODIS/061/MOD13Q1)

NDVI (unitless)
• Pixel Size: 250 meters

• Revisit Interval: 16 Days

Vegetative cover and 
greenness; indicator of carbon 

sequestration capacity

6
MODIS Terra MOD11A2 
(MODIS/061/MOD11A2)

Land Surface Temperature (°C)
• Pixel Size: 1000 meters
• Revisit Interval: 8 Days

Surface heat intensity; 
associated with urbanization 

and land energy balance

7
WorldPop 100m (WorldPop/

GP/100m/pop)
Population Density (people/

km2)
• Pixel Size: 92.77 meters

• Revisit Interval: -

Proxy for population exposure 
to emissions; measures human 

concentration in space

8
VIIRS Nighttime Lights (NOAA/

VIIRS/DNB/MONTHLY_V1/
VCMCFG)

Nighttime Light Radiance (nW/
cm2/sr)

• Pixel Size: 463.83 meters
• Revisit Interval: Monthly

Indicator of anthropogenic 
energy use and urban footprint

9
SRTM DEM (USGS/

SRTMGL1_003)
Elevation (meters)

• Pixel Size: 30 meters
• Revisit Interval: -

Terrain factor affecting air flow 
and pollutant accumulation in 

lowland areas

	 The normalized raster stack was reshaped into a 3D 
tensor Д Є RCxHxW, where C is the number of channels (or 
features), and H and W are the spatial dimensions of the 
input. This tensor was further converted into a 4D tensor   
X Є R1xCxHxW  to match the input format required by the 
convolutional autoencoder.

Convolutional autoencoder (CAE) modeling

	 The CAE model was implemented using the PyTorch 
library (Costa et al., 2024; Subramanian, 2018). It consisted 

of an encoder that extracted feature representations and a 
decoder that reconstructed the input. The architecture was 
as follows.

Encoder Layers:

	 • Conv2D (9 ➝ 32) ➝ BatchNorm ➝ ReLU
	 • Conv2D (32 ➝ 64) ➝ BatchNorm ➝ ReLU
	 • Conv2D (64 ➝ 128) ➝ BatchNorm ➝ ReLU
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Decoder Layers:

	 • ConvTranspose2D (128 ➝ 64) ➝ BatchNorm ➝ ReLU
	 • ConvTranspose2D (64 ➝ 32) ➝ BatchNorm ➝ ReLU
	 • ConvTranspose2D (32 ➝ 9) ➝ Sigmoid
The model was trained using the Mean Squared Error (MSE) 
loss function, defined by Eq. 2:

	 where x
i
 denotes the original input tensor value at 

index i, and  is the corresponding reconstructed output. 
The loss function penalizes reconstruction errors, thereby 
guiding the encoder to learn compact yet informative 
representations. The Adam optimizer was employed with 
a learning rate of 0.001 over 100 training epochs.

GHG vulnerability index

	 Upon convergence, the encoder output was extracted 
as a latent tensor Z Є R128xHxW, where 128 is the number of 
abstract feature channels. To collapse this multidimensional 
feature space into a single-band vulnerability index, mean 
pooling was applied across all channels (Eq. 3):

	 where GHG
index

 is the final greenhouse gas emission 
vulnerability index, and Z

c
 is the activation of the cth feature 

channel. The resulting index was again normalized to the 
range [0, 1] to facilitate interpretation. Higher index values 
indicate areas with a greater confluence of emission-
related stressors and limited ecological buffering.
	 For policy-oriented interpretation, the vulnerability 
index raster was intersected with Bali’s district-level 
administrative boundaries. The average vulnerability score 
for each administrative unit mm was calculated as Eq. 4:

	 where V
m

 represents the mean vulnerability index of zone m, 
calculated by summing all pixel-level vulnerability values v

i
 within 

the set of spatial units Z
m

, and dividing the result by the total 
number of pixels |Z

m
| within that zone. This procedure translated 

fine-resolution pixel values into actionable administrative-level 
metrics that can guide localized climate mitigation planning, 
land use policy, and emission reduction initiatives.

RESULTS

Dataset from Multi-Sensor Satellite

	 This study utilized nine environmental variables derived 
from freely available multi-sensor satellite products. These 
included tropospheric gases (NO2, CO, SO2), Aerosol Optical 
Depth (AOD), Land Surface Temperature (LST), vegetation 
indices (NDVI), anthropogenic proxies (Nighttime Light 
Radiance and Population Density), and Elevation (Fig. 3). All 
raster datasets were resampled to a uniform spatial resolution of 
1 km2 and aligned to the WGS 1984 UTM Zone 50S coordinate 
system. Each variable was normalized to a [0,1] scale to ensure 
consistent input for the convolutional model.
	 Elevated values of NO2, CO, SO2, and AOD were predominantly 
observed in lowland urban regions. These concentrations 
reflect intense combustion activity and atmospheric pollutant 
accumulation from transportation and industrial sources. Such 
hotspots were spatially clustered in urban centers and along 
coastal corridors characterized by dense infrastructure and 
minimal vegetative cover. Other variables, such as LST, NDVI, 
population density, and nighttime lights, mirrored patterns of 
urban expansion. Built-up zones displayed higher land surface 
temperatures and lower vegetation greenness. Population 
and light radiance levels further emphasized anthropogenic 
pressure, while elevation helped determine pollutant dispersion 
across terrain gradients.

(4)

(2)

Fig. 3. Environmental variables derived from multi-sensor satellite datasets used in greenhouse gas emission 
vulnerability modeling

(3)
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Fig. 4. Correlation matrix of environmental variables used in GHG vulnerability modeling

Multivariate Relationships and Feature Space Analysis

	 The correlation matrix (Fig. 4) identified strong 
associations among several variables. AOD exhibited high 
correlation with CO (r = 0.98), NDVI (r = 0.93), and LST 
(r = 0.92), indicating that areas with higher particulate 
concentrations often coincide with vegetation decline and 
thermal stress. NO2 also showed strong correlations with 
CO (r = 0.92) and LST (r = 0.88). Additionally, nighttime 
light radiance and population density were closely linked 
(r = 0.89), reinforcing their combined role as indicators of 
urbanization intensity.

Autoencoder Training and Latent Representation

	 The convolutional autoencoder was trained for 100 
epochs using the Adam optimizer with a learning rate of 
0.001. Training loss, calculated using mean squared error 
(MSE), decreased from 0.195 to 0.0021 (Fig. 5), confirming 
effective convergence. The encoder architecture 
featured three convolutional layers integrated with batch 
normalization and ReLU activations, compressing the 
nine-band input into 128 latent features. The decoder then 
reconstructed the input using transposed convolutional 
layers and activation functions.
	 The latent feature space effectively captured non-linear 
dependencies among input variables, enabling the model 
to identify complex spatial patterns of vulnerability. For 
example, locations with elevated LST, high NO2, and low 
NDVI were consistently abstracted into high-risk zones. The 
low reconstruction error confirmed the model’s capability 
to retain meaningful spatial representations. A single-band 
vulnerability index was generated via mean pooling across 
all latent feature channels.

	 The GHG vulnerability index was classified using the 
Jenks Natural Breaks method, which separates values 
into statistically distinct classes by minimizing within-
class variance and maximizing variance between classes. 
This method is widely recognized for its suitability in 
environmental vulnerability assessments (Hou et al., 2022; 
Ke et al., 2023; Rzasa and Ciski, 2021). The spatial distribution 
(Fig. 6) showed that very high vulnerability zones were 
concentrated in southern Bali, particularly in Denpasar and 
coastal Badung, where index values exceeded 0.66. These 
areas exhibited characteristics such as dense urbanization, 
extensive infrastructure, low vegetation cover, and 
intensified human activity. High vulnerability also appeared 
in segments of southern Gianyar and Klungkung. Moderate 
vulnerability values were observed in transitional inland 
regions, while low to very low vulnerability was dominant 
in upland and northern areas with greater ecological 
stability.
	 Further analysis of administrative-level units revealed 
that 11.31% were categorized as high or very high 
vulnerability, 18.72% as moderate, and 69.97% as low to 
very low (Fig. 7). These village-level areas represent local 
jurisdictions responsible for implementing environmental 
policy. The highest vulnerability scores were recorded 
in Denpasar, southern Badung, Gilimanuk (Jembrana), 
and Singaraja (Buleleng), all of which are recognized for 
concentrated tourism and urban development.

DISCUSSION 

	 This study presents a significant advancement in 
spatial modeling of greenhouse gas (GHG) emission 
vulnerability by integrating a convolutional autoencoder 
(CAE) deep learning approach with multi-sensor satellite 
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Fig. 5. Convergence of training loss in convolutional autoencoder over 100 epochs

Fig. 6. Spatial distribution and proportional area of GHG emission vulnerability in Bali Province
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Fig. 7. Spatial alignment of GHG vulnerability with administrative boundaries

data. The unsupervised CAE model eliminated the need for 
labeled training data, addressing a persistent challenge in 
regional-scale environmental assessments where ground-
based measurements are often unavailable. Previous 
research has demonstrated that autoencoders are effective 
for extracting latent features and reconstructing complex 
geospatial patterns in remote sensing applications (X. Han 
et al., 2017; Pintelas et al., 2021). In this study, the model 
achieved rapid convergence and low reconstruction 
loss, affirming its ability to process and learn from high-
dimensional environmental inputs.
	 The resulting vulnerability index revealed distinct spatial 
gradients, with high-risk zones concentrated in southern 
coastal areas, such as Denpasar and southern Badung. These 
regions are associated with dense urbanization, tourism-
related development, and intensive energy use. These 
findings align with global studies showing that atmospheric 
pollutants like NO2, CO, and AOD are often concentrated in 
urban-industrial zones (Fioletov et al., 2025; Wang et al., 2025). 
The integration of land surface temperature, NDVI, nighttime 
lights, and population density further substantiated the 
mapping of anthropogenic stressors and ecological 
degradation (Liu et al., 2015; McRoberts et al., 2020).
	 A key innovation of this research is its use of openly 
accessible satellite data and an unsupervised deep learning 
approach to generate a replicable and cost-effective GHG 
vulnerability mapping framework. Designed to be compatible 
with Google Earth Engine and other open-source platforms, 
this methodology can be scaled to other regions lacking 
the technical capacity or financial means for traditional 
emissions monitoring. This approach complements previous 
efforts in urban classification and land use mapping, where 
autoencoder-based models have demonstrated effective 
generalization across geographic contexts (Jiang, 2018). 
The framework provides critical support for environmental 
planning and is aligned with the objectives of SDG 13 on 
climate action.

	 This study also acknowledges certain methodological 
constraints. The use of 1 km2 spatial resolution, while 
adequate for regional-scale visualization, may not capture 
the fine-scale variability needed for local urban or zoning 
applications. Additionally, while MODIS and Sentinel-5P 
data offer global consistency, they may lack sensitivity 
to site-specific emission patterns or infrastructure 
dynamics. To enhance spatial detail and accuracy, future 
research should incorporate higher-resolution datasets 
such as Sentinel-1 and Sentinel-2 imagery. Furthermore, 
integrating thematic variables like road networks, industrial 
zones, localized greenhouse gas emissions inventories, and 
spatially distributed land use categories would provide a 
more comprehensive picture of emissions at finer scales 
(Q. Feng et al., 2021). Additional consideration should be 
given to incorporating landscape circulatory factors and 
pollutant dispersion mechanisms using digital elevation 
models and meteorological data that capture prevailing 
wind directions. The findings validate the effectiveness 
of combining unsupervised deep learning with multi-
sensor remote sensing for emission vulnerability mapping. 
The proposed framework is transferable, cost-efficient, 
and capable of identifying high-risk areas, particularly 
in urbanizing regions. This method serves as a valuable 
tool for supporting spatially informed climate mitigation 
strategies and advancing global climate governance.

CONCLUSIONS 

	 This study demonstrated a rapid and cost-effective 
approach to mapping greenhouse gas (GHG) emission 
vulnerability by integrating multi-sensor satellite data 
with an unsupervised convolutional autoencoder (CAE) 
deep learning model. The framework avoided the need for 
field-based training data and extracted 128 latent features 
from a range of environmental indicators, enabling robust 
spatial characterization of emission risks. The vulnerability 
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index showed distinct spatial gradients, with the highest 
values concentrated in southern coastal areas experiencing 
dense anthropogenic activity, particularly from tourism 
and urbanization. These results confirm the effectiveness 
of unsupervised deep learning in identifying emission 
hotspots and spatial variability in data-limited settings. 
Utilizing open-access datasets and scalable computational 
methods, the framework offers a replicable solution 
for other regions, especially in developing countries 
where financial and technical constraints hinder regular 
monitoring. It presents a practical tool to support emission 

analysis and planning aligned with climate mitigation 
strategies. To enhance precision, future improvements 
should incorporate high-resolution imagery through 
data fusion techniques, such as integrating Sentinel-2 
or commercial satellite data. This advancement would 
allow for more detailed mapping suitable for urban-
scale planning and targeted mitigation. This research 
contributes a transferable, efficient methodology for spatial 
quantification of GHG emission vulnerability, offering 
actionable insights to support climate policy and advance 
the Sustainable Development Goals (SDGs).
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