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SOUTH OF RUSSIAN FAR EAST

RESEARCH PAPER

Natalia V. Shartova1, Fedor I. Korennoy2, Tamara V. Vatlina3, Dmitry S. Orlov4, Varvara A. Mironova4*,  
Hairong Lee5, Wang Li5, Svetlana M. Malkhazova4

1International Laboratory of Landscape Ecology, Higher School of Economics, Moscow, Russia. Pokrovsky bvd, 11, 
Moscow 109028
2FGBI Federal Center for Animal Health (FGBI ARRIAH), Vladimir, Russia, mkr. Yurevets, Vladimir 600901 
3Faculty of Natural Geography, Smolensk State University, Smolensk, Russia, Przhevalsky st., 4, Smolensk 214000
4Lomonosov Moscow State University, Russian Federation, Geography faculty, department of biogeography. 
Leninskie Gory 1, Moscow 119991
5Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing
*Corresponding author:  mironova.va@gmail.com
Received: November 11th, 2023 / Accepted: December 7th, 2023 / Published: March 31st, 2024
https://DOI-10.24057/2071-9388-2023-3117

ABSTRACT. The south of the Russian Far East is distinguished by diversity of natural conditions for the presence of vectors 
and circulation of pathogens, primarily tick-borne infections. Despite the relatively low proportion of tick-borne encephalitis 
in the structure of tick-borne infections and the rather low incidence rate compared to other Russian regions, the disease here 
has epidemiological significance, which is associated with its severe course. Therefore, it is important to identify local areas 
of greatest epidemic manifestation of the disease and potential drivers influencing the spread of tick-borne encephalitis.
 This study uses data on population incidence in the municipal districts of Khabarovsk Krai, Amur Oblast, Jewish 
Autonomous Oblast and Zabaikalsky Krai between 2000 and 2020. Based on Kulldorf spatial scanning statistics, a temporally 
stable cluster of virus circulation in the population in the southwest of Zabaikalsky Krai was identified, which existed during 
2009-2018. Regression modeling using zero-inflated negative binomial regression based on a set of environmental and 
socio-economic predictors allowed to identify variables determining the probability of infection: the share of forest, the 
amount of precipitation in the warm period, population density, as well as variables reflecting population employment and 
socio-economic well-being.
 Despite the fact that tick-borne encephalitis is a natural focal disease and may be characterized by natural periods of 
increased incidence, the influence of the social component can have a strong impact on the epidemiological manifestation. 
The identified spatio-temporal differences within the study region and potential drivers must be taken into account when 
developing a set of preventive measures. 

KEYWORDS: SatScan, GeoDa, endemic areas, space-time clusters, modeling, GIS
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INTRODUCTION

 Tick-borne infections are caused by pathogens that 
are transmitted through tick bites. These infections include 
a wide range of diseases, some of which can pose a 
serious threat to human health. Regarding the variety of 
environmental factors that contribute to the existence 
of vectors and the spread of infections, the south of 
the Russian Far East region is especially significant. The 
structure of incidence of natural focal diseases in the 

region is dominated by pathologies transmitted by ixodid 
ticks: tick-borne rickettsioses, primarily Siberian tick-borne 
typhus (STT), account for about 40% of all registered cases; 
30% of the overall incidence structure are ixodid tick-
borne borrelioses (TBB), while tick-borne encephalitis (TBE) 
accounts for 13%. Human granulocytic anaplasmosis (HGA) 
and human monocytic ehrlichiosis (HME) are less frequent 
(Malkhazova et al., 2023). Because a single tick can harbor 
more than one pathogenic agent, the population may be 
infected with more than one pathogen simultaneously, 

https://doi.org/10.24057/2071-9388-2023-3117
https://doi.org/10.24057/2071-9388-2023-3117
https://crossmark.crossref.org/dialog/?doi=10.24057/2071-9388-2023-3117&domain=pdf&date_stamp=2024-3-31
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adding to the challenges of diagnosis and treatment. As 
the incidence of tick-borne diseases increases and the 
geographic areas in which they occur expand, healthcare 
providers are increasingly required to distinguish between 
the diverse and often overlapping clinical manifestations 
of these diseases.
 In most regions in the southern part of the Russian Far 
East, the incidence of the three predominant tick-borne 
infections is observed annually, with the highest rates 
recorded in Primorsky and Khabarovsk krais. At the same 
time, there is a geographic heterogeneity in the spread 
of tick-borne infections in the region (Fig. 1). For example, 
in Zabaikalsky and Primorsky krais, the predominance of 
TBB in the morbidity structure is noticeable, while in Amur 
Oblast, Khabarovsk Krai, and Jewish Autonomous Oblast, 
STT is more frequent. Over the years, there is a discernible 
shift in the severity of morbidity manifestations, which is 
particularly noticeable in TBE.
 Despite the low share of TBE in the structure of tick-
borne infections and the rather low incidence rate in the 
south of the Far East compared to other regions of the 
country, the long-term average rate is 1.4 per 100 thousand 
population. This number approximately corresponds to the 
national average (1.34) and falls behind the most affected 
areas of the Urals and Southern Siberia (8-12 per 100 
thousand population (On the state.., 2023). This indicates 
that the disease is of great epidemiological significance. 
TBE is caused by the TBE virus (TBEV) belonging to the 
genus Flavivirus of the family Flaviviridae, and consists of 
three main subtypes: European, Siberian, and Far Eastern 

TBEV (Ecker et al., 1999; Lindquist, Vapalahti, 2008). In the 
Far East, the infection is especially severe, with a large 
number of adverse outcomes, which is associated with the 
high virulence of the Far Eastern subtype virus (Andaev et 
al., 2021). Retrospective analysis revealed that TBE cases 
were recorded in the southern region of the Far East in 
the late 19th and early 20th centuries. Over the past 30 
years, there have been significant fluctuations in the 
incidence rate (Leonova, 2020). The spread of the infection 
is confined to the south of the Far East within the range of 
the main vector, the tick Ixodes persulcatus, whose habitat 
belongs to taiga landscapes (Korenberg et al., 2013). In 
addition, I. pavlovskyi may play a role in the transmission 
of infection as well, but its significance has not been 
sufficiently studied (Chicherina et al., 2015). The TBE virus 
has also been isolated from ticks of the genus Dermacentor, 
D. nuttalli, and D. silvarum, which are native to open steppe 
and forest-steppe biotopes (Dampilova, Turanov, 2014; 
Shchuchinova et al., 2015; Kholodilov et al., 2019).
 The aims of this study were to identify the geographical 
heterogeneity of TBE distribution within the endemic 
region and to define the main drivers that can be 
used in creating preventive strategies. In this study, we 
investigated spatio-temporal patterns as well as potential 
drivers of TBE using incidence data (2000–2020) from the 
south of Russian Far East. First, we identified areas with 
high and low clustering of TBE incidence within the region. 
Then we explored whether various environmental and 
social conditions, including climatic, landscape and socio-
economic variables, can explain the spatial patterns of TBE.

N. V. Shartova, F. I. Korennoy, T. V. Vatlina et al.	 SPATIO-TEMPORAL	HETEROGENEITY	AND	POTENTIAL	DRIVERS	OF	...

Fig. 1.	Incidence	of	major	tick-borne	infections	in	the	Russian	Far	East
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Materials and methods

Study area

 The study area includes four federal entities of the 
Russian Federation located in the south of the Far East: 
Zabaikalsky Krai, Khabarovsk Krai, Amur Oblast, and Jewish 
Autonomous Oblast. Three northern municipal districts 
of the Khabarovsk Krai (Okhotsky, Ayano-Maisky, and 
Tuguro-Chumikansky districts), extending beyond the 
ranges of ixodid ticks, were excluded from the analysis. 
The region under study is characterized by a variety of 
climatic and physical-geographical conditions. According 
to the Köppen-Geiger classification, most of the territory 
is influenced by warm humid continental climate (Dfb) 
and subarctic climate (Dfc), with the inclusion of a cold 
semi-arid climate (Bsk) in Zabaikalsky Krai, as well as hot 
humid continental climate (Dfa) in Jewish Autonomous 
Oblast (Beck et al., 2018). The territory is dominated 
by mountainous terrains. The relief of Zabaikalsky Krai 
presents itself in a form of elongated low and medium-
high ridges, with the highest peak at 3067 m, while Amur 
Oblast is characterized by an alternation of medium-high 
and low ridges with plains, lowlands, and depressions. The 
vegetation is represented by taiga complexes of coniferous, 
coniferous-deciduous, and broad-leaved forests and forest 
steppe landscapes (National Atlas of Russia, vol. 2, 2007). This 
creates different habitat conditions for the tick population 
and functioning of the natural TBE foci. The socioeconomic 
conditions in the study region differ significantly, which 
could have an impact on the population’s TBE circulation.

TBE data

 Initial TBE incidence data were presented as absolute 
(annual number of cases) and relative (annual number of 
cases per 100,000 population) indicators aggregated by 
municipal units for the period from 2000 to 2020. A total 
of 85 municipal districts were included in the analysis. The 
data were officially sourced from the regional departments 
of the Federal Service for Supervision of Consumer Rights 
Protection and Human Welfare (Rospotrebnadzor).

Environmental and socio-economic data

 Variables reflecting the effects of natural and 
socioeconomic conditions on the possible spread of 
tick-borne encephalitis are presented in Table 1. The 
choice of variables is determined by the environmental 
requirements of vectors, primarily climate, vegetation, and 
topography, as well as the peculiarities of the epidemiology 
of TBE and the possible influence of the socioeconomic 
component. Ixodid ticks are sensitive to humidity and 
temperature conditions (Burri et al., 2011, Tokarevich et 
al., 2017); therefore the distribution of natural foci of TBE is 
determined by the sum of temperatures for a period with 
a stable average daily temperature above 5 °C of at least 
1600 °, with a moisture index varying from 0.15 to 0.60 and 
even slightly higher (Korenberg, Kovalevsky, 1985). Ixodid 
tick habitats are largely determined by forest structure 
(Daniel et al., 1998). Altitude can also potentially influence 
the distribution of various tick species (Kholodilov et al., 
2019).
 Information about natural conditions was obtained 
using a digital elevation model, ERA5 climate reanalysis data 
aggregated by month, and data on land use and surface 
temperature presented in the Google Earth Engine catalog 
(https://earthengine.google.com). After downloading the 
calculated variables (altitude, share of forest territories, 

precipitation in the warm period, land surface temperature 
for the warm period, and depth of snow cover) in raster 
format with the spatial resolution of the original datasets, 
the most represented pixel value was then recalculated to 
municipal units.
 Human activity and behavior can significantly affect 
the spread of TBE. For example, the use of forest resources, 
changes in agriculture, or other types of anthropogenic 
activities may be reasons for the increase in the incidence 
of TBE (Kriz et al., 2004; Stefanoff et al., 2012; Panatto et al., 
2022). These changes may be influenced by differences in 
broader socioeconomic circumstances (Randolf, 2008).
 Data on socio-economic conditions (population 
density; share of people employed in agriculture, hunting, 
and forestry; fishing and fish farming; share of people 
employed in mining; share of the total area of residential 
premises equipped with sewerage; share of dilapidated 
housing; and density of paved roads) were obtained 
from open sources of the Federal State Statistics Service 
(Rosstat). The listed indicators characterize both the 
employment and living conditions, can generally reflect 
the socio-economic development of the municipality and 
the well-being of the population living in it, and indirectly 
influence the possibility of the spread of infection.
 Data on natural and socio-economic conditions were 
limited to the period from 2016 to 2020. The primary 
processing and preparation of data for subsequent analysis 
were performed using the JavaScript Earth Engine API on 
the Google Earth Engine platform as well as the mapping 
service QGIS.

Spatio-temporal statistical analysis

 Kulldorff spatial scan statistics implemented in SaTScan 
9.6 software (Kulldorff, 2018) were used to identify possible 
spatio-temporal clusters of high TBE incidence in the study 
area during the period from 2000 to 2020. This approach 
is based on moving a cylindrical scanning window across 
the area of interest. The vertical dimension of the cylinder 
represents time. The radius and height of the cylinder 
varied from zero to 50% of the size of the study area and 
study period, respectively. Those cylinders within which 
there was a statistically significant excess of the observed 
number of cases over the expected number were then 
represented as spatio-temporal clusters. The expected 
number of cases was estimated based on the hypothesis of 
its Poisson distribution depending on the population in the 
municipal area using a discrete Poisson model (Kulldorff, 
1997).
 Spatial scan statistics were applied to the annual 
number of TBE cases assigned to municipal centroids. The 
model also uses municipal population data for the period 
from 2000 to 2020 (data is sourced from Rosstat). The use 
of this method made it possible to obtain spatial clusters 
of municipalities for a specific period of time, where the 
observed number of TBE cases statistically exceeds the 
expected number of cases.
 To examine overall spatial clustering of TBE incidence, 
Global Moran’s I spatial autocorrelation tool was additionally 
used. TBE incidence data were also tested for the presence 
of local spatial autocorrelation using Getis-Ord Statistics 
(Getis and Ord, 1992). Calculations were implemented in 
GeoDa software (Anselin et al., 2006). As a result, spatial 
clusters with high and low incidence could be identified 
and compared to the spatio-temporal clusters that had 
already been found.
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Regression analysis

 Due to the fact that the incidence rate is highly 
biased and does not correspond to a normal distribution, 
which makes it difficult to use multiple linear regression, 
the number of years of registration of TBE cases in the 
municipality was used as the dependent variable. This 
approach seems justified, since the number of cases in the 
study area is usually no more than 1–2 per year, with rare 
exceptions of up to 10–15 cases (maximum 18) confined 
to cities. In addition, in a number of municipalities, TBE was 
not registered at all during the study period, which creates a 
significant number of zero values in the sample. In contrast 
to the incidence rate, there were no outliers for the variable 
of the number of years of registration.
 We used zero-inflated negative binomial regression, 
which is appropriate for modeling count variables with 
excessive zeros that may be overdispersed (the count mean 
was 5.76, with a variance of 28.64, indicating overdispersion). 
According to theory, the count values and excess zeros are 
produced by different processes and can be represented 
separately (Hilbe, 2011). 
 Zero-inflated negative binomial regression models have 
two sets of predictors. One is used in a negative binomial 
model that predicts counts of the years of TBE registration 
and other is used in a logistic model to predict zero values 
(current absence of TBE registration in municipality). In that 
case we used a set of environmental and social predictors as 
the share of forest area, precipitation during warm period, 
population density, the share of population employed in 
mining. All variables were tested for multicollinearity by 
with the variance inflation factor (VIF < 5 that indicated 
moderate correlation). The goodness of regression model fit 
was assessed by an adjusted R-squared (R2

adj
) – a coefficient 

of determination adjusted for the number of predictions 
in the model, and a Root Mean Square Error (RMSE) - an 
average difference between values predicted by a model 
and the actual values. Regression analysis was carried out 
using R packages ggplot2, car, pscl, easystats, sjPlot.

 Regression residuals were tested for the absence of spatial 
autocorrelation using Anselin Local Moran’s I test (Anselin, 
1995). This test is aimed at finding clusters of polygons with 
increased/decreased residual values based on the local 
Moran’s I index and its statistical significance metrics (z-score 
and p-value). Statistical significance was assessed using 999 
random permutations, and FDR correction was applied to 
eliminate the influence of multiple testing. Moran’s I index 
values close to 1 or -1 and having a p-value<0.05 indicate the 
presence of clustering.

Results

Spatio-temporal clusters

 Spatio-temporal analysis of TBE incidence allowed us to 
identify several statistically significant clusters. The most stable 
spatio-temporal cluster occurred between 2009 and 2018, 
and was characterized by a high relative risk of incidence (RR = 
24.9), observed in the southwest of Zabaikalsky Krai (Fig. 2). The 
cluster includes two municipal districts, Krasnochikoisky and 
Petrovsk-Zabaikalsky. The remaining statistically significant 
spatio-temporal clusters belong to the period from 2000 to 
2002, and are confined to the entire study area.
 When considering the time dynamics for the entire study 
period, it was revealed that the period from 2000 to 2002 was 
characterized by a high incidence rate, after which the number 
of cases in the region stabilized (Fig. 3). It should be noted that 
in these years, no increase in incidence was observed in the 
Krasnochikoysky and Petrovsk-Zabaykalsky districts.
 The Global Moran’s I test for overall spatial clustering of 
incidence indicated the existence of a possible positive spatial 
autocorrelation (0.375, p-value<0.001) in the region. A spatial 
cluster of high incidence was identified in Zabaikalsky Krai, 
more specifically, in the central (Sretensky, Shelopogunsky) 
and southwestern (Kyrinsky, Krasnochikoysky, Petrovsk-
Zabaikalsky, Khiloksky, Uletovsky) districts, while a low 
incidence cluster, including areas where the incidence was 
not recorded at all, was recorded in the southern districts of 
Amur Oblast (Fig. 4).

Table 1.	Environmental	and	socio-economic	variables

Drivers Variable Data source

Natural 

Altitude (m)
ALOS World 3D - 30m (AW3D30) is a global digital surface 

model (DSM) dataset

Share of forest territories (%)
Dynamic World (a 10m near-real-time (NRT) Land Use/

Land Cover (LULC) dataset) (Brown et al., 2022)

Precipitation in the warm period, (May — September, °C) Copernicus Climate Change Service (C3S) (2017): ERA5: 
Fifth generation of ECMWF atmospheric reanalyses of 

the global climate. Copernicus Climate Change Service 
Climate Data Store (CDS), (date of access 08-10-2023), 

https://cds.climate.copernicus.eu/cdsapp#!/home

Depth of snow cover (mm)

Air temperature for the cold period (November — March, °C)

Land surface temperature for the warm period (May — 
September, °C)

MODIS daily Land-surface Temperature at 1 km grids 
https://doi.org/10.5067/MODIS/MOD11A1.061

Socio-economic

Population density (people per sq. km)

Federal State Statistics Service (Rosstat)

Share of people employed in agriculture, hunting, and 
forestry; fishing and fish farming (%)

Share of people employed in mining (%)

Share of the total area of residential premises equipped with 
sewerage (%)

Share of dilapidated housing (%)

Density of paved roads (km per 1000 sq. m)
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Fig.	2.	Spatio-temporal	patterns	of	TBE	incidence	(retrospective	Space-Time	analysis	scanning	for	clusters	with	high	rates	
using	the	Discrete	Poisson	model,	RR	–	relative	risk,	cluster	p-value	<	0.05)

Fig. 3.	TBE	incidence	dynamic	(2000-2020)	inside	and	outside	of	incidence	cluster	2009-2018

Fig.	4.	Spatial	patterns	of	high	and	low	TBE	incidence,	2000-2009	(Getis-Ord	Statistics,	cluster	p-value	<	0.05)
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Table	2.	Results	of	zero-inflated	negative	binomial	regression	models

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1
Testing of regression residuals revealed no clusters or outliers.

Variables
Model 

coefficients
CI 95% Std. Error z value Pr(>|z|)

Truncated poisson with log link

(Intercept) 1.306 −0.527, 3.138 0.935 1.397 0.163

Altitude (m) 0.000 0.000, 0.001 0.000 2.557 0.011*

Share of forest territories (%) 0.016 0.009, 0.022 0.003 4.872 <0.001***

Precipitation in the warm period, (May — 
September, °C)

−13.266 −20.001, −6.531 3.436 -3.861 <0.001***

Depth of snow cover (mm) −0.133 −2.025, 1.758 0.965 -0.138 0.890

Air temperature for the cold period 
(November — March, °C)

0.011 −0.043, 0.065 0.027 0.403 0.687

Land surface temperature for the warm 
period (May — September, °C)

0.020 −0.017, 0.057 0.019 1.042 0.298

Population density (people per sq. km) 0.001 0.001, 0.002 0.000 5.531 <0.001***

Share of people employed in agriculture, 
hunting, and forestry; fishing and fish 

farming (%)
−0.095 −0.136, −0.055 0.021 -4.634 <0.001***

Share of people employed in mining (%) −0.171 −0.310, −0.032 0.071 -2.412 0.016*

Share of the total area of residential 
premises equipped with sewerage (%)

0.001 −0.005, 0.008 0.003 0.345 0.730

Share of dilapidated housing (%) 0.039 0.010, 0.068 0.015 2.628 0.009**

Density of paved roads (km per 1000 sq. m) −0.002 −0.010, 0.006 0.004 -0.546 0.585

Zero hurdle model coefficients (binomial with logit link)

(Intercept) 6.214 2.513, 9.914 1.888 3.291 <0.001***

Share of forest territories (%) 0.067 0.025, 0.108 0.021 3.147 0.002**

Precipitation in the warm period, (May — 
September, °C)

−78.206
−125.583, 
−30.829

24.172 -3.235 0.001**

Population density (people per sq. km) 0.005 0.000, 0.009 0.002 1.949 0.051

Share of people employed in mining (%) −1.197 −1.911, −0.483 0.364 -3.285 0.001**

Potential drivers of TBE distribution

 The results of Zero-inflated negative binomial regression 
showed good explanatory power of the TBE model 
(R2adj=0.90, RMSE =3.28). No overdispersion in the model, 
nor clustering of residuals were recorded. Registration 
of TBE on the territory was significantly related to such 
indicators as altitude, the share of forests, precipitation for 
the warm period, population density, the share of people 
employed in agriculture, hunting and forestry, fishing and 
fish farming, the share of people employed in mining, 
the share of dilapidated housing. Table 2 summarizes the 
model coefficients with their 95% confidence intervals, as 
well as statistical significance metrics (p-value) indicating a 
performance of particular variable as an explanatory factor 
in the regression. (Table 2).

Discussion

 Population morbidity in 85 municipalities in the 
southern part of the Russian Far East for the period between 

2000 and 2020 was analyzed, and a set of potentially 
influencing factors that shape the spatial heterogeneity of 
the distribution of TBE were identified.
 In the study region, there are two focal territories: 
the Central Siberian-Transbaikal region, which includes 
Zabaikalsky Krai, and the Khingano-Amur region, which ties 
all other territories together (Korenberg and Kovalevsky, 
1981). The results of the analysis showed that currently 
these focal areas are characterized by different intensities 
of the epidemic process. The territory where the epidemic 
process has been most active and stable for a long time 
is the southwest of Zabaikalsky Krai. This includes the 
Krasnochikoisky and Petrovsk-Zabaikalsky districts, that are 
forming a stable spatio-temporal cluster. This conclusion 
coincides with the results of other studies, where these 
two areas are classified as areas with high epidemiological 
risk (Turanov et al., 2020). This may be due both to the most 
favorable environmental conditions for tick populations 
represented in mid-mountain cedar-larch forests (National 
Atlas of Russia, vol. 2, 2007), and the influence of the 
peculiarities of economic activities carried out by residents 
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of the areas associated with active interaction with natural 
environment.
 Residents of the Krasnochikoysky district are mainly 
engaged in agricultural production (livestock raising), wood 
processing and procurement of wild plants: mushrooms, 
berries, pine nuts, wild garlic (Official portal of the Trans-
Baikal Territory. Krasnochikoysky district. https://chikoy.75.
ru/o-rayone/168914 -description). Labor employment of 
the population is low, which is why there are high risks 
of people coming into contact with the vector, especially 
during the period of active taiga fishing (Turanov et al., 
2020). The metallurgical plant in the Petrovsk-Zabaikalsky 
district ceased its operation in 2002 (Rogov, 2023), which 
could also have contributed to a decrease in employment 
and people switching to actively visiting natural biotopes 
for hunting, fishing and collecting wild plants.
 It should be noted that the administrative units 
neighboring the Krasnochikoisky and Petrovsk-Zabaikalsky 
districts form a spatial cluster of high incidence, which can 
also serve as confirmation of an active epidemic process in 
this territory.
 Areas with low activity of the epidemic process include 
districts of the south of Amur Oblast, where a cluster of 
low incidence was identified, including areas with zero 
registration of TBE cases. This is the most populated and 
developed territory of the region, located in the landscape 
zone of deciduous forests on the Zeya-Bureya Plain and the 
southern part of the Amur-Zeya Plain. Natural conditions 
are less favorable for the circulation of the virus compared 
to the rest of the study region, which is mainly determined 
by the low proportion of forests in these districts (no more 
than 40%). The low activity of the epidemic process is 
confirmed by the lowest detection rates of antibodies to 
the TBE virus in the population (Dragomeretskaya et al., 
2018).
 A distinctive feature of the 2000–2002 clusters was the 
even distribution throughout the study region. In general, 
TBE is characterized by periodic cycles of rising incidence, 
usually occurring every 3–5 years (Korenberg et al., 2013). 
However, these clusters are, apparently, an echo of the 
deterioration of the epidemic situation with TBE throughout 
the entire focal territory of the Eurasian continent in 1990–
1999, when there was a multifold increase in incidence 
rates not only in Western and Eastern Siberia, but also in 
the European and Far Eastern parts of the country (Zlobin 
et al., 2015; Leonova, 2020). The deterioration of the 
epidemiological situation could be caused by both the 
increased risk of infection of urban residents and the almost 
complete absence of methods and opportunities for mass 
prevention during the years of the socio-economic crisis 
(Voronkova, Zakharycheva, 2007; Korenberg et al., 2013). In 
subsequent years, on the contrary, there was a persistent 
trend towards a pronounced decrease in the incidence of 
TBE.
 It should be noted that the Russian focal area of TBE 
continues into China, covering the northeast of the 
country and the provinces of Inner Mongolia, Heilongjiang, 
and Jilin, taking that that Heilongjiang is of the foremost 
priority (Yi et al., 2017) . Approximately 99% of cases have 
been reported in forested areas with mixed broadleaf-
coniferous forests as the dominant vegetation, as well as in 
mixed broadleaf-coniferous forests and broadleaf forests. 
Moreover, most cases were in farmers or forestry workers 
(Sun et al., 2017; Chen et al., 2019).
 The results of the regression analysis contribute to the 
understanding of the distribution of TBE in the study region, 
as well as the location of the identified spatio-temporal 
clusters. The spread of infection is the result of both natural 

and social factors; however, the role of the latter cannot be 
underestimated. According to the regression model, factors 
influencing the likelihood of infection primarily include 
the share of forest, the amount of precipitation during the 
warm season, population density, and employment in the 
mining industry.
 The share of forests in the territory of a municipality is 
one of the main drivers, as it determines the possibility of 
the existence of the main vector of the virus, I. persulcatus. 
This is supported by consistent results from both spatio-
temporal cluster analysis and regression model analysis. 
This is one of the most influential factors associated with 
the vector ecology.
 The amount of precipitation during the warm period 
was also a significant variable in the model: the higher 
the amount of precipitation, the lower the probability of 
the spread of TBE. However, the influence of this factor 
should be interpreted with caution. Several other studies 
have also shown mixed results regarding the nature of 
the influence of precipitation (Brabec et al., 2017; Li et al., 
2017). For example, in northeastern China, the risk of TBE 
infection in southwestern Heilongjiang Province was found 
to decrease with increasing precipitation, whereas in the 
center, it intensified along with increasing precipitation (Li 
et al., 2017). Ticks are sensitive to humidity, and increased 
humidity caused by increased precipitation helps to 
maintain optimal conditions in tick refuges, reduces 
moisture loss during hunting, improves their survival, and 
lengthens hunting periods (Uusitalo et al., 2020). However, 
the mechanism for synchronizing the complex life cycle 
of ixodid ticks under natural conditions is based on the 
reaction to day length. Therefore, the most generally 
important hydrothermal conditions are those under which 
ticks can receive an amount of heat and moisture that 
guarantees the completion of a certain developmental 
stage within a strictly defined time frame (Korenberg et al., 
2013).
 The lack of significance of the temperature factor 
in the model is probably explained by fairly favorable 
temperature conditions for the tick population and virus 
circulation throughout the entire study area; therefore, it is 
not limiting and does not appear on the regional scale of 
the study. In addition, it should be noted that little studies 
have been made about the impact of temperature or other 
meteorological factors directly on the TBE virus population 
(Korenberg et al., 2013).
 Among other natural factors that significantly influence 
the spread of TBE, is altitude that can also reflect the 
environmental requirements of ticks. However, as in the 
case of the relationship with precipitation, the threshold 
values may be important when assessing the influence of a 
factor on the distribution of TBE. In northeast China, a non-
monotonic and segmental effect of altitude was shown, 
with the highest risk of infection at altitudes of 400–600 m, 
then 1400–1700 m and 2000–3000 m (Sun et al., 2017). The 
affinity of I. persulcatus to medium and low altitudes has 
been noted in studies on Altai (Shchuchinov et al., 2015) 
and Tuva (Kholodilov et al., 2019).
 Among socio-economic factors, the greatest 
influence was found for indicators of population density 
and employment, as well as the share of dilapidated 
housing. High population density appears to be a factor 
contributing to the spread of TBE. It is often associated with 
a high proportion of urban areas and a large population, 
which naturally increases the risk of TBE (Uusitalo et al., 
2020). Employment of the population, which in our case 
was characterized by the share of people employed in 
agriculture, hunting, forestry, fishing, and fish farming, as 
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well as in mining, probably restrained the spread of taiga 
foraging among the population and, accordingly, caused 
less contact with natural biotopes. In addition, those 
formally employed in hunting and forestry are more likely 
to be vaccinated, which also limits the spread of the disease. 
The influence of the share of dilapidated housing and the 
share of the total area of residential premises equipped with 
sewerage, as an indirect indicators of the socio-economic 
well-being of the population, support the hypothesis that 
one of the main factors in the spread of TBE in districts may 
be the lack of employment of the population or low level 
of income. The finding of the impact of unemployment 
and low-wage work on forest visits to gather resources 
for sale is in agreement with other studies (Stefanoff et al., 
2012; Stefanoff et al., 2018).
 Thus, the analysis not only made it possible to identify 
territories with different levels of manifestation of the 
epidemic process and determine the factors influencing 
the formation of a spatially heterogeneous picture in the 
spread of TBE, but also led to an indirect conclusion about 
the most vulnerable group: the economically marginalized 
population living in areas that are depressed in the socio-
economic context. At the same time, the rest of the sick 
population might be vacationers resting in nature or 
working on private plots of land. These differences can 
be illustrated by the example of larger cities of the region  
(Chita, Khabarovsk, and Komsomolsk-on-Amur), where 
cases of TBE are recorded almost annually; however, taking 
into account population density and socio-economic 
characteristics, the likelihood of population contact 
with a vector and the risk of TBE infection cannot be 
considered together with districts included in the stable 
spatio-temporal cluster of Krasnochikoisky and Petrovsk-
Zabaikalsky districts.
 The identified spatio-temporal differences within 
the study region and their potential drivers must be 
considered when carrying out preventive measures, 
including vaccine prevention, anti-tick treatments, health 
education, and informing the population about personal 
protection. Despite the fact that at least 95% of the child 
and adult populations living in endemic areas are subject 
to mandatory vaccination, as well as the entire population 
that is exposed to occupational risks or travels to areas 
endemic for TBE (Sanitary Rules..., 2022), the vaccination 
plan is not completely fulfilled. The information on the 
partial volume of the vaccination campaign carried out 
is available in the reports “On the state of sanitary and 
epidemiological well-being of the population” for all 
subjects studied. Immunization coverage of TBE among 
the population living in endemic areas was no more 
than 10%. In addition, there are problems in evaluating 
the epidemiological effectiveness of vaccine prevention 
(Pen’evskaya et al., 2018). To improve the vaccine 

prevention program and analyze its effectiveness, a wider 
use of assessing the seroprevalence of IgG antibodies to 
the tick-borne encephalitis virus is necessary (Tokarevich 
et al., 2022). Despite the existence of natural cycles in the 
epidemiological manifestations of TBE, the influence of 
socio-economic components can have a strong impact 
on the incidence rate. A clear confirmation of this is the 
rise in incidence in the 1990s. Therefore, a set of preventive 
measures should be developed with consideration for the 
socio-economic characteristics of districts.

Strengths and limitations

 The research carried out has certain limitations. Firstly, 
due to the lack of data, the influence of such factors as 
the size of tick populations, species composition and the 
level of their infestation in the study area, as well as the 
presence of rodents and large mammals that act as feeders 
for a significant number of both immature and adult stages 
were not considered (Cagnacci et al., 2012). Secondly, we 
were unable to compile a cohesive picture of the south 
of the Far East due to the absence of publicly available 
statistical data for Primorsky Krai. Lastly, the accuracy of 
threshold estimations for the response of influencing 
factors is limited by statistics that are combined across 
municipal units. However, the set of methods used allowed 
us to obtain consistent results regarding the spatial picture 
and potential drivers in the spread of TBE.

CONCLUSION

 The study’s findings allowed for the identification of 
two distinct clusters: one in the south of Amur Oblast, 
which was non-endemic and had a low incidence rate, 
and the other in the southwest of Zabaikalsky Krai, which 
showed a temporally stable cluster of active TBE viral 
circulation among the population. Simultaneously, various 
drivers in the creation of these spatial clusters can be 
identified. While the lack of ideal conditions for the virus 
vector, primarily caused by a small percentage of forests, 
determines a cluster of non-endemic areas, the socio-
economic component plays a major role in the formation 
of a cluster of active virus circulation among the population. 
Despite the fact that TBE is a natural focal disease (as 
evidenced by the identified influence of the proportion 
of forests, the amount of precipitation in the warm season 
and altitude), the socio-economic parameters, such as 
population density, employment and financial well-being 
of the population, might also have quite the impact on 
the viral processes of TBE. Therefore, the underestimation 
of the socio-economic components may negatively affect 
the effectiveness of preventive measures.
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ABSTRACT. Seagrass meadow is one of the blue-carbon ecosystems capable of absorbing and storing carbon more 
effectively in the bodies and sediments than terrestrial ecosystems. However, nationwide data on its carbon stock remains 
elusive due to limitations and challenges in data collection and mapping. Seagrass percent cover and biomass, which were 
closely related with above-ground carbon stock, can be effectively mapped and monitored using remote sensing techniques. 
Therefore, this study aimed to compare the accuracy of 4 scenarios as well as assess the performance of random forest and 
stepwise regression methods, for mapping seagrass percent cover and biomass in Nusa Lembongan, Bali, Indonesia. The 
scenarios were experimented using only atmospherically corrected images, sunglint, water, as well as sunglint and water 
column corrected images. Furthermore, WorldView-3 images and in-situ seagrass data were used, with the image corrected 
by applying the scenarios. Random forest and stepwise regression methods were adopted for mapping and modelling. The 
optimum mapping scenario and method were chosen based on R2, RMSE, and seagrass spatial distribution. The results show 
that the atmospherically corrected image produced the best seagrass percent cover and biomass map. Range of R2 using 
random forest and stepwise regression model was 0.49–0.64 and 0.50–0.58, with RMSE ranging from 18.50% to 21.41% and 
19.36% to 20.72%, respectively. Based on R2, RMSE, and seagrass spatial distribution, it was concluded that the random forest 
model produced better mapping results, specifically for areas with high seagrass percent cover.
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INTRODUCTION

	 Seagrass	 is	 an	 ecosystem	 with	 numerous	 benefits,	
including protection services, serving as primary producers, 
providing habitats for marine biota, and carbon storage 
(Duarte and Tomas 2013; Macreadie et al. 2017; Sjafrie et al. 
2018; Macreadie et al. 2019; Duarte et al. 2020). Compared 
to terrestrial vegetation, it can store more CO

2
 in the bodies 

and	sediments	(Mcleod	et	al.	2011).	Despite	these	benefits,	
seagrass is experiencing a decline of 2-5% annually on a 
global scale (Duarte and Dennison, 2008). This ecosystem 
is vulnerable to damage and degradation due to increased 
coastal development and activities (Grech et al. 2012; 
Yaakub et al. 2014; Holon et al. 2015), as well as changes 
in environmental conditions that lead to the extinction of 
certain species (Strydom et al. 2017). According to study 
conducted by P2O-LIPI through the COREMAP-CTI project 
between 2015 – 2017, seagrass beds in Indonesia were 
in poor condition (Sjafrie et al. 2018). Given this situation, 
the	significance	of	the	mapping	and	obtaining	up-to-date	
information on the extent and condition of seagrass is 
increasing (UNEP, 2020).

	 Remote	sensing	technology	is	an	efficient	and	effective	
tool for monitoring seagrass beds due to its ability to 
provide both spatial and temporal information (Koedsin et 
al.	2016;	Fauzan	et	al.	2017;	Effrosynidis	et	al.	2018).	Various	
method can be used to analyze remote sensing data 
(Effrosynidis	 et	 al.	 2018;	 Pham	 et	 al.	 2019),	 enabling	 the	
provision of information on seagrass extent and changes, 
species distribution, percent cover (Roelfsema et al. 2014; 
Fauzan et al. 2021), and biomass (Lyons et al. 2015; Koedsin 
et al. 2016; Wicaksono et al. 2021). 
 Seagrass mapping using remote sensing comprises 
various processes, contributing to producing accurate 
maps, such as atmospheric, sunglint, and water column 
correction, as stated in previous studies (Bukata et al. 1995; 
Hedley et al. 2005). While some investigations suggested 
that correction can improve accuracy (Tamondong et al. 
2013; Anggoro et al. 2016), others indicated the opposite 
(Zhang et al. 2013). In addition to correction-related 
reports, data analysis is another critical process in remote 
sensing, facilitating data interpretation and visualization 
(Lillesand et al. 2015). The commonly used approach is 
stepwise regression method, as it enables the selection of 
an	independent	variable	based	on	a	significant	relationship	

https://doi.org/10.24057/2071-9388-2023-2886
https://doi.org/10.24057/2071-9388-2023-2886
https://crossmark.crossref.org/dialog/?doi=10.24057/2071-9388-2023-2886&domain=pdf&date_stamp=2024-3-31


17

(Thompson 1995; Smith 2018). This approach accelerates 
the	 selection	 and	 analysis	 of	 the	 most	 influential	
independent variables (Wang and Jain 2003; Khogkhao et 
al. 2017; Wicaksono et al. 2021). The application of linear 
regression is challenging due to the complexity of seagrass 
with diverse habitats and varying density. Alternatively, 
random forest regression method is a machine learning 
approach that builds decision trees based on random 
vectors with independently sampled data. It can unveil 
more complex relationships and process data quickly and 
accurately (Salford Systems, 2014; Genuer and Poggi, 2020; 
Zhang	and	Xie,	2012;	Zhang	et	al.,	2013;	Effrosynidis	et	al.,	
2018; Maxwell et al., 2018; UNEP 2020). 
	 The	 study	 specifically	 focuses	 on	 percent	 cover	 and	
biomass mapping, with previous investigation presenting 
these parameters as crucial indicators for estimating carbon 
stocks in seagrass beds (Wahyudi et al., 2019). Remote 
sensing techniques have been adopted for the mapping 
process, as showed by Roelfsema et al. (2014), Koedsin et 
al. (2016), Fauzan et al. (2021), and Wicaksono et al. (2021). 
Given the importance of seagrass beds in mitigating 
climate change by sequestering carbon, there is a growing 
need for data and knowledge on these variables (Duarte 
and Tomas, 2013; Fourqurean et al., 2013). Therefore, using 
remote sensing technology to obtain information on 
percent cover and biomass is crucial. This study aimed to 
examine various correction methods and compare the 
effectiveness	of	the	random	forest	and	stepwise	regression	
methods for mapping percent cover and seagrass biomass 
in Nusa Lembongan Island.

MATERIALS AND METHODS

Study Area 

Nusa Lembongan, an island in the Klungkung Regency, 
Bali,	Indonesia	(Fig.	1),	is	geographically	located	at	08°	30΄	
40΄΄	-	08°	41΄	43΄΄	S,	and	115°	25΄	36΄΄	E	-	115°	28΄	20΄΄	E.	The	

island	has	a	flat	topography	with	northward	and	southward	
slopes of 0–3% and 3–8%, respectively. The study area 
had a coastline of 16.3 km and comprised of mud, rock, 
and mangrove (Kumara 2018). Nusa Lembongan has a 
semi-diurnal tide pattern, resulting in two high and two 
low tides in a day. The current patterns in its waters were 
influenced	by	the	movement	of	water	masses	from	the	Bali	
Strait, Lombok Strait, and the Indonesian sea, while tides 
have	a	more	significant	impact	on	current	types	in	shallow	
waters (Prasetia et al., 2017).
 According	to	field	observations	made	by	the	Coral	Triangle	
Center and Udayana University, the Nusa Penida Marine 
Protected Area has an area of 108 hectares covered by eight 
species of seagrass, namely Thalassia hemprichii, Halophila 
decipiens, Halophila ovalis, Enhalus acoroides, Cymodocea 
rotundata, Syringodium isoetifolium, Cymodocea serrulata, and 
Halodule uninervis (Kabupaten Klungkung, 2012). The seagrass 
ecosystem in the study area comprised of sand and muddy 
sand substrate types (Negara et al., 2020). However, Negara 
et al. (2020) stated that seagrass beds in the area were mainly 
used for tourism purposes, with the majority of the seagrass 
region serving as docking points for ships.

Field Data

	 The	field	data	used	in	this	study	was	sourced	from	Kumara	
(2018), who conducted a survey on benthic habitat and 
seagrass percent cover on Nusa Lembongan Island from June 
12 to 19, 2017. This dataset comprised information related to 
various benthic types, such as coral, seagrass, macroalgae, and 
bare substrate, with data points distribution of 155, 450, 17, and 
194, respectively.
 The photo-transect method, which adopted underwater 
cameras and quadrants, was applied to collect the seagrass 
percent cover data. The photos taken contained coordinate 
information as the camera time is synchronized with GNSS. 
Furthermore, the receiver tracking interval is one second, 

D. N. Br Ginting, P. Wicaksono, N. M. Farda MAPPING SEAGRASS PERCENT COVER AND ...

Fig. 1. The study site on Nusa Lembongan Island, as captured by WorldView-3 image. The purple rectangles on the figure 
represent the various coastal typology zones, while the points indicate the locations of the sample sites
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ensuring precise geotagging. Quadrants measuring 0.5 × 0.5 
m were used, and photos were captured at 2 m intervals. These 
quadrants served as a tool for scaling objects in photos or 
determining	the	percentage	of	seagrass	cover.	The	classification	
of seagrass percent cover was established according to Fig. 2. 
For example, when the seagrass covers the entire area of the 
quadrat, it is labelled as 100%.
 Each transect, ranging from 100-150 m long, was divided 
according to the coastal typology zones, comprising Zone I 
to VI, namely deep rocky, deep sandy, sandy sloping, muddy 
sloping, strait sloping, and sandy zones with high currents, 
respectively.	 This	 partitioning	 facilitated	 the	 identification	 of	
areas	 where	 specific	 seagrass	 species	 were	 predominantly	
discovered in each zone. The percent cover on each zone is 
presented in Table 1. Each zone consisted of 4-6 transect lines, 
determined	by	the	level	of	species	diversity	observed.	The	field	
data was divided into two sets. One and one part was used to 
train	the	classification	and	regression	models,	while	the	other	
set was reserved for accuracy assessment.

WorldView-3 Image

 DigitalGlobe launched WorldView-3 in 2014 as a 
commercial high-resolution image. It captures 8 multispectral 
bands with a spatial resolution of 1.24 m and 8 short infrared 
bands at 3.7 m resolution, alongside 12 Cavis bands at 30 m 
resolution, as presented in Table 2. The panchromatic band has 
a resolution of 0.31 m, and according to Kovacs et al. (2018), 
high	 spatial	 resolution	 imagery	 offers	 increased	 detail	 and	
is commonly regarded as more representative for mapping 
purposes. This image can capture up to 680,000 km2 per day 
and has been corrected for sensor distortion. The received 
pixels were in radiometrically calibrated digital number 
(DigitalGlobe, 2014). The Worldview-3 image used in this 
study was captured on July 27, 2016, at 10:00:00 AM, when 
the waters in Nusa Lembongan Island were in low tide. As a 
result, several benthic objects were visible above the surface at 
the time of capture. This study used only the visible and near-
infrared bands. 

Fig. 2. Seagrass percent cover interpretation guide (seagrasswatch.org, accessed April 10, 2022)

Table 2. WorldView-3 specification

Table 1. Seagrass percent cover on each zone

Band Wavelength (nm) Band Wavelength (nm)

Coastal 400 - 450 Red 630 - 690

Blue 450 - 510 Red edge 705 - 745

Green 510 - 580 Near-IR1 770 - 895

Yellow 585 - 625 Near-IR2 860 - 1040

Spatial resolution 1.24 m

Radiometric resolution 11-bit

Temporal resolution Daily

Zone Total	number	of	field	data Average (%)

1 49 74.59

2 65 26.17

3 36 47.92

4 84 73.57

5 180 51.75

6 22 55.45
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Image Processing

 The initial phase of image processing comprises 
masking, followed by correction using Scenario 1 - 
atmospheric, Scenario 2 - sunglint, Scenario 3 - water 
column, as well as Scenario 4 - sunglint and water column 
corrections. The corrected image is then used to create 
maps of benthic habitat and percent cover. Furthermore, the 
benthic habitat was characterized based on random forest 
classification	 algorithm.	 Pixel	 values	 within	 the	 seagrass	
and substrate classes were analyzed using both random 
forest and stepwise regression methods to produce percent 
cover map. This percent cover was further transformed 
into biomass map through the application of equation 
developed	by	Wicaksono	(2015).	The	flowchart	showing	the	
methodology of this study is presented in Fig. 3.
 
Image Masking 

 The process of image masking was adopted to 
eliminate unnecessary pixels. This includes masking out 
land, optically deep water, and wave breaking pixels. To 
achieve land masking, the threshold value of the NIR band 
was	used,	 enabling	 the	differentiation	of	water	 and	 land	
pixels. Similarly, water column-corrected bands were used 
to identify threshold values for deep water pixels, thereby 
masking out optically deep waters (Wicaksono et al. 2021).

Atmospheric Correction 

 Atmospheric correction was conducted to obtain the 
surface	reflectance	values.	The	method	for	removing	path	
radiance in images is the dark object subtraction (DOS) 
technique developed by Chavez (1996), which is applied to 
the	TOA	reflectance	of	the	WorldView-3	image	(Equation	1).

where:
 ρ

BOA
:	surface	reflectance,	

 ρ
e
:	reflectance	of	dark	object,	

 ρ
TOA
:	reflectance	on	top	of	atmosphere

Sunglint Correction 

 In this study, the method developed by Hedley et al. 
(2005), was applied to reduce sunglint by leveraging the 
linear relationship between the NIR and visible bands in a 
training area with various sunglint levels. The required inputs 
for this correction include the visible band to be corrected, 
the slope of the linear regression, the NIR band, and the 
minimum	value	of	the	NIR	band	in	an	area	unaffected	by	
sunglint, as shown in Equation 2. The correction process 
engaged	968	samples	obtained	from	affected	deep-water	
areas. The slope of the linear regression was obtained 
from a training area of pixels in deep waters with varying 
sunglint intensities, as determined by Hochberg et al. 
(2003). The minimum value of the NIR band in the region 

Fig. 3. The study flowchart

(1)
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without sunglint was calculated by applying the following 
equation. 

where:
 ρ

i
	=	reflectance	of	visible	band	i

 b
i
 = slope between visible and NIR

 ρ
NIR
	=	reflectance	of	band	NIR

 ρMin
NIR
	=	minimum	reflectance	of	NIR	band

 ρ
i
’ =	reflectance	of	sunglint	corrected	band

Water Column Correction 

 This study used the water column correction method 
developed by Lyzenga (1978), as described in Green et 
al. (2000). The method adopted a pair of visible bands to 
generate	a	new	band	where	the	energy	attenuation	effect	
from the water column has been minimised. To perform 
the	necessary	corrections,	 reflectance	values	of	 the	same	
benthic	object	at	different	depths	were	required	(Equation	
3). Meanwhile, sand was chosen for this study, as it is easily 
visible	 and	 distinguishable	 at	 different	 depths,	 with	 the	
reflectance	value	decreasing	as	depth	increases.	A	total	of	
217 samples of sand were collected at various depths.

where:
 Y  = depth invariant index
 L

i
	=	reflectance	of	band	i

 L
j
	=	reflectance	of	band	j

 k
i
 / k

j
	=	ratio	of	coefficient	attenuation	for	band	i	dan	j

Mapping Methods

Random Forest 

 Random forest is a machine learning approach that 
builds decision trees based on random vectors with 
independently sampled data (Salford Systems, 2014; 
Genuer	and	Poggi,	 2020).	 Its	 classification	and	 regression	
was used for benthic habitat and seagrass percent cover 
mappings, respectively. In random forest regression, n

tree
 

(the number of trees) and m
try

 (the number of variables 
randomly selected at each node) parameters were also set. 
Furthermore, n

tree
 used factors of 100 and 500, while for m

try
, 

the total of input variables was divided by 3 (Genuer and 
Poggi, 2020) and the lowest error from out-of-bag (OOB). 
The	first	m

try
 was the initial m

try
 in R software, and second 

mtry OOB was chosen because OOB samples help evaluate 
misclassification	 as	 well	 as	 estimate	 the	 importance	 of	
variables (Eisavi et al., 2015). 

Stepwise Regression

 Stepwise regression is an analysis method used 
to determine the relationship between independent 
and dependent variables. This was achieved analysing 
the	 sequence	 of	 significant	 relationships	 among	 the	
independent variables (Thompson, 1995; Smith, 2018). 
In this study, stepwise regression was used to determine 
the	 relationship	 between	 reflectance	 value	 of	 the	 image	
and the in-situ data on the percent cover. The equation 
obtained from this analysis was then adopted to generate a 
spatial distribution of the percent cover on the WorldView-3 
image. 

Seagrass Biomass

 The seagrass biomass map was derived through the 
conversion of percent cover using the equation provided 
by Wicaksono (2015). A regression analysis was conducted 
on in-situ data, establishing a relationship between 
percent cover and biomass with an R2 value of 0.4399 and a 
standard error (SE) ranging from 30 to 40 g/m2, as shown in 
Equation	4.	Seagrass	PC	was	the	most	efficient	method	for	
estimating biomass due to its quick and non-destructive 
nature (Wicaksono, 2015). The following represent the 
equation adopted.

 With PCv is seagrass percent cover

Accuracy Assessment 

 Benthic habitat mapping accuracy assessment was 
performed using the confusion matrix method. This 
approach	adopted	a	table	that	evaluates	the	classification	
algorithm performance (Ting, 2017). The overall accuracy 
was determined by calculating the number of pixels 
accurately	 classified	 against	 the	 field	 data.	 In	 testing	
empirical modelling for percent cover and biomass, the 
coefficient	 of	 determination	 (R2) and root mean square 
error (RMSE) were used. The R2 measures the goodness-
of-fit	of	 the	model	 to	the	data	 (Ozer,	1985).	On	the	other	
hand, the RMSE is a statistical method that assesses the 
model accuracy (Chai and Draxler, 2014). The error value 
represented	the	difference	between	the	model	results	and	
the in-situ data. This assessment is essential in evaluating 
the accuracy of each scenario and the results obtained 
was compared using the random forest and stepwise 
regression methods.

RESULTS

Benthic habitat Mapping

 Benthic habitat maps were generated using random 
forest	 classification	 in	 atmospheric	 scenario,	 which	
showed the highest accuracy and spatial distribution 
in Nusa Lembongan Island (Ginting et al., 2023). The 
classification	outcomes	showed	the	ability	to	map	fringing	
reef	formations,	despite	the	misclassification	of	seagrass	as	
coral, as indicated by the red circle in Fig. 4.
 In atmospheric scenario, the accuracy was 73.00%, 
while for coral, seagrass, substrate, and macroalgae, the 
user’s accuracies were 83.33%, 71.94%, 69.84%, and 0%, 
respectively. The corresponding producer’s accuracies for 
the same classes were 56.45%, 87.36%, 57.14%, and 0%. 
When comparing the user’s and producer’s accuracies, 
the results suggest that the reef and substrate classes 
were underestimated, and the spatial distribution of this 
ecosystem exceeded estimation. However, due to a lack of 
field	data	and	the	absence	of	macroalgae	in	the	study	area,	
accurate mapping was not possible.

Seagrass Percent Cover Mapping

 The spatial distribution of percent cover in each scenario 
was	analyzed	based	on	 the	 levels	 specified	 in	 the	Decree	of	 the	
Minister of Environment No. 200 of 2004 (Kepmen LH, 2004), which 
include low (29.9%), medium (30.0–59.9%), and high (> 60%). The 
analysis was focused on 6 zones, as described in Fig. 1. Seagrass 
dominated in Zone I and IV, seagrass dominated, showing 
high percent cover, while Zone II had a low percent cover. 
Finally, the percent cover in III, V, and VI was moderate.

(2)

(4)

(3)
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Fig. 4. Benthic habitat map obtained from random forest classification based on atmospheric correction scenario

Table 3. R2 and RMSE based on random forest regression

Scenario

n
tree

100 500

R2 RMSE (%) R2 RMSE (%) R2 RMSE (%) R2 RMSE (%)

1 0.61 21.41 0.61 21.35 0.61 21.07 0.61 21.10

2 0.63 19.50 0.64 19.60 0.63 19.34 0.62 19.41

3 0.51 21.4 0.49 21.22 0.50 21.06 0.51 21.13

4 0.62 19.08 0.62 19.26 0.63 18.81 0.62 18.50

Initial OOB Initial OOB

m
try

 In random forest regression, parameter tuning is 
conducted	 to	 analyze	 the	 effect	 of	 each	 parameter	 (n

tree 
and m

try
) on the mapping of percent cover. The R2 did not 

show	a	 significant	difference	between	parameter	 tuning,	
as indicated by the small variation in its values (0-0.2), as 
presented	in	Table	3.	Based	on	RMSE,	the	error	difference	
between mtry ranged from 0.03-0.31%, while n

tree
 was 

spanned between 0.09-0.76%. The initial m
try

 showed the 
lowest RMSE among all m

try
 parameter tuning. This study 

concluded that the n
tree
	parameter	had	the	most	influence	

on the accuracy of the percent cover map, with the lowest 
RMSE observed at n

tree
 500. The range of R2 and RMSE in the 

4 scenarios are 0.49–0.64 and 18.50–21.41%, respectively. 
The ranking of R2 from highest to lowest include Scenario 
2, Scenario 4, Scenario 1, and Scenario 3. On the other 

hand, the best RMSE was indicated by the lowest value, 
observed in Scenario 4, followed by Scenario 2, Scenario 3, 
and Scenario 1.
 In Scenario 1, based on random forest regression, 
seagrass with medium-to-high percent cover can be 
mapped as apposed to those with low cover percent, 
as shown in Fig. 5. On the other hand, Scenario 2 is 
unable to map high percent cover in coastal areas near 
mangroves (Zone IV) due to the pixel value loss caused by 
the sunglint correction process (marked by white on the 
map). Analyzing the distribution in each zone showed that 
Scenario 2 adequately maps the percent cover of zones 
III,	V,	and	VI.	However,	misclassifications	occurs	 in	Zone	 II,	
where	low	percent	cover	is	classified	as	a	medium	cover.
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 Scenario 3 had the lowest R2 and higher error compared 
to	the	others,	indicating	a	higher	level	of	misclassification	
due to the correction process. Examining the spatial 
distribution in each zone show that this scenario is 
effective	at	mapping	the	percent	cover	in	Zones	I,	and	IV,	
which have a high percent cover. Scenario 4 had similar 
classification	with	2,	with	missing	pixel	values	denoted	by	
white markings resulting from sunglint correction. This 
scenario	was	effective	at	mapping	moderate	percent	cover	
but	is	less	effective	for	low	percent	cover.
 Each scenario was compared using 3 metrics, namely 
R2, RMSE, and spatial distribution, to determine the optimal 
scenario for mapping biomass. Analysis showed that 
Scenario 1 (Zones I, II, IV, and VI) and Scenario 3 (zones III 
and IV) had the best performance, with the highest R2 and 
lowest	 error,	 as	 detailed	 in	 Fig.	 6.	 Specifically,	 Scenario	 1	
proved	effective	for	mapping	seagrass	with	a	high	percent	
cover, while 2 was more suitable for objects that are often 
submerged in water and the ecosystem with a medium 
percent cover. Based on these results, Scenario 1 was the 
optimal choice for mapping purposes, considering R2, 
RMSE, and spatial distribution.

 Based on the stepwise regression in Table 4, Scenario 1, 
2, 3, and 4 had R2 and RMSE values of 0.53 and 20.65%, 0.58 
and 19.36%, 0.50 and 20.72%, as well as 0.56 and 20.61%, 
respectively. These values showed that Scenarios 2, 4, 1, 
and 3 were ranked from the best to the worst.
 Fig. 7 contains a map showing the percent cover 
obtained through stepwise regression. While Scenario 1 is 
proficient	in	mapping	from	low	to	high,	it	misclassifies	the	
percent cover of seagrass. The distribution in zones I, II, IV, 
V, and VI, was accurately mapped by this scenario, except 
for zone III dominated by high cover. On the other hand, 
Scenario 2 maps the percentage of cover in zones I, II, III, 
V, and VI accurately, except for zone IV due to the loss of 
seagrass pixel caused by the sunglint correction process. 
In the mapping process, Scenario 3 also shows the same 
pattern as Scenario 1. However, certain areas marked as 
having	high	percent	cover	in	the	Scenario	1	are	classified	
as medium in Scenario 3.

Fig. 5. Seagrass percent cover map based on random forest regression. Red boxes indicate coastal typology zones. 
The figures illustrate variations in seagrass percent cover based on the four scenarios
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Fig. 6. The accuracy assessment of seagrass percent cover map based on the random forest method for each scenario and 
zone. The R2 is represented by the coloured boxes, while the scenarios are distinguished by their respective colours. Boxes 

with a thick outline indicate the RMSE
Table 4. The R2 and the RMSE of each scenario

Scenario R2 RMSE (%)

1 0.53 20.65

2 0.58 19.36

3 0.50 20.72

4 0.56 20.61

Comparison of seagrass percent cover map using 
random forest and stepwise regression

 Based on the scenario analysis, the random forest 
regression outperformed the stepwise regression method 
in terms of the R2 (Fig. 8) and RMSE values. To compare 
the spatial distribution of the results obtained from both 
methods, the scenarios with the highest R2 and the lowest 
RMSE were selected. Scenario 1 was chosen for the random 
forest regression, while Scenario 2 was selected for the 
stepwise regression. The results showed that the random 
forest regression provided better spatial distribution of 
seagrass percent cover. This shows that the method was 
selected based on its accuracy and spatial distribution of 
seagrass percent cover.

Seagrass Biomass 

 In this study, biomass map was obtained by using an 
equation developed by Wicaksono (2015). This equation 
demonstrated that mapping seagrass aboveground 
biomass (g/m2) can be accomplished by applying 
information on percent cover. To generate the biomass 
map, the best value of R2, RMSE, and spatial distribution was 
selected. The accuracy assessment showed that random 
forest	method	was	most	effective	for	mapping.	The	results	
of the biomass map can be viewed in Fig. 9, where high 
aboveground biomass is located in zones I and IV.
	 The	 field	 data	 was	 converted	 to	 a	 percentage	 of	
cover for validation using the Wicaksono (2015) equation 
to assess the accuracy of the aboveground biomass. The 
atmospheric scenario biomass was compared with that 
of validation data. Finally, the comparison yielded R2 and 
RMSE of 0.38 and 24.33 g/m2, respectively.

DISCUSSION

 This study aims to examine various correction and 
compare	 the	 effectiveness	 of	 the	 random	 forest	 and	
stepwise regression methods for mapping percent cover 
and seagrass biomass in Nusa Lembongan Island. Initially, 
benthic	habitats	were	classified,	achieving	an	accuracy	of	
over 60%, which met the Indonesian National Standard 
7716:2011	 (BSN	 2011).	 The	 classification	 effectively	
mapped fringing reef formations and seagrass meadow 
ecosystems in the study area, as shown in the study by 
Prasetia et al. (2017) and Negara et al. (2020). However, 
macroalgae objects were not mapped due to the low 
cover, as presented in the report by Munir and Wicaksono 
(2019). 
 Seagrass and sand pixels from benthic habitat were 
selected to examine various correction and methods to 
extract seagrass percent cover. Based on the analysis of 
all data, both the random forest and stepwise regression 
methods indicate that Scenario 2 had the highest R2 

and the lowest RMSE. However, a closer examination of 
coastal typology zones shows that the random forest 
method performs better with Scenario 1, particularly in 
zones of high seagrass cover. This approach outperforms 
the stepwise regression method in terms of R2 and RMSE, 
both overall and per-zone. Furthermore, an analysis was 
conducted related to tuning parameters, such as n

tree
 

and m
try

. The random forest method parameter settings 
indicated that n

tree
	had	a	more	significant	effect	on	RMSE	

than m
try

 for mapping percent cover. The number of trees 
is directly proportional to the stability of the model (Dai et 
al. 2018; Genuer and Poggi 2020).
 Scenario 1 was chosen for several reasons. Firstly, the 
image was captured during low tide, eliminating the 
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Fig. 7. The map of seagrass percent cover obtained using stepwise regression. Purple boxes indicate the coastal typology 
zones. The figures display the variation of seagrass percent cover based on four mapping scenarios

Fig. 8. Comparison of seagrass percent cover map accuracy assessment in each zone for all scenarios, using both random 
forest and stepwise regression. The rectangles in the figure represent the R2, while triangles and circles represent RMSE 

values
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need for water column correction. This was in line with 
the	 study	of	Zoffoli	et	al.	 (2014),	where	 it	was	concluded	
that the Lyzenga method cannot be used for very shallow 
waters. Moreover, the images used were recorded at low 
tide	 and	dominated	by	 field	data	on	 reef	 flats.	 Secondly,	
despite sunglint scenario yielding the highest R2, it 
resulted in the loss of pixels above the water surface, 
particularly seagrasses, after correction. This suggested 
that atmospheric correction was the best input data for 
percent cover mapping. Finally, according to Wicaksono 
et al. (2019), atmospheric correction produced relatively 
stable values depending on atmospheric conditions.
 Compared to the previous investigation on mapping 
seagrass percent cover, this study indicates better 
performance than the R2 generated in Labuan Bajo using 
Planetscope data and the Support Vector Machine method 
(Munir et al. 2019). However, the model accuracy was lower 
than in the study of Ariasari et al. (2019), where Planetscope 
data and principal component analysis were used on the 
image to generate input data for random forest regression. 
Future study should consider the principal component 
analysis process to improve the accuracy of mapping the 
percent cover in the study area.
 Seagrass percent cover map was adopted to estimate 
above-ground biomass using the equation from Wicaksono 
(2015). The result showed that the equation can be used to 
map above-ground biomass up to 131 g/m2.	Based	on	field	
data collected in 2019 by Negara et al. (2020), the biomass 

at the study site ranged from 157.38 to 310.75 g/m2, 
covering	3	zones.	This	difference	 in	value	was	due	to	the	
equation by Wicaksono (2015) being developed in areas 
with lower biomass values compared to Nusa Lembongan 
Island. Despite this, the R2	 results	 are	 not	 significantly	
different	from	those	of	Wicaksono	(2015).
 The success of WorldView-3 imagery in producing 
a representative map is attributed to its high spatial and 
spectral resolution, making it particularly suitable for 
mapping seagrass ecosystems. These ecosystems are 
characterized by diverse species, benthic types, and present 
at varying density. However, WorldView-3 has limitations 
when applied to large areas or time series analysis. This is 
primarily due to a lack of scheduled and regular acquisition 
frequency, thereby making it expensive.

CONCLUSIONS 

 In conclusion, this study successfully documented the 
optimal data input for mapping seagrass percent cover 
based	 on	 image	 and	 site	 conditions.	 The	most	 effective	
input data for mapping seagrass percent cover using 
WorldView-3 imagery, recorded at low tide, in a small 
island	and	dominated	by	field	data	 in	 reef	flat	areas,	was	
the atmospheric scenario, yielding R2 and RMSE values of 
0.61 and 21.07%, respectively. The random forest algorithm 
showed superior accuracy compared to the stepwise 
regression method.

Fig. 9. Seagrass aboveground biomass map



26

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 2024

REFERENCES

  Anggoro,	A.,	Siregar,	V.	P.,	&	Agus,	S.	B.	 (2016).	The	Effect	of	Sunglint	on	Benthic	Habitats	Mapping	 in	Pari	 Island	Using	Worldview-2	
Imagery. Procedia Environmental Sciences, 33, 487–495. https://doi.org/10.1016/j.proenv.2016.03.101 

	 	 Ariasari,	A.,	Hartono,	&	Wicaksono,	P.	(2019).	Random	forest	classification	and	regression	for	seagrass	mapping	using	PlanetScope	image	
in Labuan Bajo, East Nusa Tenggara. Proceedings of SPIE - The International Society for Optical Engineering, 11174, 1117407. https://doi.
org/10.1117/12.2541718 

  Badan Standarisasi Nasional. (2011). SNI 7716/2011: Pemetaan habitat perairan laut dangkal. Jakarta.
  Bukata, R. P., Jerome, J. H., Kondratyev, A. S., & Pozdnyakov, D. V. (1995). Optical Properties and Remote Sensing of Inland and Coastal 

Waters. CRC Press LLC.
  Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the 

literature.	Geoscientific	Model	Development,	7(3),	1247–1250.	https://doi.org/10.5194/gmd-7-1247-2014	
  Chavez, P. S. (1996). Image-based atmospheric corrections - Revisited and improved. Photogrammetric Engineering and Remote 

Sensing, 62(9), 1025–1036.
  Dai, B., Gu, C., Zhao, E., & Qin, X. (2018). Statistical model optimized random forest regression model for concrete dam deformation 

monitoring. Structural Control and Health Monitoring, 25(6), 1–15. https://doi.org/10.1002/stc.2170 
	 	 DigitalGlobe.	(2014).	World	View-3	Design	and	Specifications.	Www.Digitalglobe.Com,	1–2.
  Duarte, C. M., Dennison, W. C., Orth, R. J. W., & Carruthers, T. J. B. (2008). The Charisma of Coastal Ecosystems: Addressing the Imbalance. 

Estuaries and Coasts: J CERF (2008) 31:233–238. DOI 10.1007/S12237-008-9038-7.
  Duarte, C. M., Tomas, S., & Nuria, M. (2013). Assessing the CO2 capture potential of seagrass restoration projects. Journal of Applied 

Ecology, 50, 1341–1349. https://doi.org/10.1111/1365-2664.12155
  Duarte, C. M., Agusti, S., Barbier, E., Britten, G. L., Castilla, J. C., Gattuso, J. P., Fulweiler, R. W., Hughes, T. P., Knowlton, N., Lovelock, C. E., Lotze, 

H. K., Predragovic, M., Poloczanska, E., Roberts, C., & Worm, B. (2020). Rebuilding marine life. Nature, 580(7801), 39–51. https://doi.org/10.1038/
s41586-020-2146-7 

	 	 Effrosynidis,	D.,	Arampatzis,	A.,	&	Sylaios,	G.	(2018).	Seagrass	detection	in	the	Mediterranean:	A	supervised	learning	approach.	Ecological	
Informatics, 48, 158–170. https://doi.org/10.1016/j.ecoinf.2018.09.007 

	 	 Eisavi,	 V.,	 Homayouni,	 S.,	 Yazdi,	 A.	 M.,	 &	 Alimohammadi,	 A.	 (2015).	 Land	 cover	 mapping	 based	 on	 random	 forest	 classification	 of	
multitemporal spectral and thermal images. Environmental Monitoring and Assessment, 187(5), 1–14. https://doi.org/10.1007/s10661-015-
4489-3 

  Fauzan, M. A., Kumara, I. S. W., Yogyantoro, R., Suwardana, S., Fadhilah, N., Nurmalasari, I., Apriyani, S., & Wicaksono, P. (2017). Assessing 
the Capability of Sentinel-2A Data for Mapping Seagrass Percent Cover in Jerowaru, East Lombok. Indonesian Journal of Geography, 49(2), 
195–203.

  Fauzan, M. A., Wicaksono, P., & Hartono. (2021). Characterizing Derawan seagrass cover change with time-series Sentinel-2 images. 
Regional Studies in Marine Science, 48, 102048. https://doi.org/10.1016/j.rsma.2021.102048 

  Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., Apostolaki, E. T., Kendrick, G. A., Krause-Jensen, D., 
McGlathery,	K.	J.,	&	Serrano,	O.	(2012).	Seagrass	ecosystems	as	a	globally	significant	carbon	stock.	Nature	Geoscience,	5,	505–509.

  Genuer, R., & Poggi, J.-M. (2020). Random Forests with R. In Use R!. Springer. https://doi.org/10.1007/978-3-030-56485-8
  Grech, A., Chartrand-Miller, K., Erftemeijer, P., Fonseca, M., McKenzie, L., Rasheed, M., Taylor, H., & Coles, R. (2012). A comparison of 

threats, vulnerabilities and management approaches in global seagrass bioregions. Environmental Research Letters, 7(2). https://doi.
org/10.1088/1748-9326/7/2/024006

  Green, E. P., Mumby, P. J., Edwards, A. J., & Clark, C. D. (2000). Remote Sensing Handbook for Tropical Coastal Management. In Coastal 
Management Sourcebooks 3 (Issue January 2000).Ginting, D. N. B., Wicaksono, P., & Farda, N. M. (2023). Mapping Benthic Habitat From 
Worldview-3 Image Using Random Forest Case Study: Nusa Lembongan, Bali, Indonesia. International Archives of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences - ISPRS Archives, 48(4/W6-2022), 123–129. https://doi.org/10.5194/isprs-archives-XLVIII-
4-W6-2022-123-2023

  Hedley, J. D., Harborne, A. R., & Mumby, P. J. (2005). Simple and robust removal of sun glint for mapping shallow-water benthos. 
International Journal of Remote Sensing, 26(10), 2107–2112. https://doi.org/10.1080/01431160500034086 

  Hedley, J. D., Roelfsema, C. M., Chollett, I., Harborne, A. R., Heron, S. F., Weeks, S. J., Skirving, W. J., Strong, A. E., Mark, E. C., Christensen, T. 
R. L., Ticzon, V., Bejarano, S., & Mumby, P. J. (2016). Remote sensing of coral reefs for monitoring and management: A review. Remote Sensing, 
8(2). https://doi.org/10.3390/rs8020118 

  Hochberg, E. J., Andréfouët, S., & Tyler, M. R. (2003). Sea surface correction of high spatial resolution ikonos images to improve bottom 
mapping in near-shore environments. IEEE Transactions on Geoscience and Remote Sensing, 41(7 PART II), 1724–1729. https://doi.
org/10.1109/TGRS.2003.815408 

  Holon, F., Boissery, P., Guilbert, A., Freschet, E., & Deter, J. (2015). The impact of 85 years of coastal development on shallow seagrass 
beds (Posidonia oceanica L. (Delile)) in South Eastern France: A slow but steady loss without recovery. Estuarine, Coastal and Shelf Science, 
165(May), 204–212. https://doi.org/10.1016/j.ecss.2015.05.017 

  Kabupaten Klungkung. (2012). Rencana Pengelolaan KKP Nusa Penida. Kabupaten Klungkung, Provinsi Bali.
	 	 Khogkhao,	C.,	Hayashizaki,	K.	I.,	Tuntiprapas,	P.,	&	Prathep,	A.	(2017).	Changes	in	seagrass	communities	along	the	runoff	gradient	of	the	

Trang river, Thailand. ScienceAsia, 43(6), 339–346. https://doi.org/10.2306/scienceasia1513-1874.2017.43.339 
	 	 Koedsin,	W.,	 Intararuang,	W.,	Ritchie,	R.	 J.,	&	Huete,	A.	 (2016).	An	 integrated	field	and	remote	sensing	method	for	mapping	seagrass	

species, cover, and biomass in Southern Thailand. Remote Sensing, 8(4). https://doi.org/10.3390/rs8040292 
  Kovacs, E., Roelfsema, C., Lyons, M., Zhao, S., Phinn, S. Seagrass habitat mapping: How do landsat 8 OLI, sentinel-2, ZY-3A, and worldview-3 

perform? Remote Sens Lett [Internet]. 2018;9(7):686–95. Available from: https://doi.org/10.1080/2150704X.2018.1468101
  Kumara, I. S. W. (2018). Pemetaan spesies lamun melalui integrasi citra multispektral dan pola respon spektral di Nusa Lembongan, Bali. 

(Skripsi yang tidak dipublikasikan). Universitas Gadjah Mada, Indonesia.
  Lillesand, T. M., Kiefer, R. F., & Chipman, J. W. (2015). Remote Sensing and Image Interpretation (7th ed.). Photogrammetric Engineering 

and Remote Sensing, 81(8). https://doi.org/10.14358/pers.81.8.615 
  Lyons, M., Roelfsema, C., Kovacs, E., Samper-Villarreal, J., Saunders, M., Maxwell, P., & Phinn, S. (2015). Rapid monitoring of seagrass 

biomass	 using	 a	 simple	 linear	modelling	 approach,	 in	 the	 field	 and	 from	 space.	Marine	 Ecology	 Progress	 Series,	 530,	 1–14.	 https://doi.
org/10.3354/meps11321

  Macreadie, P. I., Serrano, O., Maher, D. T., Duarte, C. M., & Beardall, J. (2017). Addressing calcium carbonate cycling in blue carbon 
accounting. Limnology And Oceanography Letters, 2(6), 195–201. https://doi.org/10.1002/lol2.10052 



27

D. N. Br Ginting, P. Wicaksono, N. M. Farda MAPPING SEAGRASS PERCENT COVER AND ...

  Lyzenga, D. R. (1978). Passive remote sensing techniques for mapping water depth and bottom features. Applied Optics, 17(3), 379. 
https://doi.org/10.1364/ao.17.000379 

  Macreadie, P. I., Anton, A., Raven, J. A., Beaumont, N., Connolly, R. M., Friess, D. A., Kelleway, J. J., Kennedy, H., Kuwae, T., Lavery, P. S., 
Lovelock, C. E., Smale, D. A., Apostolaki, E. T., Atwood, T. B., Baldock, J., Bianchi, T. S., Chmura, G. L., Eyre, B. D., … Duarte, C. M. (2019). The Future 
of Blue Carbon Science. Nature Communications, 10(1), 1–13. https://doi.org/10.1038/s41467-019-11693-w 

	 	 Maxwell,	A.	E.,	Warner,	T.	A.,	&	Fang,	F.	(2018).	Implementation	of	machine-learning	classification	in	remote	sensing:	An	applied	review.	
International Journal of Remote Sensing. Taylor and Francis Ltd. https://doi.org/10.1080/01431161.2018.1433343 

  McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Bjork, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A Blueprint 
For Blue Carbon: Toward An Improved Understanding Of The Role Of Vegetated Coastal Habitats in Sequestering CO2. Frontiers in Ecology 
and the Environment, 9, 552–260.

  Munir, M., & Wicaksono, P. (2019). Support vector machine for seagrass percent cover mapping using PlanetScope image in Labuan Bajo, 
East Nusa Tenggara. December, 112. https://doi.org/10.1117/12.2541849

  Negara, I. K. S., Astawa Karang, I. W. G., & Giri, P. I. N. (2020). Simpanan karbon padang lamun di Kawasan Pantai Nusa Lembongan, 
Klungkung, Bali. Journal of Marine Research and Technology, 3(2), 82. https://doi.org/10.24843/jmrt.2020.v03.i02.p04 

	 	 Ozer,	D.	J.	(1985).	Correlation	and	the	coefficient	of	determination.	Psychological	Bulletin,	97(2),	307–315.	https://doi.org/10.1037/0033-
2909.97.2.307 

  Pham, T., Xia, J., Thang Ha, N., Tien Bui, D., Nhu Le, N., & Tekeuchi, W. (2019). A review of remote sensing approaches for monitoring 
blue carbon ecosystems: Mangroves, sea grasses and salt marshes during 2010–2018. Sensors (Switzerland), 19(8). https://doi.org/10.3390/
s19081933 

  Prasetia, D., Supriharyono, M., Anggoro, S., & Sya’Rani, L. (2017). Coral bleaching on Lembongan Island, Nusa Penida, Bali. 134 (Icirad), 
66–72. https://doi.org/10.2991/icirad-17.2017.13 

  Roelfsema, C. M., Lyons, M., Kovacs, E. M., Maxwell, P., Saunders, M. I., Samper-Villarreal, J., & Phinn, S. R. (2014). Multi-temporal mapping 
of seagrass cover, species and biomass: A semi-automated object based image analysis approach. Remote Sensing of Environment, 150, 
172–187. https://doi.org/10.1016/j.rse.2014.05.001 

  Salford Systems. (2014). Random Forests for Beginners. Salford Systems, 71. 
  Seagrass Watch. Percent Cover Standards. Online at https://www.seagrasswatch.org/manuals/, accessed April 10, 2022
  Sjafrie, N. D. M., Hernawan, U. E., Prayudha, B., Supriyadi, I. H., Iswari, M. Y., Rahmat, & Anggaraini, K. (2018). Status Padang Lamun Indonesia. 

P2OLIPI.
  Smith, G. (2018). Step away from stepwise. Journal of Big Data, 5(1). https://doi.org/10.1186/s40537-018-0143-6
  Strydom, M., Veldtman, R., Ngwenya, M. Z., & Esler, K. J. (2017). Invasive Australian Acacia seed banks: Size and relationship with stem 

diameter in the presence of gall-forming biological control agents. PLoS ONE, 12(8), 1–16. https://doi.org/10.1371/journal.pone.0181763 
  Tamondong, A. M., Blanco, A. C., Fortes, M. D., & Nadaoka, K. (2013). Mapping of seagrass and other benthic habitats in Bolinao, 

Pangasinan using Worldview-2 satellite image. In Proceedings of the IGARSS 2013—2013 IEEE International Geoscience and Remote Sensing 
Symposium, Melbourne, VIC, Australia, 21–26 July 2013; Pp. 1579–1582. https://doi.org/10.1109/IGARSS.2013.6723091 

  Ting, K. M. (2017). Confusion Matrix. In Encyclopedia of Machine Learning and Data Mining. Encyclopedia of Machine Learning and Data 
Mining. https://doi.org/10.1007/978-1-4899-7687-1 

  Thompson, B. (1995). Stepwise regression and stepwise discriminant analysis need not apply here: A guidelines editorial (Educational 
Researcher, pp. 525–534). Sage Publications, Inc.

  UNEP. (2020). Out of Blue: The value of seagrasses to the environment and to people.
	 	 Wahyudi,	A.	J.,	Rahmawati,	S.,	Irawan,	A.,	Hadiyanto,	H.,	Prayudha,	B.,	Hafizt,	M.,	Afdal,	A.,	Adi,	N.	S.,	Rustam,	A.,	Hernawan,	U.	E.,	Rahayu,	

Y. P., Iswari, M. Y., Supriyadi, I. H., Solihudin, T., Ati, R. N. A., Kepel, T. L., Kusumaningtyas, M. A., Daulat, A., Salim, H. L., … Kiswara, W. (2020). 
Assessing Carbon Stock and Sequestration of the Tropical Seagrass Meadows in Indonesia. Ocean Science Journal, 55(1), 85–97. https://doi.
org/10.1007/s12601-020-0003-0 

  Wang, G., & Jain, W. (2003). Regression Analysis Modeling dan Forecasting. Graceway Publishing Company.
	 	 Wicaksono,	P.,	Danoedoro,	P.,	Hartono,	Nehren,	U.,	Maishella,	A.,	Hafizt,	M.,	Arjasakusuma,	S.,	&	Harahap,	S.	D.	 (2021).	Analysis	of	field	

seagrass percent cover and aboveground carbon stock data for non-destructive aboveground seagrass carbon stock mapping using 
worldview-2 image. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 46(4/
W6-2021), 321–327. https://doi.org/10.5194/isprs-Archives-XLVI-4-W6-2021-321-2021 

	 	 Wicaksono,	P.,	Lazuardi,	W.,	&	Munir,	M.	(2019).	Integrating	image	at	different	spatial	resolutions	and	field	data	for	seagrass	percent	cover	
mapping. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(4/W19), 
487–492. https://doi.org/10.5194/isprs-archives-XLII-4-W19-487-2019 

  Wicaksono, P. (2015). Remote sensing model development for seagrass and mangroves carbon stock mapping. (Unpublished doctoral 
dissertation). Universitas Gadjah Mada, Indonesia.

	 	 Wicaksono,	 P.,	 &	 Lazuardi,	W.	 (2019).	 Random	 forest	 classification	 scenarios	 for	benthic	habitat	mapping	using	planetscope	 image.	
International Geoscience and Remote Sensing Symposium (IGARSS), 346, 8245–8248. https://doi.org/10.1109/IGARSS.2019.8899825 

	 	 Yaakub,	S.	M.,	McKenzie,	L.	J.,	Erftemeijer,	P.	L.	A.,	Bouma,	T.,	&	Todd,	P.	A.	(2014).	Courage	under	fire:	Seagrass	persistence	adjacent	to	a	
highly urbanised city-state. Marine Pollution Bulletin, 83(2), 417–424. https://doi.org/10.1016/j.marpolbul.2014.01.012 

  Zhang, C., & Xie, Z. (2012). Combining object-based texture measures with a neural network for vegetation mapping in the Everglades 
from hyperspectral imagery. Remote Sensing of Environment, 124, 310-320. https://doi.org/10.1016/j.rse.2012.05.021 

  Zhang, C., Selch, D., Xie, Z., Roberts, C., Cooper, H., & Chen, G. (2013). Object-based benthic habitat mapping in the Florida Keys from 
hyperspectral imagery. Estuarine, Coastal and Shelf Science, 134, 88-97. https://doi.org/10.1016/j.ecss.2013.07.017 

	 	 Zoffoli,	M.	L.,	Frouin,	R.,	&	Kampel,	M.	(2014).	Water	column	correction	for	coral	reef	studies	by	remote	sensing.	Sensors,	14(9),	16881-
16901. https://doi.org/10.3390/s140916881



28

ASSESSMENT OF REMOTE SENSING APPROACH 
FOR URBAN ECOLOGICAL QUALITY EVALUATION IN 
PEKANBARU CITY, RIAU PROVINCE INDONESIA

RESEARCH PAPER

Eggy Arya Giofandi1*, Idrus Syahzaqi2, Dhanu Sekarjati3, Assyaroh Meidini Putriana4, 
Heni Marta Diana Matita Putti3, Cipta Estri Sekarrini5

1 Master Program of Regional Planning Sciences, IPB University, Raya Dramaga Street, Bogor, 16680, Indonesia
2 Master Program of Statistics, Institut Teknologi Sepuluh November, Teknik Kimia Street, Surabaya, 60111, Indonesia
3 Amcolabora Institute, Boulevard Street, Depok, 16421, Indonesia
4 Ministry of Agrarian Affairs and Spatial Planning/National Land Agency, Asahan Street, Pematang Siantar, 21136, 
Indonesia
5Doctoral Program of Geography Education, Universitas Negeri Malang, Semarang Street, Malang, 65145, Indonesia

*Corresponding author: eggyarya@apps.ipb.ac.id
Received: October 10th, 2022 / Accepted: December 12th, 2023 / Published: March 31st, 2024
https://DOI-10.24057/2071-9388-2023-2640

ABSTRACT. There are obstacles in estimating environmental dynamics behind its convenience, beginning with the 
development of effective policies for sustainable urban development. The objectives of this research were to comprehend 
the ability and performance of ecological indices integration and to identify the spatial distribution of changes from 2018 to 
2021 in Pekanbaru City, Riau province, Indonesia. This study employed remote sensing data to create ecological parameters 
including the build-up index, vegetation index, soil index, and moisture index, as well as principal component analysis to 
generate ecological index integration. The findings indicate a correlation of over 90% among these parameters from 2018 
to 2021. Overall, there has been a significant decrease in the ecological quality index’s high-quality categories, such as good 
and excellent, covering a total of 19.6% over 127 km². Conversely, the poor ecological quality category increased to 2.2%, 
encompassing an area of 15 km², up from the initial 21.2% covering 122 km². Additionally, the fair and moderate categories 
also experienced increases of 4% and 13.4%, respectively, reaching 28 km² and 84 km². The study area’s ecological quality is 
largely affected by increased anthropogenic activities, leading to a drastic decrease in the presence of ecological quality in 
the good and excellent categories. The importance of spatial planning is emphasized to incorporate aspects of ecological 
assessment rather than solely focusing on increasing economic activity. This outcome can be used to respond to the concept 
of sustainable development by caring for the ecological environment, particularly in urban areas, and mitigating ecological 
damage.
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INTRODUCTION

	 Environmental	 ecology	 is	 one	 of	 the	 scientific	
disciplines	 that	examine	alterations	 in	 land	configuration	
resulting from human spatial activities, with the objective 
of managing environmental quality dynamics (Wiyono 
and Sunarto 2016). Human activity has had a considerable 
direct and indirect impact on natural landscapes by 
growing built-up areas (L. Sun et al. 2021). One of the 
planning scientists’ goals is to develop policies that may 
improve environmental ecological quality monitoring by 
incorporating sustainable development into community 
spatial planning (Xu et al. 2019). Sustainable community 
development may be carried out in several stages by 

paying more attention to remote sensing (Zheng et al. 
2022).
 The concept of urban ecology that we aim to develop 
focuses on environmental quality through a regional 
characteristics approach, environmental comfort, and 
human ecology (J. Wang et al. 2022). One crucial aspect of 
the viability of urban ecology is considering the physical 
qualities of urban environments that are conducive to 
sustaining ecological systems (Liu and Shi 2019; Yu et 
al. 2022). The potential for ecological vulnerability is 
determined	by	the	characteristics	of	the	stratified	ecosystem	
(C. Sun et al. 2020), and addressing this vulnerability can 
involve	 a	 series	 of	 intellectual	 conceptual	 flows,	 such	
as ecological vulnerability zoning (Amri et al. 2017). 
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When external demands exceed an ecosystem’s carrying 
capacity, a state of instability arises, threatening ecosystem 
development and resilience (Liao and Jiang 2020). This 
explains why the assessment of ecological quality serves 
not	 only	 as	 scientific	 evidence	 for	 conservation	 (Bobby	
Rahman et al. 2019) but also as a valuable starting point 
for addressing sustainable development and impartiality 
towards	industries	inflicting	environmental	damage.
 Numerous theorists and practitioners in urban ecology 
have explored the impact of land development on urban 
ecological environments using remote sensing data 
(Safitri	and	Giofandi	2019;	Giofandi	et	al.	2020).	An	obvious	
advantage of environmental monitoring is the constituent 
elements of primary analytical methods, such as drought 
index, greenness index, humidity and ecosystem heat 
(Muhlisin et al., 2021). However, certain thresholds may 
face	data	restrictions	on	specific	indicators	and	challenges	
in	 defining	 the	 hierarchy.	 According	 to	 research	 by	 (X.	
Wang	 et	 al.	 2018;	 Shi	 and	 Li	 2021),	 different	 vegetation	
densities with the corresponding vegetation indices 
can serve as environmental ecological quality variables, 
containing three aspects: changes in external disturbances, 
production capacity, and the impact of human social and 
economic development.
 The evaluation of ecological quality aims to assess the 
state of the environment and the ecosystem health. It aids in 
understanding the impact of various factors on vegetation 
coverage and the overall ecological conditions (Y. G. Gao et 
al. 2022). In this study, the Remote Sensing Ecological Index 
(RSEI) is used to assess the ecological quality in Pekanbaru 
City, Riau province, Indonesia. RSEI, a model utilizing 
remote sensing data, combines multiple index factors to 
provide a quick and easy evaluation of regional ecological 
quality.	 RSEI	 avoids	 the	 artificial	 setting	 of	 weights	 by	
using	 the	 contribution	 rate	 of	 each	 index	 to	 the	 first	
principal component. It facilitates an objective coupling of 
indices and provides a comprehensive assessment of the 
ecological environment (Jiang et al. 2020). RSEI has been 
proven	 effective	 in	 analyzing	 ecological	 quality	 changes	
across various areas, and its reliability and applicability 
make it a suitable choice for regional ecological quality 
assessment (Shi and Li 2021).
 Based on this, the paper evaluates remote sensing by 
proposing the combined use of several indices, such as 
NDBI (Build-up index), SAVI (Vegetation index), NDSI (Soil 
index), and NDMI (Moisture Index), amalgamated into an 
Ecological Index to measure urban ecological quality. The 
effectiveness	 of	 the	 ecological	 system	 is	 gauged	 by	 an	
objective ecological index based on a multidimensional 
and multi-method long-time series approach spanning 
from 2018 to 2021. This study seeks to address the 
following questions: (i) whether spatial factors can explain 
the	capability	and	efficacy	of	integrated	ecological	indices	
in the context of environmental management, and (ii) 
whether	ecological	indices	can	be	classified	and	explained	
concerning	changes	in	spatial	distribution.	These	findings	
aim to improve the urban ecology evaluation system 
for	 restoration	 success,	 offering	 enduring	 insights	 for	
construction ecology practitioners in the research area.

MATERIALS AND METHODS

Study Area

 Pekanbaru City is one of the fastest-growing areas on 
the island of Sumatra, especially when compared to other 
cities. In the 2020 population census, researchers conducted 
a temporally spanning ecological quality assessment 
covering a total area of approximately 402.32 km2, with a 

total population of 983,356 individuals (BPS 2021). Given 
the increasing urban and economic expansion, it is vital to 
assess spatial aspects to comprehend the environmental 
dynamics (Giofandi and Sekarjati 2020), and spatial-
temporal ecological evolution in Pekanbaru City (Fig. 1).

Data Sources and Pre-Processing

 This observation utilizes multi-temporal remote 
sensing data acquired by Landsat 8 Operational Land 
Imager (OLI) in June 2018 and July 2021. The selection of 
the acquisition date is based on the availability of satellite 
imagery with the least cloud cover and the use of the same 
month	to	minimize	seasonal	differences	at	the	observation	
site. Pekanbaru is located on the Landsat 8 OLI image 
line for study area 127/060 using the World Geodetic 
System 1984 – Universal Transverse Mercator 47 South 
projection at 30 m resolution. The data was downloaded 
from the United States Geological Survey platform (www.
earthexplorer.usgs.gov), which is OpenSources, to obtain 
ecological index maps for 2018 and 2021. Before further 
processing	the	image,	the	first	step	is	pre-processing	using	
remote	 sensing	 software	 with	 processing	 specifications	
including radiometric calibration chosen to convert the 
digital number (DN) value of the multispectral band to the 
reflectance	 value	of	 the	 Earth’s	 surface,	 and	 atmospheric	
correction using the Fast Line of sight Atmospheric 
Analysis of Spectral Hypercubes (FLAASH) approach as the 
data	process	 to	 reduce	 the	effects	of	weather	 and	cloud	
cover. The next step is to crop the image based on the 
observation location.
 Vegetation index, soil condition index, moisture index, 
and human activity index from Landsat 8 OLI image are 
the selected bands for developing an index adapted 
to the Landsat image channel, retrieved, and used as a 
reference for band calculation to obtain remote sensing 
dataset	 values	 such	 as	 Normalized	 Difference	 Build-up	
Index	 (NDBI),	 Normalized	 Difference	 Soil	 Index	 (NDSI),	
Normalized	 Difference	 Moisture	 Index	 (NDMI),	 and	 Soil	
Adjusted Vegetation Index (SAVI). The SAVI index is an 
algorithm	that	 improves	upon	the	Normalized	Difference	
Vegetation Index (NDVI) by mitigating the impact of 
background soil on canopy brightness. The vegetation 
line equation (representing vegetation with uniform 
density and a consistent background) is derived through 
the	 estimation	 of	 canopy	 reflectance	 using	 a	 first-order	
photon interaction model, which simulates the interaction 
between the canopy and the ground layer. In addition, the 
indicators for the ecological index were selected based on 
the representation of the ecological environment, which 
includes vegetation, moisture, presence of buildings, and 
soil condition, which are the characteristics of the urban 
environment. Finally, an ecological index is created, which 
is geometrically combined with the previous indicators to 
reflect	and	evaluate	the	ecological	quality	of	the	city.
 The ecological index is formed from four components: 
NDBI, NDSI, SAVI, and NDMI. These components are 
analyzed using the Principal Component Analysis (PCA) 
method to form an equation, along with the eigenvalue 
contribution rate, which indicates the ability of principal 
components (PCs) to explain the characteristics of the 
data. The PCA method aims to simplify the observed 
variables by reducing their dimensions, achieved by 
eliminating correlations between independent variables by 
transforming the original variables into new uncorrelated 
ones. It is assumed that k principal components are created 
from the p variables (with k	 ≤	 p), where these principal 
components are linear combinations of the original p 
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variables. The advantages of the PCA method include 
the	 removal	 of	 correlations	 without	 losing	 a	 significant	
amount of information about all variables. PCA analysis 
was conducted using Minitab 21 software.

Development of Ecological Index Remote Sensing Data

 The ecological index based on remote sensing is 
developed to quantify ecological quality by integrating 
four ecological factors: SAVI, NDBI, NDSI, and NDMI. These 
factors were selected based on a review of existing research 
(Jiang et al. 2020; Lian et al. 2022). Firstly, the dynamics of 
land use change, particularly in urban settings, alter the 
conditions and procedures of ecological study. Changes 
in	 landscape	 conditions	 initially	 influenced	 by	 human	
activities are obtained. As a result, the NDBI technique can 
be used to demonstrate the expansion of human activities 
under environmental conditions. Secondly, the vegetation 
indicator	aims	to	reflect	the	environment	and	the	quality	
of the ecological habitat as a green condition, while 

the soil condition is represented by the NDSI algorithm 
chosen to explain the ecological condition. In response to 
ecological changes, the NDMI method provides complete 
information on surface climatic change circumstances, 
such as air humidity.
 The development of the ecological index involves 
several key processes, starting with the selection of 
ecological environmental characteristics and concluding 
with the integration of the ecological index. The physical 
ecological quality of the existing conditions in the study 
area is represented by four ecological parameters: SAVI, 
NDBI, NDSI, and NDMI. These parameters include the 
ecological quality of vegetation on the soil surface 
regarding greenery, human activity levels from the building 
perspective, soil conditions, and humidity conditions 
(Table 1). The comprehensive ecological indicator was 
then developed using the PCA regression. In this case, the 
following formula is employed to calculate the integrated 
ecological index with four ecological factors for ecological 
evaluation.

Fig. 1. Research site

Table 1. Case studies and used methods

No Formula Parameter Source

1 Build-up Index (Zha et al. 2003)

2 Soil Index (Deng et al. 2015)

3 Vegetation Index (Huete, 1988)

4 Moisture Index (B.-C. Gao, 1995)
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Ecological Index Integration

 The four normalized ecological parameters generated 
from the previous technique are critical in this study 
since they can be used to construct a comprehensive 
ecological index that incorporates information from 
the four parameters. The PCA regression was used to 
create the ecological composite index. As one of the 
multidimensional technical approaches, PCA can eliminate 
the	effect	of	collinearity	among	distinct	variables	(Xu	et	al.	
2019; Liao and Jiang 2020; Hao et al. 2022). PCA captures 
the most information from all factors and is utilized to 
construct an ecological index image. The ecological index 
can be expressed by equation (1):

 Finally, the value of the ecological quality images 
can	be	compared	between	different	years.	Therefore,	 the	

higher the ecological index value, the higher the ecological 
quality, and vice versa (Chen et al. 2020).

RESULTS

Capabilities and Performance of the Ecological Index 
Integration

 Four ecological parameters are integrated by PCA, from 
2018 and 2021 (Fig. 2). According to the PCA results of the four 
parameters	used,	the	first	principal	component	(PC1)	has	the	
highest contribution rate from the eigenvalues in 2018 and 
2021,	 exceeding	76	%.	The	first	 PCA	component	 typically	
explains more than 80% of the dataset characteristics, and 
is used to represent the ecological index (Yue et al. 2019). 
This indicates that PC1 represents the primary information 
and characteristics of the dataset (Table 2). Therefore, the 
results	derived	from	PC1	can	effectively	contain	most	of	the	
information from the four parameters.

Fig. 2. Four parameters index (SAVI, NDSI, NDMI, NDBI) from 2018 and 2021

Source: Primary data processing

(1)
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 The primary components explaining the dynamic 
variations	 in	 the	 index	 values	 of	 the	 first	 four	 main	
component ecological elements from 2018 and 2021 can 
be examined using the information provided in (Table 2). 
Among the four factors, SAVI, NDBI, and NDMI contributed 
the most absolute value. The SAVI parameter contributed 
to the index reaching -0.522 in 2018, which then increased 
to -0.508 in 2021. The NDBI parameter contributed to the 
index reaching 0.548 in 2018, which then declined to 0.500 
in 2021. Meanwhile, the NDMI parameter contributed to 
the index reaching -0.536 in 2018, which then increased 
to -0.509 in 2021. A drawback of sensitivity to the scaling 
of variables is found in PCA. If the variables are not on the 
same scale, the results can be skewed, and only linear 
relationships in the data may be captured. Non-linear 
relationships are not suitable for capture by PCA.
 Correlation analysis is necessary to determine the 
relationship between variables in 2018 and 2021. If 
the	 correlation	 coefficient	 is	 positive,	 it	 indicates	 a		
unidirectional	 relationship,	 while	 a	 negative	 coefficient	
signifies	 a	 non-unidirectional	 correlation	 (opposite	
direction). In this study, we used the Pearson correlation 
method because of the interval-ratio scale data. (Fig. 3) 
shows that the correlation between parameters in 2018 

has the same sign as the correlation in 2021. This indicates 
that the correlation results between parameters align 
with the ecological meaning expressed by each of the 
four	 parameters,	 thus	 confirming	 the	 	 applicability.	 and	
effectiveness	of	the	ecological	index	for	the	assessment	of	
ecological	quality.	This	finding	is	 in	 line	with	the	research	
by (Hui et al. 2021), which states that the ecological index 
has	a	significant	positive	correlation	with	ecological	quality.
 (Fig. 3-a) shows the correlation between the four 
parameters (SAVI, NDBI, NDSI, and NDMI) in 2018, while (Fig. 
3-b) represents the correlation in 2021. It is evident from the 
graph above that NDSI and NDBI do not correlate with SAVI 
and NDMI. NDSI and NDBI have a negative association with 
the SAVI, but a positive correlation with the NDMI. Between 
2018	 and	 2021,	 the	 correlation	 coefficient	 between	 SAVI	
and NDMI exceeds 90%, indicating\ a strong relationship 
between	 them.	This	finding	 is	consistent	with	 the	 results	
of (Y. G. Gao et al. 2022), who found that the average value 
of the Ecological Index increased in the Wugong Mountain 
region from 2015 to 2019, with the greenness and humidity 
indices positively impacting ecological quality. Meanwhile, 
\NDBI correlates negatively with NDMI but positively with 
NDSI, while NDSI has a negative correlation with NDMI.

Year Indicator PC 1 PC 2 PC 3 PC 4

2021

SAVI -0,508 -0,181 -0,517 0,665

NDBI 0,500 0,392 -0,765 -0,106

NDSI 0,484 -0,865 -0,132 0,031

NDMI -0,509 -0,255 -0,361 -0,739

Eigenvalues 3,656 0,1973 0,0938 0,0523

Eigenvalue contribution rate 91,4% 4,9% 2,3% 1,3%

2018

SAVI -0,522 -0,383 -0,491 0,582

NDBI 0,548 -0,056 -0,804 -0,224

NDSI 0,373 -0,874 0,310 0,021

NDMI -0,536 -0,293 -0,127 -0,781

Eigenvalues 30,510 0,7373 0,1181 0,0936

Eigenvalue contribution rate 76,3% 18,4% 3% 2,3%

Table 2. Remote sensing ecological index calculation based on Landsat 8 OLI

Source: Primary data processing

Fig. 3. Correlations among four parameters
Source: Primary data processing

(b)(a)
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Ecological Quality Classification and Spatial Change 
from 2018 to 2021

 In Pekanbaru City, the ecological quality is generally 
higher in the suburbs and lower in the center/core area. 
Areas with poor environmental quality are becoming 
more common, particularly in the center of Pekanbaru. 
Meanwhile, decent environmental quality continues to 
degrade and is mostly found on the outskirts of Pekanbaru 
(Fig. 4).

	 The	 classification	 of	 the	 ecological	 index	 utilizing	
remote	sensing	is	divided	into	five	sorts	of	landscapes:	poor,	
fair, moderate, good, and excellent. In this study, the images 
were	classed	into	five	levels	of	ecological	quality	based	on	
the mean and standard deviation. (Fig. 5) and (Table 3) 
present	the	results	of	the	ecological	quality	classification	in	
Pekanbaru City from 2018 to 2021. Based on the processed 
data, there was a considerable decrease in the value of the 
ecological quality index Between 2018 and 2021, there 
was an increase in the proportion of 0.212% with an area 

Source: Primary data processing

Fig. 4. Ecological index changes of Pekanbaru

Fig. 5. Percentage accumulation chart of ecological index

Quality Index
2021 2018

Area (Km2) Percentage (%) Area (Km2) Percentage (%)

Poor 137 21.2 122 19

Fair 192 30.3 164 26.3

Moderate 249 38.9 165 25.5

Good 61 9.4 161 24.9

Excellent 1 0.2 28 4.3

Table 3. Remote sensing ecological index calculation based on Landsat 8 OLI
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of 137 km2 in the category of poor ecological quality from 
the initial proportion of 0.190% with an area of 122 km2 in 
2018. Meanwhile, the proportion of the excellent category 
declined	significantly	from	0.043%	with	an	area	of	28	km2 
to 0.002% with an area of just 1 km2.

DISCUSSION

 The advantages of remote sensing can depict the 
ecological quality of the area at amicro level, and the 
spatial distribution of the ecological index through remote 
sensing can aid in understanding environmental ecological 
patterns. The analysis results of the four ecological index 
indicators via remote sensing and PC1 correlation have a 
high contribution rate of eigenvalues exceeding 90% in 
2021. This study framework is oriented toward assessing 
changes	 in	 ecological	 configurations	 in	 urban	 areas	
through	 site-specific	 implementation,	 optimizing	 multi-
temporal remote sensing data to understand changes in 
ecological landscapes in a sustainable manner.
 Utilizing spatial and temporal characteristics of 
ecological status is crucial for enhancing accuracy and 
efficiency	 in	 assessment	 and	monitoring.	 Several	 studies	
have developed design concepts using ecological 
indicators, diverse parameters, and systematic models to 
evaluate	 changes	 in	 ecological	 landscape	 configuration.	
This research is of great importance for developing an 
efficient	model	using	a	remote	sensing	approach	for	urban	
ecological quality assessment. This study derives from 
four various environmental parameters that can guide a 
simple, comprehensive ecological quality assessment. All 
the various parameters for the ecological quality index are 
easily available and applicable to other regions, facilitated 
by	different	databases.	The	ecological	quality	index	needs	
four environmental parameters as an assessment input; 
all parameters are constructed from remote sensing data 
(Table 1). Overall parameters can be quickly calculated 
with Landsat images, and the urban ecological index is a 
key application of ecology from remote sensing.
 The study discovered that the ecological condition 
in the Pekanbaru area had degraded over three years 
(Fig.4). This degradation is evidenced by a decrease in 
the	 vegetation	 index	 and	 normalized	 soil	 fluctuations,	
while SAVI, which mitigates the loss of vegetation index 
response,	remains	ineffective	in	altering	vegetation	canopy	
measurements (Indrawati et al. 2020). According to the 
correlation	results,	the	SAVI	indicator	reflects	the	influence	
of surface vegetation on the ecological environment, 
specifically	humidity	and	vegetation	cover	on	soil	quality,	
as well as the expansion of human activities as seen 
through changes in landscape use. The two indicators 
are negatively correlated, suggesting that the surface of 
vacant or construction landis not vast enough to  harm 
the ecological environment. However, local climatic 
conditions (such as surface temperature and air humidity) 
are positively correlated in responding to environmental 
changes that occur and cause damage to the ecological 
environment. The indicators of ground surface moisture 
and heat were represented respectively by moisture and 
land surface temperature, which reveal climate changes 
responding to the ecosystem state alterations (Yue et al. 
2019). Environmental quality is generally higher in the 
suburbs and lower in the city center or core area, with poor 
environmental quality becoming more common, especially 
in the Pekanbaru city center. Conversely, the “good” 
environmental quality category continues to deteriorate 
and is found mainly in the periphery of Pekanbaru. This 

shows how certain human activities harm the surrounding 
natural environment. As the impact of human activities on 
the natural environment increases, the complexity of the 
changes	that	occur	intensifies.
 The green indicator parameter represented by SAVI is 
employed in this study to measure the ecological state 
before and after changes in anthropogenic land surface 
functions. Meanwhile, humidity and building density 
are represented by NDMI and NDBI values, respectively, 
revealing climatic change as a response to changes in 
existing ecosystem circumstances. (Zhang et al. 2020) 
conducted a similar study with the same variables with 
the addition of land surface temperature. The utilization 
of results from the urban ecological quality index is 
rational	and	effective.	This	finding	gives	information	about	
the dynamics of the environment from four ecological 
parameters, and the urban ecological quality evaluation 
index is expressed by the ecological index. Furthermore, 
the urban ecological quality index can be considered 
a four-aspect condition of urban ecology (such as soil 
condition, moisture, greenery, and human activities), a 
guide	effective	 in	helping	a	 selected	parameter	with	 the	
assumption of ecological existence, and a tool to assess or 
evaluate the quality of urban ecology comprehensively.
 There are some limitations to the assessment of 
the urban ecological quality index. Firstly, the medium-
resolution data quality deteriorates information accuracy, 
necessary for the calculation of the ecological quality index. 
Regarding complex urban surface conditions using high-
quality data (hyperspectral and high-resolution spatial 
imagery) provides more accurate information. Next, the 
observation time is relatively short, and it is necessary to 
conduct a long-term study, for instance of about 20 years. 
Such	 study	 will	 better	 explain	 the	 drivers	 that	 influence	
the ecological landscape dynamics by involving the 
factors	(hydro	climatology,	anthropogenic	influence,	social	
economics, community mobility, and land use planning) 
that aim to determine the impact of surface activities. A 
combination of multiple remote sensing data sources, 
statistical data, geospatial data, and big data based on 
open sources can provide various types of data for research. 
Finally,	the	effect	composition	of	the	thermal	environment	
should be studied in other metropolitan areas for proper 
decision-making in the management and protection of 
the sustainable ecological environment.

CONCLUSIONS 

 The results of the study obtained using the urban 
ecology approach revealed that the deteriorating trend. 
This is inextricably linked to the role of human land use 
in urban development, as well as the current state of 
land characteristics represented by soil index, moisture, 
and vegetation distribution. Given the complexity of the 
urban	environmental	system	influenced	by	anthropogenic	
activities, research involving a longer time span is necessary 
to comprehensively understand the ecological spatial 
patterns. This condition has the potential to reduce the 
ecological index over the last three years while increasing 
the number of poorly categorized zones. The future 
handling required to be able to comprehend this challenge 
and establish a sustainable development concept that cares 
about the natural landscape, particularly in urban areas, as 
a kind of ecological harm anticipation and control. Further 
research	 is	 also	 needed	 to	 better	 understand	 the	 effects	
of ecological composition on the thermal environment in 
various situations and metropolitan areas.
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ABSTRACT. Tidal estuaries play a crucial role, serving as major hubs for economic activities while also contributing to the 
preservation of natural diversity and bioproductivity. In Russia, these estuaries are primarily located in remote regions of the 
European North and the Far East, making them vital for energy and transportation usage as they essentially form the ‘cores’ of 
territorial development along the Northern Sea Route.
 To facilitate the development of energy and navigation infrastructure in tidal estuaries, as well as to plan and implement 
environmental protection measures, it is essential to have a comprehensive understanding of their hydrological regime. 
Unlike regular river flow, tidal estuaries exhibit more complex hydrodynamics, influenced by both river and marine factors. 
Due to the considerable challenges of conducting field hydrological studies in remote areas, numerical hydrodynamic 
modelling has emerged as a valuable method for obtaining information on the flow and water level regime in tidal estuaries.
This paper presents an application of one-dimensional HEC-RAS and two-dimensional STREAM_2D CUDA numerical models 
to investigate the parameters of reverse currents in the hypertidal Syomzha estuary flowing into the Mezen Bay of the White 
Sea. The limitations and accuracy of the models are discussed, along with the potential for their improvement considering 
recent advancements in understanding the hydraulics of reverse currents.
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INTRODUCTION

 Estuaries have always been important to people 
as transport links between the sea and river, providing 
shelter for sailors, recreation opportunities, and resources 
for	 fishing	 and	hunting.	The	 flora	 and	 fauna	 of	 estuarine	
areas	 are	 incredibly	 diverse;	 fertile	 soils,	 flat	 terrain,	 and	
abundant	 freshwater	 resources	 offer	 excellent	 potential	
for agriculture. Hence it is no surprise that some of the 
world’s most densely populated coastal areas are located 
near estuaries, and it is even more pronounced along the 
Russian Arctic coast, where all major cities and essential 
towns are situated at the mouths of large or small rivers. 
In addition, in the case of tidal estuaries, the problem 
of energy supply even to remote settlements can be 
successfully solved owing to the development of several 
innovative solutions for the use of tidal energy (Khare et 
al. 2019; Neill and Hashemi 2018). The modern designs of 
in-channel units that do not require the construction of 
dams and barrages make tidal power plants even more 
economical and environmentally friendly.
 At the same time, settlements along estuarine shores are 
not	without	their	challenges	and	can	face	specific	hazards,	

such	 as	 storm-surge	 floods	 or	 brackish	 water	 intrusions	
into water intakes. Navigational conditions in estuarine 
aquatories,	especially	 in	 tidal	ones,	can	significantly	differ	
from those in rivers and the open sea due to reverse tidal 
currents and unpredictable channel deformations caused 
by intensive sediment transport. Estuarine hydrodynamics 
play a crucial role in shaping these natural processes, 
influenced	by	river	and	marine	characteristics.
 Tidal estuaries exhibit the most complex hydrodynamic 
features,	which	are	characterized	by	rapid	variations	of	flow	
structures and properties during the tidal cycle. Although 
essential estuarine hydrodynamics is well explained with 
field	 surveys	 and	 conceptual	 mathematical	 descriptions	
(Mikhailov 1971; McDowell and O’Connor 1977; Savenije 
2012; Hoitink and Jay 2016), collecting high-resolution 
spatial and temporal data along the entire estuary from the 
river mouth to the adjacent section of the tidal river reach 
is laborious, time-consuming, and expensive (Miskevich 
et.al. 2018b; Veerapaga 2019). In many cases, numerical 
models	offer	the	most	effective	alternative	for	complicated	
field	 campaigns	 and	 comprehensive	 analyses	 of	 the	
hydrodynamic measurements (Abreu et.al. 2020; Matte 
et.al. 2017).

https://doi.org/10.24057/2071-9388-2023-3122
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Worldwide, a large number of hydrodynamic models of 
estuaries have been developed both for various economic 
purposes	 and	 to	 address	 different	 scientific	 questions	
(Alabyan et.al. 2022). These estuarine models are used to 
study	 the	 interaction	 of	 river	 flow	 with	 tidal	 and	 surge	
waves,	 to	 forecast	 floods	 and	other	hazards	 (Zheng	et.al.	
2020; Lyddon et.al. 2018; Ward et.al. 2018), and to assess 
the impact of current and expected climate change on 
estuarine	 flow	 dynamics	 (Chen	 et.al.	 2015;	 Iglesias	 et.al.	
2022; Panchenko et.al. 2020b; Anh et.al. 2018). Some 
models	are	specifically	developed	for	monitoring	estuarine	
processes such as salt intrusion (Mills et.al. 2021; Chen et.al 
2015; Veerapaga et.al. 2019) and sediment transport (Jiang 
et.al. 2013; Yin et.al. 2019; Rahbani 2015). Hydrodynamic 
modelling is also used to determine optimal locations 
for the construction of engineering structures, to study 
currents for tidal energy utilization (Rtimi et.al. 2021), and 
to ensure favorable conditions for navigation (Jouanneau 
et.al. 2013).
 While these models often reproduce the general features 
of	 the	 hydrodynamic	 regime,	 there	 can	 be	 significant	
quantitative	differences	between	the	modelling	results	and	
actual	flow	parameter	values.	Every	model	simplifies	reality	
and comes with its strengths and weaknesses. Therefore, 
modelling results have a wide range of uncertainties related 
to errors, calibration parameters, model assumptions, and 
approximations used for initial conditions and forcing 
characteristics (Iglesias et.al. 2022; Khanarmuei et.al. 2020). 
Sometimes	 it	 is	 difficult	 to	 understand	 the	 main	 factor	
affecting	modelling	 quality.	 Part	 of	 the	 errors	 stem	 from	
inaccuracies	 in	 channel	 and	 floodplain	 topography	 and	
boundary conditions (Khanarmuei et.al. 2020; Matte et.al. 
2017),	which,	in	turn,	are	linked	to	the	practical	difficulties	
of	carrying	out	fieldwork	 in	 large	estuaries	and	obtaining	
the	full	set	of	field	data	necessary	for	model	construction	
and calibration.
 The model dimensioning (1D, 2D or 3D) is still 
problematic and questionable (Samarasinghe et.al. 
2022; Veerapaga et.al. 2019), depending on the research 
purpose, the object size and geometry, and the availability 
and	accuracy	of	field	data.	When	the	primary	aim	of	a	study	
is to analyze changes in the hydrodynamic characteristics 
along a small tidal river, and the length of the study 
area exceeds the river width by two orders or more, it is 
preferable to use one-dimensional (1D) models. Such 
models	 require	 significantly	 fewer	 measurement	 data	
and less computational power and time for calculations 
compared to two-dimensional (2D) and three-dimensional 
(3D) models. Moreover, in a small estuary, owing to its size 
and relatively simple morphology and bed topography, it is 
possible	to	obtain	highly	accurate	field	data,	allowing	us	to	
assess the actual capabilities of hydrodynamic models and 
to analyze the factors contributing to modelling errors.
 Previously, estuarine hydrodynamics of small tidal 
rivers was investigated using one-dimensional models in 
the White Sea region, where tidal wave heights can vary 
from less than 1 m in the Laya River (a Northern Dvina delta 
branch tributary) to 9 m in the Syomzha River (a Mezen 
estuary tributary) (Panchenko 2023). For the hypertidal 
Syomzha	 estuary,	 differences	 between	 measured	 and	
modeled values of high and low water levels, as well as 
flood	and	ebb	water	discharges,	 ranged	 from	10	 to	20%,	
even with high-accuracy bathymetry and boundary data 
available (Panchenko and Alabyan 2022). Similar results 
were reported by(Mohammadian et.al. 2022) for a 3D 
model of a hypertidal estuary, where despite accurate 
boundary conditions based on in-situ measurements, the 
best water level calibration results were of the same order 

of inaccuracy. This was attributed to the fact that hypertidal 
estuaries are characterized by extremely high variations in 
tidal	 depths	 over	 ebb-flood	 cycles,	 caused	 by	 significant	
spatial	flow	variations	and	interactions	of	complex	currents	
with bathymetric features.
 Previous research on the large mesotidal Onega 
estuary (Panchenko et.al. 2020c), undertaken on the 
background	 of	 reliable	 field	 data,	 demonstrated	 good	
agreement of 1D model calculations with both results 
of the 2DH (depth-averaged 2D model) and measured 
values	 of	 water	 levels	 and	 flow	 parameters,	 only	 when	
focusing on averaged values across the cross-section. This 
research aims to compare 1D and 2DH modelling results 
for	 a	 very	 different	 environment	 –	 the	 small	 hypertidal	
estuary – where all hydrodynamic processes are much 
more rapid and pronounced throughout the tidal cycle. 
The Syomzha estuary was selected as the research object, 
with	 fieldwork	held	 in	 the	 summer	 low	water	periods	of	
2015	 and	 2018	 to	 ensure	 a	 sufficient	 dataset	 for	 model	
construction, calibration and validation (Panchenko et.al. 
2020a; Panchenko and Alabyan 2022).

MATERIALS AND METHODS

The study area

 The study object is the Syomzha estuary. The Syomzha 
River meets the Mezen estuary near its mouth (Fig.1, 2). 
The Syomzha is 63 km long and has a catchment area of 
490 km². The average slope of the river is 0.61‰, and the 
average slope of the estuary bottom is three times less at 
0.26‰. There are no gauging stations along the river, but 
estimates suggest that an average summer low-water river 
runoff	is	about	5	m³/s,	with	a	maximum	spring	snow-melt	
flood	 discharge	 of	 5%	 probability	 reaching	 around	 200	
m³/s,	 nearly	 equivalent	 to	 the	 maximum	 flood	 and	 ebb	
tidal	flow	at	the	river	mouth	during	the	low-water	period.
The tide in the White Sea is semidiurnal of regular sinusoidal 
shape in the open sea. At the Syomzha mouth, the spring 
tidal range exceeds 8.5 m, increasing relative to the open 
sea	due	to	the	confusor	effect	along	the	narrowing	Mezen	
Bay and the Mezen estuary. Under summer low-water 
conditions, the tidal stretch of the river spans approximately 
23–25 km, constituting roughly one-third of the total river 
length.
	 In	 lower	 cross-sections,	 the	 maximum	 flow	 depth	
fluctuates	between	1	and	10	m,	with	the	river	bed	primarily	
composed of loess and mud, while sand and gravel 
accumulative forms concentrate along the dynamic axis 
of the tidal currents. The tidal wave decreases in height 
upstream to approximately 5–6 m at 4 km and 3–4 m at 8 km.
 The river channel is characterized by a meandering 
pattern.	 The	 width	 of	 the	 estuary	 changes	 significantly	
during the tidal cycle. At the mouth, it widens to 90 m 
at high water and contracts to 30 m at low water (Fig. 
2). Further upstream, the range of river width and depth 
tidal oscillation declines, along with the corresponding 
decrease in tidal wave height. At 10 km upstream from the 
mouth, the channel width ranges from 20 to 30 m, and at 
21 km, it narrows to 10–15 m regardless of the tidal cycle 
phase. The depth at low tide averages around 0.8 meters, 
dropping to 0.3–0.5 m at gravel ripples and rising to 1.5–2.0 
m in pools.

The methodology 

 To explore the hydraulic regime of the Syomzha 
estuary and to gather the necessary data for numerical 
modelling,	 field	 campaigns	 were	 carried	 out	 in	 August	
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2015 and August 2018. These measurements took place 
during	the	summer	low-flow	period	when	the	river	runoff	
was around 5–7 m3/s. In 2015, water levels were recorded 
by barometric loggers at points S1, S2, and S5 (Fig. 1), while 
flow	 measurements	 with	 an	 Acoustic	 Doppler	 Current	
Profiler	 (ADCP)	were	undertaken	at	S2,	specifically	during	
flood	 flow	 (not	 covering	 the	 full	 tidal	 cycle).	 Tidal	 water	
level oscillations were deemed negligible at point S0.
 The 2018 surveys were more extensive: water levels 
were	 measured	 at	 five	 points	 (S1–S5)	 with	 the	 unified	
zero-mark,	 and	 runoff	 and	 flow	 velocity	 were	 measured	
with two ADCPs concurrently at cross-sections S3 and S4 
throughout the entire tidal cycle (Panchenko et.al. 2020a; 
Panchenko and Alabyan 2022). Simultaneously, a bottom 
relief survey was undertaken together with an examination 
of brackish water intrusion from the Mezen estuary and its 
mixing with the freshwater of the Syomzha River.
The obtained data on the detailed channel bathymetry 

served as the foundation for the digital elevation model 
(DEM) used in both the 1D and 2DH hydrodynamic models. 
Non-stationary low boundary conditions for the models 
were formed based on records from a level logger located 
at the lowest point, S5. The upper boundary condition 
was	 a	 stationary	 inflow	 discharge	 of	 7	m3/s at point S0, 
located	23.5	km	upstream	from	the	mouth,	where	the	flow	
dynamics	is	no	longer	affected	by	sea	level	tidal	oscillations.
The HEC-RAS software (Brunner 2016), solving the full 
one-dimensional Saint-Venant equations, was used for 1D 
modelling of the hydrodynamic regime of the Syomzha 
estuary. The geometry cross-sections in the 1D model were 
defined	with	 a	 step	of	 100–150	m	 (147	 cross-sections	 in	
total).
 The 2DH model was developed using the STREAM 
2D CUDA package, based on shallow water equations 
and	their	numerical	solution	for	shallow	water	flows	with	
shoaling areas and bottom discontinuities (Aleksyuk and 

Fig. 1. Location of the study area and the Syomzha River section under modelling with enlarged fragments of key 
sections

Fig. 2. The Syomzha River mouth at (a) high and (b) low water 
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Belikov 2017a,b). The mesh of 2DH model consisted of 
17,602 rectangular cells with varying sizes, ranging from 10 
to 20 m in length and 5 m in width. The bottom bathymetry 
in both models was kept consistent.
 The calibration of the 1D and 2D models was conducted 
for the hydrological situation during two tidal cycles of 
August 13–14, 2018. The only calibrating parameter for 
both	models	was	the	Manning’s	roughness	coefficient.	By	
adjusting its values along the river sections, the goal was 
to achieve the best model results compared to measured 
water levels and discharges. The data collected on August 6, 
2015, were used to validate the models (model test on the 
independent dataset not used for the calibration routine).

RESULTS

 Following the calibration routine of both models, the 
Syomzha River stretch covered by the modelling was 
divided	into	three	zones	with	varying	roughness	coefficient	
values: 1) n = 0.015 up to 5 km from the mouth cross-section; 
2) n = 0.02 between 5 and 10 km; 3) n = 0.03 upstream of 10 
km. This division enabled the attainment of realistic results 
for all measurement sites in terms of both water level and 
flow	oscillations	during	the	tidal	cycle	 (Fig.3,	4),	as	well	as	
facilitated	the	termination	of	water	level	fluctuations	at	the	
upper boundary of the model.
 Following the calibration, both the 1D and 2D models 
showed nearly identical results in terms of predicted water 
levels (Fig. 3). At the S4 location, the actual range of water 
level changes was 6.2 m, whereas in the 1D model, it was 
5.8 m, and in the 2D model it was 5.7 m (with modeled 
ranges	 being	 6–8%	 lower).	 At	 the	 same	 time,	 at	 the	 S4	
location, where the measured tidal range was 3.72 m, the 
modeled	value	 in	both	models	was	3.12	m	 (15%	 less).	At	
the S1 location, the measured range was 1.1 m, while the 
simulated ranges were 1.05 m and 0.9 m in the 1D and 2D 
models, respectively.

 At S2, the minimum water levels before the tidal rise 
were	modeled	with	high	accuracy	(2–5	cm	difference),	but	
the maximum water level in the models was lowered by 
more than 0.5 m (Fig. 3, b). The modeled maximum level 
nearly coincided with the maximum level set at the lower 
boundary. However, according to the measurement data 
from both expeditions, the maximum water level in this 
section exceeded the maximum at the lower boundary by 
about 0.8 m. 
 Conversely, ebb water levels were less accurately 
modeled at locations S3 and S4. At S4, ebb water levels in the 
models were overestimated relative to actual levels by 0.54 
and 0.78 m (1D and 2D, respectively), while the maximum 
levels	differed	only	by	0.18	m.	Although	 the	difference	 in	
tidal	 range	 did	 not	 exceed	 15%	 at	 S4,	 the	 difference	 in	
minimum	 levels	was	significant	and	comparable	with	 the	
low water depth at the cross-section (Fig. 3, a). Nonetheless, 
this inaccuracy is not of critical importance when analyzing 
the pattern of tidal wave propagation and transformation.
 The timing of tidal peaks and troughs was reproduced 
quite	 accurately	 by	 both	models,	with	 a	 difference	 of	 no	
more than 10 minutes in all locations (which is comparable 
to the accuracy of visually registering the time of a current 
slowing down at the beginning of the tide). In other words, 
the tidal propagation velocity was modeled very accurately.
At calibration points S3 and S4, changes in water discharges 
during the tidal cycle were closely reproduced by both 
models	 (Fig.	 4),	 but	 the	 difference	 between	 1D	 and	 2D	
results increased with distance from the lower boundary.
The ebb discharge during the tide was accurately computed 
by	 both	models.	 For	 peak	 flood	 and	 ebb	 discharges,	 the	
difference	between	measured	and	modelled	values	at	both	
locations did not exceed 30 m3/s,	which	was	less	than	10%	
of the discharge range.
 The availability of measured water levels and discharges 
for another period during the summer of 2015 allowed for 
the validation of the selected roughness characteristics on 

Fig. 3. Model calibration results: water levels at (a) the S4 location; (b) the S2 location on August 14, 2018

Fig. 4. Model calibration results: discharges at (a) the S4 location; (b) the S3 location on August 14, 2018



40

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 2024

Fig. 5. Model validation results: (a) water levels and (b) discharges at the S2 location on August 6, 2015

Fig. 6. 2D simulated flow velocity spatial distribution on August 14, 2018

independent data. A pattern similar to what was observed 
during the calibration process can also be seen for the 
model validation.
 At the S2 location, the measured tidal range was 3.07 
m, and the simulated ranges were 2.43 m and 2.36 m in 1D 
and	 2D,	 respectively	 (the	modeled	 values	were	 20	 –	 23%	
lower)	 with	 the	 largest	 difference	 for	 the	maximum	 level	
(Fig.	 5).	 The	 times	 of	 the	 maximum	 flood	 tide	 discharge	
(negative value) and current reversal during tide at S2 were 
accurately predicted by both models. However, both models 
underestimated	the	value	of	the	peak	flood	discharge:	46.6	
m3/s and 39.7 m3/s for the 1D and 2D models, respectively, 
compared to the measured 56 m3/s.
 The slightly better results of the 1D model compared to 
the 2D one can be explained by the fact that the calibration 
was performed on the one-dimensional model, and the 
selected roughness values were used in both cases. If there 
were	 enough	 field	 data	 to	 calibrate	 the	 2D	 model,	 this	
contradiction could be eliminated.
 The tidal wave propagation celerity was 1.3 m/s 
between points S2 and S5 and 1.5 m/s between points S1 
and S2, which corresponded to reality for both models.

 Thus, we can assume that in cases where it is necessary 
to	 calculate	 flow	characteristics	 averaged	over	 the	 cross-
section of the channel, the use of a one-dimensional 
model is preferable since it has an accuracy that is at least 
no less than that of a two-dimensional model and requires 
much less labor and machine time.
The use of a two-dimensional model provides an 
advantage	 when	 analyzing	 changes	 in	 the	 flow	 velocity	
spatial distribution during the tidal cycle. For instance, in 
Fig. 6, an example is presented of how, at the same water 
discharge of 100 m3/s	 (in	 different	 directions),	 the	 flow	
concentrates	along	its	dynamic	axis	as	the	tidal	flood	and	
ebb currents develop.
 Such an analysis may be necessary when calculating the 
trajectories of sediment and pollutants, bed deformations, 
and projecting the location and design of water intakes 
and dispersing water outlets. Of particular interest is the 
velocity	 field	 of	 the	 slack	 water	 period	 when	 the	 water	
masses do not stand still, but form a complex system of 
large-scale eddies, constantly transforming and migrating 
across the water area (Fig. 7).
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Fig. 7. 2D simulated flow velocity fields near slack water on August 14, 2018

DISCUSSION

 The use of numerical hydrodynamic models to study 
the regime of the hypertidal Syomzha estuary made it 
possible, based on point hydrological measurements, 
to demonstrate a continuum picture of hydrodynamic 
processes throughout the full tidal cycle along the estuary. 
At	the	same	time,	the	results	of	field	measurements	were	
used to calibrate and validate the models.
 The transformation pattern of the tidal wave, as well 
as	 the	order	of	occurrence	of	water	 level	and	flow	peaks	
during the tidal cycle on the Syomzha, are quite consistent 
with the main patterns established on other tidal rivers 
during	 similar,	 but	 more	 detailed	 and	 lengthy	 field	
measurements (Miskevich et.al. 2018a, Panchenko et.al. 
2020). The modelling inaccuracies may be associated both 
with	the	insufficient	detail	of	the	bottom	relief	pattern	and	
with the underestimation of some features of the reverse 
flow	 hydraulics	 identified	 in	 recent	 studies	 (Panchenko	
and Alabyan 2022). The possibility of taking into account 
changeable hydraulic resistance and eddy viscosity when 
modelling	may	represent	a	way	to	improve	the	reverse	flow	
simulation	 results.	 Since	 the	 river	 runoff	 in	 August	 2018	
was	comparable	to	the	inaccuracy	in	tidal	flow	modelling,	
its	influence	can	be	considered	insignificant,	at	least	for	the	
summer low-water period.
 On a tidal estuary, during semidiurnal tides during low 
water,	the	direction	of	the	river	flow	changes	four	times	a	
day.	 In	this	case,	the	values	of	maximum	water	flow	rates	
at high and low tides can be quite comparable with the 
flow	 rate	 of	 spring	 floods	 caused	 by	 snowmelt.	 Unlike	
snowmelt	and	rain	floods,	tidal	floods	repeat	with	a	certain	
periodicity, determined solely by astronomical factors. 

Their predictability is an important positive aspect when 
planning and carrying out activities related to ensuring safe 
navigation	and	fishing,	the	operation	of	water	intakes	and	
dispersing water outlets, as well as other activities related 
to the sustainable use of water resources. Since tides are 
more predictable than the wind and the sun, tidal power 
is considered to be the most preferable renewable energy 
source in the environment of the Russian Arctic and Far 
East. Even on such a small river as the Syomzha, a chain of 
in-channel units, switched on as the tidal wave passes, can 
provide a stable energy supply to the surrounding area. 

CONCLUSIONS 

 Both one-dimensional and two-dimensional models 
can be successfully used to study the regime of tidal rivers: 
determining the tidal wave celerity and transformation 
when propagating upstream, the time of high and low 
water, and the moment of slack water and current reversal; 
maximum	tidal	flood	and	ebb	flow	at	different	distances	
from the river mouth are less accurately reproduced, but 
with	an	acceptable	accuracy	of	about	20%.	The	advantage	
of a one-dimensional model is that it requires less labor to 
prepare	the	initial	data	and	significantly	reduces	computer	
calculation time. The use of two-dimensional models is 
necessary in cases where the research object is not only 
the	flow	parameters	averaged	over	 the	cross-section	but	
also their distribution over the channel width and the 
aquatory as a whole. A necessary condition for the use of 
numerical hydrodynamic modelling to solve engineering 
and environmental issues is their calibration and validation 
based	on	reliable	field	data.
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ABSTRACT. Recent research suggests that climate change is contributing to rising solute concentrations in streams. This 
study focuses on assessing the concentrations of major elements, nutrients, and dissolved organic carbon (DOC), and their 
release through the bog-river system in the taiga zone of Western Siberia. The research was carried out in the northeastern 
part of the Great Vasyugan Mire (GVM), the largest mire system that impacts the quality of river water in the Ob River basin. By 
using PCA and cluster analysis, we examined the long-term dynamics of the chemical composition of headwater streams of 
the GVM affected by drainage and wildfires. Our data from 2015-2022 revealed that the concentrations of Са2+, Mg2+, K+, Na+, 
and HCO

3-
 in stream water from the drained area of the GVM were, on average, 1.3 times lower than those at the pristine site. 

Conversely, the  concentrations of NH+
4
, Fe

total
, Cl-, SO

4
2-, NO-

3
, DOC, and COD were higher, indicating the influence of forestry 

drainage and the pyrogenic factor. Our findings also demonstrated that the GVM significantly impacts the water chemical 
composition of small rivers. We observed a close correlation in the concentrations of К+, Na+, Cl-, Fe

total
, NH+

4
, HCO

3-
, and COD 

between the GVM and the Gavrilovka River waters. PCA analysis revealed that air temperature influences the concentrations 
of Са2+, Mg2+, NH

4
+, NO

3-
, HCO

3-
, Fe

total
, and DOC in the studied streams, with an inverse correlation with river discharge. The 

removal of major elements, nutrients, and DOC from the drained area of the GVM was most pronounced in April, being twice 
as high as in the pristine area. However, the total export from the drainage area of the Gavrilovka in April-September 2022 
was 1.3 times lower than in the pristine area, amounting to 8487 kg/km2, with DOC removal at 42%. 
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INTRODUCTION

 Western Siberia is a large peatland-dominated region in 
the northern hemisphere (Neishtadt 1971; Liss et al. 2001). 
Peatlands occupy vast areas on terraces and interfluves, 
playing an important role in the region’s temperature and 
water balance. These peatlands also influence the water 
quality of the Ob River and its tributaries, thereby affecting 
the overall flow of mineral and organic substances into 
the Arctic Ocean (Kirpotin et al. 2009; Evseeva et al. 2012; 
Berezin et al. 2014; Pokrovsky et al. 2015; Terentiev et al. 
2016; Savichev et al. 2016; Krickov et al. 2019; Dyukarev et al. 
2019). Siberia experiences the highest rate of temperature 
change in the surface layers of the atmosphere (1.39°C/100 
years), surpassing the average rate for Northern Eurasia 
and Northern Asia, the Arctic, and the entire northern 
hemisphere (Groisman et al. 2013). According to (Third 
Assessment Report of Roshydromet 2022), Western Siberia 
has seen a positive trend in average annual air temperature, 
with an increase of  +0.42 °C/decade between 1976 and 
2020. The region also experiences a growth in atmospheric 

precipitation with changes in its patterns, i.e. an increase 
in extremely heavy rainfall during summer and autumn 
(Kharyutkina et al. 2019).
 The rise in air temperature, atmospheric precipitation, 
and the prevalence of wildfires can enhance the 
mobilization of mineral and organic substances from 
peatlands and accelerate their transport into surface 
waters and the Arctic Ocean (Frey 2005; Pokrovsky et al. 
2015). Studies of river water chemistry in Western Siberia 
across climatic gradients (Krickov et al. 2019) revealed that 
under conditions of climate change, the greatest increase 
in dissolved organic carbon (DOC) occurs in streams with a 
catchment area of less than 1,000 km2, particularly during 
summer and autumn.
 Temperature rise contributes to more frequent wildfires 
in Siberia and other regions (Kharuk et al. 2021; Nelson et al. 
2021), often associated with dry conditions in the summer 
period. Drained peatlands are particularly vulnerable to 
climate change and wildfires, as lower water table levels 
make them prone to burning, negatively impacting water 
quality. Various peatland use practices, such as forestry, 
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agriculture, peat extraction, and peat fires, as well as 
their impact on water pollution, have been extensively 
studied (Nieminen et al. 2017; Marttila et al. 2018; Sulwiński 
et al. 2020, etc.). Peatlands drainage and fires lead to 
increased erosion, water pollution, eutrophication, and 
brownification, especially in headwater catchments 
(Broder, Biester 2017; Marttila et al. 2018; Ackley et al. 2021; 
Finér et al. 2021; Nieminen et al. 2020, 2021). Although 
water chemistry and substance removal from the medium-
size river basins in the Middle Ob basin have been well-
studied (Savichev 2007; Dubrovskaya and Brezhneva 2010; 
Savichev et al. 2016; Savichev et al. 2018), and some data on 
peatland-dominated streams are summarized in (Peatlands 
of Western Siberia 1976), there is a lack of detailed data on 
the effect of drainage and the pyrogenic factor on stream 
water chemistry in Western Siberia. Therefore, this study 
aims to assess the concentrations of major elements, 
nutrients, and DOC, as well as their release through the 
bog-river system in the taiga zone of Western Siberia.

MATERIALS AND METHODS

 The study was carried out within the Gavrilovka River 
basin, a left-bank tributary of the Iksa River in the Middle 
Ob River basin (Fig. 1). Covering an area of 81 km2, the 
Gavrilovka River basin is located in the drained area of 
the northeastern part of the Great Vasyugan Mire (GVM). 
The drainage network covers 39 km2, while the peatlands 
account for approximately 75 km2 or 93% of the catchment 
area. The bog was drained in the 1980s through a network 
of open ditches spaced 160–180 m apart (Maloletko et al. 
2018). Currently, due to ditch overgrowth, self-restoration 
has been observed (Sinyutkina 2021). In 2016, a fire burned 
an area of 3.10 km2 in the Gavrilovka River basin, with a 
burnt layer thickness of 5-15 cm (Sinyutkina et al. 2020). A 
similar pristine area of the GVM, located 3 km to the north 
within the 76 km2 catchment area of the Klyuch River, a 
right-bank tributary of the Bakchar River, was selected as a 
background area. Peatlands in the Klyuch River basin cover 
around 60 km2 or approximately 79% of the catchment 
area. The study area is characterized by poor infrastructure 
development, with the primary sources of pollution 
(industry, thermal power plants, etc.) located 200 km away.
 River water sampling was conducted monthly from 
March to September between 2015 and 2022. In 2022, 
to assess spatial variation in water chemistry within the 
drained part of the GVM, simultaneous sampling was carried 

out at 6 key sites in the Gavrilovka River basin: pine dwarf-
shrub Sphagnum, sedge Sphagnum communities, and the 
hummock-hollow complex. In the background watershed 
of the Klyuch River (a pristine part of the GVM), sampling 
was carried out in similar plant communities (Table 1). We 
measured water temperature, pH, O

2
, and CO

2
 immediately 

after sampling. Samples were preserved to determine 
Fe

total
, NO-

3
, and NH+

4
. Dissolved O

2
 was measured using a HI 

9146-04 HANNA Instruments (Germany), pH was measured 
using a pH-200 field device from HM Digital (South Korea), 
and redox potential (Eh) was determined using ORP-200 
from HM Digital (South Korea). The electrical conductivity 
(EC) was measured using a HI 8733 from HANNA 
Instruments (Germany) (Table 2). Dissolved carbon dioxide 
was measured by titrating samples with NaOH solution 
in the presence of Rochelle salt and the phenolphthalein 
indicator (FR.1.31.2005.01580).
 The chemical analysis of water samples was carried out 
at the analytical laboratory of the Siberian Research Institute 
of Agriculture and Peat. Prior to analysis, water samples 
were filtered through a paper filter with a pore diameter 
of 1.0-2.5 μm. The concentrations of Са2+, Mg2+, HCO

3
-, and 

Cl- were determined using the titrimetric method, while 
Fetotal, NO-

3
, NH+

4
, and SO

4
2- were analyzed using the 

spectrophotometric method (Specol-1300, Analytik Jena 
AG, Germany). The concentrations of К+ and Na+  ions were 
determined using flame photometry (PFA-378, Russia). 
Chemical oxygen demand (COD) was estimated with 
potassium dichromate, and DOC was determined using 
the Tyurin method with potassium dichromate, along with 
photometric termination according to (STP 0493925-008-
93) (Table 3). Total dissolved solids (TDS) were estimated by 
summing the concentrations of ions.
 Statistical analysis of the chemical composition of 
water was performed using principal component analysis 
(PCA) and cluster analysis in Statistica 10. The chemical 
composition of water was analyzed using a cluster 
analysis with the classification of water samples based on 
homogeneity within classes (hierarchical method). The 
cluster analysis was carried out using the calculation of the 
Euclidean distance and the Ward method. Factor analysis 
was carried out using the principal component method 
(PCA), which is based on the calculation of vectors and 
eigenvalues of the covariance matrix of the initial data, 
along with the construction of a scree plot to determine 
the leading factors and the assessment of the factor 
loading matrix.
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Fig. 1. Study area with sampling points in the Gavrilovka and Klyuch River basins
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 Water levels in Klyuch and Gavrilovka headwater streams 
were measured using Micro-Diver loggers (Eijkelkamp, 
Netherlands) every hour throughout the year. Discharge 
measurements were made using an acoustic current meter 
OTT Hydromet (Germany) at gauging stations set up at the 
Klyuch and Gavrilovka rivers, with measurements carried 
out every 5-10 days during typical water content periods 
in 2015-2022. The release of major elements, nutrients, 
and DOC was calculated in 2022 as the product of the 
total volume of river runoff and the concentrations of 
components in the Klyuch and Gavrilovka rivers obtained 
from the results of laboratory analysis of river water samples. 
On average, during spring flood and summer-autumn low 
water in 2022 (April-September), water flow was 0.35 m3/s 
in the Klyuch River, and 0.24 m3/s  in the Gavrilovka River.
 The average annual air temperature for the study 
period was 1.04 °C. Among the 8 years, 2015 and 2020 were 
the warmest, with average annual air temperatures of 2.05 
and 3.03 °C, respectively (Table 4), marking the absolute 
maximum for the observation period from 1970 to 2022 at 
the Bakchar weather station. Throughout the study period, 
the annual precipitation averaged 537 mm, with decreases 
to 431-486 mm observed in 2016, 2019, and 2020. In 2018, 
the annual precipitation reached 677 mm, the highest 
value for a long period.

RESULTS AND DISCUSSION

Stream water chemistry

 The pH values and concentrations of Са2+, Mg2+, K+, 
Na+, and HCO

3-
 in the waters of the Gavrilovka River, were 

1.3 times lower than in the Klyuch River, which drains 
the pristine area of the GVM. Conversely, the waters of 
the Gavrilovka River exhibited high concentrations of 
NH+

4
, Fe

total
, Cl-, SO

4
2-, and NO-

3
, as well as DOC, COD, and 

CO
2
 were revealed as indicators of forestry drainage. 

The increased concentrations of major elements in the 
Klyuch River are probably determined by the smaller 
peatland-dominated area (about 77%) and the removal of 
substances from the catchment area occupied by mineral 
soils or ion-rich groundwater supply. Similar findings were 
made by (Tokareva et al. 2022), whose research in the 
Yenisei River basin demonstrated that streams draining 
basins with a higher number of pristine ombrotrophic 
bogs (atmosphere-fed bogs) receive more atmospheric 
precipitation and have ion-poor runoff.
 Analysis of the data revealed that, similar to previous 
studies (Kharanzhevskaya 2022a, b), the chemistry of 
river waters in the drained and pristine areas of the GVM 
may be similar in certain periods. Studies conducted in 
drained raised bogs in Canada also showed a slight effect 
of drainage on mire water chemistry. The differences in the 

№ Vegetation type Coordinates Catchment Land use type Water table level, cm

1 Pine dwarf-shrub Sphagnum (RG)
N56°53’ 25,8’’, 
E82°40’ 50,5’’

Gavrilovka Forestry drainage -13

2 Pine dwarf-shrub Sphagnum (RG2)
N56°53’57,10» 
E82°41’05,95»

Gavrilovka Forestry drainage -41

3 Pine dwarf-shrub Sphagnum (RG3)
N56°53’ 32,7’’ 
E82°41’ 19’’

Gavrilovka Forestry drainage -18

4 Pine dwarf-shrub Sphagnum (PG2)
N56°53’ 18,6’’  
E82°40’ 36,7’’

Gavrilovka Forestry drainage and fire event area -27

5 Sedge Sphagnum lagg (TG) 
N56°52’ 23,6’’, 
E82°41’ 30,1’’

Gavrilovka Forestry drainage -10

6 Hummock-hollow complex (D2)
N56°53'18,8'' 
E82°39’48,6’’

Gavrilovka Forestry drainage -29

7 Pine dwarf-shrub Sphagnum (P3)
N56°58'24, 3'', 
E82°36'41,2''

Klyuch Forestry drainage -13

8 Sedge Sphagnum lagg (P5)
N56°58'17, 3'' 
E82°37’04,5’’

Klyuch Forestry drainage -10

9 Hummock-hollow complex (D1)
N56°58’22,1» 
E82°37’22,4»

Klyuch Forestry drainage -8

Table 1. Location, vegetation type, and water table level in the key sites of the Great Vasyugan 
Mire in March-September 2022

№ Component Instrument Accuracy

1 O
2

HANNA 9146-04, Germany ±5 %

2 pH/T PH200, HM Digital, South Korea ±0.1 ºC ±0.02pH

3 Eh ORP200 HM Digital, South Korea ± 2мВ

4 EC HANNA HI 8733, Germany ±1%

Table 2. Instrument accuracy 
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water chemistry between pristine and drained peatlands 
are influenced by the rate of decomposition of organic 
residues and biogeochemical processes in the region, 
which are largely dependent on the average annual air 
temperature (Harris et al. 2020).
 Comparison of long-term data on Gavrilovka and 
Klyuch river waters using the nonparametric Mann-
Whitney test revealed significant differences in the pH 
value (Z=-2.94, p=0.003), as well as in the concentrations 
of K+ (Z=-2.26, p=0.024), Mg2+ (Z=-2.21, p=0.027), Fe

total
 

(Z=2.63, p=0.009), NH+
4
 (Z=2.31, p=0.021), NO-

3
 (Z=2.52, 

p=0.012), HCO
3-

 (Z=-2.31, p=0.021), COD (Z=2.10, p=0.036), 
CO

2
 (Z=2.10, p=0.036), and DOC (Z=3.05, p=0.002). These 

findings partially align with the results obtained in 62 
small peatland-dominated watersheds in Finland (Marttila 
et al. 2018), which indicated increased concentrations, 
particularly of nitrogen and phosphorus, in headwater 
streams where peat extraction and peatland forestry 
were the main types of land use. While DOC, COD, and Fe 
concentrations in stream waters in Finland were at similar 
levels with near pristine sites, those sites exhibited lower 
pH levels in comparison to areas affected by peatland 
drainage (Marttila et al. 2018). However, our studies showed 
higher DOC content and concentrations of NO-

3
 and NH+

4
 

in stream water of the GVM compared to data from Finland. 
On the contrary, the stream water pH in the drained part 

of the GVM was lower, which is determined by higher 
concentrations of DOC resulting from the decomposition 
of peat layers due to intensive drainage. Studies conducted 
in the Yenisei River basin (Tokareva et al. 2022) also showed 
lower pH values and elevated concentrations of NH+

4
 in 

stream water chemistry due to the input of highly acidic 
organic-rich solutes from a pristine peatland area within 
the basin and specific biogeochemical processes occurring 
directly in the stream channel.
 Our data showed that differences in water chemistry 
between the Klyuch and Gavrilovka rivers varied from 
year to year, with no significant differences found in 2021. 
Differences were observed in the content of Fe

total 
(Z=2.56, 

p=0.011) in 2015, and of K+ (Z=-2.04, p=0.041) and CO
2 

(Z=2.87, p= 0.004) in 2016. In 2017 and 2018, there were 
differences in the content of NO

-3
 (Z=2.30, p=0.021), and 

also COD (Z=2.87, p=0.004) in 2018. In 2019, there were 
significant differences in SO

4
2- (Z=2.17, p=0.030) and DOC 

(Z=2.68, p=0.007). In 2020, significant differences were 
observed only in the pH value (Z=-2.30, p=0.021). Finally, in 
2022 differences were found in the concentrations of DOC 
(Z=2.24, p<0.05), NO

3-
 (Z=-2.68, p<0.05), and Cl- (Z=-2.81, 

p<0.05).
 Cluster analysis showed that all the samples taken in 
the Klyuch River, except the ones from 2019 and 2022, and 
the samples taken in the Gavrilovka River in 2017, 2020, 

№ Component Method Standart Accuracy,%

1 Са2+, Mg2+ Titrometry PNDF 14.1:2.98-97 ±15

2 K+ Flame photometry (PFA-378, Russia)
PNDF 14.1:2:4.138-98

±12

3 Na+ Flame photometry (PFA-378, Russia) ±17

4 SO
4

2- Spectrophotometry (Specol-1300, Analytik Jena, Germany) PNDF 14.1:2.159-2000 ±20

5 Cl- Titrometry PNDF 14.1:2:4.111-97 ±12

6 NH+
4

Spectrophotometry (Specol-1300, Analytik Jena, Germany) PNDF 14.1:2.1-95 ±10

7 Fe
total

Spectrophotometry (Specol-1300, Analytik Jena, Germany) PNDF 14.1:2:4.50-96 ±15

8 HCO
3-

Titrometry PNDF 14.2.99-97 ±25

9 NO-
3

Spectrophotometry (Specol-1300, Analytik Jena, Germany) PNDF 14.1:2:4.4-95 ±10

10 DOC Spectrophotometry (Specol-1500, Analytik Jena, Germany) STP 0493925-008-93 ±10

11 COD Titrometry (Lurie, 1973) ±10

12 CO
2

Titrometry FR.1.31.2005.01580 ±10

Table 3. Analytical methods

Year Annual precipitation, mm  Precipitation in April-September, mm Average annual air temperature, ⁰С Sum

2015 616 382 2.05 T>10 ⁰С

2016 486 347 0.72

2017 566 419 1.30 1972

2018 677 495 -0.80 2162

2019 431 284 0.88 1891

2020 477 293 3.03 1781

2021 497 311 0.29 1860

2022 545 376 0.86 2136

Table 4. Hydrometeorological conditions according to the weather station near Bakchar village

Source: (http://meteo.ru/)
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and 2021 belonged to the first cluster. The water samples 
taken in 2017 and 2021 stood out as a separate subcluster, 
as an indicator of the pyrogenic factor and the temperature 
regime. The second cluster included samples taken in 2015, 
2016, 2018, 2019, and 2022. The first subcluster included 
the samples taken in the Gavrilovka River during high water 
in 2018 and low water in 2019, as well as in 2016 and 2022. 
The second subcluster included the water samples from 
the Gavrilovka River taken in 2015, as well as the samples 
from the Klyuch River taken in 2019 and 2022. Thus, under 
drought conditions, an increase in major element content 
was observed in the Gavrilovka River, and, as a result, water 
chemistry became comparable to the Klyuch River (Fig. 2).
 Seasonal dynamics in stream water chemistry is 
characterized by an increase in pH, K+, Na+, Сa2+, Mg2+, 
NH

4
+, Fe

total
, Cl-, and HCO

3-
 in March after the winter low 

water period, by 1.3-3 times. In winter, an increase in total 
dissolved solids is observed due to the displacement of 
ions during the formation of the ice cover on the river. The 
second maximum of ion content is achieved during the 
flood period (SO

4
2-, NO

3-
, DOC, NH

4
+, Cl-) and at the end of 

the summer-autumn low water period (K+, Na+, Сa2+, Mg2+, 
HCO

3-
).

 Differences are also observed in the long-term dynamics 
of river water chemistry. Our studies have shown that in the 
Gavrilovka River, it is determined by hydrometeorological 
conditions, forestry drainage, and the pyrogenic factor. The 
pH value of the Gavrilovka River waters was highest in 2016-
2017 and 2022 (pH=6.53), with a decrease to the minimum 
values (pH=6.07) in the high-water year 2018 due to water 
supply from the GVM with high DOC content. In 2015, there 
was an increase in pH (6.93) in the Klyuch River due to high 
air temperature, while the minimum pH value (6.41) was 
observed in the dry year 2019. The Klyuch River catchment 
differs from the Gavrilovka River by a larger proportion of 
peatland area and regular groundwater discharge, factors 
contributing to higher content of main ions and pH in the 
Klyuch River.
 Our data demonstrated that in 2017, following the fire, 
the waters of the Gavrilovka River showed an increase in the 
concentrations of K+, Na+, Са2+, Mg2+, Fe

total
, Cl-, SO

4
2-, NO-

3
, 

and HCO
3

-, consistent with the results obtained for the GVM 
(Kharanzhevskaya and Sinyutkina 2021). In the high-water 
year 2018, there was a sharp decrease in concentrations 
of these elements due to dilution by atmospheric 
precipitation. Subsequent years saw an increase in the 
content of Са2+, Cl-, NO

3
-, and HCO

3
- in 1.2-3 times in the 

Gavrilovka River, attributed to increased air temperatures 

in 2020 and further degradation of the pyrogenic layer. 
Studies (Lydersen et al. 2014; Rust et al. 2018; Stirling et al. 
2019; Wu et al. 2022) showed that after a fire, there is an 
increase in pH and the concentrations of the main cations 
(Ca2+, Mg2+, Na+, K+), anions of strong acids (SO

4
2−, Cl−, NO

3
−), 

ammonium ions, total nitrogen, phosphorus, and DOC. The 
greatest changes occur within three years after the fire, but 
the influence of the pyrogenic factor can persist for about 
12 years (Sulwiński et al. 2020).
 The water chemistry of the Klyuch River, draining 
the pristine part of the GVM, is mainly influenced by 
changing climatic conditions. As a result, in 2020, which 
was characterized by an absolute maximum of the average 
annual temperature, the Klyuch River waters showed 
increased concentrations of Са2+, Mg2+, K+, Na+, HCO

3
-, and 

NO-
3
, except for Fe

total
, NH+

4
, SO

4
2-, and Cl-. In the dry year 2019, 

the content of Са2+, Mg2+, K+, SO
4

2-, Cl-, and HCO
3

- decreased 
due to the decomposition of organic matter in the active 
layer above the water table level. Its dissolution in water 
occurs when the water table level rises during precipitation 
events. Peatland drainage leads to increased leaching of 
nutrients over time because of the decomposition and 
degradation of peat deposits (Nieminen et al. 2017).
 On the contrary, our studies have shown that, as a result 
of ditches’ overgrowth, the river water chemistry of the 
drained area of the GVM becomes closer to the natural site. 
For example, in 2021, we did not find significant differences 
in major element, nutrient, and DOC concentrations. 
However, fires and elevated air temperatures impacted this 
trend. As a result, in 2020, with an absolute maximum air 
temperature over a long period, there was a sharp increase 
in major element and DOC content (Table 5). Similar results 
obtained in Finland showed positive correlations of organic 
matter (TOC, DOC, COD, LOI) and Fe with air temperature 
(Marttila et al. 2018). Additionally, a positive correlation 
between increasing nitrogen concentrations in waters 
discharging from drained boreal peatland forests in Finland 
and Sweden and temperature was noted (Nieminen et al. 
2021). River waters exhibit concentrations of К+, NH

4
+, Fe

total
, 

Cl-, SО
4

2–, and DOC similar to those in the waters of the GVM, 
with higher pH values of Na+, Са2+, Mg2+, NO

3-
, and HCO

3-
.

Mire water chemistry

 Water samples taken in 2022 from the drained area (RG, 
RG2, RG3, PG2, TG, D2) of the GVM are characterized by a 
1.5-3 times higher content of almost all components in 
comparison with the pristine area (P3, P5, D1). Conversely, 

Fig. 2. Dendrogram of river water chemistry in March-September 2015-2022 of the Gavrilovka River (G) and the Klyuch 
River (KN)
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there is a lower pH due to high organic substance content 
and minimal concentrations of HCO

3
-. Spatially, samples 

from the pine dwarf-shrub Sphagnum communities of the 
drained part of the GVM taken in 2022 (RG, RG2, RG3, PG2) 
had low pH and higher concentrations of К+, Na+, NH

4
+, 

Fe
total

, Cl–, NO
3

–, and DOC compared to the sedge Sphagnum 
community (TG) and the hummock-hollow complex (D2). 
At the same time, in the waters of the sedge Sphagnum 
community (TG), there was an increase in the content of 
Са2+, Mg2+, HCO

3-
, and pH, indicating  deep groundwater 

supply. We also saw an increase in SО
4

2– and DOC in the 
waters of the hummock-hollow complex, indicating high 
peat decomposition rates due to a significant water level 
decrease (Table 6).
 Principal component analysis (PCA) showed similarity 
in weather condition impact on the Klyuch and Gavrilovka 
rivers water chemistry. Air temperature (-0.42) and water 

temperature (-0.40) significantly affect the content of Са2+ 
(-0,93), Mg2+ (-0,75), Na+ (-0,78), HCО

3–
 (-0,96), and Fetotal 

(-0.78) in the Gavrilovka River (Fig.3). We see a direct 
correlation with the concentrations of NO

3-
 (0.42) and 

Gavrilovka River discharges (0.60). The second component 
is less significant, but it also reflects an increase of NH+

4
 

(0.59) and DOC (0.51) in river waters with an increase in air 
(0.64) and water (0.81) temperatures. Similarly, the leading 
factors determining the concentrations of NO

3-
 (0.54), NH+

4
 

(0.69), Fetotal (0.59), and DOC (0.65) in the Klyuch River 
are air (0.70) and water (0.79) temperatures. Klyuch River 
discharges (-0.63) are inversely correlated with nutrient 
content, indicating a  dilution effect (Fig. 3). Thus, factor 
1 characterizes the increase in the content of chemical 
substances in river waters as a result of an increase in air 
and water temperatures. Factor 2 mainly characterizes the 
dilution effect of river waters by precipitation. 

ЕС рН К+ Na+ Сa2+ Mg2+ NH
4

+ Fe
total

Cl- SO
4

2- NO
3-

HCO
3-

DOC TDS

2015
K 186 6.93 0.82 4.75 24.3 8.94 4.05 1.87 3.93 4.26 1.14 120.0 59.8 174

G 138 6.25 0.48 4.44 19.2 7.56 5.07 4.21 3.31 3.87 1.55 87.6 69.8 137

2016
K 188 6.82 0.65 6.53 27.19 10.81 5.38 2.93 4.29 4.09 2.14 139.81 54.0 204

G 113 6.53 0.31 4.49 18.6 6.93 6.64 4.88 3.98 5.16 2.07 76.4 65.0 129

2017
K 201 6.85 0.67 8.80 28.8 10.9 3.61 5.43 5.25 2.80 1.57 141.7 61.4 210

G 151 6.53 0.79 7.96 27.3 9.14 4.29 8.27 4.71 7.71 3.61 110.4 71.4 184

2018
K 144 6.57 0.91 6.52 24.00 9.40 3.27 2.83 3.66 2.28 1.36 119.4 51.4 174

G 125 6.07 0.57 5.71 21.4 7.62 4.28 8.48 4.28 3.60 3.50 85.7 74.6 145

2019
K 138 6.41 0.63 5.16 20.72 8.73 2.41 2.97 3.29 1.41 1.67 93.3 52.4 140

G 143 6.23 0.48 5.77 23.3 8.07 3.57 4.58 4.11 2.22 2.19 91.1 71.7 145

2020
K 221 6.88 0.94 9.11 39.41 19.25 3.41 3.71 3.61 2.55 2.82 199.6 45.9 284

G 182 6.44 0.66 7.46 28.9 7.37 4.85 4.49 4.48 2.91 3.65 117 60.4 182

2021
K 170 6.70 0.66 6.50 27.16 10.91 3.87 3.76 4.52 3.13 2.06 113.9 67.5 177

G 165 6.37 0.65 6.13 26.9 8.88 4.90 7.48 5.16 4.07 4.54 108 79.3 177

2022
K 117 6.70 0.63 6.00 20.87 6.34 3.83 2.50 5.08 3.62 1.39 81.8 57.6 132

G 113 6.56 0.57 6.21 21.34 6.86 5.18 3.53 6.79 5.07 3.81 70.50 75.9 130

Table 5. Long-term dynamics of the average concentrations in river waters (March-September 2015-2022)

ЕС рН К+ Na+ Сa2+ Mg2+ NH
4

+ Fe
total

Cl- SO
4

2- NO
3-

HCO
3-

DOC TDS

RG 56 3.55 0.43 1.43 3.88 1.53 7.52 2.27 4.74 3.87 2.84 0.46 75.3 29.0

PG2 48 3.46 0.95 1.02 4.06 1.29 7.53 2.12 4.66 3.29 2.36 1.86 74.5 29

RG2 65 3.21 0.92 1.78 5.12 1.51 8.69 2.31 5.22 5.52 2.83 0.00 91.2 33.9

RG3 64 3.31 0.48 1.10 5.58 1.89 9.25 2.55 5.43 5.16 3.12 1.25 94.4 35.8

P3 47 3.46 0.47 0.90 2.33 0.76 6.11 1.83 4.39 3.16 1.86 0.56 52.7 22.4

TG 39 3.82 0.47 1.15 6.15 2.26 4.95 1.68 3.94 2.61 1.86 9.11 61.5 34.2

P5 29 3.70 0.57 0.92 2.71 1.15 3.55 1.03 3.05 1.28 1.18 4.75 41.6 20.2

D2 50 3.60 0.63 1.33 4.78 1.99 7.22 1.95 4.77 5.41 2.87 2.72 81.3 33.7

D1 31 3.92 0.55 1.30 3.70 1.43 4.28 1.45 3.30 2.81 1.42 7.76 53.0 28.0

Table 6. Spatial patterns in water chemistry of the drained (RG, RG2, RG3, TG, PG2, D2) and pristine (P3, P5, D1) areas of 
the GVM in April-September 2022, mg/l
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 To assess which key site of the drained part of the GVM 
had the most significant impact on the water chemistry of 
the Gavrilovka River, a correlation analysis was performed,  
which  showed the closest positive relationship for the 
content of К+, HCO

3-
, NH+

4
, COD, and TDS in the Gavrilovka 

River and the GVM, and to a lesser extent for pH, Na+, Cl-, 
Fe

total
, SO

4
2-, NO

3-
, and DOC (Table 7). The pH value and the 

content of SO
4

2-, NO
3-

, and DOC in the Gavrilovka River and 
the GVM were predominantly in an inverse relationship, 
which characterizes dry periods when river discharges 
are the lowest and the correlation in water chemistry is 
violated due to low hydrological connectivity of the river 
and the bog. The highest correlations in water chemistry 
were found between the Gavrilovka River and the sedge 
Sphagnum lagg (TG), where the river bed is formed. We 
also noticed that even 6 years after the fire, the pyrogenic 
factor still influences river water chemistry, with the highest 
correlation coefficients in the content of К+, NH+

4
, HCO

3-
, 

COD, DOC, and TDS in the waters of the Gavrilovka River 
and the post-fire area (PG2).
 Our data showed that there was primarily an inverse 
correlation between the content of Na+, Са2+, Mg2+, Cl–, 
HCО

3–
, and SO

4
2- in the waters of the Gavrilovka River and 

river discharges, which indicates dilution and a subsequent 
decrease in the concentration of substances during the 
spring flood. In certain periods, there was a significant 
positive correlation between water discharges in the river 
and the content of К+, NO

3-
 in April and June, DOC in June-

July, and NH
4+

 in September (Table 8). The total removal 
of substances from the Gavrilovka River catchment area in 

April-September 2022 was 8487 kg/km2, with DOC release 
equal to 42% or 3603 kg/km2. Removal from the pristine 
part of the GVM was 1.3 times higher, totaling 11385 kg/km2 
in April-September 2022, with DOC flux at 37% (4243 kg/
km2). Generally, the higher removal of mineral components 
from the Klyuch River basin may be due to groundwater 
inflow into the river bed and the removal of substances 
from the part of the catchment area with mineral soils.

Export of major elements, nutrients, and DOC

 The seasonal dynamics of major elements, nutrients, 
and DOC release from the studied watersheds is determined 
by differences in the hydrological regime. Thus, the largest 
flux of mineral and organic substances in the Gavrilovka 
River during the studied period was observed in April-
May, coinciding with the spring flood. In June-September, 
substances removal decreased to 270-382 kg/km2. The total 
flux of mineral and organic substances from the drained 
area of the GVM in April 2022 was 1.2-22.0 times higher 
than from the pristine area. Similar trends were observed in 
May, while in other months, removal from the pristine area 
was 3-5 times higher (Fig. 4). This aligns with findings from 
previous studies (Lepistö et al. 2014; Finstad et al. 2016) 
which link the leaching of nutrients and organic carbon to 
changes in seasonal weather conditions.
 PCA indicates that with increasing precipitation 
and river water levels, the concentration of chemical 
components decreases. However, the total removal of major 
elements, nutrients, and DOC is greatest during periods of 

Fig. 3. PCA diagrams of the chemical composition of the waters of the Gavrilovka (A) and the Klyuch (B) rivers in April-
September 2015-2022 

(P
2wsum

 – tоtal precipitatiоn during 2 weeks before sampling, mm; T
air

 – air temperature at the sampling date, °C; T
water

 – water 
temperature at the sampling date, °С; Q – river discharge, m3/s)

Gavrilovka River

G
re

at
 V

as
yu

ga
n 

M
ire

 Key site ЕС рН К+ Na+ Сa2+ Mg2+ NH4+ Fe
total

Cl- SO
4

2- NO
3-

HCO
3-

COD DOC TDS

RG -0.57 -0.48 0.51 -0.21 -0.02 0.05 0.85 -0.43 0.11 0.56 -0.11 0.98 0.76 -0.50 0.62

PG2 0.10 -0.29 0.79 -0.16 0.46 0.24 0.84 -0.60 0.01 -0.09 -0.44 0.53 0.79 0.62 0.67

RG2 -0.62 -0.18 0.53 0.43 0.02 0.27 0.75 0.59 0.18 -0.44 -0.54 0.93 0.61 -0.40 0.94

RG3 -0.28 -0.03 0.48 0.88 -0.05 -0.12 0.81 0.25 -0.09 -0.53 -0.71 0.51 0.64 -0.15 0.92

TG 0.33 -0.65 0.82 -0.25 -0.28 -0.13 0.65 0.69 0.74 -0.81 -0.64 -0.35 0.50 -0.44 0.27

D2 -0.18 -0.10 0.50 0.11 -0.52 -0.14 0.81 0.35 0.90 0.44 -0.68 -0.66 0.64 0.47 -0.70

Table 7. Pearson correlation of the GVM and the Gavrilovka River water chemistry in 2022 (significance level p<5 %)
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high water levels, suggesting that a combination of high 
air temperatures and increased precipitation contributes 
to substance removal from river catchment areas.

CONCLUSIONS 

 The analysis revealed increased concentrations of NH+
4
, 

Fe
total

, Cl-, SO
4

2-, NO
-3

, DOC, COD, and CO
2
 in the waters of 

the Gavrilovka River, attributed to long-term forestry 
drainage. Additionally, a fire-related increase in pH, Са2+, 
Mg2+, K+, Na+, Fe

total
, SO

4
2-, and NO

-3
 was observed  in the first 

year after the fire, with minimum concentrations of major 
elements registered mainly in 2015-2016, before the fire. 
Changes in water chemistry of the Gavrilovka River after 
the fire had a pulsating character, with extreme increase 
in air temperature in 2020 and the decomposition of the 
peat deposit’s burnt layer leading to a repeated increase 
in Са2+, Na+, and HCO

3-
, and nearly a threefold increase in 

NO
3- 

concentration over the studied period. PCA analysis 
showed that air and water temperature affect the content 
of Са2+, Mg2+, Na+, Fe

total
, NH

4+
, NO

3-
, and DOC in the studied 

streams and that there is an inverse correlation between 
them and river discharges.
 Correlation analysis revealed the closest positive 
relationship between the content of К+, HCO

3-
, NH+

4
, 

COD, TDS in the Great Vasyugan Mire and the Gavrilovka 
River waters. There is an inverse correlation between the 
content of Na+, Са2+, Mg2+, Cl–, HCО

3–
, SO

4
2– in the waters 

of the Gavrilovka River and river discharges, which is a sign 
of dilution during spring floods. However, a significant 
positive correlation with river discharges was noted for 
К+, NO

3-
 in April and June, DOC in June-July, and NH

4+
 in 

September.
 The total export of major elements, nutrients, and 
DOC from the drained area of the Great Vasyugan Mire 
was 1.3 times lower in comparison to the pristine area, 
amounting to 8487 kg/km2, with DOC flux at 42% or 3603 
kg/km2. Overall, our study suggests that climate change, 
alongside increased air temperature and precipitation in 
the region, will likely contribute to the removal of nutrients 
and organic substances from peatlands.

Month ЕС рН К+ Na+ Сa2+ Mg2+ NH
4+

Fe
total

Cl- SO
4

2- NO
3-

HCO
3-

DOC TDS

G
av

ril
ov

ka
 R

iv
er

 d
is

ch
ar

ge
s

Apr -0.32 0.39 0.54 -0.72 -0.89 -0.36 -0.55 -0.02 -0.43 -0.74 -0.28 -0.61 -0.54 -0.82

May -0.19 0.00 -0.34 0.18 -0.49 -0.32 -0.27 -0.31 -0.48 -0.13 0.24 -0.43 -0.07 -0.51

Jun -0.23 -0.64 0.59 -0.37 -0.06 0.11 0.14 0.46 -0.20 0.11 0.62 -0.29 0.72 -0.16

Jul -0.13 0.21 0.10 -0.14 -0.20 0.12 0.41 0.34 -0.45 -0.18 -0.05 -0.34 0.63 -0.28

Aug -0.45 -0.79 -0.48 -0.58 -0.65 -0.37 0.18 -0.70 0.29 -0.05 -0.01 -0.74 0.37 -0.73

Sep -0.64 -0.54 -0.31 -0.64 -0.70 -0.52 0.78 -0.57 -0.50 0.38 0.20 -0.59 -0.26 -0.62

All data -0.25 -0.08 0.31 -0.26 -0.48 -0.44 -0.15 -0.47 -0.21 0.01 0.58 -0.50 -0.13 -0.49

Table 8. Pearson сorrelation of Gavrilovka River water chemistry and river discharges in 2015-2022 
(significance level p<5 %)

Fig. 4. Export of major elements, nutrients, and DOC by the Gavrilovka (A) and Klyuch (B) rivers in April-September 2022
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ABSTRACT. ERA5 reanalysis is one of the most trusted climate data sources for wind energy modeling. However, any reanalysis 
should be verified through comparison with observational data to detect biases before further use. For wind verification at 
heights close to typical wind turbine hub heights (i.e. about 100 m), it is preferable to use either in-situ measurements 
from meteorological towers or remote sensing data like acoustic and laser vertical profilers, which remain independent of 
reanalysis. In this study, we validated the wind speed data from ERA5 at a height of 100 m using data from four sodars (acoustic 
profilers) located in different climatic and natural vegetation zones across European Russia. The assessments revealed a 
systematic error at most stations; in general, ERA5 tends to overestimate wind speed over forests and underestimate it over 
grasslands and deserts. As anticipated, the largest errors were observed at a station on the mountain coast, where the relative 
wind speed error reached 45%. We performed the bias correction which reduced absolute errors and eliminated the error 
dependence on the  daily course, which was crucial for wind energy modeling. Without bias correction, the error in the wind 
power capacity factor ranged from 30 to 50%. Hence, it is strongly recommended to apply correction of ERA5 for energy 
calculations, at least in the areas under consideration.. 
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INTRODUCTION

 Nowadays, a rapid transformation in the energy 
sector implies making policy decisions for long-term 
energy planning under numerous uncertainties. Energy 
modeling is the key tool for providing evidence to support 
decision-making processes. A rapidly increasing share of 
the climate-governed renewable generation determines 
the demand for accurate climate data. At the same time, 
climate information is not only used for renewables 
but also for traditional energy sources. Energy models 
rely on climate data covering a wide spatial range, from 
point-wise observations for individual power plants to 
global energy system models that include all types of 
energy and require global-scale climate datasets. Among 
various energy problems that require climate information 
are the assessment of the renewable energy potential, 

the planning of new power plants and power grids, 
optimization cost evaluation of technology mix for energy 
systems, and the assessment of the climate change impact 
on existing power plants. Therefore, high-quality climate 
data for diverse energy applications is in great demand.
Modern reanalysis datasets belong to the most widely used 
sources of climate inputs for energy modeling. Reanalysis 
involves numerical simulations with atmospheric or Earth 
system models over a rather long period (>10 years, typically 
40-70 years), initialized from past data and updated with 
observational data interpolated onto the model grid every 
few hours or days.
 Reanalysis offers both advantages and disadvantages, 
and the latter primarily include inaccuracies in 
meteorological data compared to observed values, 
especially in areas with complex topography and surface 
types. These inaccuracies are associated with numerical 

https://doi.org/10.24057/2071-9388-2023-2782
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model imperfections, errors in assimilated observational 
data, and coarse horizontal and vertical resolution. 
Reanalysis errors are usually associated with incorrect 
reproduction of orography (Dörenkämper et al. 2020) 
and underlying surface types (Gualtieri 2021). However, 
currently, there is no real alternative to reanalysis in terms 
of both spatial and temporal coverage.
 In this study, we assessed the quality of climate 
information on wind, a critical climate input for various 
energy models. For correct work of energy models, climate 
information on wind should realistically reflect statistical wind 
characteristics, namely the probability distribution function 
of wind speed and seasonal and diurnal wind speed courses. 
The wind in the lower atmosphere is largely determined 
by the turbulent structure of the atmospheric boundary 
layer, which is tolerably reflected only in measurements 
with high vertical and temporal resolution (for example, in 
measurements on meteorological masts or using acoustic 
profilers), but is usually poorly reproduced by reanalysis. In 
this context, verification of wind data in reanalysis does not 
seem far-fetched, but a necessary task. However, utilization 
of the original (uncorrected) reanalysis data without 
verification and correction remains quite widespread in the 
energy modeling domain (Craig et al. 2022). Verification of 
reanalysis datasets is partly hampered by the rarity of the so-
called independent data, i.e. those that are not assimilated 
in reanalysis. Independent data on wind includes local 
and typically short-term measurements on meteorological 
masts, sodars, and other means of ground-based remote 
sensing, ground-based networks of local stations, and some 
others.
 Uncertainties associated with reanalysis data usage 
vary regionally, which means that the applicability of the 
reanalysis datasets should be assessed for specific regions 
of interest. Currently, research on reanalysis uncertainties is 
predominantly focused on Europe and the Americas (e.g., 
Molina et al. 2021; Thomas et al. 2021; Kubik et al. 2013; Santos 
et al. 2019; Staffell and Pfenninger 2016; Olauson 2018; 
Jourdier 2020; Dörenkämper et al. 2020). However, even 
for these regions, it is impossible to obtain unambiguous 
conclusions about the quality of wind data in particular 
reanalysis cases because quality evaluations depend on 
specific tasks, orographic complexity and land use of the site, 
and the verification method. At the same time, other areas 
of the world are much less studied at the time being. This 
knowledge gap is becoming crucial from the perspective 
of the global energy transition. The regions facing the most 
serious challenges in the implementation of renewable 
generation are least covered with the quality assessment of 
key climate inputs for energy planning studies.
 The primary objective of this study is to assess the 
viability of using wind speed data at the 100 m level from 
the modern ERA5 reanalysis for energy modeling across 
European Russia. We selected ERA5 because of its popularity 
within the energy community and its use in creating other 
products, including both global (GWA) and European (NEWA) 
wind atlases, which use ERA5 as input data for mesoscale 
and microscale models to produce high-resolution outputs 
(Dörenkämper et al. 2020). However, the error in the initial 
data usually propagates further along the chain and can 
be found in the output fields. Therefore, we decided to 
validate the original ERA5 reanalysis to get a quantification 
of its performance in the context of energy modeling. Most 
comparative studies ((Ramon et al. 2019; Santos et al. 2019; 
Olauson 2018; Thomas et al. 2021), however, not all of them, 
e.g. (Calisir et al. 2021)) have shown that ERA5 outperforms 
other reanalyses in terms of wind speed and calculated wind 
power generation.

 We compared ERA5 against measurements from 
acoustic locators (sodars) across central and southern 
parts of European Russia. Most sodar locations are situated 
in the southern regions, which are known for their high 
wind energy potential (Spravochnik 2007), where this 
industry is actively developing with new wind turbines 
being constructed. While ERA5 was previously verified 
against different sources of wind data in many regions 
across the world (Gualtieri 2021; Ramon et al. 2019; Santos 
et al. 2019; Olauson 2018; Molina et al. 2021; Calisir et al. 
2021), its performance depends heavily on individual 
site characteristics and averaging periods. For instance, 
correlation coefficients of ERA5 with observations vary 
from 0.2-0.3 for stations with complex terrain to almost 1 
for flat sites (Molina et al. 2021; Ramon et al. 2019; Santos 
et al. 2019; Jourdier 2020). Especially high correlation 
coefficients of 0.9-0.95 are obtained with increasing 
averaging time (Santos et al. 2019; Molina et al. 2021).
 The spread of wind speed bias is very large across 
estimates reported by different studies: from -5 m s-1 to 4 m 
s-1 (Dörenkämper et al. 2020; Ramon et al. 2019; Molina et 
al. 2021; Jourdier 2020). Generally, the reanalysis performs 
better over the sea, while its quality is often not suitable 
for energy problems on land. This is explained, firstly, by 
the fact that the roughness of the sea surface depends 
on wind speed in a rather straightforward way, while 
the assessment of the land surface roughness is quite 
ambiguous. Secondly, reanalyses assimilate satellite wind 
observations only available over the ocean.  Over the sea 
surface, ERA5 may slightly overestimate the wind speed 
(Ramon et al. 2019; Gualtieri 2021). Over the land, the wind 
speed, especially for strong winds, is underestimated and 
the frequency of weak winds is overestimated (Molina et 
al. 2021; Jourdier 2020; Santos et al. 2019; Gualtieri 2021). 
The only exception is forest areas, over which wind speed is 
overestimated (Gualtieri 2021), which is usually explained 
by the difficulty of determining the roughness length for a 
forest.
 The hourly resolution of the ERA5 data allows us to 
consider the daily course of wind speed. Still, there is no 
clear dependence of the reanalysis quality on the time of 
day – at some stations, the error is greater at night, and 
at others during the day (Jourdier 2020). All these errors 
naturally affect the accuracy of wind power generation 
calculations, and, due to the nonlinear dependence of wind 
generation on wind speed, even with a small error in wind 
speed, the error in wind generation estimates becomes 
significant (Andersen et al. 2015; Gualtieri 2021). Wind 
power generation calculated from ERA5 data is usually 
slightly overestimated over the sea (e.g., Gualtieri 2021) and 
underestimated on the land by 5-20% in flat areas (except 
in forested areas, where it is overestimated (Gualtieri 2021)) 
and by more than 30% in areas with complex terrain 
(Dörenkämper et al. 2020; Gualtieri 2021; Jourdier 2020). 
However, with monthly averaging and in areas such as 
Scandinavia, great agreement can be achieved between 
reanalysis-calculated and observed power generation 
(Olauson 2018). Generally, the more estimates of reanalysis 
quality for sites in various natural conditions are obtained, 
the more complete picture of the quality of the reanalysis 
can be acquired and the higher the probability of finding 
the dependence of the error on these conditions.
 Another aim of this study was to test the bias-
correction method to correct the reanalysis of wind speed 
using sodar observations. The correction was performed 
in two ways: with and without the daily course of wind 
speed errors. The original and corrected wind speed series 
from the reanalysis were used to assess the relevance of 
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the bias correction for quantifying the propagation of 
wind speed error into wind energy production, expressed 
as the capacity factor error. In general, the study is focused 
not on planning wind energy construction at specific 
locations, but on the development of the operation of 
universal methods that can be applied to any other area. 
The universality of the methods means that they can be 
applied to any region and reanalysis grid node. Although 
their application requires non-universal scaling factors that 
depend on local conditions, we assume that in the future it 
will be possible to obtain the dependence of these scaling 
factors on external conditions, which will make the bias 
correction method completely universal. This study also 
aims to supply energy modelers with a power-relevant 
estimation of uncertainty associated with errors of the 
modern reanalysis for natural conditions typical for various 
natural zones of Russia. Therefore, it is not of primary 
importance that not all sites we are considering are located 
in areas with high wind energy potential.
 The rest of the article is organized as follows. The section 
Materials and Methods describes the sodar observations 
and ERA5 wind data, methods of reanalysis verification 
and correction, and capacity factor calculation. The Results 
and Discussion section presents the results of reanalysis 
verification and correction and considers the propagation 
of the wind speed error into errors in energy modeling. In 
conclusion, the main findings and limitations of the study 
are presented.

MATERIALS AND METHODS

Sodar data

 Sodar (SOnic Detection And Ranging) is an acoustic 
locator providing vertical profiles of wind vector 
components within the lowest 500-m layer of the 

atmosphere. In this study, sodar observations from 
four locations were used (Table 1, Fig.1). Continuous 
measurements up to 300 m in height were carried out 
in the Zvenigorod area at the observation station of the 
Obukhov Institute of Atmospheric Physics (IAP) from 2009 
to 2021. The IAP station is predominantly surrounded by 
mixed forest and occasional low-rise buildings (Fig.1b). 
Sodar measurements for steppe, arid, and coastal regions 
were obtained in short-term expeditions organized by the 
IAP (for Tsimlyansk and Kalmykia) and Lomonosov Moscow 
State University (for the Gelendzhik area). Measurements 
up to 200 m were conducted on the northern edge of 
Tsimlyansk (in a flat steppe area) in July-August, with a 
vertical resolution of 10 m . Measurements in dunes near 
Narynkhuduk in Kalmykia, 80 km northwest of the Caspian 
Sea, were carried out in late July–early August. In the 
Gelendzhik area, the measurements were carried out on 
the base of the Institute of Oceanology, at the end of a 
long pier, essentially over the sea surface (Fig.1e).
 The Sodar LATAN-3, developed at IAP (Kuznetsov 2007), 
was employed in Zvenigorod, Kalmykia, and Tsimlyansk. 
The wind speed measurement accuracy was 0.3 m/s. In 
Gelendzhik, the measurements were carried out with 
a Scintec sodar (co-production of Germany, the USA, 
and some other countries), with a declared wind speed 
measurement accuracy of 0.1-0.3 m/s.
 Data processing was performed to eliminate erroneous 
measurements. At the IAP base in Zvenigorod, trees and 
individual buildings contributed to the “blind zone” of 
the sodar, resulting in a higher occurrence of erroneous 
registrations of the echo signal from fixed objects (“fixed 
echoes”). To ensure maximum data availability at all levels, 
the lower measurement level (“blind zone”) was set at 
40 meters for Zvenigorod site and 30 meters for arid 
and steppe sites. The presence of “fixed echoes” led to 

Fig. 1. Satellite image of the study area (a) and types of land cover (from Global Land Cover database, available at https://
lcviewer.vito.be) around sodar locations (white and black circles) in Zvenigorod (b), Tsimlyansk (c), Kalmykia (d) and 

Gelendzhik (e) 
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an increase in the number of near-zero wind speeds at 
altitudes up to 300 m, significantly distorting wind statistics 
at this station. To remove the influence of obstacles from 
the data, a two-stage filtering algorithm was applied. In the 
first stage, instantaneous sounding profiles were analyzed, 
and intervals with zero wind speed at heights exceeding 
40 meters and intervals with a significant excess of the 
echo signal level (> 3 dB) relative to adjacent intervals were 
excluded from averaging. Subsequently, in the second 
stage, the averaged data were filtered to eliminate sharp 
peaks in the vertical profiles. For this purpose, outliers in 
the vertical profiles of horizontal wind speed were filtered 
out if they exceeded 2 m/s compared to adjacent vertical 
levels.

Reanalysis and its processing

 In this study, we compared the wind speed from 
ERA5 reanalysis (Hersbach et al. 2020) with observations 
taken at a 100-m height. This height is commonly used 
in wind energy studies, as it corresponds to the typical 
hub height of wind turbines. In reanalysis, wind speed 
values at heights of 100 m above ground level (a.g.l.) and 
below are considered diagnostic, meaning they are not 
directly calculated in the atmospheric model but rather 
interpolated from the lowest model level to the desired 
height using a wind profile approximation (logarithmic 
or power law). However, this approximation is valid only 
for neutral temperature stratification and moderate to 
strong wind. Vertical interpolation also requires the surface 
roughness length (or power law exponent), which is set 
constant on land (depending on the type of land cover) 
and dependent on wind speed over water. Thus, the values 
of the diagnostic wind speed contain errors associated 
with the deviation of the real wind profile from the 
approximation and with the inaccuracy in determining the 
roughness length/power law exponent.
 The ERA5 reanalysis has 137 hybrid sigma levels from 10 
m to 80 km above the surface, with 14 levels located in the 
lowest 500-m layer. This high resolution, coupled with the 
low placement of the lowest level (on average at 10 meters 
above ground level), minimizes errors in interpolation at 
both 10 and 100 meters, making ERA5 advantageous for 
wind generation studies compared to other reanalyses.
To compare observations with ERA5 reanalysis, we 
employed two approaches. The first one involved the 
interpolation of the reanalysis of 100-m wind horizontally 
to sodar locations. The series of observations were 
averaged over an hourly interval based on the following 
assumptions. The value in a reanalysis cell was the average 

over the area occupied by that cell. Since one reanalysis 
cell occupied 0.25°x0.25°, i.e. about 25 x 18 km at middle 
latitudes, then at an average speed of 5 m/s (characteristic 
speed for all the studied points), the airflow passed the 
entire cell in 1-1.5 h. This means that the reanalysis value 
averaged over the area of the cell could be compared with 
the 1-h mean of observations at one point.
The interpolation was carried out by the two most 
popular methods: the bilinear interpolation method and 
the nearest neighbor method. The latter implies that the 
reanalysis values are not interpolated, but are taken from 
the grid node closest to the observation station. Hence 
the verification results should significantly depend on 
how close the underlying surface in the reanalysis area is 
classified in comparison to the reality. In Zvenigorod, the 
nearest reanalysis nodes were occupied by forests (80% 
forest cover). The roughness coefficient in the reanalysis 
was plausibly high (around 0.9 m). For the Tsimlyansk 
station, land cover at the nearest node corresponded 
to crops (see Fig.1c), with a roughness length of around 
0.3 m (which was quite high, since the roughness length 
for low grass is typically a few centimeters (Zilitinkevich 
1972)). Other nodes to the east were partially occupied by 
water (Tsimlyansk reservoir). In Kalmykia, the land cover 
of nearby nodes was indicated as grass. The surrounding 
nodes were also classified as crops and sediments. The 
roughness coefficient was around 0.15 m, which was quite 
high for a relatively smooth dune surface. In Gelendzhik, 
the closest reanalysis node to the station was in the sea, 
and the cell that corresponded to it was 70% occupied by 
water. The cell average roughness coefficient was around 
0.3 m. However, in reality, the land cover near the station 
was represented by a low pine forest, while the water 
roughness in the absence of waves is usually less than 1 
cm. In Gelendzhik, the dependence of the reanalysis error 
on the wind direction (from the sea or land) was quite 
possible. In general, the surface types in the reanalysis 
nodes corresponded to reality.
The second approach to comparing reanalysis and 
observations involved averaging the reanalysis data over 
the area around the cell where the station point was 
located (hereafter, “averaging method”). Averaging was 
carried out over the area of 3 x 3 cells (approximately 75 
x 55 km). An increase in the averaging area from 1 cell to 
3 cells also led to an increase in the averaging period of 
observations from 1 h to 3 h. From general considerations, 
the verification results should improve with this approach, 
although the value of the obtained information decreases 
due to smoothing. 

Coordinates, 
elevation

Land use; topography Sodar system Period

Vertical resolution; 
maximum height 
of measurements; 
averaging period

Zvenigorod
55.696ºN, 36.775ºE, 

180 m a.g.l.
Mixed forest with few buildings LATAN-3 2009-2021 20 m; 300 m; 30 min

Tsimlyansk
46.657ºN, 42.08ºE, 

86 m a.g.l.

Steppe (low grass) with low-
rise buildings to the south; flat 

topography
LATAN-3

2012, 2015-2021 (July-
August)

10 m; 200 m; 30 min

Kalmykia
45.423ºN, 46.53ºE, 

-20 m a.g.l.
Dunes (desert); flat topography LATAN-3

2016, 2020, 2021 (July-
August)

10 m; 200 m; 30 min

Gelendzhik
44.575ºN, 37.979ºE, 

4 m a.g.l.
Sea; mountains to the north Scintec

2012 (June-July), 2012-
2014 (January-February)

5 m; 300 m; 10-20 min

Table 1. Observation sites and characteristics of sodar measurements
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Verification methods

 An interesting issue that requires further investigation 
is the problem of the criteria for the quality of wind data, 
specifically for wind energy applications. Since wind 
energy performance is very sensitive to wind speed, it can 
be expected that the quality criteria should also be quite 
strict. However, in the absence of such tailored criteria, 
we used a set of standard ones: bias, normalized bias 
(NB), mean absolute error (MAE), the standard deviation 
(scatter) of errors (SDE), normalized root mean square error 
(NRMSE), normalized standard deviation of wind speed in 
reanalysis (NSD), and correlation coefficient (CC), which 
are commonly used in practical energy-related climate 
data quality assessments. We also considered the empirical 
probability distribution function of errors, wind speed, and 
direction, and the dependence of the error on the wind 
speed and direction.
 Typically, wind speed error is deemed acceptable if it 
does not exceed 10% of the value for speeds greater than 
5 m/s, or if the error is less than 0.5 m/s for wind speeds 
less than 5 m/s (WMO 2014). Although these criteria were 
developed for standard wind measurements at ground-
based weather stations, they can also be applied to assess 
the quality of wind in reanalysis when other strict criteria 
are lacking. We calculated the percentage of errors within 
acceptable accuracy (PEAA) based on these criteria, with 
a higher PEAA indicating better performance. Additionally, 
we used the ratio of the error value to the standard deviation 
of wind speed from observations (SDW) as a criterion 
for the reanalysis quality: if the error is comparable to or 
greater than SDW, which represents the natural variability 
of wind speed, then the quality of wind in the reanalysis is 
considered low.

Bias correction method

 When systematic errors are detected in reanalysis 
data or climate model outputs, they are usually corrected 
using various methods. One commonly used method for 
correcting wind speed data is the Quantile Mapping based 
on the Weibull Distribution bias correction method (Haas 
et al. 2014). The method involves calculating the corrected 
wind speed u

cor
 using the following formula, which 

transforms the reanalysis’s probability distribution function 
to match the observed distribution:

 Here, the subscripts 
o
 and 

r
 mean observations and 

reanalysis, and the shape parameter k and scale parameter 
c are calculated from the mean μ and standard deviation σ 
of wind speed:

 where Γ is the gamma function.
 In many studies (e.g., Li et al. 2019, Akperov et al. 2022, 
Akperov et al. 2023), the parameters k and c were calculated 
separately for each month. However, due to limited year-
round data at stations (except Zvenigorod), we initially 
calculated these parameters for the entire data series rather 
than for each month. Subsequently, we further calculated 
these coefficients for each hour of the day and each month 
for Zvenigorod owing to the abundance of observations 
there, and for each hour of the day in July-August for 
Tsimlyansk. This approach was adopted to account for the 
daily (and annual in Zvenigorod) variation of the reanalysis 
wind speed error when performing corrections.

Capacity factor calculation

 Wind speed dynamics affects wind generation 
performance most directly. This implies that uncertainties 
of the wind speed are being translated into uncertainties 
in wind power generation. A common method to convert 
wind speed into generated power is by using a so-called 
working curve of a wind turbine (Andresen et al. 2015). A 
wind turbine working curve is the relationship between the 
harnessed power and the wind speed. Typically, working 
curves are nonlinear, exhibiting higher sensitivity to speed 
variation at lower speed values. Working curves provided 
by manufacturers are derived from testing procedures 
conducted on a hub height under conditions reflective of 
wind generation unit operation.
 We calculated the propagation of the ERA5 
uncertainties on the operation of modern wind turbines 
using various approaches to bias correction. Calculations 
were performed based on the assumption of  a realistic 
working curve of modern wind turbines. An example of 
such a curve is provided in Fig. 2.
 The combination of a wind turbine power curve with 
actual wind speed values determines the wind power 

Fig. 2. A working curve for “Vestas V164” wind turbine

(1)

(2)

(3)
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generation achievable at any particular location. The 
economic feasibility of wind generation can be roughly 
assessed using a capacity factor which is defined as 
the ratio of the actual harnessed power to the nominal 
power of a turbine. Additionally, we assumed that turbine 
construction is viable if its annual average capacity factor 
matches with typical values reported for wind generation.
Relevance of the wind speed values for wind power 
generation was addressed for each considered location 
using a linear scaling approach for the wind speed time 
series, which involved increasing wind speed values using a 
constant multiplier. This artificial approach aimed to account 
for the fact that the available measurement locations were 
not selected to maximize wind power output. Capacity 
factor values based on the “original” reanalysis data served 
as a reference point to match with a situation when the 
reanalysis data are utilized directly in energy simulations 
omitting any correction procedures. Indeed, the applied 
linear scaling procedure is a simplification intended only 
for a robust estimation of the broad effects that reanalysis 
errors may have on energy modeling outcomes. The 
scaling factor values were determined through a fitting 
procedure to achieve multiannual average capacity factors 
consistent with typical values for modern onshore wind 
generation, assumed to range from 0.25 to 0.35 based on  
global statistics (Boretti and Castelletto 2020; Jung and 
Schindler 2022).
 The calculated capacity factors were averaged over the 
entire available observation period and compared against 
the assumed typical annual average values. To account for 
the nonlinear sensitivity of wind turbine performance to 
wind speed, the scaling factor was varied within the assumed 
typical capacity range. This scaling approach was applied to 
wind speed data for all considered stations except Gelendzhik. 
The ERA5-extracted wind speed values for Gerendzhik were 
high enough to yield capacity factors exceeding 0.35, the 
assumed upper boundary of the typical capacity factor range.
 The range of the fitted scaling factor values depended 
primarily on the annual average wind speed and was found to 
be 1.15 to 1.30 for Zvenigorod and Tsimlyansk, and 1.25 to 1.43 
for Kalmykia, with no scaling needed for Gelendzhik. These 
obtained scaling factor ranges were compared against wind 
speed values within approximately a 50 km radius around 
each station location, corresponding to the correlation length 
for wind speed aggregated with hourly time resolution and 
combined with a potential to vary the hub height between 
70 and 200 m, following current standards.

RESULTS AND DISCUSSION

Verification

 Statistical characteristics of the wind speed reanalysis error 
are shown in Table 2 and Figure 3. Notably, there is minimal 
difference between the verification results when using bilinear 
and the nearest neighbor interpolation methods. Previous 

studies (Ramon et al. 2019) also demonstrated the same 
independence of estimates from the interpolation method 
for ERA5, although the difference between methods arises 
for reanalyses with coarser spatial resolution. Therefore, we 
focus on the results obtained using the bilinear interpolation 
method.
 It should be kept in mind that the amount of data 
available in Zvenigorod is several orders of magnitude 
higher than for other sites (Table 2), making the statistical 
estimates for Zvenigorod the most reliable. Systematic errors 
are observed at most stations (except for Gelendzhik). The 
Mean Absolute Error (MAE) varies from 1.4 to 2.1 m/s, with 
errors consistently lower than the standard deviation of the 
wind speed at all locations (Table 2). On average, 59% of 
errors fall within acceptable accuracy criteria. The average 
correlation coefficient between reanalysis and observations 
is 0.7. Across all locations except Zvenigorod, the reanalysis 
underestimates the frequency of wind speeds over 8-10 m/s 
(Fig. 4). The frequency of wind directions in the reanalysis 
roughly corresponds to the observed values (Fig. 5).
 Variations in verification results among the stations 
can be attributed to the differences in the “complexity” of 
the areas where the stations are located. The highest errors 
are observed in Zvenigorod, despite its larger sample size, 
due to the presence of a high and heterogeneous forest 
which disrupts the logarithmic wind profile. At the same 
time, Tsimlyansk demonstrates the best results among all 
stations (i.e. the smallest MAE and SDE, the largest correlation 
coefficient), which is explained by the favorable location (the 
absence of significant obstacles nearby).
 In Zvenigorod, the largest errors occur during weak 
winds of any direction (Fig.4a, 5a). In general, the wind 
speed probability distribution is shifted towards higher 
wind speeds in the reanalysis compared to observations 
(Fig. 4). This systematic overestimation may stem from  the 
underestimation of roughness length and the deviation of 
the wind profile observed over the forest from the logarithmic 
profile, especially evident during weak winds.
 In Tsimlyansk, there is a slight systematic underestimation 
of wind speed, particularly noticeable during the night 
(Fig.6b), possibly due to the absence of night low-level jet 
streams or an inaccurate description of momentum transfer 
processes under stable boundary layer stratification in the 
reanalysis. The largest underestimations, up to 7 m/s, are 
observed when the wind speed exceeds 7 m/s , and with 
errors reaching 5 m/s during weak winds. There is no clear 
dependence of the error on wind direction (Fig.5b).
 In Kalmykia, the reanalysis similarly tends to underestimate 
wind speed, which can be explained with local effects, 
particularly the frequent sandstorms. During sandstorms, 
the roughness length becomes highly dependent on wind 
speed (Semenov 2020), similar to the sea surface, with values 
changing by four orders of magnitude. Additionally, flow 
acceleration may occur due to the influence of sand in the 
air, which disrupts the logarithmic wind profile (Semenov 

Bias, m/s MAE, m/s SDE, m/s SDW, 
m/s

CC PEAA, % Number 
of valuesBIM NNM BIM NNM BIM NNM BIM NNM BIM NNM

Zvenigorod 1.0 1.0 1.4 1.4 1.6 1.6 2.0 0.73 0.73 34 34 67352

Tsimlyansk -0.8 -0.8 1.5 1.5 1.7 1.7 2.8 0.79 0.79 71 71 1765

Kalmykia -1.1 -1.1 1.8 1.8 2.2 2.2 2.9 0.66 0.66 67 67 209

Gelendzhik 0.1 0.0 2.1 2.1 2.7 2.7 3 0.48 0.47 42 44 782

Table 2. Statistical characteristics of wind speed reanalysis errors following bilinear interpolation method (BIM) and 
nearest neighbor method (NNM)
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2000). The largest errors, up to 10 m/s, correspond to strong 
southeast winds (Fig. 6c). However, there are insufficient 
observational data for a reliable assessment of reanalysis 
errors for different wind directions.
 For the station in Gelendzhik, the largest spread of errors is 
observed due to the complexity of the surrounding orography 
and surface types (the combination of land and sea). This 
complexity leads to deviations of the wind profile from the 
logarithmic profile, which makes it impossible to accurately 
determine the roughness length in simplified parametrizations 
in the reanalysis. The largest errors, up to 11 m/s, occur at wind 
speeds exceeding 10 m/s with northeast, south, and southeast 
directions (Fig.5d). Strong northeastern winds in Gelendzhik 
are caused by the local Novorossiysk bora, a downslope 
windstorm (Shestakova et al. 2018). Strong southerly winds 
from the sea are also characteristic of the Gelendzhik area.
 When using the “averaging method”, the magnitude of 
MAE and SDE slightly decreases (by 0.2 m/s on average for 
all locations) compared to interpolation methods (Table 3). 
The error probability distribution becomes narrower for the 
“averaging method”, with an increased frequency of small errors 
(Fig. 3). That error will continue to decrease with an increase in 
the area and period of averaging (Molina et al. 2021; Thomas et 
al. 2021), but this leads to a loss of useful information about the 
temporal variability of the wind field.
 Our estimates of reanalysis’s wind speed error are generally 
consistent with other similar estimates made previously for 
ERA5 (Gualtieri 2021; Ramon et al. 2019; Molina et al. 2021; 
Santos et al. 2019; Thomas et al. 2021; Dörenkämper et al. 2020; 
Jourdier 2020). According to the listed studies, the spread of 
the NSD varies from 0.3 to 2, the correlation coefficient from 
0.2 to almost 1, and the bias from -5 to 3.8 m/s. Gualtieri (2021) 
examined the quality of the ERA5 reanalysis at several points on 
land, three of which can be compared  with our points by land 
use type. For the Australian point Wallaby Creek situated in the 
forest, as well as in Zvenigorod, the reanalysis overestimated 

wind speed; the average NB and NRMSE practically coincided 
in Wallaby Creek and Zvenigorod. A point Humansdrop in 
South Africa, located on a flat grassland, can be compared with 
Tsimlyansk. The estimates for these two points also practically 
coincide, with the wind systematically being overestimated by 
12-14% (Table 4). Conversely, the estimates for the point with 
desert land type in Iran (Ghoroghchi) do not coincide with our 
estimates for Kalmykia. The wind at the Iranian point, as well 
as in Kalymkia, is also underestimated by the reanalysis, but in 
higher proportions (the NB and NRMSE are 0.5 and 0.8 instead 
of 0.2 and 0.4 in Kalmykia, respectively).

Correction of reanalysis

 Once the reanalysis had been verified, the next step was to 
evaluate how the obtained errors in wind speed propagated 
into wind energy modeling. However, we first needed to 
obtain “perfect” wind data so that we could compare it to 
the “original” reanalysis. To achieve this, we applied the bias 
correction method described earlier to the reanalysis data 
series.
 Initially, we calculated the shape and scale parameters of 
the bias-correction method using formulas (2) and (3) for the 
entire data series due to its relatively small length. The wind 
speed probability distribution obtained after this correction 
is shown in Fig. 3 by a dotted line. Statistical analysis of the 
errors in the corrected wind speed (Table 4, 5) reveals that 
the correction not only eliminated the systematic error but 
also slightly decreased the MAE and NRMSE at most stations 
(Zvenigorod, Gelendzhik, and Tsimlyansk), with the standard 
deviation of wind speed in the corrected reanalysis being 
equal to the observed values. However, other statistical 
characteristics of the errors changed minimally, and the 
percentage of errors within acceptable accuracy for the 
corrected values even decreased.
 

Fig. 3. Probability distribution of wind speed reanalysis errors when using bilinear interpolation (green line), nearest 
neighbor interpolation (red line), and averaging method (blue line) speed in Zvenigorod (a), Tsimlyansk (b), Kalmykia (c), 

and Gelendzhik (d) 
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Fig. 4. Probability distribution of wind speed in Zvenigorod (a), Tsimlyansk (b), Kalmykia (c), and Gelendzhik (d) according 
to observations (black line), “original” reanalysis (red solid line) and corrected reanalysis (red dashed line)

Fig. 5. Probability of wind of various speed categories from different directions in Zvenigorod , Tsimlyansk , Kalmykia, and 
Gelendzhik  according to observations (left column) and reanalysis (right column)
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 Moreover, this correction method does not account for 
the features of the wind speed distribution associated with 
terrain features or intra-diurnal variability. For example, in 
Zvenigorod during summer, the reanalysis errors (namely, 
the overestimation of wind speed) are the smallest in 
the middle of the day and night. At this time of day, the 

regime of stratification and mixing of the boundary layer 
becomes more steady than in the transition hours. In the 
transition hours – in the morning and in the evening – the 
errors increase sharply (Fig 7.a), which is associated with 
the change from nighttime to daytime turbulence regime 
and vice versa (which may not occur simultaneously in 

Fig. 6. The dependency of wind speed error of “original” reanalysis on wind direction in Zvenigorod (a), Tsimlyansk (b), 
Kalmykia (c), and Gelendzhik (d). Whiskers indicate minimum and maximum errors

Bias, m/s MAE, m/s SDE, m/s SDW, m/s CC PEAA, % Number of values

Zvenigorod 0.9 1.3 1.4 1.8 0.77 35 55267

Tsimlyansk -0.8 1.4 1.6 2.7 0.82 72 1468

Kalmykia -0.8 1.4 2.0 2.5 0.59 70 122

Gelendzhik 0.0 1.9 2.4 2.5 0.45 43 649

Bias, m/s MAE, m/s SDE, m/s SDW, m/s CC PEAA, % Number of values

Zvenigorod 0.0 1.1 1.4 2.0 0.73 53 67352

Tsimlyansk 0.0 1.4 1.8 2.8 0.79 58 1765

Kalmykia 0.0 1.8 2.4 2.9 0.67 53 209

Gelendzhik 0.0 2.3 3.0 3 0.49 41 782

NB NRMSE NSD

original corrected original Corrected original corrected

Zvenigorod 0.21 0 0.38 0.29 1.1 1

Tsimlyansk -0.12 0 0.29 0.26 0.9 1

Kalmykia -0.18 0 0.39 0.39 0.7 1

Gelendzhik 0.02 0 0.59 0.54 0.7 1

Table 3. Statistical characteristics of wind speed reanalysis errors when using “averaging method”

Table 5. Statistical characteristics of wind speed reanalysis errors after bias correction

Table 4. Comparison of NB, NRMSE and NSD before and after bias correction
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reanalysis and observations). The transition from nocturnal 
to daytime boundary layers and vice versa is a rather 
subtle process, especially under conditions of a complex 
underlying forested surface, considering the low spatial 
resolution of the reanalysis and the complex nature of 
turbulence. Such features are typical for summer, when 
the differences between the daytime (convective) and 
nocturnal (stably stratified) boundary layers are highest, 
and hence the transitions between them are the sharpest. 
In addition, the change in the form of the daily course of 
wind speed in this region occurs at a height of about 100 
m (Lokoshchenko 2014): the maximum speed is observed 
during the day below 100 m and at night above 100 m. This 
happens due to thermal stratification and features of the 
vertical transfer of momentum between the layers. In the 
reanalysis, this boundary (reversal of the daily course) can 
be higher or lower than the observed one, which adds to 
the reanalysis inaccuracy. After the correction procedure, 
morning and evening errors decreased, but at the same 
time a rather strong negative bias appeared in the middle 
of the day and night (Fig 7a).
 The dependence of the reanalysis error on the time of 
day is not universal. There are small errors in the daytime in 
Tsimlyansk (Fig.7b), with the magnitude of errors significantly 
increasing at night, similar to the previously described 
underestimations. The correction procedure “spreads” the 
error evenly over the daily course, although the usefulness 
of such solution from the energy production point of view is 
questionable.
 To address this, we performed another correction 
procedure for Zvenigorod and Tsimlyansk (at other stations, 
the length of the data series was insufficient for the calculation 
of the mean and standard deviation), considering the 
daily variation of wind speed error. After this correction, we 
eliminated biases in the reanalysis for both the entire series 
and individual hours. At both locations, MAE decreased by 0.1 
m/s compared to the values in Table 5, and the correlation 
coefficient slightly increased, to 0.82 in Tsimlyansk and 0.76 in 
Zvenigorod. However, even with these corrections, the formal 
criteria of reanalysis quality outlined above were not fully met: 
the ratio of SDE to SDW was quite high, while PEAA was rather 
low. Such data are rarely “perfect”. However, as demonstrated 
in the next section, even with bias correction alone, acceptable 
results for wind energy applications can be achieved.

Manifestation in energy modeling

 Having evaluated the corrected reanalysis data, which we 
have assumed to be accurate, we could quantify the effects 
of the reanalysis uncertainties on the accuracy of the wind 
power modeling.

 We assessed two main mechanisms for the propagation 
of the reanalysis uncertainty into energy modeling:
 1. The difference in average capacity factors of 
the renewable generation on a long-term time scale 
associated with applying different approaches to the 
ERA5 bias correction. This uncertainty defines a difference 
between the wind power output values assumed by 
planning studies compared with values harnessed during 
the operation of real power systems.
 2. Discrepancies between the power system regime 
parameters corresponding to the reanalysis-extracted 
wind speed values compared to the use of the “perfect” 
climate data.
 Both climate-related energy modeling uncertainties 
were found to depend on the assumed wind speed 
scaling factor. Lower scaling values were linked to 
higher sensitivity of the energy modeling output to the 
underlying uncertainty of climate data. This effect should 
be expected and is explained by the nonlinear shape of 
the working curve mentioned earlier. It was shown that 
using the “original” ERA5 reanalysis data could lead to errors 
in the wind power capacity factor up to 0.10 to 0.15 on 
the “original” reanalysis data for all considered locations 
except Gelendzhik, where the errors could be up to 0.40.  
Keeping in mind that the typical capacity factor is about 
0.3, the uncertainties associated with the reanalysis biases 
may seriously compromise the results of the investment 
planning if not corrected. The error value drops to as low 
as 0.01...0.02 when the proposed hourly-resolved bias 
correction procedure is applied (Fig. 8).
 We considered several types of wind turbines (Vestas 
V80, Vestas V164, Siemens 82, Siemens 107, Repower 
82, and Nordex N90) to ensure the obtained results are 
robust against wind turbine design. Power curves of each 
turbine type were approximated with a Weibull cumulative 
distribution function model (Bokde et al. 2018). The resulting 
relationship was used to compare the capacity factors of 
wind turbines corresponding to different approaches to 
climate data processing. Vestas 164, a 10 MW nominal class 
that is widely used in Russian wind farms, was selected for 
further calculations presented in the paper.
 The obtained capacity factor errors (30-50%) when 
using the “original” ERA5 data as input are consistent 
with previously obtained estimates for different locations 
in Europe and the world (Staffell and Pfenninger 2016; 
Gualtieri 2021), although errors usually do not exceed 
±10% on flat land or over the sea (Jourdier 2020; Gualtieri 
2021). For some locations (for example, in regions with 
complex orography or forested areas), capacity factor 
errors calculated from ERA5 data can be even larger and 
reach 70-120% (Gualtieri 2021). 

Fig. 7. Daily course of wind speed and wind bias in “original” and corrected reanalysis data series in Zvenigorod (a) and 
Tsimlyansk (b)
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Fig. 8. The effect of ERA5 biases on the simulated multi-annual wind power capacity factor calculated using different 
approaches to the ERA5 biases correction with the average power capacity factor being 0.25 (a) and 0.35 (b) (Zvenigorod, 

turbine type «Vestas V164»)

Fig. 9. Typical daily course of the simulated wind power capacity factor in May calculated using different approaches to 
the ERA5 biases correction (average power capacity factor on the reanalysis data is 0.30, Zvenigorod, 

scaling factor = 1.5, turbine type «Vestas V164» )

Fig. 10. Normalised daily power demand profiles for the Center power system in May for each day of the week (calculated 
using the System Operator data (so-ups.ru, 2005) data for 2000 – 2020)
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 It is worth emphasizing that the overestimation of 
harnessed wind power (as observed in Zvenigorod and 
Gelendzhik) by ERA5 may not be quite obvious from 
reviewing the current state-of-the-art of climate-energy 
research. Most published works report the underestimation 
of real wind potential by reanalysis data and consider energy 
simulation results obtained on original reanalysis data as 
conservative estimates of wind generation performance. 
This bias is linked to the fact that intensive wind generation 
development and applicable regional wing-energy 
research are currently concentrated in a few geographical 
regions of the world. Such a situation obviously leads to 
some research biases if a priori knowledge.
 Diurnal patterns of reanalysis accuracy determine 
variations in climate-related uncertainties of simulated 
wind power throughout the day, particularly during peak 
demand hours when failing to provide the power needed 
to cover the actual electricity demand can lead to the most 
dramatic consequences for the power system. Inadequate 
modeling of the power system behavior during peak hours 
may lead to increasing risks for the power supply reliability. 
From this perspective, the local increase of reanalysis errors 
linked to the change of the boundary layer regime in the 
morning and evening hours poses a serious concern for 
energy modeling’s practical use.
 For example, in Zvenigorod during late spring (Fig. 8), 
the reanalysis error increases between 17:00 and 21:00 
due to the transition between the daytime and nighttime 
boundary layer regimes. This timeframe is overlaid with the 
peak hours of the Center power system where Zvenigorod 
is located (see Fig. 10), which are typically between 
19:00 and 21:00. If “original” reanalysis data are utilized to 
calculate the wind power available in the system, it can 
lead to an almost 50% overestimation of wind power for 
the evening load peak. Such discrepancy questions any 
conclusions which can be derived from energy models 
regarding power system reliability. Applying bias-corrected 
procedures significantly decreases this modeling error and 
is recommended for improving the reliability of energy 
models.

CONCLUSIONS 

 In this paper, we verified the wind speed and 
direction in the ERA5 reanalysis by comparing it with 
sodar measurements at 100 m above ground level. These 
measurements were carried out in various climatic zones 
and landscapes across European Russia. The presence of 
systematic errors in the reanalysis prompted us to correct 
the reanalysis data, considering the intradiurnal variation 
of wind speed error at each station. Since ERA5 reanalysis 
is often used as input climate data in energy modeling, we 
examined how wind speed bias translates into wind power 
capacity factor error and how this error can be eliminated 
with reanalysis bias correction.
 Here are the main conclusions from the verification:
 The systematic error of wind speed in ERA5 can be 
both positive and negative, ranging from -18% to 21% for 
the considered stations. The mean absolute wind speed 
error varies from 1.4 to 2.1 m/s, and the relative error ranges 
from 23% (on flat grassland in Tsimlyansk) to 45% (in the 
topographically complex area in Gelendzhik). The wind 
rose, representing the frequency and intensity of wind 
from different directions, is satisfactorily reproduced by 
ERA5.
 There is no clear universal dependence of wind speed 
quality in ERA5 on a particular type of landscape and 
topography, as previously mentioned by other researchers 

(e.g., Molina et al. 2021). However, when comparing our 
results with those from other studies (Gualtieri 2021), ERA5 
tends to overestimate wind speed over forest landscapes 
and underestimate it over steppe (grasslands) and desert 
landscapes.
 There is a dependence of reanalysis error on the time of 
day, but this dependence varies among different stations.
 In general, wind speed errors in ERA5 are significant, 
especially in Zvenigorod and Gelendzhik, where the 
percentage of errors within acceptable accuracy is less 
than 50%, and the absolute error approaches the standard 
deviation of wind speed. Therefore, reanalysis correction 
is necessary, especially if these data is used in energy 
modeling.
 Bias correction not only eliminates the systematic error 
in wind speed but also slightly decreases the absolute error 
at most locations. 
 Our simplified wind energy modeling approach 
allowed us to assess the propagation of reanalysis biases 
into energy modeling. The energy modeling assumptions 
are based on the usage of working curves of wind turbines, 
which implies neglecting possible wake effects or the 
influence of mesoscale topography features. The analysis 
demonstrated that using “original” reanalysis data as 
inputs can produce misleading results. The main concerns 
include:
 Reanalysis can both under and overestimate wind 
power capacity factors on a long-term time scale, 
depending on the area. Using “original” ERA5 data instead 
of observations can lead to capacity factor errors of 30-50%. 
This effect means that the wind energy modeling results 
can be misleading when used to support investment 
decisions. It should be recommended to assess the 
reanalysis uncertainty at least quantitatively, especially if 
an area is not well studied from the perspective of wind 
power development.
 An important mechanism for the propagation of the 
reanalysis uncertainty into the energy model was identified 
when analyzing diurnal patterns of the reanalysis errors. 
High reanalysis errors associated with transient regimes of 
the atmospheric boundary layer can coincide with peak 
load periods of regional power systems. Failing to account 
for this effect in energy modeling can compromise power 
system reliability.
 Utilizing the bias-correction approach is an effective 
measure to ensure meaningful energy modeling outputs. 
The capacity factor error is reduced by a factor of 10 
compared to using original reanalysis data, and is less than 
10% of its typical value. The developed bias-correcting 
approach accounting for the daily course of wind speed 
error was found to be an effective measure that allows 
to ensure a proper quality of climate inputs for energy 
modeling.
 The main limitations of our study include the absence 
of wind measurements at a height of 100 m in southern 
European Russia during the cold season, when wind 
speed is highest. This limits a full assessment of reanalysis 
error over steppes and deserts, suitable areas for wind 
power plants. Additionally, the used correction method 
depends strongly on natural conditions, which may be 
unknown in advance. Further assessments of reanalysis 
quality for various natural conditions will help to obtain 
such dependences and apply them globally, not only for 
individual regions. Such in-depth assessments are crucial 
for accurate energy planning studies accommodating an 
increasing share of wind generation in power systems 
cost-effectively.
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ABSTRACT. The escalating trend of urbanization in Indonesia, accompanied by the conversion of agricultural land into 
urbanized areas, necessitates the implementation of zoning regulations. These regulations are crucial to protect agricultural 
land and safeguard the finite land assets of the country. To ensure the preservation of scarce land resources and guarantee 
food security, it is paramount for the Indonesian government to establish agricultural land protection areas. This paper 
presents an innovative approach and integrated methods to define agricultural land protection zones in spatial form. Results 
of studies landscape structure classification; core farmland accounts for 33.59% of the study region, whereas edge farmland 
accounts for 36.43%. Furthermore, the corridor farmland area is 0.30%, the discrete farming area is 12.26%, the Edge-Patch 
area is 3.54%, and the Perforated area is 13.89%. Geographically, the primary agricultural land is stretched out as a continuous 
area located on the outskirts of Majalengka city. By integrating Geographic Information Systems (GIS), remote sensing, 
landscape structure, prime farmland identification, and agricultural «land interest» could have a conservationist bent. It can 
mean protecting specific areas for environmental reasons (reach calculated), the study aims to create optimal farmland 
protection areas. The techniques outlined here can aid in determining PFPA from a geographical science standpoint, and the 
research’s findings will be helpful for PFPA planning. 
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INTRODUCTION

 Agricultural land is crucial for sustaining life, ensuring 
national food security, safeguarding the environment, and 
enhancing the transition to renewable energy sources. 
Furthermore, it plays an important role in military and security 
activities (Bakker et al. 2011; Godfray et al. 2010; Qianwen 
et al. 2017; Sutherland et al. 2015). The ecological habitat 
surrounding urban areas tends to deteriorate due to socio-
economic progress and the reduction of natural areas. Also, the 
conservation of regional ecological security increasingly relies 
on the ecological function of agricultural systems (Deslatte et 
al. 2017; Reid et al. 2010). 
 To safeguard agricultural land, policymakers, specifically 
the government, needs to consider its scope, quality, and 

ecological role. Also, the preservation of a unified agricultural 
landscape system can promote sustainable food production, 
especially lands dedicated to agricultural purposes (Sayer 
2009; Sayer et al. 2013). The contradiction between farmland 
preservation and urban expansion poses a fundamental 
difficulty in planning the landscape systems. This is an important 
issue because it is the major link between agricultural scale, 
quality, and the ecosystem (Girvetz et al. 2008; Holmes 2014).
 Disruptions to agricultural landscapes caused by non-
agricultural activities, such as construction, and human 
development caused changes in the landscape configuration. 
These disturbances led to a deterioration in the overall quality 
of agricultural land usage (Jiang et al. 2018; Liang et al. 2015). 
Spatially, building activities related to urban expansion were 
observed to encroach upon agricultural land in a given area 
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Fig. 1. Study Area  

due to the increased demand for urban development and 
urbanization flows. The importance of striking a balance 
between protecting agricultural land and facilitating urban 
growth cannot be overstated, as these are basic conditions 
for driving sustainable economic growth and establishing 
resilient urban centre (Chen et al. 2019; Huang et al. 2019; T. Liu 
et al. 2015).
 In Indonesia, particularly in Java, there has been a massive 
shift from farmland to urban development. The drastic 
reduction in the agricultural land area poses threat to regional 
food security, particularly in the Majalengka Regency. This 
situation arises from the on-ground changes in the conditions 
of agricultural land cover/use, in relation to development of 
infrastructure, such as the West Java International Airport 
Kertajati and the surrounding areas (Adrian et al. 2022).
 The spatial regulation of agricultural land should safeguard 
sustainable agricultural land near urban areas while limiting the 
construction of buildings to accommodate urban expansion. 
Also, precise measures are imperative to demarcate critical 
agricultural land protection areas and outline clear-cut limits 
for urban development (Deng et al. 2015; Duan et al. 2019; 
Jiang et al. 2016). Establishing sustainable food agricultural 
land protection zones necessitates optimizing agricultural 
land spatial planning to facilitate the proximity of agricultural 
land, whether in a dense or concentrated arrangement. 
Furthermore, encouraging agricultural mechanization is 
essential for increasing output and quality (Deng et al. 2015; 
Qianwen et al. 2017).
 According to (Jiang et al. 2018), the integration of 
farmland landscape structure could directly enhance the 
function of the agricultural system, with the agricultural 
land protection strategy gradually shifting from a 
quantity-based perspective to a landscape reorganization 
perspective. Therefore, protecting agricultural land in 
the suburbs through new forms of administration and 
maintaining the spatial continuity of landscapes are 
important considerations that have been discussed (Duan 
et al. 2019; Perrin et al. 2018). This study takes into account 
management difficulties and landscape structure in depth 

to establish sustainable food agricultural land protection 
zones in Majalengka Regency.
 This study addressed a gap in the existing literature by 
examining the tension between protecting farmland and 
creating new economic zones in the Majalengka District. 
Also, leading agricultural land protected zones and the 
prime property were identified near the Special Economic 
Zones development region using a landscape structure 
categorization model for agricultural land. Specific limits 
for urban development were drawn to prevent unchecked 
urban encroachment into farmland. Policy guidance for 
managing the connection between building, agricultural 
land conservation, and sustainable agricultural food land 
protection was also determined. This was achieved by 
integrating urban development boundaries with key 
agricultural land conservation zones to establish spatial 
control boundaries for cultivated land.

MATERIALS AND METHODS

Study Area

 This study was conducted in Majalengka Regency, 
located in West Java Province. Majalengka is comprised of 
26 Districts, and geographically situated between 108°03’ 
and 108°25’ East Longitude and 6°36’ and 6°58’ South 
Latitude. It shares borders with Indramayu to the north, 
Garut, Tasikmalaya, and Ciamis to the south, Sumedang to 
the west, and Cirebon and Kuningan to the east, (see Fig. 1).
 This study was inspired by the fact that the agricultural 
sector remains a vital aspect of the welfare and economic 
growth for the people of Majalengka Regency, where the 
sector’s domestic revenue still holds the first position in the 
province (BPS 2018). (Sari and Kushardono 2019) showed a 
massive change in the use of agricultural land in Majalengka. 
This transformation was driven by the construction of 
Airport BIJB infrastructure in the Regency, which was part 
of the Rebana Special Economic Zone. The area occupied 
by the West Java International Airport expanded from 

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 2024
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10.10 Ha in 2013 to 546.70 Ha in 2018. Furthermore, the 
area of paddy fields underwent a conversion of 413.30 Ha. 
This indicated the Rebana economic area in Majalengka 
Regency had a negative physical impact on land use 
change, primarily agricultural land on a large scale. It also 
significantly threatened regional food security, specifically 
in the area.

Data

 This study utilized both primary and secondary data sources. 
The primary data included land use survey in the form of image 
interpretation in the field (using the results of field surveys), 
enabling the structural classifications of agricultural landscapes 
and providing essential data for planning agricultural land 
spatial regulations. The classification and gradation data on the 
quality of agricultural land served as the standard for evaluating 
high-quality agricultural land. In addition, secondary data 
comprised of several maps sourced from various regional and 
central agencies, as presented in Table 1.
 -
Methodology

Agricultural land protection zoning model

 Zoning protected farmland is one example of a more 
general problem known as land use planning, a series of 
questions on how to optimize space utilization. The study flow 
presented in (Fig.2) illustrates the procedure for agricultural 
land protection zoning. Remote sensing enables the acquisition 
of land use and urban development information, while GIS 
(Geographic Information System) provides spatial data analysis 
tools. Also, land interest was used to classify agricultural land 
based on factors like accessibility and proximity to public social 
facilities. It provided a probability of change, which helped to 
determine potential future changes to built-up land. This model 
was intended to protect agricultural land based on suitability 
and growth potential maps. The subsequent sections will delve 
into models for solving zoning protection problems.
 This study proposes a method for protecting agricultural 
land, namely by using three sub-models: (a) the farmland 
landscape sub-model, namely the use of land landscape 
characteristic factors, which delineate the functional landscape 
of agricultural land based on the agricultural landscape 
structure classification model (b) the farmland quality sub-

model, the quality of agricultural land is more comprehensive, 
then an integrated quality assessment of regional agricultural 
land is carried out using spatial analysis; (c) reach calculation 
sub-model, namely Proximity analysis, often used in spatial 
analysis and geographic information systems (GIS), involving 
assessing the relationship and distance between spatial 
features. In the context of calculating range in proximity 
analysis, in this case, the value of interest is to determine how 
far a particular feature is from a particular location or set of 
locations; (d) delineate protection zones of prime agricultural 
land, Interactions between protected areas and prime 
agricultural land often involve considerations related to land 
use planning, conservation, and sustainable development, the 
specific processes are described (see Fig. 2).
 Land suitability map data and land use surveys (Table 1), 
were used to carry out structural classification of agricultural 
land landscapes and gather primary data for planning 
spatial regulations. This process enabled the classification 
and gradation of agricultural land quality, facilitating the 
assessments for selecting high-quality agricultural land (Jiang 
et al. 2018; Qianwen et al. 2017). Also, the configuration of 
the landscape was directly associated with agricultural land. 
Core farmlands had the most contiguous distribution, the 
most minor interference from non-farm activity, and the best 
agricultural productivity of all categories; Furthermore, edge 
farmland serves as an ecological transition zone between core 
farmlands and nonfarm ecosystems; it aids in the isolation of 
ecological interference and the ecological buffering of nonfarm 
habitats and nonfarm activities occurring on prime farmlands; 
Edge farmlands buffer and protect core farmland production 
functions, and the two farmland kinds complement each other; 
Corridor farmlands, on the other hand, are canals that connect 
farmlands and serve as barriers between farmlands and nonfarm 
habitats. We combined the core farmlands as contiguous 
farmlands and the edge patches of farmland, discrete patches 
of farmland, and perforation farmlands as discrete farmlands 
using the landscape structure classification results, functional 
segmentation, and pixel attribute reclassification, and defined 
corridor farmlands as connecting channels. Contiguous 
farmlands and linked canals were chosen as the ideal prime 
farmland conservation patches to provide consistency among 
farmland landscapes, based on the definitions of different 
farmland landscape types, the details of the farmland landscape 
structure classification process described (see Fig. 3).
 

No Data Name Data Type Data Source Scale

1 Landuse Map Vector Classification of Spot 7 2021 1: 25k

2 Local Government Regulation Map Vector
Local Government 

Majalengka Regency 2021
1: 25k

3 Cultivation intensity map Vector
Local Government 

Majalengka Regency 2021
1: 25k

4 Land area map Vector
Local Government 

Majalengka Regency 2021
1: 25k

5 land suitability for paddy map in Majalengka Regency Vector (Adrian et al. 2022) 1: 25k

6 Administrative map Vector
Landuse Plan (RTRW) of Majalengka 

Regency 2021
1: 25k

7 Points Of Interest Vector Google (Gmaps Leads Generator) 1: 25k

8 Map of building geometries Vector
Open Street map and vectorization from 

Spot 7
1: 25k

9 Location of Paddy Field Point Ground Truth Data 2022 -

Table 1. Data-collection used in the study
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Fig. 2. Single-factor layer-by-layer exclusion procedure for identifying prime agricultural protection zones

Fig. 3. Farmland landscape structure sketch map and farmland landscape categorization design
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 Excessive fragmentation necessitated greater precision 
in verifying the ecological role of agricultural land as a 
constituent of the landscape. It also led to noticeable mis-
segmentation, focusing on the shared confusion among 
patches, edges, perforations, and corridors of agricultural 
land cartographic representation of a spatial plan (Jiang et 
al. 2020). Prime farmland (PF) protection area is described 
as high-quality farmland, A prime farmland protection area 
(PFPA) is a territory designated for the particular protection 
of PF, including accompanying roads, rivers, and facilities. 
The GIS spatial analysis process presented in (Fig.3) is as 
follows (1) Simplifying the polygonal form to delineate 
PF, (2) performing buffer analysis for each PF patch, and 
(3) conducting aggregation analysis to determine the 
boundaries of the PFPA.
 The core farmlands were merged with adjacent ones, 
as well as edge and discrete patches, and perforated 
farmlands to form discrete using landscape structure 
classification, functional segmentation, and pixel attribute 
reclassification results. Corridor farmlands were selected 
to connect waterways. The adjacency of farmlands and 
connecting canals was considered to identify optimal 
farmland preservation patches and maintain the continuity 
of farmland landscapes.

Maximize Farmland Quality

 Farmland quality refers to a piece of land’s usefulness 
for agricultural purposes. Several factors influence farmland 
quality, and these factors have a significant impact on the 
success and productivity of agricultural activities. Data 
related to farmland quality include the paddy crop farming 
index (IP), land area, irrigation status, drainage, and soil type, 
which are data sourced from the Department of Agriculture 
of Majalengka Regency and processed in previous research 
(Adrian et al. 2022). The next step is to determine the 
weight of each driving factor in evaluating suitability and 
producing farmland quality classes (excellent, medium, 
good and low). The weighting of each attribute utilizes 
the calculation results of the AHP method, which involves 
six government stakeholders in the Majalengka Regency. 
In assessing the weighting of each farmland quality factor 
using the results of the AHP method calculation involving 
six government stakeholders in Majalengka Regency.
 The analytic hierarchy process was used to rank the 

importance of different considerations. Furthermore, 
pairwise comparisons and expert opinions were used 
in this metric theory to establish ranking systems (T. L. 
Saaty 2003). Table 2 presents the weights assigned to 
various factors for assessing agricultural suitability and 
development potential. The suitability analysis process 
entailed considering numerous spatial variables or 
factors to assess the suitability score. A total of eleven 
variables were selected to analyze agricultural suitability. 
The incorporation of spatial factors into raster-based GIS 
software enabled the execution of spatial analysis using an 
overlay technique with a map algebra approach.
 The primary objective of this endeavour was to 
safeguard valuable agricultural land. Agricultural fit can be 
determined through various geographic features obtained 
from remote sensing data (RS) combined with Geographic 
Information System Data (GIS). This integration proved 
invaluable in zoning agricultural land for protection. The 
Farmland Quality (Cultivation Intensity) method was based 
on the above spatial factors and the formula of the farming 
land quality conditions. The LS analysis incorporated 
criteria and subcriteria, as shown in (Fig.5):
 The accuracy and availability of data have a significant 
impact on the results of this research. Therefore, extensive 
efforts are required to ensure a thorough review of 
important GIS datasets. This method is an integration of 
AHP and GIS-based farmland quality methods for paddy 
fields, as well as identification of suitable agricultural land. 
The AHP provided mathematical means to assess the 
consistency of judgment matrix. An accuracy ratio can 
be calculated based on the structure of the matrix, where 
the number of rows or columns is always greater than or 
equal to the number of rows or columns with the highest 
eigenvalue (max). The consistency index, which measures 
how well comparisons between two things match up, can 
be written as follows (T. Saaty, 1977; T. L. Saaty, 1988).

 Where CI is the consistency index, n is the number of 
elements in the compared matrix, and max is the largest or 
main eigenvalue. A random index table can be used to verify the 
consistency judgment for the right number of n to ensure the 
accuracy of the pairwise comparison matrix (T. L. Saaty, 1990).

Fig. 4. Analysis Process GIS for Prime Farmland Protection Area

(1)
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 Where CR is the consistency ratio, CI represents the 
consistency index, and RI denotes the randomness index. A 
consistency ratio below 0.1 indicates sufficient information to 
make an informed decision.
 The aforementioned spatial factors are used to assess 
agricultural suitability using the Multicriteria Evaluation (MCE) 
approach (Eastman et al. 1995). Before the estimation, the 
factors should be standardized within the range of [0, 1]. A 
linear weighted combination approach generates the overall 
appropriateness score. The linear weighted combination method 
adopted the following equation to calculate the total fit score:

 where FQ(LS) is farm quality (land suitability), which 
represents land suitability, was calculated using the equation 
below, where (Pcf) paddy crop farming index, (Wc) water 
coverage, (La) land area, (Is) irrigation system, (Dfr) distance 
from road, (Dr) drainage, (St) soil type, (Dis) disaster risk, (Rf) 
rainfall, (Sl) slope and (Ert) Erosion. w
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, These are the weights for each factor, the sum of all 
the criterion weights is 1. 

Reach Calculation

 Reach and centrality are standard network analysis terms 
for transportation, social, and other interrelated systems. These 
notions are crucial for attractiveness analysis, which examines 
how network aspects affect attraction. Reach is the measure of 
the extent or range that something covers inside a network. 
Within the framework of attractiveness analysis, it frequently 
denotes the capacity of a particular node or element within 
the network to attract and engage the target audience, 
exert influence, or facilitate accessibility. Reach is crucial for 
understanding how far the influence of a particular element 
extends within a network. For example, in marketing, reach 
indicates the potential number points of interest who may be 
exposed to a paddy field persil. 
 Centrality analysis is a method used to discover the 
most essential pieces in a network that significantly impact 
connecting other nodes. These key aspects are frequently 
more appealing, be it in terms of social impact, transit hubs, 
or other variables. Utilize the Kernel Density Estimation (KDE) 
method on your spatial data to produce a smooth surface 
representing the estimated density of points throughout the 
study area. Utilize visualizations to analyze the data and create 
contour maps or heat maps that depict regions with varying 
levels of point density. The regions with higher KDE values 
imply areas of greater point concentration, suggesting a more 
significant “reach.”

Normalization Total
WeightResponden Pcf Wc La Is Dfr Dr St Dis Rf Sl Er

Bappeda 0,283 0,050 0,041 0,216 0,077 0,097 0,101 0,062 0,047 0,026 0,283

1.000

Distan 0,051 0,282 0,021 0,224 0,088 0,042 0,158 0,033 0,026 0,074 0,051

Distan 0,289 0,044 0,021 0,224 0,088 0,031 0,158 0,033 0,036 0,076 0,289

PUTR 0,089 0,244 0,024 0,216 0,093 0,030 0,152 0,038 0,039 0,075 0,089

Setda 0,215 0,119 0,029 0,223 0,081 0,030 0,153 0,036 0,040 0,074 0,215

BPN 0,188 0,146 0,018 0,218 0,097 0,036 0,155 0,023 0,031 0,088 0,188

Weight 0,157 0,117 0,025 0,220 0,087 0,040 0,144 0,036 0,036 0,065 0,157 

Table 2. Pairwise comparisons to score land suitability

W: Water Body R: Rock OutCrop, 
(γmax) Max eigenvalue = 9,118 n = 9 
(Ci) Consistency index = (γmax - n)/(n - 1) = 0,012
(Ri) Random index = 0,580
(Cr) Consistency ratio = Ci/Ri = 0,0210451
CR score = 0,0210451 less than 10% (CR<0.1), confirmed

Fig. 5. Hierarchical Structure of Land Suitability

(2)

(3)
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(b)(a)

Method of Kernel Density Estimation (KDE)

 Kernel density estimation (KDE) was used to interpolate the 
POI distribution for food retail outlets and the three indices of 
road network centrality. Points represent service centers, reach 
zones could indicate areas with better service coverage, KDE 
results to make informed decisions about resource allocation, 
marketing strategies, or other relevant considerations. This 
reflected their spatial clustering characteristics within the 
study area. Furthermore, KDE facilitated the transformation 
of different spatial elements into the same spatial unit and 
enabled the study of their relationship. This technique was 
widely used in previous studies to investigate micro-spatial 
distributions (Evangelista and Beskow 2019; Zhang et al. 2021).
 KDE uses data1, data2…, as independent, identically 
distributed samples of the population with the distribution 
density function f. f (x) can be defined as follows:

 where p (.) is the kernel function, q denotes the bandwidth, 
and c - ci represents the distance from estimation point c to 
sample ci. Also, the POI data for the location of public and social 
facilities were assessed for centrality in relation to the road 
network when conducting the analysis with ArcGIS software. 
Subsequently, the data were stored using KDE, considering 
100 m polyline elements and a 100 m bandwidth, to transform 
the two data layers into spatial units, facilitating correlation 
analysis between them.

Network Approach (Reach Calculation)

 Generally, the concept of a network was based on the 
relationship between entities, such as organizations or people. 
The network properties previously studied were related to the 
structure of relationships. According to (Knoke et al. 1996), the 
assumptions underlying the network emphasized structural 
relationships, which aligned with what (Scott 2020) discussed 
about relationships. In “Analyzing Social Networks,” (Teshale 
2016) presented at least three types of “basic” network analysis 
that can be used for measuring network analysis, namely 
centrality, subgraphs, and equivalence. Centrality refers to 
the “most important” actor often located strategically within a 
social network (Uitermark and van Meeteren 2021).
 A referral model and regionalization approach was 
used in this study, considering spatial aspects, such as the 
distributions of settlement population, village office facilities, 

road data, travel time to facilities, and scoring results. These 
factors contributed to the spatial patterns of paddy field 
distribution in Majalengka Regency based on the probability 
of interest. The first step was to identify distribution patterns of 
activity and business centre locations using a network analysis 
technique (Zheng et al. 2020). Reach centrality refers to “the 
proportion of network nodes the focal node can reach in a 
given number of steps” (Henneberg et al. 2007). This metric is 
an alternative method for determining an actor’s proximity to 
other actors in a network. The extent to which an actor can 
access information from other members can be determined 
by identifying the reachable portion of all other actors in one 
step, two steps, three steps, etc (Robins et al. 2007). 
 A Reachr[i] centrality approach is used for determining the 
importance of an entity in a link chart based on a knowledge 
graph. The centrality score ranks entities based on their 
position in the graph represented by the link diagram. This 
score identifies the link chart entities that play an essential role 
in the link chart. For instance, it can identify the most influential 
people in a social network, events contributing to the spread 
of disease, critical infrastructure nodes in an urban network, 
among others. The formula for this approach is as follows:

 Where d[i,j] is the shortest path distance between nodes 
i and j in G the graph containing nodes and edges, and W[j] 
denotes the weight of the destination node j. The weights can 
represent any quantitative quality of the target structures, such 
as their total square footage or the number of residents. By 
incorporating weights, an analyst can determine how many of 
these features (paddy fields and public facilities) are accessible 
from each building within a specific network radius (Porta et al. 
2012).
 The reach centrality visually demonstrated how it operates. 
Starting from the paddy field of interest i, an accessibility 
buffer was extended in all directions along the street network 
until the limiting radius r was reached. The Reach index 
was subsequently calculated by counting the number of 
destinations   within the radius. The aggregate of weights, rather 
than the number of destinations was considered when weights 
were specified. In (Fig.5), the radius   of location   encompassed 
twenty neighbouring locations. The output illustrated the 
surrounding built volume that could be accessed from each 
structure within a 50-meter radius. It was observed that areas 
with higher Reach values had more significant, densely spaced 
buildings and a denser street network.

Fig. 6. (a) UrbanScad software tools, (b) Visual Illustration of The Reach Index

(4)

(5)
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RESULTS AND DISCUSSION

Delineation of protection zones for precious farmland

 The agriculturalfarmland landscape structure 
classification approach, as clearly shown in (Fig.6). In the 
study area, the core agricultural land occupied an area 
of 33.59%, while the Edge-Farmland covered 36.43 %. 
Furthermore, the Corridor area accounted for 0.30%, 
Discrete area of 12.26%, Edge-Patch area of 3.54%, and 
Perforated area of 13.89%. Spatially, the core agricultural 
land was predominantly distributed as a continuous area 
concentrated in the periphery outside the boundaries of 
the central urban area of Majalengka.
This peripheral area represented the historical agricultural 
land area in Majalengka Regency, which experienced 
a delay in urbanization and insignificant agricultural 
land segmentation due to road traffic, development 
areas, and other human activities. The agricultural land 
was segmented by other variables due to its dispersed 
nature on the outskirts of the city area, where regional 

development activities occurred daily, and non-agricultural 
activities encroached upon the limits of agricultural land. 
Most agricultural land was surrounded by built property, 
separating it as an ecological island in the heart of the city 
and reducing spatial proximity between different land uses.
Compared to other land types, core farmlands exhibited 
superior functional qualities, such as strong connectedness, 
minimum disruption from non-agricultural activities, and 
optimal agricultural yield. This landscape was used for 
various agricultural purposes and significantly contributed 
to the quality of farmland landscapes. On the other hand, 
the edge farmland is a zone of ecological transition 
between core farmlands and non-farm ecosystems. Hence, 
implementing ecological conflict prevention methods 
enabled the coexistence of high-quality non-farm 
ecosystems and activities on arable lands while limiting 
their environmental impact. The peripheral agricultural 
lands functioned as a protective barrier, safeguarding the 
productive operations of central agricultural lands. The 
synergistic relationship between these two categories of 
agricultural land is noteworthy.

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 2024

Fig. 7. Landscape class of agricultural land in Majalengka Regency
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 Corridor farmlands served as conduits linking 
agricultural lands, demarcating them from non-agricultural 
surroundings. The peripheries and fragments of agricultural 
land possessed diminutive habitats and exhibited mosaic 
patterns within non-agricultural landscapes. These 
factors frequently impacted the landscapes, potentially 
resulting in increased productivity. The objective of 
the aforementioned was akin to perforating farmlands, 
primarily exhibiting the temporal evolution of the spatial 
configuration of agricultural terrains. In the context of 
defining prime farmlands, it is imperative to consider 
both the peripheral and central farmlands as well as the 
continuity of the plot. The optimal utilization of prime 
farmlands can be achieved by adopting the core farmland 
as a prototype and demarcating the primary farming fields 
using the peripheries of the edge farmland. 

Result Farmland Quality

 Spatial variables were used to assess suitability 
scores during the analysis, it was important to categorize 
each variable based on the respective land suitability 
classification before applying the conformity overlay. The 
process of assessing and classifying a particular land region 
based on its intended purpose is called Land Suitability 
Classification (Fadlalla and Elsheikh 2016). The present 
study used the FAO (Food and Agriculture Organisation) 
land use suitability class to categorize agricultural land use. 
The classes in question were S1, S2, S3, and N1, denoting 
high suitability, sparse suitability, and unsuitability. This 
analysis utilized the values of each variable to ascertain the 
prospective land that could be used for sustainable food 
agriculture. The variables included physical factors that 
could be visually represented with spatial analysis. Some 
of the variables considered were agricultural index, water 
affordability and land area, irrigation system, drainage, 
soil type, disaster risk, rainfall, as well as slope and erosion 
hazard. Infrastructure sub-criteria, such as irrigation system 
analysis and road distance, were also considered. In 
addition, spatial analysis was carried out using the overlay 
technique.
 As a result, the current study conducted a qualitative 
division of farmland by analyzing the quality of agricultural 
land at the block level in Majalengka Regency. Suitability 
analysis, which evaluated whether land properties were 
suitable for the intended use was a crucial part of the land 
use planning (Jayasinghe et al. 2019; Singha et al. 2019). 
The agricultural suitability study considered various spatial 
variables (factors) to determine the suitability score. A total 
of eleven parameters, including the water availability, land 
acreage, irrigation status, proximity to roads, drainage, soil 
type, disaster likelihood, precipitation, slope, and erosion, 
were selected, all of which contributed to the paddy crop 
farming index (IP). These spatial variables (factors) were 
incorporated into raster-based GIS software, and spatial 
analysis were performed using the overlay and map 
algebra methodology. 
 A land suitability calculation model and a modified 
algebra method raster analysis were used to create patterns 
of agricultural land protection. The estimated area required 
for protected agricultural land, based on strategic planning 
in the Majalengka district, was 40,380.92. This model 
offered alternative options for safeguarding agricultural 
land. The land suitability map was created using weighted 
spatial overlay analysis based on the AHP weights for 11 
criteria, as shown in Fig. 8. The land quality grading for S1 
(indicating high suitability for farming) was estimated to 
be 15,038.99 hectares, accounting for 11.31% of the total 

land area. Conversely, the estimated area of unsuitable 
land, mainly mountainous terrain and other land uses, 
was 80,764.05 hectares. The unsuitability of the land can 
be attributed to its current non-agricultural use and its lack 
of compliance with future suitability class requirements. In 
this case, the quality of farmland in Majalengka Regency 
was evaluated, encompassing a vast area of 39,190 
hectares. The accessible land in Majalengka Regency was 
classified into two suitability ranges, namely S1 and S2. 
The total land area classified as Highly Suitable (S1) was 
15,038.99 ha, while the Suitable (S2) group encompassed 
23,745.42 ha, resulting in a total area of 38,784.41 hectares. 
The protection of this area against any change, particularly 
for development purposes is important to ensure its long-
term viability.
 
Result Reach Calculation 

 Kernel Density (Centrality Distributions Along Streets)

 The road network comprising 91,452 nodes 
(intersections) and 95,073 edges (links between two 
intersections), was obtained by merging the open street 
map data with Pleiades imagery. (Fig.9) shows the road 
length (edge length), while (Fig.10) illustrates the kernel 
density of the nodes, using kernel density estimation (KDE) 
on the street network, displaying the KDE of the nodes 
within a predetermined searching radius.

Point of Interest (POI)

 The present investigation involved acquiring point-
of-interest data in the Majalengka Regency from diverse 
sources, including Bappeda Majalengka. The data 
collection process was facilitated by utilizing G Map 
Scraper, which yielded 5,787 records. The Point of Interest 
(POI) was divided into 15 primary classifications, as 
illustrated in Fig. 9. The primary role of the urban center 
in the Majalengka District region was to furnish habitation 
and employment opportunities for its populace, alongside 
dispensing communal amenities. The most important 
land categories in terms of urban land functionality were 
commercial, residential, and industrial. Although the 
available POI dataset did not allow for a proper definition 
of industrial land within Majalengka Regency. Therefore, 
the POI data were classified into three, namely business 
facilities, commercial, residential locations, as well as public 
administration and services. The details of these categories 
are presented in (Fig. 11)

Reach Calculated

 The reach analysis at each node was initially computed 
using the UrbanSCAD (https://circle.urbanesha.com/
auth) urban network analysis tool. This study summarized 
the range analysis of edges by calculating the average 
centrality of the two connected nodes between points of 
interest (POI) and each paddy field (point). Furthermore, 
the paddy field data were processed from polygon data 
and converted into points using centroid tool in QGis 
software. The reach analysis was also computed to allocate 
point-of-interest amenities within a 50-meter constraint 
amidst the location markers of rice paddies. (Fig.12) shows 
the spatial distribution of the range analysis. Individuals 
may hold varying perspectives regarding the road network 
configuration as they traverse through. This study aimed 
to determine the effect of the road network index on the 
distribution of paddy fields and point of interest (POI) 
locations. In the study area, the reach estimates revealed 
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Fig. 8. Thematic Data Layer maps
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Fig. 9. Density of nodes in Majalengka Regency

Fig. 11. Categories of Point of Interest (POI) in Majalengka Regency

Fig. 10. oad lenght
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varied spatial patterns, with a higher core concentration 
and a multipolar distribution in the suburbs. Also, the 
density of locations decreased from the downtown region 
to the outskirts. The proximity to geographical sites and 
the shorter average distance to the centre point implied 
easy accessibility (C. Liu et al. 2019; Van Duin et al. 2016).

Design of the spatial regulation of farmlands

 This study developed a spatial arrangement structure 
for farmland, known as the ‘two lanes, two zones’ approach, 
based on the farmland protection principle. The approach 
aimed to manage and protect farmland while minimizing 
non-agricultural interference mechanisms. The term ‘two 
lines’ pertained to a pliant or inflexible boundary for urban 
development, while ‘two zones’ denoted a central zone for 
safeguarding agricultural land or an urban regulation zone 
with flexibility. The objective was to address spatial land use 
challenges arising from the tension between safeguarding 
agricultural land and accommodating urban growth. 
Results of the Reach Calculated calculation in (Fig.12) to 
implement this approach, Geographic Information Systems 
(GIS) spatial analysis technology was used to identify the 
factors that cause conflicts between agricultural land 
protection and urban expansion. A spatial diagnosis of land 
management policies was conducted using all available 
background information about the conflict areas. This step 
established the rules for the area, allowing for the definition 
of the final boundaries of the leading farmland protection 
zones, the flexible urban development boundaries, and 
the rigid urban development boundaries. This exclusion 
analysis from urban development boundaries identified 
areas that were flexible and adaptable to flexible or rigid 
urban development boundaries, also called urban spatial 
growth boundaries.

Delineation of the spatial regulation boundaries of 
farmlands

 Establishing prime farmland conservation zones 
serves as the fundamental policy mechanism to mitigate 
the reduction of farmland due to urban expansion in the 
Majalengka Regency. The subject encompasses various 
components, including the structure of the storyline, the 
arrangement of physical spaces, the fertility of agricultural 
land, and the geographical characteristics of the location. 
Quantitative evaluations of landscape configuration 
indices are being conducted based on plot morphology 
and spatial layout, namely at the type, landscape, and patch 
scale. Quantitatively characterizing a single plot’s spatial 
information and system functions is challenging. The 
assessment of farmland quality and regional geography 
mainly relies on extensive evaluations of multiple aspects 
and circumstances. The comprehensive review of regional 
farmlands’ integrated productivity levels has some 
reference value; nonetheless, there needs to be clarity 
in determining the factors to be selected and weighted. 
Moreover, incorporating many elements tends to weaken 
the primary factor’s significant impact on the quality of 
agricultural and environmental assessment, distorting the 
evaluation outcomes.
 The conventional methodologies used in land-use 
planning and delineation in prime farmland preservation 
zones focus on the protected area’s characteristics and the 
broader needs of regional socio-economic development 
(Qianwen et al. 2017; Xia et al. 2017). This approach creates 
numerous problems, such as a lowered quality of prime 
farmland protection zones, fragmented morphology, 
and high altitudes with highly gradient farmlands. Land 
morphology in the research area, namely Majalengka 
district, has an area of 400-2000 meters above sea level.

Fig. 12. Spatial Distribution of Paddy Field Reach Calculation to Point of Interest (POI)
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 The total area of urban development boundaries, 
encompassing flexible and rigid boundaries, was 12,171.75 
hectares. A flexible, adjustable zone of 998.22 hectares 
existed in this area. The demarcation resulted in the 
formation of two extensive areas, namely one situated north 
along the river and the other encompassing the majority of 
Majalengka Regency. The analysis, as depicted in (Fig.14), 
showed the protection zone covered a significant portion 
of the agricultural land, spanning an area of 13,564.39 
hectares. This zone is situated in the northern region and 
comprised of two distinct patches in the central and 
eastern areas. The demarcation of the primary agricultural 
land conservation areas as well as the adaptable and 
inflexible urban expansion boundaries was established 
based on the outcomes of conflict resolution in these 
areas. The development of a two-lane, two-zone spatial 
regulation structure for agricultural land was informed by 
the range of flexible or rigid urban development boundary 
options and the identification of adaptable urban areas 
through spatial analysis. As previously mentioned, ‘two 
lines’ pertained to urban development boundaries that 
could either be flexible or rigid, while ‘two zones’ referred 
to zones primarily intended to protect agricultural land or 
regulate urban flexibility.

DISCUSSION

 Due to the substantial overlap between agricultural 
land and urban development, Majalengka Regency has 
faced issues related to the widespread encroachment 
on valuable farmland caused by urban expansion. 
Agricultural land in Indonesia, particularly in Majalengka 
district, have diminished due to the following reasons (1) 
Agricultural lands were transformed into urban areas as 
people migrated and the number of people living in cities 
increased. The demand for homes, businesses, shopping 
centres and other urban infrastructure, necessitated more 
land, which often came at the expense of agricultural 

land. (2) Industries and Industrial Estates: The growth of 
industries and the establishment of industrial estates 
had also contributed to the reduction of agricultural 
land. Most factories, shops and other industrial buildings 
were constructed on land previously used for farming. 
(3) Infrastructural Development: Roads, bridges, airports, 
seaports and other infrastructure projects required land 
development, resulting in the conversion of agricultural 
land for other uses. (4) Improved Residential Land: Several 
agricultural lands were converted into residential areas to 
accommodate the growing population’s housing needs.
Factors like threshold selection, data resolution, and 
landscape categorization size contribute to errors; future 
studies should investigate and resolve these issues. For 
instance, the regulations for gradation on agricultural land 
quality form the backbone of farmland quality classification 
in Indonesia. The regency-scale standard of farming, the 
land economic coefficient, and the land usage coefficient 
all play a role in determining this gradation. Setting up 
zones to protect good farmland was a primary policy tool 
for preventing shrinkage. This process involved various 
components, such as considering the shape of the rice field 
parcels, land layout, farming quality, and the geographical 
characteristics of the area. Landscape configuration indices 
were subjected to quantitative analysis based on factors, 
such as land type, landscape, and patch scale, to examine 
the shape and arrangement of parcels. Quantifying the 
spatial information and reach system functions of a single 
image required significant effort.
 A comprehensive review can serve as a reference 
point for assessing the productivity of regional farmlands. 
However, determining which factors to use and how much 
weight to assign were sometimes unclear. Considering 
numerous factors tended to diminish the impact of 
the most pivotal factor on the quality of farmland and 
the assessment of the environment. This approach 
compromised the accuracy of evaluation results. Traditional 
techniques for safeguarding prime farmland through land-

Fig. 13. Spatial Reach distribution data of district level
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use planning and delineation prioritized the characteristics 
of the preserved land and the broader requirements of 
socio-economic advancement in the region.
 The present investigation employed a geographical 
spatial dimension deduction methodology, which entailed 
following a delineation sequence of “prime farmland 
protection plot, patch, and zone.” Subsequently, spatial 
scaling and layer-by-layer aggregation were utilized to 
establish the prime farmland protection zones. The prime 
farmland protection patches were identified using a 
landscape structure classification model. This model used a 
proximity-based approach to identify clusters of plots and 
designated them as prime farmland protection patches. 
This study effectively screened prime farmland protection 
patches using a combination of quality grading of 
farmland plots, ownership information, and regional land 
development intensity. These patches were subsequently 
consolidated to form prime farmland protection areas, 
which were larger than patches but smaller than zones.

CONCLUSIONS 

 This study used the Landscape Structure Classification 
Model to analyze farmland and identify optimal areas 
for protection based on the functioning of different 
components. Furthermore, farmland quality grading 
and delineation were incorporated to determine the 
effectiveness of security patches on prime farms. This study 
used GIS spatial analytical techniques to investigate the 
causes of conflicts between farmland protection and urban 
development. A spatial diagnosis of the conflict areas was 

conducted, considering land-use spatial management 
policies and general background information. This step 
guided the regulatory direction of the conflict areas. The 
spatial boundaries of prime farmland protection zones, as 
well as the flexibility or rigidity of urban growth boundaries 
were also determined. implementing prime farmland 
protection zones was considered an effective strategy for 
managing and safeguarding farmland. The use of flexible 
buffer zones that could be modified as needed was the 
optimal approach for delineating farmland conservation 
areas within urbanized regions.
 In the study area, core farmland has an area of 33.59%, 
while edge farmland has an area of 36.43%. Furthermore, 
the area of the corridor farmland is 0.30%, while the area 
of the discrete farmland is 12.26%, the Edge-Patch area is 
3.54%, and the Perforated area is 13.89%. Spatially, the core 
agricultural land is mainly spread out as a continuous area 
concentrated on the outskirts outside the central area of 
Majalengka city. This study established a spatial regulatory 
framework for farmlands to reconcile the conflict between 
prime farmland protection zones and urban development 
boundaries. The establishment of this framework was 
aimed at addressing the construction and developmental 
requirements of the region, integrating spatial control of 
urbanized areas with the consolidation and protection of 
agricultural lands. This approach addressed the conflicts 
that arise from the need to preserve agricultural land while 
expanding urban areas. This has the potential to optimize 
the utilization of building land by enhancing both its 
spatial capacity and quality.

Fig. 14. Results of the Process of Optimizing Land Protection Patterns
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ABSTRACT. Forest fires are global phenomena that pose an accelerating threat to ecosystems, affect the population life quality 
and contribute to climate change. The mapping of fire susceptibility provides proper direction for mitigating measures for 
these events. However, predicting their occurrence and scope is complicated since many of their causes are related to human 
practices and climatological variations.  To predict fire occurrences, this study applies a fuzzy inference system methodology 
implemented in R software and using triangular and trapezoidal functions that comprise four input parameters (temperature, 
rainfall, distance from highways, and land use and occupation) obtained from remote sensing data and processed through 
GIS environment. The fuzzy system classified 63.27% of the study area as having high and very high fire susceptibility. The 
high density of fire occurrences in these classes shows the high precision of the proposed model, which was confirmed 
by the area under the curve (AUC) value of 0.879. The application of the fuzzy system using two extreme climate events 
(rainy summer and dry summer) showed that the model is highly responsive to temperature and rainfall variations, which 
was verified by the sensitivity analysis. The results obtained with the system can assist in decision-making for appropriate 
firefighting actions in the region.
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INTRODUCTION

 Forest fires cause immeasurable environmental impacts. 
On top of economic damage and public health-related 
problems, which are commonly observed immediately 
after fires, later events such as climatic and environmental 
changes caused by large amounts of CO

2
 emitted into the 

atmosphere lead to the increasing greenhouse effect, thus 
resulting in major ecological disturbances (Machado and 
Lopes 2014; Aragão et al. 2018; Venkatesh et al. 2020). 
 In the past, the occurrence of forest fires was naturally 
related to climatic fluctuations, such as changes in 
temperature and rainfall; however, in recent decades, 
anthropogenic activities have caused major alterations 
in the fire regime (Chuvieco et al. 2019) since changes in 
land use associated with climate change can increase the 
frequency and severity of these events (Aquilué et al. 2020). 
Thus, understanding their spatial and temporal distribution 
is not trivial (Machado and Lopes, 2014) since it includes a 
set of dynamic factors driven by the interaction of biotic 
and abiotic processes that depend on the geographic 

scale (Aragão et al. 2018; Mota et al. 2019; Pourghasemi et 
al. 2020; Ribeiro et al. 2020).
 Data from the Fire Information for Resource 
Management System (FIRMS) indicates that between 2000 
and 2018 there were about 7.27 million outbreaks of fire 
in South America (NASA, 2020). In Brazil, the occurrence 
fire outbreaks has significantly increased in recent years 
due to several factors, such as deforestation, agropastoral 
activities, and uncontrolled burning (Caúla et al. 2015; 
Barlow et al. 2019). Although the entire national territory 
suffers from these events, historical data shows that 80.66% 
of fires occur in the Amazon and Cerrado biomes, with an 
average of 170,000 fire outbreaks per year, predominantly 
between July and October (INPE, 2020).
 The effective management of these events requires 
centralized planning, which includes identifying the 
locations with the greatest fire susceptibility. This 
identification can enable the management of critical areas 
and serve as a basis for developing more accurate fire 
warning systems and a consistent institutional program 
(Adab et al. 2013; Eugenio, 2016; White et al. 2016; Barlow 
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Fig. 1. Study area in northern Rondônia

et al. 2019). The methods usually employed in planning 
include integrating remote-sensing techniques, statistical 
methods, and GIS (Jaiswal et al. 2002; Adab et al. 2013; 
Mota et al. 2019; Pourghasem et al. 2020; Gizatullin 
and Alekseenko, 2022), which are employed through 
probabilistic, stochastic models, or a mixture of both.
 Despite proving high effectiveness in studies at local 
scale, at regional scale the GIS and statistical methods have 
limitations due to multiple complex interactions related 
to the degree of subjectivity these events have, spatial 
distribution of the events, and uncertainties caused by 
spatial and temporal resolution of the ignition data. This 
makes it difficult to eliminate uncertainties regarding 
the inaccuracy of the data and, as a result, these models 
present difficulties when associating products with data 
inaccuracies in the GIS environment, thus resulting in 
errors in the final products (Bui et al. 2017; Moayedi et 
al. 2020; Sahiner et al. 2022). Therefore, it is necessary to 
develop new models that make it possible to deal with 
uncertainties and inaccuracies, while also improving the 
ability to predict these events.
 As an alternative methodology, the fuzzy theory 
introduced by Zadeh (1965) provides a logical approach 
that is capable of dealing with complex systems, such as 
those observed in forest fire events that have spatial and 
temporal variability, as well as subjectivity, and providing 
an adequate mathematical treatment (Zadeh 1965; Araya-
Muñoz et al. 2017; Bressane et al. 2020; Fernandes et al. 
2023). Recent environmental applications that use the fuzzy 
approach integrated with GIS have shown advantages over 
traditional techniques in evaluating several phenomena, 
such as susceptibility to flooding (Sahana and Patel, 2019), 
landslides (Nwazelibe et al. 2023), drought (Nikolova et al. 
2021), and soil erosion (Souza et al. 2019), and anthropic 
impact on watersheds (Lopes et al. 2021).

 Considering that the fuzzy theory is used to analyze 
the causality of uncertain events (Román-Flores et al. 2020; 
Sahiner et al. 2022), including the causes of forest fires 
(Pourghasemi et al. 2020; Ribeiro et al. 2020), and that the 
fuzzy method can work with uncertainties related to the 
spatial and temporal data resolution (Lopes et al. 2021; 
Sahiner et al. 2022), this study presents a fuzzy inference 
system that considers climatic and anthropic variables as 
input variables for mapping fire susceptibility, with the study 
area of the northern region of the Rondônia state, Brazil, due 
to the high number of fires registered there in recent years.

MATERIALS AND METHODS

Study Area

 The study was conducted in the north of the Rondônia 
state. It is an area of around 89,900 km² (Figure 1) that 
covers 14 municipalities and has a population density of 
8.0 inhabitants/km². This region is mostly occupied by 
agricultural and cattle-ranching lands due to administrative 
and financial support from governmental colonization 
programs in the Brazilian Amazon that have taken place 
from the 1970s onwards (Alves et al. 2021). These programs 
are characterized by the implementation of colonization 
settlements, which are preceded by high deforestation 
rates due to the expansion of agricultural lands and cattle-
ranching (Alves et al. 2021; Duarte et al. 2021), thus making 
the region a part of the “Arc of Deforestation” in the Brazilian 
Amazon.
 In this region, fire is commonly used for clearing the 
land after deforestation and for pasture renewal (Caúla et 
al. 2015; Barlow et al. 2019). Consequently, around 70% of 
the fire outbreaks in Rondônia have occurred in its northern 
part, with 90% of them being registered between August 
and October during the dry season (SEDAM, 2020).
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 According to the Köppen classification (Alvares et al. 
2013), the region’s climate is of the Aw type (Rainy Tropical 
Climate), with average annual precipitation of 2,250 mm. 
It has a well-defined dry period from June to August, with 
monthly precipitation below 50 mm, and a rainy period 
from November to April, with monthly precipitation above 
220 mm. The average annual temperature in the region 
is 25.5 °C, with a maximum of 34.4 °C in August and a 
minimum of 19.2 °C in July (Silva et al. 2018).
 The indigenous vegetation presents diverse 
characteristics, comprising open ombrophylous 
forests, dense ombrophylous forests, savannas, pioneer 
formations, and contact or transition forests. Additionally, 
there are areas of anthropogenic activity that are primarily 
occupied by pastures and family farming (SEMA, 2012; 
Schlindwein et al. 2012). In this region, deforestation occurs 
predominantly in areas that consist of open ombrophylous 
forests and dense ombrophylous forests, predominantly 
due to livestock farming.

Fuzzy System Proposal

 Several previous studies propose the association of 
factors to indicate the spatial predisposition of forest fire 
occurrence (Jaiswal et al. 2002; Bonazountas et al. 2005; 
Parente and Pereira, 2016; Mota et al. 2019; Pourghasemi 
et al. 2020). However, methodological association of 
several factors is quite complicated, in addition to being 
impractical and possessing regional degrees of subjectivity 
(Carmo et al. 2011; Gralewicz et al. 2012). Furthermore, 
large-scale data are not always available, especially in 
remote areas like Brazilian Amazon. 
 This study gathered a set of factors mentioned in 
previous research that can be obtained from remote 
sensing data to compose a fuzzy inference model. This 
model is characterized by a Max-Min inference system 
proposed by Mamdani and Assilian (1975). This system 
is one of the most commonly used in geosciences since, 
besides being abstractly defined, it employs linguistic 
variables, which facilitates their application (Acaroglu et al. 
2008).
 The four main components of the fuzzy inference 
system are input fuzzification, fuzzy rule base, fuzzy 
inference method, and defuzzification. To “fuzzify” the 
input variables into a common range [0,1], each variable 
is transformed into linguistic variables (low, moderate, 
and high values) that can be calculated by Equations 
1, 2 and 3, and represented by a triangular (Equation 4) 
and a trapezoidal (Equation 5) membership functions, 
which overlap and form fuzzy regions, thus allowing data 
to belong to more than one set (Cocconello et al. 2014; 
Román-Flores et al. 2020).

 where the function f(x;a,b,c,d) is given by Equations 4 or 
5, x refers to the input variables, and the subscripts (xL, xM, 
xH) refer to the variables’ membership function parameters 
for the low, medium, and high classes.

 where μ corresponds to the membership function, and 
the variables a, b, c, and d correspond to the parameters 
that represent the shape of the triangular and trapezoidal 
function. In this study, we chose functions of mixed relevance, 
employing trapezoidal functions for exact extensions and 
triangular functions for abrupt transitions.
 The rule base comprises a set of IF … THEN rules that 
associate the inputs forming the fuzzy system outputs. These 
rules are based on the relationships between the variables, 
for instance: IF temperature is low AND precipitation is low AND 
distance from highways is low AND land use and occupation is 
low, THEN fire hazard is very low
 The output variable comprising fire susceptibility was 
characterized by the following language terms: very low, 
low, moderate, high, and very high. Triangular membership 
functions represented these variables. Finally, the centroid 
method was used to transform the fuzzy output variable into a 
crisp numerical value (defuzzification). This method calculates 
the average of the areas representing the degrees of the fuzzy 
subset pertinence (Román-Flores et al. 2020).

Determining the Input Variables

 The input variables selected for the fuzzy system referred to 
precipitation, temperature, distance from highways, and land 
use, and were obtained from open remote sensing products. 
 Land surface temperature for the study area (in Kelvin) 
was estimated from thermal images taken by the MODIS 
(Moderate Resolution Imaging Spectroradiometer) sensor, 
product MOD11 (Land Surface Temperature - LST) from Terra 
and Aqua satellites, at ~1 km spatial resolution. The data are 
available at the United States Geological Survey website (USGS, 
2020). Data from the USGS were chosen for the calculations as 
their estimates were observed in situ for the Amazon region 
by Gomis-Cebolla et al. (2018). Monthly data were obtained 
between August and October 2018 at 1 km spatial resolution in 
GeoTIFF format using the Google Earth Engine platform. Then, 
the conversion from Kelvin to Celsius degrees was performed 
through the GIS environment.
 Monthly precipitation (in mm) was obtained from the 
Global Precipitation Measurement (GPM), IMERG Version 6, 
with ~1 km spatial resolution, which was provided by the 
Japan Aerospace Exploration Agency (JAXA, 2020). These data 
are similar to the values observed by surface rainfall stations in 
the region (Santos et al. 2019). The monthly average data for 
August-October 2018 were obtained in GeoTIFF format using 
the Google Earth Engine platform and processed at a 1 km 
spatial scale.
 Data on highways and minor roads in the region were 
obtained by joining the database of the National Department 
of Transport Infrastructure (DNIT, 2020) and crowdsource 
mapping data from OpenStreetMap (OSM Foundation, 2020). 
These data were pieced together, and the Euclidean distance 
of the vicinities was calculated, being spatialized with a spatial 
resolution of 1 km.
 Land use data for the region were obtained from the 
database of the Annual Mapping of Land Cover and Land Use in 
Brazil (MapBiomas) project for 2018. These data were produced 
from the pixel-by-pixel classification of images from the Landsat 
satellite sensor series using machine-learning algorithms via 
the Google Earth Engine platform. They are available in GeoTIFF 
format for the entire country (MapBiomas, 2020). These data 
were processed with GIS with a spatial resolution of 1 km.

(1)

(2)

(3)

(4)

(5)
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 All data were treated and manipulated using ArcGIS 
10.5 software (ESRI, 2016), adopting the Universal Transverse 
Mercator-UTM coordinate projection system, SIRGAS 2000 
Datum, zone 20 south.

Fuzzy System

 The variables were categorized according to the intervals 
defined in previous research. Thus, the temperature was 
categorized according to Melo et al. (2012), Mohammadi et al. 
(2014), and Assis et al. (2014). For precipitation, the studies by 
Oliveira et al. (2017), Silva and Pontes Jr. (2011), and Assis et al. 
(2014) were used. Land use was categorized following Venturi 
and Antunes (2007), Ribeiro et al. (2012), and Assis et al. (2013), 
while distance from minor roads was categorized according to 
intervals defined by Adab et al. (2013), White et al. (2016), and 
Gholamnia et al. (2020).
 However, there is no consensus on the class interval 
definition for the assessed variables. As an example of 
subjectivity in class intervals, for temperature, Melo et al. (2012) 
defined the low class as <13 °C, moderate as between 13 °C 
and 24 °C, and high as >24 °C. Meanwhile, Mohammadi et al. 
(2014) defined them as <16 °C, between 16 °C and 30 °C, and 
>30 °C, respectively, whereas Assis et al. (2014) defined them 
as <23.4 °C, between 23.40 °C and 24.15 °C and >24.54 °C. 
Considering this subjectivity of the classes, fuzzy sets were built 
for each variable, and Table 1 presents the parameters compiled 
based on expert knowledge of the model’s fuzzy association 
(μ(x;a,b,c,d)). It should be noted that this system’s application 
in other climatic regions requires rule set adaptation since the 
model’s response is intrinsically related to the variation of local 
environmental conditions.
 According to the association functions presented in Table 
1, each attribute has specific contributions that can imply 
increased or reduced susceptibility to fire. Temperature, for 
example, is important because, apart from influencing soil 
moisture, it is directly linked to the combustion of vegetation, so 
the higher the temperature, the greater the susceptibility to fire 
(Pourghasemi et al. 2020). On the other hand, high precipitation 
rates increase soil moisture content, decrease water stress, 
and hence reduce susceptibility to fire (Vadrevu et al. 2006; 
Venkatesh et al. 2020).
 Highways and minor roads also contribute to fires since they 

help to clear up new areas for agriculture, cattle-ranching, and 
logging, thus facilitating fire outbreaks. The greater the proximity 
of highways and minor roads, the greater the susceptibility 
to fire (Ribeiro et al. 2012). The landscape’s structure and the 
way land use patterns are organized strongly influence the fire 
occurrence because these dynamics are associated with the 
spatial distribution of the fuel load constituted by the type of 
vegetation and available biomass (Aquilué et al. 2020).

Model Sensitivity Analysis

 Model validation is a crucial step as it tests the effectiveness 
and accuracy of the methodology used. In this case, we 
evaluated the ability of the model to map the areas with fire 
susceptibility. For this purpose, the data on fire outbreaks were 
obtained from the Fire Database of the National Institute for 
Space Research (INPE, 2010), and classified according to the 
number of observations per km². Fire occurrence was classified 
as very low (0 to 0.3), low (0.3 to 0.7), moderate (0.7 to 1), high 
(1 to 1.3), and very high (>1.3), as proposed by Nascimento et al. 
(2017).
 Then, partitioning was performed through joint training 
(80%) and testing (20%) for the implementation of the fuzzy 
system, and the analysis of the ROC (receiver operating 
characteristic) and AUC (area under the curve) was performed 
to determine the accuracy of the proposed model. The ROC 
curve plots the true positive rate on the Y-axis and the false 
positive rate on the X-axis, with area under the curve (AUC) 
values ranging from 0.5 to 1.0, whereby the forecast accuracy 
can be classified as excellent (0.9-1.0), very good (0.8-0.9), good 
(0.7-0.8), average (0.6-0.7), or poor (0.5-0.6), as described by 
Chen et al. (2018).
 To evaluate the efficiency of the fuzzy system, the model 
was tested considering the mapped fire susceptibility classes 
and the inventory of fire outbreaks in the region. This evaluation 
was carried out for the base year (2018) and two extreme climatic 
events, with a rainy summer period of 2001 and a dry summer 
period of 2007, according to the classification of extreme events 
described by Tejas et al. (2012) and França (2015). 
 Since fire susceptibility is highly dependent on the 
association of the input variables, evaluating the impact of the 
input association functions on the final result was of the utmost 
importance and was performed by Monte Carlo simulations 
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Susceptibility Classes Temperature (°C) Precipitation (mm) Distance from highways (m) Land use Classes

Low

a 0 80 6,000 0

b 0 80 6,000 0

c 13 22 3,000 8

d 24 10 2,000 12

Moderate

a 13 22 3,000 8

b 24 10 2,000 12

c 24 20 2,000 12

d 30 2 1,000 20

High

a 24 10 2,000 12

b 30 2 1,000 20

c 50 0 0 30

d 50 0 0 30

Table 1. Fuzzy membership function parameters compiled from specialized literature

*Land-use classes defined by recategorization based on the number of «CAPTION CODES - COLLECTION 5» from the MapBiomas project.
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(1,000 simulations). For comparison purposes, the input 
parameters were individually perturbed in an interval from -10% 
to +10%, considering their original value. The ±10% variation 
was adopted since it was compatible with the projections 
presented by the Intergovernmental Panel on Climate Change 
(IPCC), which indicated an increase in temperature of 1.5 °C and 
the intensification of extreme precipitation events (positive and 
negative anomalies) by 2050, and which could increase forest 
fires in the region (Hoegh-Guldberg et al. 2018). The individual 
sensitivity of the parameters was analyzed by considering the 
average percentual change in the fuzzy system’s output.
 The interaction of the four inputs of the proposed fuzzy 
system enabled the generation of 81 association rules. 

Figure 2 presents the schematic diagram of the fuzzy model 
implemented from the R software (R Core Team, 2020).

RESULTS

Model Input Data

 Figure 3 presents the maps of the spatial distribution of 
the average observed temperature (a) and precipitation (b) 
between August and October 2018, as well as the distance 
from highways (c) and land use (d) for the respective period 
evaluated. 
 

Fig. 2. Schematic diagram of the developed fuzzy inference system

Fig. 3. Input data of the fuzzy system regarding monthly average temperature between August and October 2018 (a) 
retrieved via the MODIS satellite, monthly average precipitation between August and October 2018 (b) retrieved via 

the GPM satellite, distance from highways (c) obtained based on DNIT and OpenStreetMap data, and land use and 
occupation (d) obtained from MapBiomas
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 The surface temperature map obtained via the MODIS 
sensor (Figure 3 a) between August and October 2018 
shows that the average values ranged from 25 °C to 40 °C, 
with the highest temperatures occurring in anthropized 
areas, mainly in urban and agricultural areas. Meanwhile, 
the lowest temperatures occurred in areas occupied by 
forests and natural grasslands. Regarding the average 
precipitation accumulated from August to October 
registered by the GPM sensor (Figure 3 b), it is evident that 
most of the study area had precipitation of 15-20 mm, 
with small areas in the central and extreme northern parts 
receiving 20-25 mm, and precipitation of 0-15 mm found 
in the outer eastern and southern parts.
 Regarding the distance from highways and minor roads 
(Figure 3 c), the study area primarily presented high density 
of road network (dark red), especially in the south, where 
the majority of rural settlements are concentrated. This high 
density can also be observed on the land-use map (Figure 
3 d), which illustrates the characteristic “herringbone” areas 
that correspond to deforestation advance around the 
minor roads. 
 The land-use map for 2018 shows the predominance 
of areas occupied by native forests (58.30%), followed by 
pasture areas (38.72%), rivers and lakes (1.88%), annual and 
perennial agriculture (0.46%), natural fields (0.41%) urban 
areas (0.21%), and mining areas (0.01%) during the studied 
period. Out of all areas occupied by forests, around 40% 
corresponded to areas protected by conservation units, 
and the other 10% protected by indigenous lands. In other 
words, 50% of the areas occupied by forests in the region 
were within protected areas, and the rest consisted of small 

forest fragments out of legal reserves and environmental 
protection areas. The predominance of anthropogenic 
pastures shows that the region was a part of the agricultural 
frontier, concentrating 34.02% of the cattle in Rondônia 
(IDARON, 2018).

Mapping of Fire Susceptibility

 Figure 4 shows the fire susceptibility classification 
map generated by the fuzzy system for the north of 
Rondônia. 47% of the area were classified as having very 
high susceptibility, 16% as having high susceptibility, 18% 
as having moderate or low susceptibility, and just 0.17% as 
having very low susceptibility.
 The reliability of the fuzzy system was evaluated using 
the overlap between the mapped fire susceptibility classes 
with the density of fire outbreaks that were observed by 
satellites between August and October 2018, as shown in 
Table 2.
 It can be noted there is significant agreement between 
the fire susceptibility classes mapped by the fuzzy system 
and the density of fire outbreaks per km² observed 
between August and October 2018 in the region (Table 2). 
Notably, the very low and low susceptibility classes show 
a hotspot density of 0.01 and 0.09 per km². Meanwhile, 
the hotspots increase substantially in moderate, high, 
and very high susceptibility areas. The response of the 
model built by the fuzzy system was also evaluated by 
considering two extreme weather events (Figure 5). In the 
period corresponding to the rainy summer (Figure 5 a), 
the study area was predominantly classified as having low 

Susceptibility Classes Area (km²) Area (%) Number of outbreaks of fire Density of fires/km²

Very low 1,731.74 0.17 15.00 0.01

Low 15,861.60 18.28 1,437.00 0.09

Moderate 16,059.00 18.29 9,890.00 0.62

High 14,248.90 16.27 23,514.00 1.65

Very high 41,789.80 47.00 59,910.00 1.43

Table 2. Relationship between the classes of fire susceptibility and observed fire outbreaks in 2018

Fig. 4. Fire susceptibility map for the study area
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susceptibility to fire. In contrast, for the dry summer period 
(Figure 5 c), the fuzzy system model classified the area as 
having a predominance of very high susceptibility.
 Regarding the density of fire outbreaks per km², the 
rainy summer period showed low density (Figure 5 c), while 
the dry summer period showed high density (Figure 5 d). 
It is worth noting that the density of fire outbreaks aligns 
with the mapped susceptibility classes. The occurrence 
distribution is denser in areas classified with high and very 
high susceptibility and lower in areas classified with low 

and very low susceptibility, as shown in Figure 5 c and 
Figure 5 d.
 To assess the accuracy of the results, which was a 
crucial step in the modelling process (Pourghasemi et al. 
2020), the AUC and ROC were used. Figure 6 presents the 
AUC values for the ROC curve in 2018, as well as for 2001 
and 2007. The AUC values for the proposed fuzzy model 
range from 0.709 to 0.879, thus indicating that the model 
has a good predictive capacity.
 

Fig. 6. Prediction rate curve of the forest fire susceptibility map using the fuzzy model for 2018 (a), 2001 (b) and 2007 (c)

Fig. 5. Mapping of the fire susceptibility for a rainy (a) and dry (b) summer, and respective density 
of fire outbreaks per km² (c and d)
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 Figure 7 represents the sensitivity analysis of the fuzzy 
system performed using 1,000 Monte Carlo simulations. 
The graphs show the percentage contribution of each 
variable to the model output when individually disturbed 
between -10% and +10%.
 In random simulations of up to ±2.5% in temperature 
(Figure 7 a), fire susceptibility can be altered by an average 
of ±20%. In other words, a 2.5% increase in regional 
temperature can result in a 20% increase in fire susceptibility 
compared to what is normally observed. Meanwhile, 
precipitation showed considerably lower sensitivity when 
compared to temperature (Figure 7 b). Disturbances of up 
to ±2.5% of precipitation alter the average fire susceptibility 
by up to ±10%. Thus, a 2.5% reduction in precipitation can 
cause an average 10% increase in fire susceptibility to fire 
in the study area. Regarding the distance from highways 
and minor roads (Figure 7 c) and land use (Figure 7 d), the 
random simulations showed less significant variations in 
the proposed model.

DISCUSSION

 Proper mapping of forest fire susceptibility is an 
important task within its management. However, this is 
still a complicated challenge due to the complexity and 
non-linearity of these fires (Moayedi et al. 2020; Sahiner 
et al. 2022). This study used the fuzzy inference system 
composed of four input parameters (temperature, 
precipitation, distance from roads, and land use and 
occupation), with a map output showing the spatial 
distribution of fire susceptibility. The used method made it 
possible to incorporate expert knowledge into the model 
and, with the use of linguistic variables and degrees of 
pertinence, to smoothen the transition from one class to 
another (Zadeh, 1965; Cheng et al. 2022). This allowed the 
values of the influencing factors to belong simultaneously 
to several levels of susceptibility with different degrees of 
association, thus better reflecting the real characteristics of 
the events.
 The proposed fuzzy system applied in this study 
indicated the predominance of areas that were classified 
as having very high fire susceptibility in 2018. These areas 

were distributed mainly throughout the south of the study 
area, where most of the agricultural and cattle-ranching 
lands and the highest road network density could be 
found. When these factors were combined with low 
precipitation and high temperatures observed during the 
evaluated period, they contributed to the predominance 
of high and very high fire susceptibility, similar to Cardozo 
et al. (2014). On the other hand, the areas identified as 
having low and very low fire susceptibility corresponded 
to protected areas represented by conservation units and 
indigenous lands distributed throughout the north of 
the region. However, these areas have recently suffered 
from the advancement of anthropogenic activities due 
to the construction of unofficial minor roads and land 
grabbing, as also demonstrated by Fonseca et al. (2018). 
Although the study area had around 58.30% native forest 
coverage, 19.25% of them were classified as having high 
susceptibility to fire, and other 21% as having very high 
susceptibility. These areas corresponded to border zones 
with proximity to highways and unofficial minor roads. 
When road proximity is combined with the fuel stored in 
the forest litter, high temperatures, and low precipitation 
rates, it becomes a dominant component for the start of 
forest fires.
 Furthermore, forest fires have become increasingly 
frequent because during intense dry seasons the Amazon 
Forest has become more flammable, and thus more 
susceptible to fires, as already described by Aragão et al. 
(2018) and Staver et al. (2020), and shown by the model 
results for the dry summer period in 2007. There is a 
high alignment between mapping results based on the 
proposed methodology and the recorded fire instance 
data both for 2018 and for 2001 and 2007 with extreme 
weather conditions. These results show that the developed 
fuzzy model system can adjust to climatic variations 
(temperature and precipitation) that occur during extreme 
weather events. This emphasizes the high adequacy of the 
applied method, which was confirmed by the AUC values 
of 0.879 for the year 2018, 0.709 for the rainy summer 
period, and 0.846 for the dry summer period.
 The results achieved in this research are considered 
satisfactory when compared with the AUC values found in 
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Fig. 7. Sensitivity analysis of the fuzzy system output with a disturbance at -10% and +10% of precipitation (a), 
temperature (b), distance from highways, and land use and occupation (d)
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previous research. For example, Pourghasemi et al. (2020), 
when employing methods such as mixture discriminant 
analysis (MDA) and boosted regression tree (BRT), obtained 
AUC values ranging from 82.5% to 88.90%. By employing 
joint approaches, Eskandari et al. (2021) observed that 
the generalized additive model – multivariate adaptive 
regression spline – support vector machine (GAM-MARS-
SVM) method achieved an AUC of 83.00%, which surpassed 
the individual models used by the authors. These findings 
are consistent with those of Mohajane et al. (2021), who 
observed an AUC of 98.90% for the forest random frequency 
ratio (RF-FR) method. In both cases, the models were 
considered satisfactory and appropriate for the mapping 
of fire susceptibility in the respective analysed areas.
 Regarding the sensitivity of the input variables of the 
fuzzy inference system, the proposed model proved to be 
more sensitive to the factors that can alter the flammability 
of combustible materials, such as precipitation and 
temperature during seasonal changes. In variations of up 
to 2.5% in temperature, the model indicated an average 
20% increase in fire susceptibility in the region, which is a 
worrisome scenario. According to the Intergovernmental 
Panel on Climate Change (IPCC), for the Amazon, there is a 
projected 1.5 °C increase in temperature by 2050 (Hoegh-
Guldberg et al. 2018), which can result in an increase in fire 
susceptibility beyond what was calculated by the model. 
It is worth mentioning the influence of anthropogenic 
activity on fire susceptibility. In this study, anthropogenic 
areas had an average temperature that was 5 °C higher 
than in natural areas (Figure 3a and 3d), which resulted 
in greater fire susceptibility, as reported in other studies 
(Oliveira et al. 2021; Silva et al. 2023).
 Moreover, regional atmospheric conditions, such as 
strong anticyclones over the continent, for example, the 
South Atlantic Subtropical High, inhibit the formation of 
rain clouds north of the state of Rondônia. These conditions 
contribute to low precipitation between August and 
October in this region, which increases the flammability 
and burning potential of the combustible material (Tejas 
et al. 2012; França, 2015; Aragão et al. 2018; Ribeiro et al. 
2020).
 Thus, adopting an integrated command and control 
system that encompasses public policies and includes 
prevention techniques for fighting and controlling fires 
is essential for the region. As such, the methodology 
presented for fire susceptibility mapping, which integrates 
the fuzzy system with data obtained from remote sensing 
techniques and GIS, can provide the basis for local 
environmental planning.
 It is worth noting that, although the Brazilian Forest 
Code, Law No. 12,651, of May 25, 2012, provides for the 
creation of the National Integrated Fire Management 
Policy (PNMIF), this system has not been completed yet 
(Brasil, 2020). The reflection of the absence of the system 
that centralizes firefighting efforts in Brazil makes these 
events historically excessive, such as those observed in the 
study area between August and October 2018, with about 
94,766 registered fire outbreaks. 
 The absence of an effective fire control system, 
combined with the anthropogenic activity in the region, 
which includes deforestation for shifting agricultural 
practices and pastures and the practice of using fire to 
clear degraded pastures, and extreme droughts, are the 
main reasons for the high fire rates in this region (Cardozo 
et al. 2014; Aragão et al. 2018; Chuvieco et al. 2019; Barlow 
et al. 2019; Caúla et al. 2019; Staver et al. 2019; Ribeiro et al. 
2020).

Advantages and Limitations

 The ability of fuzzy inference systems to handle 
most inaccuracy sources in remote sensing data, such 
as uncertainties in sensor measurements, parameter 
variations due to limited sensor calibration, and class 
mixing due to limited spatial resolution, and other (Benz et 
al. 2004), gives the fuzzy system an advantage over other 
methods that are usually implemented for mapping forest 
fire susceptibility.
 In this study, the uncertainties related to the 
disagreement between the expert class intervals were 
considered using fuzzy sets, which were defined by 
membership functions and allowed the incorporation 
of a combination of subjective data into a fuzzy domain, 
thus making it possible to build inference systems based 
on expert experience and deal with inaccurate data 
(Zadeh, 1965). In addition, it allowed influencing factors 
to belong simultaneously to more than one susceptibility 
class, however, with different degrees of association 
(Zadeh, 1965; Cheng et al. 2022) to better reflect the real 
characteristics of fire susceptibility that are observed in the 
region.
 Nonetheless, it is worth mentioning that in a grid-
type partition fuzzy inference system the number of rules 
is given by the combination of linguistic values, in other 
words, the number of rules can increase exponentially 
as a function of the number of input variables (Bressane 
et al. 2020; Fernandes et al. 2023). In this study, only four 
inputs were selected to compose the model; however, for 
cases in which a greater number of explanatory factors are 
introduced, this would negatively affect the transparency 
and interpretability of the fuzzy inference system, and, 
consequently, its replication (Ojha et al. 2019). One of the 
solutions would be the optimization of input factors using 
metaheuristics (Moayed et al. 2022).

CONCLUSIONS

 The methodology presented for mapping fire 
susceptibility by integrating a fuzzy inference system 
with data obtained via remote sensing techniques and 
GIS tools proved to be highly effective, especially when 
implemented for precipitation, temperature, distance from 
highways, and land use as input variables. The findings 
indicate that the study area had a predominantly high fire 
susceptibility, especially when considering the climatic 
characteristics observed between August and October 
(during the dry season) and the land use patterns of the 
region.
 The areas classified with very high susceptibility by the 
fuzzy system were located predominantly in the south of 
the study area, where agricultural and livestock activity 
prevails. On the other hand, the areas that had low and 
very low susceptibility were concentrated primarily in 
conservation units and indigenous lands, which shows the 
importance of these protected areas. 
 The comparison between the mapped fire susceptibility 
classes and the density of registered fire outbreaks showed 
a strong spatial coincidence, which reinforces the credibility 
of the fire susceptibility mapping based on the proposed 
methodology, and these results were confirmed by the 
AUC values (mean of 0.81), thus indicating an impressive 
predictive capacity of the model. 
 Thus, the results obtained in this study can be used 
to inform the community, fire departments, and local 
authorities about areas that are most susceptible to fires. 
The findings can also be used to highlight areas that are 
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conducive to controlled burning, with the aim of reducing 
the accumulation of combustible material, contributing to 
the prevention of uncontrollable fires.
 Finally, the obtained results can significantly contribute 
to land management and planning policies, including the 

possibility of integrating similar data in other regions. They 
can also assist the decision-making process when fighting 
fires. However, for implementation in other regions, it is 
necessary to incorporate sufficient information regarding 
local factors that can influence forest fires.
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ABSTRACT. Land use changes significantly threaten urban areas, especially in developing countries such as Pakistan, 
impacting the thermal environment and comfort of human life. The ongoing transformations in cities such as Lahore, the 
second largest and rapidly expanding urban center in Pakistan, are alarming due to the removal of green cover and the 
disruption of ecological structures. In response to these concerns, this study was conducted to assess and predict the 
implications of observed land use changes in Lahore. The analysis employed three Landsat images from 1990, 2005, and 
2020, using ArcGIS and Idrisi Selva software. The results show that the built-up area increased almost 100% (16.44% to 32.48%) 
during the last three decades. Consequently, a substantial shift from low to medium and medium to high degrees of LST was 
observed. The projections indicate a further 50% expansion of the built-up area, encroaching upon green cover until 2050, 
shifting more areas under a higher LST spectrum. So, the study concludes that Lahore is facing imminent threats from rapid 
land use changes caused by higher land surface temperature in the study area, necessitating prompt attention and decisive 
action. The study area is at risk of losing its conducive environment and the desirable uniformity of the thermal environment. 
Therefore, it is recommended that green cover be strategically enhanced to offset the rise in built-up areas and ensure a 
sustainable thermal environment. 
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INTRODUCTION

 Urbanization is one of the most critical human-caused 
changes to land use and land cover (LULC) on the earth 
(Gallo and Owen 1999; Guo 2015; Zhao et al. 2020). Land 
use and land cover changes are essential when studying 
global dynamics and how they respond to thermal 
environments and socio-economic factors (Zhao et al. 
2020). A growing global environmental concern is the 
changes in land use and land cover and how they affect 
Land surface temperature. Although “land cover” and “land 
use” may be used interchangeably, they have different 
meanings. The term “land use” describes how land is used 
for various objectives, including housing, agriculture, 
education, and recreation. In contrast, land cover describes 
the kinds of covering on the earth, such as water, bare 
rock, or forests (Anderson 1976; Zhang et al. 2019; Siddique 
et al. 2020). LULC are highly significant for managing the 
urban environment, heterogeneity of landscapes, human 
life functions, and socio-economic activities (Schott 
2007). Urban greenness has appeared significant for 
understanding, managing, and enhancing its multiple 

services under the highly fragmented urban landscapes 
affected by rapid urbanization (Benedict & McMahon 2012; 
Hanif et al. 2022). Therefore, balanced urban landscapes 
are highly significant for a sustainable urban environment 
where green spaces are vital for ecological services (Nasar-
u-Minallah et al. 2023). It has been analyzed that green 
cover in an urban area is increasingly uneven due to the 
rapid increase in unplanned urbanization. The availability 
of green spaces currently does not meet the requirements 
of suitable landscapes for human beings (Ernstson 2013; 
Wolch et al. 2014). Therefore, the importance of green 
spaces with their spatial distribution and functioning has 
increased, and it has been accepted that every element 
of the green landscape has its specific importance. For 
instance, trees have more cooling effects than a grassy 
landscape, but the grassy landscape may be more effective 
for its aesthetic values (Jabbar et al. 2021; Jabbar & Yusoff 
2022). Assessing inequality in urban landscape settings can 
improve land usage and environmental status.
 LULC change analysis provides valuable and essential 
information for several applications in the geospatial field. 
Environmental management and monitoring urban and 
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regional planning are prime examples (Bhalli and Ghaffar 
2015; Liu et al. 2017; Zhang et al. 2019; Zia et al. 2022). 
The information produced by land use changes can also 
be used for socio-economic challenges, climate change 
effects, food security, and disaster risk management 
(Stürck et al. 2015). Land use mapping on satellite-based 
data provides up-to-date information on Earth surface 
changes. Accordingly, multi-temporal analysis of land 
use changes can be monitored in land surface dynamics 
(Hansen et al. 2013; Nasar-u-Minallah et al. 2021) and urban 
growth (Taubenböck et al. 2012; Minallah et al. 2016). LULC 
change predictions are a process through which we can 
estimate the future scenario of any area for future planning 
to avoid its adverse consequences. As such, several studies 
use a variety of approaches for LULC change predictions. 
The approaches vary based on their purposes, location, 
methodologies, source of data, and type (Michetti & 
Zampieri 2014). The Markov chain system uses chain 
analysis techniques to predict land use changes (Eastman 
2006). The land use planning of urban areas should be 
approached according to the socio-economic and physio-
ecological attributes that may be present. Vegetation on a 
landscape increases its socio-economic value, and land-use 
changes collectively affect the environment and economy 
(Riaz et al. 2017; Fu et al. 2018). Sustainable development in 
a compact city is also related to the price of land, and many 
researchers have used three dimensions of sustainability 
(social, economic, and environmental) during land-use 
studies (Gonzalez-Redin et al. 2019; Parveen et al. 2019).
 The presence of urban green spaces (UGSs) and their 
spatial distribution is essential for assessing and measuring 
their expected impacts on human beings and the city 
environment (Kuo et al. 2011). A standard number of UGSs 
required to sustain an ecologically healthy environment 
for human beings can be judged under World Health 
Organization (WHO) guidance. The standard set by WHO is 9 
m2 per person, which is the minimum benchmark per person 
(UN-Habitat 2013). Availability typically refers to the quantity 
of UGSs in an urban area, whereas accessibility indicates the 
location and distance humans must travel for green space. 
The term accessibility in this context refers to the spatial 
nearness of UGSs for humans (Koohsari et al. 2015). The 
existence and ease of access to green spaces have been 
outlined and evaluated under spatial equity matters (Zhou et 
al. 2017). It has been demonstrated that UGSs, such as parks 
enhance active lifestyles, mental health, and social cohesion.
 The availability of open or green spaces for humans also 
contributes to more dynamic behavior, social responsibility, 
and care for public resources. It improves inhabitants’ co-
existence, tolerance, health, and quality of life (Ward 2013; 
Jabbar & Mohd Yusoff 2022). The accessibility and vegetation 
structure, location, shape, and scale are vital in recreational 
activities and ecological resources. If an urban green space 
has more potential for recreational facilities, it will be 
considered a more attractive place for children and parents 
(Lachowycz & Jones 2013). Thus, urban green spaces play a 
pivotal role in fostering sustainable cities by offering diverse 
benefits to both human and animal populations. Scientists 
emphasize their significance in regulating the environment 
and enhancing socio-economic values. However, a critical 
need arises to quantify the requisite green area for a specific 
population. Concurrently, the escalating conversion of green 
cover into built-up environments in rapidly urbanizing cities 
exacerbates challenges, such as heightened temperatures 
and urban heat islands (Gull et al. 2019). Lahore, the second 
most populated city in Pakistan, is currently undergoing rapid 
land use changes, and the absence of robust environmental 
regulations intensifies the conversion of green spaces in the 

city context (Jabbar et al. 2023; Nasar-u-Minallah 2018). This 
ongoing transformation poses environmental and socio-
economic concerns, warranting a comprehensive scientific 
assessment.
 This study aims to ultimately assess and predict the 
impact of land use changes on the thermal environment of 
Lahore until the year 2050. The significance of this research 
lies in its potential to inform evidence-based urban planning 
strategies, addressing the implications of land use changes on 
thermal dynamics. By scientifically examining the trajectory of 
these changes, the study can extract and contribute valuable 
insights for sustainable urban development in Lahore. 
However, it is essential to note that limitations and gaps in the 
existing literature may influence the study outcomes. These 
could include data constraints, variations in methodologies, 
and the dynamic nature of urban systems. Acknowledging 
and addressing these limitations enhances the robustness 
of the study. The study hypothesizes that the ongoing land 
use changes in Lahore will substantially increase built-up 
areas, contributing to elevated temperatures and urban heat 
islands. The lack of environmental regulations exacerbates 
these challenges. The study aims to provide quantifiable 
projections and insights through scientific analysis, hoping 
to ultimately facilitate informed urban planning decisions to 
mitigate the adverse impacts on the thermal environment.  

MATERIALS AND METHODS

The Study Area

 Lahore, located in the Punjab province of Pakistan on the 
bank of the river Ravi, has been chosen as the focus area of 
this study. As the second largest metropolitan city in Pakistan 
in terms of population, it faces significant and unique 
environmental pressures that are relevant to the study. 
With a population of 13.98 million people (GOP 2023) and a 
density of 6278/km2 (GOP 2017), Lahore is the most rapidly 
growing city in Pakistan and covers an area of 1,772 km2 and 
located between 31º 15’ to 31º 45’ N and 74º 01’ to 74º 39’ 
E. The city is divided into ten administrative units, as shown 
in Figure 1. The research area’s climate is semi-arid, with five 
distinct seasons: (i) a foggy winter with some rainfall from 
western depressions from mid-November to mid-February; 
(ii) a pleasant spring from mid-February to mid-May; (iii) a 
warm and humid summer with dust and rainy storms from 
mid-May to end-June; (iv) a rainy monsoon from July to mid-
September; and (v) dry autumn from mid-September to 
mid-November. In Lahore, June has the highest temperature, 
July the wettest, and January the lowest, with an annual 
maximum of 48.3ºC and a minimum of -2.2ºC, as illustrated 
in Figure 2.
 As a vibrant and historically rich city, Lahore boasts a 
diverse socio-economic and physio-environmental setup 
reflecting the dynamic tapestry of urban life. On the socio-
economic front, Lahore stands as a bustling economic hub 
with a thriving business community, diverse industries, and a 
robust informal sector. Its cultural richness is mirrored in the 
plethora of markets, heritage sites, and a lively street life that 
characterizes its social landscape. Simultaneously, the physio-
environmental aspects of Lahore present a complex urban 
scenario. The city faces rapid urbanization, characterized by 
an expanding population, extensive land use changes, and 
the conversion of green spaces into built-up or industrialized 
areas. These transformations contribute to challenges such 
as rising temperatures, urban heat islands, heavy waves, 
and smog, necessitating a nuanced approach to balance 
economic growth with environmental sustainability in 
Lahore evolving urban fabric.

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 2024



97

M. Jabbar, M. Nasar-u-Minallah and M. M. Yusoff Predicting the Impact of Land Use Changes on  ...

Data Acquisition and Pre-preparation

 The Landsat images were acquired using the Path/
Row 149/38 from the Earth Explorer website (https://
earthexplorer.usgs.gov/). The spring season was selected 
to acquire Landsat images due to the fully green cover 
and the ideal land use classification time. Therefore, based 
on availability and clear weather conditions, the study 

obtained Landsat images from March 16, 1990, April 2, 
2005, and March 18, 2020. All the images obtained have a 
resolution of 30 meters, and they are sensed by different 
sensors at different times; the details are provided in Table 
1. After band composition, the study area was extracted 
by applying the “extract by mask” function in ArcGIS.  

Fig. 2. Climate of the Study Area (District Lahore)

Fig. 1. Geographical Location of the Study Area (District Lahore)

Years Satellite Sensor Path/Row Resolution (m) Acquisition Day

1990 Landsat-5 TM 149/38 30 16-03-1990

2005 Landsat-7 ETM+ 149/38 30 02-04-2005

2020 Landsat-8 OLI/TIRs 149/38 30 18-03-2020

Table 1. Landsat Image Characteristics Used in the Study
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LU/LC Classification 

 The study utilized the supervised image classification 
technique to classify the study area. Supervised image 
classification is a well-recognized Landsat image 
classification technique aimed at achieving maximum 
accuracy (Anwar and Bhalli 2012; Bhalli et al. 2012a; Bhalli 
et al. 2012b; Barman et al. 2016; Iqbal & Iqbal 2018; Naeem 
et al. 2021; Mazhar et al. 2023). Four main land use classes 
are used to categorize the research area: bare land, built-up 
area, green cover, and water bodies. 

Accuracy Assessment

 The accuracy of the classified images was assessed by 
generating 450 random reference points. The following 
equations were applied in this process, and the obtained 
accuracy is presented in Table 2.

LU and LC Change Detection

 The study employed a post-classification comparison 
approach to identify changes between two classified 
images. Similarly, three self-classified images were used to 
detect LULC changes during the study period (Bhalli et al. 
2013a; Bhalli et al. 2013b; Bhalli et al. 2012b). The change 
(C) in land use classes was calculated using Equation 5.

 Next, using equation 6, the study determined the 
percentage of changes in land cover (C%).

Computation of LST 

For Landsat-5 and 7

 Chen et al. (2002) state that band 6 for Landsat 5 and 7 
is used in the investigation to measure LST. First, the study 

used equation 7 to transform the digital numbers (DNs) of 
band 6 into radiation luminance. In this equation, LMAX 
and LMIN have values of 1 and 255, respectively, while 
QCALMIN has a value of 1 and QCALMAX has 255. QCAL 
represents DN.

 Secondly, the LST was calculated in Kelvin using 
equation 8. 

 Lastly, ‘Kelvin (A)’ temperature values were converted 
into ‘Degree Celsius (B)’ using equation 9. 

For Landsat 8

 The following metadata values were applied to 
Landsat 8 images for LST in the study: In terms of Radiance, 
add bands 10 and 11, which have 0.10000, 0.0003342 for 
Radiance Mult Band 10 and 11, 774.8853 for K1 constant 
band 10, 1321.0789 for K2, 480.8883 for K1 constant band 
11, and 1201.1442 for K2. The Landsat 8 LST in five phases 
using the values mentioned above: 
 (i) Equation 10 was used in the study to transform 
thermal infrared digital numbers into TOA (Top of 
Atmosphere) spectral radiation.

 (ii) Spectral radiance data were converted into TOA 
brightness temperature using equation 11.

 (iii) NDVI was calculated using equation 12 and 
suggested by Shah et al. 2022. 

 (iv) Average Land Surface Emissivity (LSE) was 
calculated using equations 13 and 14, in which PV shows 
the proportion of vegetation, and E shows Land Surface 
Emissivity.

 (v) LST was calculated by using the following equation 15.

 The areas of each LST range were computed in QGIS 
3.14, creating the LST maps.

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 2024

1990 2005 2020

Class Name UA PA UA PA UA PA

Barren Land 89.83% 88.13% 86.91% 88.23% 93.21% 90.25%

Built-up Area 83.08% 90.01% 88.41% 86.76% 90.36% 93.35%

Green Cover 90.65% 88.81% 92.14% 94.65% 93.57% 93.54%

Water Bodies 91.92% 100% 100% 100% 100% 100%

OA = 87.76%
KC = 0.83                                                        

OA = 90.57%
KC = 0.87

OA = 92.76%
KC = 0.91

Table 2. Accuracy of classified images

Note: UA = User’s Accuracy, PA = Producer’s, OA = Overall Accuracy, KC = Kappa-coefficient

(1)

(2)

(3)

(5)

(9)

(10)

(11)

(12)

(13)

(15)

(14)(6)

(4)

(7)

(8)
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Quantification of NDVI and NDBI

 Equation 12 was used to quantify NDVI, while Equation 
16 was utilized to quantify NDBI, as suggested by Shah et 
al. 2022.  

 Next, using Fishnet Polygons to extract data from LST, 
NDVI, and NDBI maps, the correlations between LST and 
NDVI and NDBI were examined.

Prediction of Land Use/Land Cover

 LULC change prediction analysis was conducted in 
IDRISI software (version 17), utilizing the CA-Markov Model. 
The model integrates cellular automata and the Markov 
chain to forecast future LULC (Tegene 2002; Yang et al. 
2014). For LULC change prediction analysis, LULC maps of 
1990 and 2005 served as inputs for transition probability 
images. The CA-Markov model simulated the land use and 
land cover map for 2020, and a transition suitability image 
was generated by applying a multi-criteria evaluation 
model. Subsequently, a cross-classification between the 
predicted map of 2020 and the detected map of 2020 was 

analyzed, as shown in Figure 3. Finally, LULC prediction 
maps for 2035 and 2050 were generated using transition 
probability images. 

Prediction of Land Surface Temperature

 LST prediction analysis was carried out using the 
MOLUSE Plugin in QGIS 2.18. This Plugin operates based 
on an artificial neural network (ANN), a widely accepted 
method for predicting LST (Imran & Mehmood 2020; Alam 
et al. 2021; Fattah et al. 2021; Jafarpour Ghalehteimouri 
et al. 2022). Figure 4 illustrates the architecture of the LST 
prediction model.

RESULTS AND DISCUSSION

Land use Changes (1990 – 2020)

 LULC classification of the study area for 1990 is depicted 
in Figure 5(A), revealing that bare land accounted for 
13.77%, built-up area for 16.44%, Green Cover for 66.04%, 
and water bodies for 3.75%. Thus, in 1990, the study area 
boasted nearly two-thirds green cover, rendering it an 
environmentally friendly urban space in Pakistan, often 

Fig. 4. LST Prediction Model Architecture

Fig. 3. Cross-classification of Images

(16)
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referred to as the city of gardens. Similarly, Figure 5(B) 
illustrates the LULCs of the study area for 2005, indicating 
Bare Land at 13.20%, built-up Area at 20.65%, Green Cover at 
62.68%, and Water Bodies at 3.52%. Furthermore, Figure 5(C) 
displays the LULCs for 2020, wherein Bare Land occupied 
4.04%, built-up area 32.48%, Green Cover 60.86%, and water 
bodies 0.68%. The area covered by all land types for 1990, 
2005, and 2020 is presented in Figure 5(D). According to 
2020 data, Lahore boasted a green cover area of 12.98 m2 
per person across the entire district. However, this value is 
anticipated to decrease due to current land use patterns.

Land Use Gains and Loss (1990 – 2020)

 Gains and losses of the land use are evident in Figure 
6, facilitating easy comparison. It reveals that bare land lost 
over 200 km2 and gained nearly 50 km2 of the area. Similarly, 
built-up areas experienced a gain of almost 400 km2 while 
only losing 90 km2. Green cover saw an increase of almost 
220 km2 but also suffered a loss of nearly 300 km2 of its area. 
Similarly, water bodies gained nearly 10 km2 but lost 60 km2 
of their area.

 The net change in land use of the study area is 
illustrated in Figure 7, highlighting the significant area lost 
by bare land and gained by the Built-up area. Similarly, 
green cover and water bodies also experienced almost 
equal losses. While the “Gains and Losses of land covers 
(1990 - 2020)” section visually depicts the rates of loss and 
gain of classified land types, it is understood that readers 
may desire a more detailed understanding of the specific 
land cover classes contributing to the observed increases. 
The study indeed delves into this aspect, examining the 
percentage ratio of classes that have transformed into 
built-up areas, water bodies, and other categories.
 The rapid growth of built-up areas is a significant 
concern of the study and the developing world in general 
because it accelerates several environmental issues. 
Urbanization is an essential feature of human development 
that directly affects urban ecology and ecosystem services 
(Larson et al. 2016). The rapid urban expansion puts 
pressure on biodiversity and other ecological patterns of 
urban landscapes (Song & Wang 2015; Nasar-u-Minallah 
et al. 2023). An increase in the population of urban areas 
demands more ecological services due to urban expansion. 

Fig. 5. Observed Land Use Changes in Lahore from 1990 to 2020

Fig. 6. Land Use Gain and Loss from 1990 to 2020 Fig. 7. Net Change in Land Use from 1990 to 2020
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The ecological carrying capacity of UGSs has been reduced 
by urban population pressure (Daneshvar et al. 2017; Hanif 
et al. 2023). Land use changes pose severe challenges for 
urban management due to their significant ecological 
resource effects (Mustard et al. 2012). Therefore, studying 
land use changes is essential for effectively managing 
natural and environmental resources (Thilagavathi et al. 
2015). The study area suffers from severe environmental 
issues due to decreasing UGSs and increasing built-up 
areas. The results demonstrate that the ratio between 
green and built-up areas was almost 71:29 in 1990, 
which was found to be 49:51 in 2020 after a 22.17% loss 
of green areas in 2020. So, 22.17% of the study area has 
been transformed from green to built-up areas, which may 
accelerate environmental issues.
 Forests also play a critical role in the livelihoods of 
millions of individuals and are a significant contributor to 
the national economic growth of many countries. Forests 
are essential for carbon sinks and contribute to climate 
change rates, soil development, and water control. The 
forestry industry also has direct employment estimated 
at 10 million people (FAO 2010). Apart from providing 
livelihoods for millions more, approximately 410 million 

people depend on forests for their livelihood and income, 
with 1.6 billion people relying on forests for a living (Köhl 
et al. 2015). Research conducted by UNEP, FAO, and UNFF 
(Köhl et al. 2015) found that the world forests have declined 
due to a growing human population. Unfortunately, in the 
last 50 to 100 years, the deforestation rate (0.5%) has risen 
significantly in emerging nations.

Predicting LULC Changes (2020 – 2050)

 LULC changes will be one of the significant reasons 
for future challenges for the study area because the last 
30-year trend shows a rapid expansion in built-up areas by 
removing the green spaces. Therefore, the study projected 
an LULC classification of the study area for 2035, as shown 
in Figure 9, which shows that the study area will consist 
of 3.30% bare land, 40.09% built-up areas, 56.13% in green 
spaces, and 0.49% in water bodies. The continuation of the 
current LULC changing trend will also accelerate current 
environmental issues. Thus, the study projected LULC 
classification for 2050 (Figure 10), showing that the study 
area will contain 2.44% bare land, 51.73% built-up area, 
45.47% green spaces, and 0.37% water bodies. 

Fig. 8. Changes in Green and Non-green Covers in Lahore from 1990 to 2020

Fig. 9. Projected Land Use of Lahore in 2035
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 The LULC of the study area from 1990 to 2020 
(observed) and 2020 to 2050 (predicted) are shown in 
Figure 10. It has been analyzed that green spaces are 
shrinking rapidly, whereas built-up areas are expanding 
rapidly (Figure 11). So, this change in land use will reduce 
the number of green spaces from 60.86% (2020) to 45.51% 
by 2050. Similarly, the expanding trend of the built-up 
area will increase over 51.76% from 32.48% (2020) till 2050. 
Moreover, the decrease in bare land and water bodies will 
continue, and both landforms will be found at 2.45% and 
0.34%, respectively, till 2050.     
 Figure 12 displays the anticipated increases and 
decreases in land cover types within the study area. The 
figure shows that the maximum loss (more than 300 km2) 
will occur in green spaces, whereas the maximum gain will 
occur in the built-up areas of the study area. Therefore, it 
is projected that they will expand at the expense of green 
areas in the future, which is a significant concern. Similarly, 
Figure 13 shows the net change in land covers, where it 
can also be seen that a significant net change will occur 
in the green cover and built-up areas. The built-up areas 
will replace the green spaces, and more than half a portion 
of the study area will be transformed into impermeable 
surfaces by 2050. Similarly, the green surface will reduce to 
less than half of the study area. So, the figure indicates that 

the study area will face a massive loss of urban green cover, 
and it will have to bear urban built-up areas on more than 
half of its portion by 2050. 
 The behavior of LULC changes raises various 
environmental issues, among others. LULC changes are 
significant concerns in the developing world, where 
countries experiencing rapid population growth also 
face a corresponding increase in urban population. The 
situation becomes more problematic when scholars 
observe that this trend continues unabated (Adedeji et al. 
2020; Hamad et al. 2018; How et al. 2020). Similar trends 
are evident in Lahore, signaling an alarming situation for 
future environmental hazards. Therefore, it is imperative to 
reinvigorate management efforts and take swift measures 
to ensure the environmental sustainability of the study 
area.
 Similarly, the green areas will decrease to less than 
half of the study area. Moreover, section C illustrates the 
net contribution of green spaces in future land cover 
classification, indicating that the green cover will lose a 
substantial area (more than 300 km2) by 2050. Consequently, 
the figure suggests that the study area will experience a 
significant loss of urban green cover, with urban built-up 
areas occupying more than half of its total area by 2050. 
The expansion of built-up areas leads to a reduction in 
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Fig. 11. Land Use Changes in Lahore from 1990 to 2050

Fig. 10. Projected Land Use of Lahore in 2050
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agricultural land and the decline of the ecosystem in the 
area. Increased built-up areas also demand more energy 
consumption and water resources, contributing to water 
pollution and urban heat island effects. The rapid increase 
in the built-up environment is a significant contributor to 
environmental issues in urban areas (Adedeji et al. 2020; 
Shao et al. 2021).
 The projected LULC classification for 2050 predicts extreme 
environmental issues in the study area, negatively impacting 
human well-being (Karimi et al. 2018; Samie et al. 2020). The 
projection for 2050 indicates that more than half of the study 
area will be covered by built-up areas, while green cover will 
occupy less than half of the total land area. The rapid expansion 
of built-up areas has been observed in various urban settings 
in the developing world, leading to several environmental 
issues such as high LST and urban heat island effects, air and 
water pollution, increased air temperatures, and decreased 
thermal comfort (Adedeji et al. 2020; Shao et al. 2021).

Observing LST Changes (1990 – 2020)

 The LST (Land Surface Temperature) of the study area 
in 1990, 2005 and 2020 is depicted in Figure 14. The year 
1990, shows that the study area had 3.58 km2 area with the 
lowest temperature range (8°C – 21°C), 205.48 km2 with lower 

temperature (22°C), 515.99 km2 with low temperatures (23°C), 
650.81 km2 with medium temperatures (24°C), 317 km2 with 
high temperatures (25°C), 57.26 km2 with higher temperatures 
(26°C), and 9.67 km2 with highest temperature range (27°C - 
32°C). Similarly, in 2005, the LST of the study area encompassed 
147.28 km2 with the lowest temperatures range (8°C – 21°C), 
470.64 km2 with lower temperatures (22°C), 357.92 km2 with low 
temperatures (23°C), 239.87 km2 with medium temperatures 
(24°C), 352.67 km2 with high temperatures (25°C), 156.57 km2 
with higher temperatures (26°C) and 35.76 km2 with highest 
temperature range (27°C - 32°C) of LST. Likewise, in 2020, 
the LST of the study area encompassed 118.37 km2 with the 
lowest temperatures range (8°C – 21°C), 362.22 km2 with the 
lower temperatures (22°C), 341.44 km2 with low temperatures 
(23°C), 154.96 km2 with medium temperatures (24°C), 361.06 
km2 with high temperatures (25°C), 250.24 km2 with higher 
temperatures (26°C) and 172.46 km2 with highest temperature 
range (27°C - 32°C) of LST.

Relationships between LST and NDVI

 Normalized Difference Vegetation Index (NDVI) 
measures surface reflectance and quantifies vegetation 
growth and biomass. Therefore, the negative relationships 
of LST and NDVI authenticate that UGSs caused low LST. 

Fig. 14. Land Surface Temperature in Lahore from 1990 to 2020

Fig. 12. Land Covers Gain and Loss in Lahore from 2020 to 
2050

Fig. 13. Net Change within Land Covers in Lahore from 2020 
to 2050
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Fig. 16. Relationships Between LST and NDBI

Fig. 15. Relationships between LST and NDVI

Figure 15 shows relationships between LST and NDVI in 
the study area, in which negative relations were found. 
Moreover, it can be observed that a5.5°C LST decreases 
from -0.05 to 0.55 NDVI, which indicates that greenness 
reduces LST.

Relationships between LST and NDBI

 Normalized Difference Built-up Index (NDBI) measures 
surface reflectance and quantifies built-up area and 
impermeable surface. The mounting of positive NDBI 
values indicates the increase of built-up and impermeable 
surfaces (Wu et al., 2016). Relationships between LST and 
NDBI of the study area are shown in Figure 16, which was 
found positive. Therefore, it can be assessed that LST 5°C 
increases from -0.35 to 0.1 NDBI. So, the positive relation 
between LST and NDBI indicates that the built-up surface 
increase caused LST and UHI expansion.

Prediction of Land Surface Temperature

 An increase in LST is one of the common issues in urban 
areas caused by the expansion of the built-up structure. 
Urban expansion alters land into an impermeable surface, 
the primary cause of rising LST in urban areas, especially in 
cities that expand and violate environmental rules (Land 
Surface Temperature - an Overview | ScienceDirect Topics, 
n.d.; Yan et al. 2020). Similar conditions have been analyzed 
in the study area in the last 30 years. The study has analyzed 
the LST of the study area for 1990, 2000, 2010, and 2020. 
Similarly, the study projected the LST of the study area for 
2035 and 2050, which is given below in detail.
 The growth of the urban built-up area caused expansion 
in the impermeable surface. It is a natural phenomenon 
that the expansion of impermeable surfaces causes the 
expansion of high LST and urban heat island effects (Uddin 
& Swapnil 2021). As the study has analyzed, the area under 
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Fig. 18. ojected of Land Surface Temperature in Lahore for 2050

Fig. 17. Projected of Land Surface Temperature in Lahore for 2035
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a lower degree of LST decreases with the increase of built-
up area, and the area under a higher degree of the land 
surface increases alternatively. In this way, as demonstrated 
by the trend over the last three decades, the study 
generated a projection of LST for 2035 and found that the 
expansion of the higher range of LST will expand towards 
the eastern and southern part of the study area as well as 
more areas will enter from lower degree of LST to higher 
degree. Therefore, the study projected that the area would 
face higher LST on projected built-up land, from east to 
southward. All the details of the LST projection for 2035 can 
be observed in Figure 17.
 Several studies have found that land use changes 
green surfaces into built-up areas, transforming urban 
areas into hazardous places. Decreased green covers and 
expanded built-up land by violating environmental land 
caused various environmental issues (Tran et al. 2017). The 
study found a similar situation in Lahore, which is facing 

several environmental issues. The study analyzed the LST 
of the study area from 1990 to 2020 and found that the 
study area faces a continuous expansion in a higher zone 
of LST. Similarly, the study projected an LST for the study 
area in 2050 and found that more than half of the study 
area would enter the high, higher, and highest zones of 
LST. The areas with lower LST will decrease significantly, 
and urban heat island effects will expand more. If the same 
trend of land use changes continues, then it is projected 
that a higher range of LST will be found over more than 
55% of the study area by 2050. A detailed map of projected 
LST for 2050 can be analyzed in Figure 18 for a more 
comprehensive understanding. The projected results 
highlighted that the study area would face higher LST due 
to the present behavior of land use changes. Therefore, the 
attention of all responsible authorities and stakeholders is 
critical to preventing and resolving the expected hazardous 
conditions in the study area.
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Fig. 19. Predicted Changes in Land Surface Temperature in Lahore from 1990 to 2050

Observed and Predicted LST (1990 – 2020 - 2050)

 As the study showed, seven auto-generated (by ArcGIS 
10.8) degrees of LST for 2035 and 2050 were ranked as; (i) 
8°C - 21°C, (ii) 22°C, (iii) 23°C, (iv) 24°C, (v) 25°C, (vi) 26°C and 
(vii) 27°C - 32°C. By using these rankings for the LST of the 
study area, the study did not find any significant change 
in the lowest (8°C - 21°C) degrees. However, a significant 
change was found in the shift of 22°C to 23°C LST. The 
figure shows that the study area had its maximum portion 
under the 23°C of LST in 1990, which shifted toward the 
24°C LST till 2020. Similarly, when the study projected LST 
for 2035 and 2050, the maximum portion of the study area 
will be found under the 25°C of LST in 2050. Therefore, the 
found change indicates that the current LULC changing 
trend will shift maximum portion of the study area under 
the High, Higher, and Highest degrees of LST till 2050. The 
study findings indicate that the study area will push its 
more than 55% area under the high degree of LST in the 
next 30 years (till 2050). All the details are given in Figure 19 
to understand the readers better.
 LST is a crucial variable for climate change and 
environmental studies (Mundia & James, 2014) and 
describes the earth’s skin temperature, which varies with 
land use type change. It came from the energy and water 
balance of the earth’s surface (Rozenstein et al. 2014). 
Several studies have used LST as an essential parameter 
for monitoring vegetation, global warming, and built-up 
changes. It is a well-known parameter for environmental 
issues (Kayet et al. 2016). Lahore (the study area) faces 
several environmental issues in highly polluted cities 
worldwide. The analysis demonstrates that the study area 
is expanding toward the high-temperature zone.
 Similarly, a study by Buyadi et al. (2013) on urban 
expansion found that the expansion of built-up areas was 
caused by vegetation reduction and microclimatic changes 
(Buyadi et al. 2013). In recent years, Henao et al. (2020) 
found that rapid urbanization has considerably replaced 
green spaces with built-up areas, which has caused 
environmental problems (Henao et al., 2020). It is analyzed 
that the most common urban environmental problems 
are caused by urbanization, like urban thermal discomfort 
(Feizizadeh et al. 2013). Significant deforestation in Kedah 
and Perak, located in Malaysia, has reduced forest cover 
from 39% to 35% in Kedah and from 58% to 49% in Perak. 

This deforestation caused an increase in LST, whereas areas 
with vegetation and forest had lower LST (Jaafar et al. 2020). 
So, the studies demonstrate that reducing or removing 
green spaces is the leading cause of the increase in LST.
 Likewise, the study indicates that the expansion of 
built-up and barren areas has increased LST. The removal 
of green spaces has also contributed to higher LST in the 
study area. Interestingly, adjacent green areas have been 
observed to exhibit similar LST levels. LST increases with 
the increase of built-up areas because built-up areas 
convert permeable land into an impermeable surface, 
which causes high LST (Ahmed et al. 2013; Tran et al. 2017; 
How et al. 2020). Therefore, the projected LST of the study 
area shows that the study area will face the expansion of 
built-up areas, which will increase the impermeable surface 
and cause an expansion of the high LST zone. As a result, 
it is projected that the high, higher, and highest zones of 
LST will increase in the study area, of which almost half 
of the study area will be under the influence of high LST. 
The expansion of high LST can be controlled by providing 
green spaces within the built-up areas and maintaining 
existing green spaces because only green spaces are the 
most suitable and cheapest way to mitigate the expansion 
of high LST (Rahman et al. 2017; Sun & Chen 2017).

LIMITATIONS 

 Despite the comprehensive nature of this study 
on assessing and predicting the impact of land use 
changes on the thermal environment in Lahore, certain 
limitations should be acknowledged. First, the reliance 
on Landsat images from 1990, 2005, and 2020 introduces 
potential limitations regarding image resolution and 
temporal frequency, impacting the precision of land 
use change assessments. Additionally, the predictive 
modeling for 2050 assumes a linear progression of land 
use changes, neglecting the impact of potential non-
linear trends influenced by unforeseen factors. The study 
primarily focuses on physical and environmental aspects, 
overlooking socio-economic factors that intricately 
contribute to land use changes. The exclusion of detailed 
analysis of existing and potential future environmental 
policies and regulations in Lahore limits the understanding 
of policy dynamics and their impact on mitigating thermal 
challenges. Furthermore, the single city focus on Lahore 



107

M. Jabbar, M. Nasar-u-Minallah and M. M. Yusoff Predicting the Impact of Land Use Changes on  ...

may restrict the universal applicability of findings to other 
urban contexts, emphasizing the need for caution in 
extrapolating these results. Finally, uncertainties related 
to climate change and the simplifications in the land use 
change modeling process contribute to the limitations of 
the study, highlighting areas for improvement in future 
research endeavors.

CONCLUSION

 The study area faces rapid land use change and the 
spread of built-up areas, which is a primary concern of 
the study. According to the observed land use changes 
(1990 – 2020), the study area has increased its built-up land 
cover by almost 100%, pushing its maximum area from 
the Low to Medium range of LST. Similarly, according to 
the predicted land use changes (2020 – 2050), the built-
up area will spread over more than 50% of the study 
area by decreasing its green cover by less than 50%. As a 
result, the maximum area will be found under the High 
LST range instead of Medium. Therefore, the observed 
land use changes in Lahore are highly sensitive to its LST, 
which will affect its urban heat island and other climatic 
elements because the study area is also found in a country 
(Pakistan) nominated as one of the top ten impacted by 
climate change. Therefore, in these circumstances, the 
increase in a built-up area and LST is highly significant, 
negatively affecting the environmental sustainability and 
residents’ health. Hence, it is concluded that the study area 
is threatened by rapid land use changes and its impacts 

on its LST increase, which demands serious attention 
and quick action against such activities; otherwise, the 
study will lose its suitable environment and acceptable 
homogeneousness of LST. The conservation and expansion 
of green cover are recommended with increased built-
up areas if management aims to maintain the required 
ecosystem quality for the residents. As demonstrated in 
the study, urban forest using Miyawaki may be one of the 
best options to handle the urban thermal environment. 
Therefore, integrated urban planning that balances built-
up areas and green spaces should be promoted. Resources 
should be allocated for green infrastructure projects, and 
zoning regulations favoring mixed land use and green 
area preservation should also be enforced. Furthermore, 
climate-responsive design practices should be encouraged 
in conjunction with raising public awareness and fostering 
community engagement on these issues. Other valuable 
recommendations include developing green corridors, 
implementing adaptive land use policies, establishing a 
robust monitoring system, and encouraging stakeholder 
collaboration to better inform policy measures. Investing 
in capacity-building programs for urban planners to 
better understand and address the complex relationship 
between land use changes and thermal environments can 
ultimately address their growing issues. Upon reflecting 
on the findings of the study and these subsequent 
recommendations, I realized that such comprehensive 
measures could ultimately assist in creating a sustainable, 
resilient, and aesthetically pleasing urban landscape in 
Lahore, Pakistan. 
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