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ABSTRACT

Assessing the complexity of landscapes is 
one of the top research priorities for Physical 
Geography and Ecology.

This paper aims at a methodological 
evaluation of the discrete and analytical 
mathematical models hitherto available for 
quantitative assessments of spatial ecological 
complex systems.

These models are derived from cellular 
automata and nonlinear dynamics. They 
describe complex features and processes 
in landscapes, such as spatial ecological 
nonlinear interactions, unpredictability 
and chaos, self-organization and pattern 
formation.

Beginning with a distinction between 
two basic types of spatial ecological 
complexity (structural, functional), and 
after reviewing the quantitative methods 
so far available to assess it, the areas 
where the major challenges (and hence, 
difficulties) for future research arise 
are identified. These are: a) to develop 
measures of structural spatial-ecological 
complexity, b) to find Lyapunov functions 
for dynamical systems describing spatial 
interactions on the landscape (and related 
attractors), and c) to combine discrete 

time and continuous spatial data and 
models.

Key-words: Geographical Modelling, 
Nonlinear Dynamical Systems, Complex 
Geo-Systems, Lyapunov functions, Cellular 
Automata

INTRODUCTION

Various research efforts undertaken over the 
last years aimed to evaluate how complex 
a landscape may be. If successful, such 
methods would have been useful for the 
theory of landscape ecological analysis, 
as well as for the practice of landscape 
management. Geomorphology does not 
appear to have any widely accepted tool or 
method to evaluate landscape complexity, 
while Landscape Ecology presents studies in 
which assessments of landscape complexity 
are made by using various (and, to a certain 
extent, subjective) combinations of already 
known landscape-ecological indices.

To date, neither of these disciplines possesses 
a set of general methods to measure 
landscape complexity. Consequently, a 
number of questions rise: Why is this so 
difficult? What are the main analytical models 
for calculating how complex a landscape is? 
How far have we advanced in modelling 
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methods? These questions are tackled 
theoretically in this paper.

Landscape complexity is a key research 
priority in Landscape Ecology according to 
Wu & Hobbs [2002] and several studies 
have appeared over the last years in the 
literature, related to quantitative assessments 
of landscape complexity [e.g. Gabriel et 
al, 2005; Kolasa, 2005; Herzon & O’Hara, 
2006]. Research has produced evidence of 
non-linear interactions in the landscape 
[Pahl-Wostl, 1995] and findings related to 
complexity observed from within landscape 
dynamics [Turchin & Taylor, 1992].

In Geomorphology also, there is evidence 
of complexity in landforms [Werner, 1999] 
and landform formation processes [Fonstad, 
2006] and it was also suggested that 
landscape complexity should be one of the 
highest research priorities in Geomorphology 
[Murray & Fonstad, 2007].

The objectives of the paper are: a) to present 
a state-of-the-art account of the discrete 
and analytical mathematical methods used 
to model landscape complexity (particularly 
functional landscape complexity, which 
seems more difficult to decipher) and b) to 
present an effort to shed light on the fields in 
which ambiguities or difficulties arise, related 
to modelling and computation of landscape 
complexity with such methods.

TWO TYPES OF LANDSCAPE 
COMPLEXITY

Despite the recognition of the importance 
of the subject, there are however 
difficulties in the classification of types 
of landscape complexity. For instance, 
Loehle [2004] suggested, that there are 
five types of “ecological complexity”, 
aside of spatial ecological complexity: 
temporal (population dynamics etc), 
structural (referring to relationships 
within the ecosystem), process (i.e. 
steps and compounds), behavioural (i.e. 
adaptation) and geometric. The latter 

might be considered as yet another form 
of spatial complexity, with emphasis on 
the third dimension and the particular 
shapes of ecological objects. Yet, this is 
one classification only, available from the 
domain of Ecology. There is no widely 
accepted typology of ecological complexity 
however, nor any classification from the 
domain of Landscape Ecology. In line 
with previous publications, in this paper 
it is suggested that landscape complexity 
may be of two basic types: structural and 
functional, which can both change with 
time and hence can be “dynamic” (in the 
sense of [May & Oster, 1976]). The words 
“structure” and “function” have precise 
meanings in Landscape Ecology and the 
reader is referred to any classic text of 
landscape ecology [Forman & Godron, 
1986] for their explanation.

The structural landscape complexity can be 
computed in various ways, i.e. through the 
study of a landscape’s map or a landscape’s 
satellite image or aerial photograph. In 
this case, the computation of landscape 
complexity is equivalent to the calculation of 
spatial complexity from the landscape’s land 
use, land cover, soil and vegetation maps. 
Hence, a landscape’s structural complexity is 
higher than another’s, if it has higher diversity 
of land cover types and longer boundary 
length of its patches. The main problem here 
is that we do not have a general algorithm 
providing us with these characteristics in a 
unifying way.

The computation of functional landscape 
complexity is more elaborate than that of 
structural landscape complexity, due to 
the non-spatial characteristics of landscape 
functions. Such functional characteristics 
(i.e. species interactions, water flows, soil 
movements, trophic chains) render the 
calculation of landscape complexity 
particularly difficult, because quantitative 
assessments of the relationships among the 
landscapes’ constituents (plant and animal 
species, soil and non-biota) are much more 
complex than the landscapes’ structural 
components are.

gi209.indd   68gi209.indd   68 05.08.2010   16:19:5805.08.2010   16:19:58



69
 

EN
VI

RO
NM

EM
TWhat mathematical tools do we need to 

model structural and functional landscape 
complexity?

Ecological modelling entails a diverse array 
of mathematical methods. But, two main 
categories of mathematical methods prevail: 
discrete and analytical. Given that ecosystems 
are ususally described as populations, we 
often use analytical mathematical methods 
(i.e. differential equations models). These 
equations are modelling the change of 
a population species X with time: dX/dt. 
They are typically nonlinear and therefore 
describe how different populations (i.e. pray 
X and predator Y) interact. These interactions 
are shown by “nonlinear” terms in these 
equations (terms such as X2 and XY).

Yet, when we need to explore the spatial 
components of ecological changes, 
the analytical mathematical models are 
very difficult to handle, because solving 
differential equations in space and time 
per grid cell is a painstaking undertaking, 
due to the many mathematical difficulties 
arising (boudnary conditions etc). It is for 
this reason that researchers have turned 
their attention to non-analytic models also, 
such as cellular automata. With cellular 
automata, we have the possibility to explore 
changes over a geographical space with 
relatively simple rules, without solving any 
complicated equations, as we do with 
differential equations models.

COMPLEX SYSTEMS AND SELF-
ORGANIZATION

“Complex Systems Theory” entails a very wide 
spectrum of applications, in many disciplines, 
such as economics, physics, physiology, 
astronomy, materials science etc. We most 
often use this term to signify precisely what 
is understood by the layman as “complex” 
and to explore how some system becomes 
complex, why, by what processes, and, once 
it becomes, how does it evolve in time.

Complex Systems Theory usually focuses 
on processes and behaviours that lead to 

“complex behaviour”. As such, we often mean 
behaviours difficult to decipher, difficult to 
predict, difficult to quantify. Such behaviours 
can thus be unpredictable or chaotic. A major 
discovery of Complex Systems Theory is 
that unpredictability and chaos may also 
emerge from purely deterministic systems. 
In fact, as will be seen in the next chapters, 
it may emerge from even simple differential 
equations systems.

As there is a variety of features of complexity 
aside of pattern formation in an observed 
system (i.e. connectivity of elements, 
stabilization and resilience, emergence of 
new properties), the mathematical methods, 
that can be used to model complexity in any 
system vary immensely and they can range 
from methods of discrete mathematics to 
calculus. But it is the mathematical analysis 
of nonlinear systems that occupies the 
foremost and central tool we possess to 
tackle issues of complexity in any system. 
In fact, the major part of Complex Systems 
Theory uses analytical methods for tackling 
complexity. And landscapes are no exception 
to this. Furthermore, analysing the role of 
time in the spatial evolution of ecosystems 
constitutes a central theme in landscape 
ecological analysis. It is precisely in this 
respect, that cases of “self-organisation” 
(or “pattern formation”), observed on a 
landscape are hallmarks of complexity and 
complex behaviour. It is also at this point 
that models using analytic approaches 
(differential equations) are most valuable 
and preferred at the expense of any other 
mathematical approaches.

Self-organization in ecosystems may be 
spatial and non-spatial. For instance, when 
spatial units interact and, after some time, 
result in a “permanent” spatial allocation, 
we may call this process a self-organization. 
Also, when populations interact and, after 
some time stabilize, this is also a (sensu 
lato) self-organization process. Examples 
of purely spatial self-organization can be 
seen from cellular automata, and examples 
of “functional” self-organization occur in 
the case of species interactions, such as 
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(with certain values of their parameters 
only).

WHY IS LANDSCAPE COMPLEXITY 
DIFFERENT THAN LANDSCAPE 
HETEROGENEITY

Clearly, the “complexity” of a landscape is 
different than its “heterogeneity” and the 
latter concept is simply a sub-concept of the 
former. A highly heterogeneous landscape 
is also highly complex. But a highly complex 
landscape may not be such because of the 
complexity of its heterogeneity only. It can 
also be complex due to the complexity of 
its functions. So high heterogeneity may 
imply high complexity, but the reverse 
does not always hold. Further, a less 
heterogeneous landscape and with lower 
functional complexity, may develop a more 
complex dynamic behaviour than another 
more heterogeneous landscape, and this 
complex behaviour may lead to the creation 
of patterns or self-organisation, which, as 
stated earlier, constitute a key difference 
between complexity and its components, 
such as heterogeneity. In fact, considering 
the context of the word “complexity” (as 
understood in the domain of Complex 
Systems Theory) is enough to reveal its 
difference with “heterogeneity”: in Complex 
Systems Theory, complexity is perceived as a 
condition in between order and randomness, 

where self-organization appears and spatial 
patterns emerge (fig. 1).

Following these methodological concerns, 
the computation of each one of the two 
types of landscape complexity previously 
referred to presents distinct challenges. We 
therefore have both discrete and continuous 
approaches to it. Discrete (algorithmic) 
methods are mainly used to assess structural 
landscape complexity, while continuous 
(analytical) approaches are more suitable for 
problems of functional landscape complexity, 
without precluding the possibility of using 
analytic methods for both types. Also, both 
methods are used for describing temporal 
changes in landscape complexity (either 
structural or functional).

MODELLING STRUCTURAL LANDSCAPE 
COMPLEXITY

Discrete models for structural landscape 
complexity are mainly based on cellular 
automata. These are automatic evolutionary 
processes depending on a set of “states” 
S1, S2, ..., Sn and a set of “transition rules” T1, 
T2, ..., Tm, acting on these states. Each cell 
is found in one state only and its state is 
determined by the rules and the states 
of the surrounding cells. Consequently, at 
each time t + 1, the state of each cell, St+1, is 
determined from the transition rule Ti acting 
on the state of the cell at time t:

Fig. 1. According to Complex Systems Theory, complexity is a condition in between order and 
chaos, so neither landscape A (ordered) nor landscape C are “complex”, because A is completely 

ordered and  C is completely random. But landscape B is complex, because it is in between the two 
states of order and randomness and displays distinct patterns (such as the dark area in the middle) 

(Fivos Papadimitriou. 2009).
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St 
Ti  St+1

The “rules” are simple algorithms acting on 
landscape cells in two dimensions (fig. 2), 
that can interact with their neighbouring 
cells, either in the “rook” sense or in the “king” 
sense (as the rook’s or the king’s movements 
in chess) in cases “a” or “b” respectively. The 
former is also called a “3X3 von Neumann 
neighbourhood”, while the latter is also 
called a “9-cell Moore neighbourhood”.

There are other possibilities for constructing 
cellular automata with longer interactions 
than in the 9 cells surrounding the immediate 
neighbourhood of the central cell. One such 
is the “5X5 Von Neumann neighbourhood” 
(case c).

The simulation usually needs object-oriented 
languages, such as Java, C++ and Delphi.

Cellular automata have been applied to 
explain complexity in a number of cases 
in Landscape research, ranging from the 
possibility to establish general algorithmic 
ecological laws, to the exploration of 
ecological processes such as niches, industrial 
ecologies, interspecies competition, 
latitudinal gradients and species diversity 
[Rohde, 2005; Baynes, 2009].

Also, they have been applied in Geography 
to model the expansion of urbanization 
in the course of time [Barredo et al, 2003; 
Guermond et al, 2004], geomorphological 
processes (i.e. run-off and soil erosion) in 
basins [Guermond, et al, 2004; D’Ambrosio 
et al, 2001], and overall landscape evolution 
[Matsuba & Namatame, 2003; Sprott et al, 
2002].

With cellular automata, we can simulate 
the ways by which landscapes change with 
the spatial propagation of fire [Green et al, 
1990; Duarte,1997], we can even explore 
the complexity of spatial synchronization 
processes [Satulovsky, 1997], as well 
as phenomena of self-organization in 
landscapes [Manrubia & Sole, 1996; Malamud 
& Turcotte, 1999].

It must be noticed however, that cellular 
automata are useful to simulate the spatial 
mechanisms of complexity of some 
geographical processes, but they do not help 
us measure landscape complexity. This is 
because with cellular automata we simulate 
landscape changes over time and observe 
pattern formation and self-organization, 
which are signs of complexity (fig. 3), but 
they are not particularly enlightening 
as computational measures of spatial 

Fig. 2. Elementary cellular automata: in “rook’s case” (a), the central cell interacts only with four surround-
ing cells, while in “king’s case” (b) it interacts with all nine surrounding cells. In a 5-cell von Neumann 

neighbourhood (c), the central cell interacts with 12 cells around it (Fivos Papadimitriou. 2009)
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complexity (describing a complex process as 
it evolves with time is different than actually 
measuring it).

Furthermore, in cellular automata the 
transitions between landscape states are 
given by rules and not by equations, so 
we cannot apply analytic mathematical 
methods for studying the evolutionary 
processes they describe. In a way, with 
cellular automata we trade realism with 
ignorance. In other words, the more realistic 
our representations are, the more ignorant 
we are about the analytic details behind the 
processes we model.

MODELLING FUNCTIONAL LANDSCAPE 
COMPLEXITY
SINGLE SPECIES MODELS

One of the major discoveries in Complex 
Systems Theory was that complex 
phenomena, such as bifurcations and chaos 
may appear from even simple nonlinear 
dynamical systems. A typical such case is the 
logistic differential equation:

dX
dt

 = aX(1 – X)

which displays periodicity for a = 3.2, whilst 
for other values such as a = 3.75 for which it 

is plotted here, it displays stable and chaotic 
orbits (fig 4).

In its discrete and recurrent form

Xn+1 = aXn(1 – Xn) 

it holds for a m 4 (otherwise X → –×) and it 
displays another interesting complex behavior, 
which is bifurcations (fig 5), for iterative values 
of Xn (plotted for X0 = 0.5 here).

Interestingly, when a > acritical = 3.569945, 
the solutions become very complex and 
fluctuate wildly. Thus, even simple ecological 
models can display very complex dynamic 
behavior and this discovery has been one of 
the cornerstones of Complex Systems Theory, 
as it reveals that even simple deterministic 
systems are difficult to predict, because they 
are “infinitely sensitive” to initial conditions.

Another single-species model which has 
attracted much attention is the Levins model 
[Levins, 1969], because it aims at exploring 
analytically the spatial inhomogeneities of a 
population.

Defining with X the fraction of patches 
occupied at a given time, the model 
considers that each occupied patch may 

Fig. 3 An example landscape covered by a cellular automaton with 4 interacting “land cover” types, 
which has evolved after 100 time steps and begun from a random initial spatial distribution of its four 
land cover. After this number of time steps, it now shows areas of “self-organization” (areas of homo-

geneity, i.e. down-left and down-right), even some linear features (the vertical lines in the lower half of 
the landscape) (Fivos Papadimitriou. 2009)
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become unoccupied after some time 
t, with probability m. Hence, 1 – X is 
the proportion of unoccupied patches 
(which nevertheless remaining subject to 
colonization). Letting c be a constant rate 
of propagule generation for each of the 

X occupied patches, the probability for 
each unoccupied patch to be colonized 
is cX. Consequently, the change in the 
proportion of occupied patches, dX/dt, is:

dX
dt

 = cX(1 – X) – mX

Fig. 4 “Chaotic orbits” generated in the logistic function for values of a = 3.75 (Fivos Papadimitriou. 2009)

Fig. 5 Bifurcations generated in the logistic function for values of X=0.5 (Fivos Papadimitriou. 2009)
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or
X = 1 – m

c

The latter relationship implies that X m 1, so 
some fraction of a species habitat will always 
remain unoccupied.

Also, this model predicts that increasing 
colonization rate leads to increasing numbers 
of occupied patches, but does not consider 
the effects of local dispersion (fig. 6).

A variance of the Levins model is the Nee-
May model:

dX
dt

 = cX(1 – D – X) – mX

where D is the proportion of permanently 
destroyed habitat areas.

With this spatial model, Nee & May [1992] 
showed that habitat destruction increases the 
population of the inferior competitor when 
two species compete in a non-homogeneously 
fragmented landscape. This unexpected finding 
is interpreted as an outcome of the process, 
whereby the superior competitor suffers greater 
losses, because of the habitat construction (e.g. 
due to its lower colonization rate).

TWO-SPECIES MODELS

Yet, we seldom use single species models to 
model geographically complex sistuations. 
Our mathematical models in spatial analysis 
typically use dynamical sytems approaches, 
based on differential equations models 
describing systems of species interactions, 
such as the Lotka-Volterra. These systems 
constitute the “standard” for the analysis 
of complex nonlinear dynamics. Aside of 
ecological complexity analysis, Lotka-Volterra 
systems have been useful in analysing 
geomorphological landscape evolution 
(erosion, regeneration and tectonic uplift), 
by developing models of nonlinear dynamics 
[Phillips, 1995], from which may emerge new 
landscape structures through changes of 
the overall stability regime, described by 
these differential equations. Phillips [1993] 
for instance, showed that the landscapes of 
drylands are inherently unstable, because 
perturbations tend to grow in these areas.

The basic Lotka-Volterra model of nonlinear 
ecosystemic dynamics (where X = prey and 
Y = predator) is:

dX
dt

 = aX – bXY

dY
dt

 = –cY + gXY

Fig. 6. Graph showing curves of solutions of the Levins model(Fivos Papadimitriou. 2009)
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The prey X has a growth rate a and depletes 
according to a predation rate b.

The predator Y has a mortality rate c and grows 
according to the food conversion rate d.

An example calculation of this system with 
a = c = 0.95, b = g = 0,7 and X0 = Y0 = 8, is 
shown in fig. 7, from which a possible long-
term evolution of the system’s behaviour 
becomes obvious: the system tends to 
concentrate to the ellipsoid attractor in 
the lower left part of the graph, over a 

range of possible orbits (depicted with 
arrows).

Lotka-Volterra systems display easily 
spectacular nonlinear behavior, because the 
nonzero equilibrium point (X, Y) = (a/b, c/g) 
is unstable. In ecological analysis at the 
landscape level, it is remarkable, that spatial 
heterogeneity can lead to behaviors different 
than those expected from non-spatial 
species interaction models, so allowing for 
the survival of populations at the landscape 
level, which otherwise would not happen.

Fig.7. The solutions of a non-linear dynamical Lotka-Volterra system of two species (X = prey, Y = preda-
tor). The attracting region, or “attractor” is shown in the lower left area of the upper diagram (a quasi-

ellipsoid area). In the lower diagram, appear the oscillating species populations X and Y plotted against 
time. The calculation here is with parameters a = c = 0.95, b = g = 0,7 and initial values X0 = Y0 = 8 (Fivos 

Papadimitriou. 2009)
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THREE-SPECIES MODELS

For three species (X, Y, Z), a well known 
variant of the Lotka-Volterra model is the 
May-Leonard model [May & Leonard, 1975]:

dX
dt

 = X{1 – X – aY – bZ}

dY
dt

 = Y(1 – bX – Y – aZ)

dZ
dt

 = Z(1 – aX – bY – Z)

This model displays a noticeable behavior 
from the point of view of Complex Systems 
Theory, because the system’s trajectories 
show pairs of species approaching extinction 
with closeness to extinction growing with 
time.

With three species also, the Hastings-Powell 
model is equally suitable for complexity 
analyses: t represents the functional 
relationships in a three-species ecosystem, 
where species X is the resource species, 
lying at the bottom of the food chain, Y is 
a species feeding on X and Z is a predator 
feeding on Y, with ai, bi parameters:

dX
dt

 = X(1 – X) – a1b1
XY

X X+

dY
dt

 = a1Y 
b X

X X+
–  – a2b2

YZ
Y Y+

dZ
dt

 = a2Z
b Y

Y Y+
–

The complexity of interactions among the 
three species becomes evident when, for 
certain parameters ai and bi, the model 
displays a chaotic behaviour [Klebanoff & 
Hastings, 1994].

N-SPECIES MODELS, LYAPUNOV STABILITY 
AND CHAOS

Both instability and stability are linked 
with complex systems. A system may be 
stabilising with time and, by doing so, it 
may lead to pattern formation and self-
organisation. When it destabilises, it may 
give rise to chaotic and unpredictable 
behaviors.

A prominent measure of system stability 
are the Lyapunov exponents. When the 
Lyapunov exponents are positive, then the 
system displays diverging orbits with time 
in its phase space, instability and, possible, 
chaotic behavior. When the Lyapunov 
exponents are zero, then a constant 
distance between orbits is maintained 
and, when they are negative, the orbits 
converge to a region of the phase space 
(or to a point) and the system is stable. 
Consequently, they are useful in the 
study of long-term behaviors of complex 
systems.

Besides Lyapunov exponents, there are 
“Lyapunov functions”, usually symbolized as 
V(X(t)), which characterize the stability of a 
dynamical system of population species X. 
These functions must be positive or zero if 
and only if X = 0 and their derivative V (X(t)) 
must be negative.

The usefulness of Lyapunov functions is that 
they can be employed to explore a system’s 
stability without having to calculate its real 
energy potential (which can be frustratingly 
difficult in many domains of the natural 
sciences).

More generally, for n-interacting species, the 
Lotka-Volterra model is:

dXi
dt

 = riXi(1 – 
j =

n

aijXj) 

where ri is the inherent growth rate for Xi and 
aij is the interaction matrix.

In other words, the change in the population 

dXi
dt

 of the species Xi is equal to the growth 

riXi of this species modified by the interactions 
aij of this species with all other species 

present in the same ecosystem: 
j =

n

aijXj

So for a changing landscape whose dynamics 
is described by a matrix of nonlinear 
differential equations, such as:
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d
dt

 = 

f X X Xn

f X X Xn

fm X X Xn

,

the system’s divergence or convergence of 
orbits (repellors or attractors) is given by 
its Lyapunov exponents (λ). They are as 
many as the dimensions of the system’s 
states and each one of them gives the rate 
of convergence or divergence of nearby 
orbits to the orbits of the system’s dynamics. 
Hence, Lyapunov exponents constitute the 
prominent measure of stability. Typically, 
they are defined as:

λ = lim
t

X
t

t
ln

xi X i
t

X
i

,

where Xi is a variable of the landscape (e.g. 
species population),

or, alternatively,

λ = lim
Nt

N
n =

N

ln
f Xn
Xn

Thus, the Lyapunov exponents are defined 
from the iterations n = 1, 2, ..., N and the 

derivative 
f Xn
Xn

 measures the speed of 

divergence of nearby orbits of population 
changes of species X with time.

When the Lyapunov exponents are positive 
(λ > 0), the system is unstable and/or 
chaotic.

It is precisely at this point that certain 
interesting challenges to these deterministic 
nonlinear models of landscape complexity 
begin to surface.

As is known from Complex Systems Theory, 
the complexity of such landscape-ecological 
systems could be described by analytic 
methods, based on “Lyapunov functions”. 
These functions give descriptions of the 
overall stability regime of a dynamical system 

and relate to the “Lyapunov exponents” of the 
system previously referred to. Consequently, 
the challenge for landscape analysis is 
to find attractors in the phase space of 
the dynamical system (which adequately 
represents the landscape dynamics) with a 
(fractal) dimension that would be lower than 
that of the system considered.

Identifying a low-dimensional attractor from 
within a deterministic model (such as in the 
case of the nonlinear differential equations 
models presented previously) predicts the 
model’s long-term dynamic behavior. This 
procedure is tantamount to the “shrinking” 
of the initially hard problem to an easier 
problem, of lower dimension, and with some 
easier to describe long-term behavior.

In this respect, it is interesting to notice, 
that by studying the ecosystem’s (and, 
more generally, the landscape’s) dynamics 
by means of a Lyapunov function, it is 
possible to derive its long-term (qualitative) 
dynamics without solving numerically the 
set of equations of the dynamical system 
[Pykh, 2002]. Although this is theoretically 
possible, identifying a Lyapunov function for 
any dynamical system can be a painstaking 
undertaking, often unsuccessful without 
some good luck, so we can always attempt 
to discover Lyapunov functions in order 
to derive assessments of a landscape’s 
dynamics, but we can not be assured that 
we will always be able to find them.

CONCLUSIONS

We need to model landscape complexity 
for both theoretical and practical purposes. 
Theoretically, we need to be able to model 
landscape complexity and practically, we 
need to know whether a landscape is more 
complex than another and so consider its 
higher complexity as a potentially additional 
reason to protect it.

We know that striving to model landscape 
complexity analytically over the last years has 
been a particularly difficult undertaking. This 
study elucidates the causes behind these 
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to possible directions where future research 
in landscape complexity might focus on.

From the evaluation of these mathematical 
models, we notice that we do not know 
whether there exists a numerical algorithm 
which could compute both structural 
and functional landscape complexity 
simultaneously. Hence, the difficulties 
in modelling the two types of landscape 
complexity pose limitations to modelling 
“landscape complexity” in its entirety.

To summarize, by evaluating the methods of 
landscape complexity modelling, we deduce 
the following:

a) A universally accepted “library” of computer 
programs for geographical automata 
is yet to be created. Ideally, this should 
be a component of a G.I.S. (geographical 
information system).

b) Cellular automata describe processes of 
complex behavior in landscapes, but do not 
constitute measures of landscape complexity 
themselves. For this reason, we have to explore 
other computational approaches in order to 
measure structural landscape complexity.

c) The development of differential equations 
models of landscape complexity is an 
uncomplicated procedure, but it is not 
always possible to find Lyapunov functions 
for dynamical systems describing spatial 
interactions on the landscape.

d) Further, it is not always possible to find an 
attractor from time series of observations of 
functional landscape changes (even in the 
case that we may have temporally dense 
measurements of landscape and/or species 
population changes, we may encounter 
difficulties in finding attractors in our data).

e) A central challenge for future research 
lies in the achievement of combination of 
discrete-time and continuous-space data 
and models.

Until the practical and theoretical aspects 
of landscape complexity are linked together 
within an overall theoretical framework of 
quantitative landscape analysis, we need to 
refine our models of landscape complexity 
(structural, functional etc), in ways that 
will gradually provide us the missing links 
between the hitherto disjoint disciplines of 
Landscape Ecology and Complex Systems 
Theory. �
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