Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Lateglacial And Early Holocene Environments And Human Occupation In Brandenburg, Eastern Germany

https://doi.org/10.24057/2071-9388-2018-50

Full Text:

Abstract

The  paper reports   on  the  results   of  the  pollen, plant macrofossil   and geochemical  analyses and the AMS 14C-based  chronology  of the «Rüdersdorf»  outcrop situated  east of Berlin  in Brandenburg  (Germany).  The postglacial  landscape  changed from an open one to generally forested by ca. 14 cal.  kyr BP. Woody  plants  (mainly  birch and pine) contributed up to 85% to the pollen assemblages ca. 13.4–12.5 cal. kyr BP. The subsequent Younger Dryas ( YD) interval is characterized by a decrease in arboreal pollen (AP) to 75% but led neither to substantial deforestation nor spread of tundra vegetation. This supports the concept  that the YD cooling was mainly limited to the winter months, while summers  remained  comparably  warm and allowed  much broader  (than initially believed) spread of cold-tolerant boreal trees. Further support for this theory comes  from the fact that the relatively low AP values persisted until ca. 10.6 cal. kyr BP, when  the «hazel phase» of the regional  vegetation  succession   began. The postglacial  hunter-gatherer occupation is archaeologically confirmed in Brandenburg since ca. 13 cal. kyr BP, i.e. much later than in the western part of Germany and ca. 1000 years after the major amelioration in the Rüdersdorf environmental record.

About the Authors

Franziska Kobe
Freie Universität Berlin
Germany

Institute of Geological Sciences, Paleontology.

Berlin.



Martin K. Bittner
Freie Universität Berlin
Germany

Institute of Geological Sciences, Paleontology.

Berlin.



Christian Leipe
Freie Universität Berlin; Nagoya University
Germany

Institute of Geological Sciences, Paleontology, Freie Universität Berlin; Institute for Space-Earth  Environmental  Research (ISEE), Nagoya University.

Berlin, Germany; Nagoya, Japan.



Philipp Hoelzmann
Freie Universität Berlin
Germany

Institute of Geographical Sciences, Physical Geography.

Berlin.



Tengwen Long
University of Nottingham Ningbo China
China

School of Geographical Sciences.

Ningbo.



Mayke Wagner
German Archaeological Institute
Germany

Eurasia Department  and Beijing Branch Office.

Berlin.



Romy Zibulski
Freie Universität Berlin
Germany

Institute of Geological Sciences, Paleontology.

Berlin.



Pavel E. Tarasov
Freie Universität Berlin
Germany

Institute of Geological Sciences, Paleontology.

Berlin.



References

1. Behre K.E., Brande A., Küster H. and Rösch M. (1996). Germany. In: B.E. Berglund, H.J.B. Birks, M. Ralska-Jasiewiczowa and H.E. Wright, eds., Palaeoecological Events During the Last 15000 Years: Regional Syntheses of Palaeoecological Studies of Lakes and Mires in Europe. Chichester: John Wiley & Sons, pp. 507–551.

2. Beug H.-J. (2004). Leitfaden der Pollenbestimmung: für Mitteleuropa und angrenzende Gebiete. München: Pfeil.

3. Bönisch E. (2014). Versunkene Welt der Altsteinzeit und Tiefbau über Tage - Einführung zum Archäologie-Report 2011/12. In: F. Schopper, ed., Arbeitsberichte zur Bodendenkmalpflege in Brandenburg Band 27: Ausgrabungen im Niederlausitzer Braunkohlenrevier 2011/2012. Wünsdorf: Brandenburgisches Landesamt für Denkmalpflege und archäologisches Landesmuseum, pp. 7–43.

4. Bronk Ramsey C. (1995). Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2), 425–430.

5. Bronk Ramsey C. (2008). Deposition models for chronological records. Quaternary Science Reviews 27, 42–60.

6. Bronk Ramsey C. (2009). Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51 (3), 1023–1045.

7. Bronk Ramsey C., Albert P.G., Blockley S.P.E., Hardiman M., Housley R.A., Lane C.S., Lee S., Matthews I.P., Smith V.C. and Lowe J.J. (2015). Improved age estimates for key Late Quaternary European tephra horizons in the RESET lattice. Quaternary Science Reviews 118, 18–32.

8. Cziesla E. (2004). Late Upper Palaeolithic and Mesolithic cultural continuity – or: bone and antler objects from the Havelland. In: T. Terberger and B.V. Eriksen, eds., Hunters in a Changing World. Environment and Archaeology of the Pleistocene–Holocene Transition (ca. 11000–9000 B.C.) in Northern Central Europe. Rahden, Westfalen: Marie Leidorf Publisher, pp. 165–182.

9. Dean W.E. (1999). The carbon cycle and biogeochemical dynamics in lake sediments. Journal of Paleolimnology 21, 375–393.

10. de Klerk P. (2002). Changing vegetation patterns in the Endinger Bruch area ( Vorpommern, NE Germany) during the Weichselian Lateglacial and Early Holocene. Review of Palaeobotany and Palynology 119, 275–309.

11. Demske D., Tarasov P.E., Nakagawa T. and Suigetsu 2006 Project Members (2013). Atlas of pollen, spores and further non-pollen palynomorphs recorded in the glacial-interglacial late Quaternary sediments of Lake Suigetsu, central Japan. Quaternary International 290–291, 164–238.

12. DIN EN (2001). DIN EN 13346, April 2001. Charakterisierung von Schlämmen – Bestimmung von Spurenelementen und Phosphor – Extraktionsverfahren mit Königswasser; Deutsche Fassung EN 13346: 2000. Berlin: Beuth Verlag.

13. Gehlen B. (2009). A microlith sequence from Friesack 4, Brandenburg, and the Mesolithic in Germany. In: P. Crombé, M. Van Strydonck, J. Sergant, M. Boudin and M. Bats, eds., Chronology and Evolution within the Mesolithic of North-West Europe. Proceedings of an International Meeting, Brussels, May 30th-June 1st 2007. Cambridge: Cambridge Scholars Publishing, pp. 363–393.

14. Gramsch B. (2000). Friesack: Letzte Jäger und Sammler in Brandenburg. Jahrbuch RGZM 47, 51–96.

15. Gramsch B., Beran J., Hanik S. and Sommer R.S. (2013). A Palaeolithic fishhook made of ivory and the earliest fishhook tradition in Europe. Journal of Archaeological Science 40, 2458–2463.

16. Grimm E.C. (2011). Tilia 1.7.16 Software. Springfield, IL: Illinois State Museum, Research and Collection Center.

17. Hardt J. and Böse M. (2018). The timing of the Weichselian Pomeranian ice marginal position south of the Baltic Sea: A critical review of morphological and geochronological results. Quaternary International 478, 51–58.

18. IPCC 2014: Climate Change (2014). Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Core Writing Team, R. K. Pachauri & L. A. Meyer (eds.)). Geneva: IPCC.

19. Kossler A. (2010). Faunen und Floren der limnisch-telmatischen Schichtenfolge des Paddenluchs (Brandenburg, Rüdersdorf ) vom ausgehenden weichselhochglazial bis ins Holozän: Aussagen zu Paläomilieu und Klimabedingungen. Berliner paläobiologische Abhandlungen 11, 1–422.

20. Leipe C., Kobe F., Müller S. (2018) Testing the performance of sodium polytungstate and lithium heteropolytungstate as non-toxic dense media for pollen extraction from lake and peat sediment samples. Quaternary International, published online, https://doi.org/10.1016/j.quaint.2018.01.029.

21. Litt T., Behre K.-E., Meyer K.-D., Stephan H.-J. and Wansa S. (2007). Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes. Eiszeitalter und Gegenwart 56 (1–2), 7–65.

22. Litt T., Schölzel C., Kühl N. and Brauer A. (2009). Vegetation and climate history in the Westeifel Volcanic Field (Germany) during the past 11000 years based on annually laminated lacustrine maar sediments. Boreas 38, 679–690.

23. Long T., Hunt C.O. and Taylor D. (2016). Radiocarbon anomalies suggest late onset of agricultural intensification in the catchment of the southern part of the Yangtze Delta, China. Catena 147, 586–594.

24. Namiotko T., Danielopol D.L., von Grafenstein U., Lauterbach S., Brauer A., Andersen N., Hüls M., Milecka K., Baltanás A., Geiger W. and DecLakes Participants (2015). Palaeoecology of Late Glacial and Holocene profundal Ostracoda of pre-Alpine lake Mondsee (Austria) – A base for further (palaeo-) biological research. Palaeogeography, Palaeoclimatology, Palaeoecology 419, 23–36.

25. Oppenheimer C. (2011). Eruptions that shook the world. Cambridge: Cambridge University Press.

26. Prentice I.C., Guiot J., Huntley B., Jolly D. and Cheddadi R. (1996). Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Climate Dynamics 12, 185–194.

27. Reimer P.J., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Bronk Ramsey C., Buck C.E., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Haflidason H., Hajdas I., Hatté C., Heaton T.J., Hoffmann D.L., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., Manning S.W., Niu M., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Staff R.A., Turney C.S.M. and van der Plicht J. (2013). IntCal13 and MARINE13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887.

28. Renssen H. and Isarin R.F.B. (1997). Surface temperature in NW Europe during the Younger Dryas: AGCM simulation compared with temperature reconstructions. Climate Dynamics 14, 33–44.

29. Riede F. (2008). The Laacher See-eruption (12,920 BP) and material culture change at the end of the Allerød in Northern Europe. Journal of Archaeological Science 35, 591–599.

30. Schenk F., Väliranta M., Muschitiello F., Tarasov L., Heikkilä M., Björck S., Brandefelt J., Johansson A., Näslund J.-O. and Wohlfarth B. (2018). Warm summers during the Younger Dryas cold reversal. Nature Communications 9, doi:10.1038/s41467-018-04071-5.

31. Schlolaut G., Brauer A., Nakagawa T., Lamb H.F., Tyler J.T., Staff R.A., Marshall M.H., Bronk Ramsey C., Bryant C.L. and Tarasov P.E. (2017). Evidence for a bi-partition of the Younger Dryas Stadial in East Asia associated with inversed climate characteristics compared to Europe. Scientific Reports 7, doi:10.1038/srep44983.

32. Schmincke H.-U., Park C. and Harms E. (1999). Evolution and environmental impacts of the eruption of Laacher See Volcano (Germany) 12,900 a BP. Quaternary International 61, 61–72.

33. Schroeder J.H. (2015). Rüdersdorf bei Berlin – der Kalkstein-Tagebau: Geo-Glanzpunkt in Brandenburg: ein Blick in die Erdgeschichte – etwa 245 Millionen Jahre zurück. Berlin: Selbstverlag Geowissenschaftler in Berlin und Brandenburg e.V.

34. Sirocko F. (2009). Wetter, Klima, Menschheitsentwicklung: Von der Eiszeit bis ins 21. Jahrhundert. Stuttgart: Konrad Theiss Verlag.

35. Stebich M., Mingram J., Han J. and Liu J. (2009). Late Pleistocene spread of (cool-)temperate forests in Northeast China and climate changes synchronous with the North Atlantic region. Global and Planetary Change 65, 56–70.

36. Stebich M., Rehfeld K., Schlütz F., Tarasov P.E., Liu J. and Mingram J. (2015). Holocene vegetation and climate dynamics of NE China based on the pollen record from Sihailongwan Maar Lake. Quaternary Science Reviews 124, 275–289.

37. Stockmarr J. (1971). Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 614–621.

38. Tarasov P.E., Savelieva L.A., Long T. and Leipe C. (2018). Postglacial vegetation and climate history and traces of early human impact and agriculture in the present-day cool mixed forest zone of European Russia. Quaternary International, published online. https://doi.org/10.1016/j.quaint.2018.02.029.

39. van Geel B. (1978). A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Review of Palaeobotany and Palynology 25, 1–120.

40. Vogel S., Märker M., Rellini I., Hoelzmann P., Wulf S., Robinson M., Steinhübel L., Di Maio G., Imperatore C., Kastenmeier P., Liebmann L., Esposito D. and Seiler F. (2016). From a stratigraphic sequence to a landscape evolution model - Late Pleistocene and Holocene volcanism, soil formation and land use in the shade of Mount Vesuvius (Italy). Quaternary International 394, 155–179.

41. Werner K., Tarasov P.E., Andreev A.A., Müller S., Kienast F., Zech M., Zech W. and Diekmann B. (2010). A 12.5-ka history of vegetation dynamics and mire development with evidence of the Younger Dryas larch presence in the Verkhoyansk Mountains, East Siberia, Russia. Boreas 39, 56–68.

42. Wohlfarth B., Lacourse T., Bennike O., Subetto D., Tarasov P., Demidov I., Filimonova L. and Sapelko T. (2007). Climatic and environmental changes in northwestern Russia between 15,000 and 8000 cal yr BP: a review. Quaternary Science Reviews 26, 1871–1883.


For citation:


Kobe F., Bittner M.K., Leipe C., Hoelzmann P., Long T., Wagner M., Zibulski R., Tarasov P.E. Lateglacial And Early Holocene Environments And Human Occupation In Brandenburg, Eastern Germany. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2019;12(2):132-147. https://doi.org/10.24057/2071-9388-2018-50

Views: 397


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)