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ABSTRACT. High-quality land cover data are essential for environmental policy, spatial planning, and ecosystem monitoring.
However, pixel-based classification methods, while widely used due to their practicality, often suffer from salt-and-pepper
noise, which undermines map reliability. This study aimed to integrate Random Forest (RF) classification and majority filtering
to enhance the quality of land cover mapping in Sukajaya District, Bogor Regency. RF was applied to Sentinel-2 image data with
varying numbers of trees (ntree) to determine the optimal model performance. Subsequently, majority filtering was applied
to each classification result to reduce noise and improve spatial coherence. The evaluation employed multiple accuracy
metrics, including User's Accuracy (UA), Producer’s Accuracy (PA), F1-Score, Overall Accuracy (OA), and Kappa Coefficient
(KC). Comprehensive accuracy increased with the ntree until reaching an optimal point. Beyond this point, additional ntree
resulted in diminishing returns. Applying majority filtering as a post-processing procedure led to further improvements in
classification accuracy. While majority filtering can reduce classification noise and improve the visual quality of land cover
maps, it also carries the risk of removing small, accurately classified land cover patches. This consequence is rarely discussed
in similar studies. These findings highlight the importance of integrating pixel-based machine learning classification with
majority filtering in land cover classification workflows, while emphasising a trade-off that tends to favour visual accuracy

over the preservation of spatial detail.
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INTRODUCTION

Land cover is a critical aspect of the Earth's surface
and a key consideration in territorial policymaking. It
reflects the spatial distribution of ecosystems and provides
quantitative indications of land-based service potentials
(Anthony et al,, 2024). This information supports evidence-
based planning by offering an objective foundation for
assessing environmental conditions (Aslam et al, 2024).
When analysed temporally, land cover data can be used to
identify landscape dynamics (Qacamietal, 2023). Variations
in land cover types influence carbon stock differences,
making it a vital component in emissions accounting
(Solomon et al, 2018; Zhu et al,, 2022). This data also plays
a crucial role in hydrological process modelling (Mensah et
al., 2022) and habitat suitability assessments for biodiversity
conservation (Edosa and Erena, 2024). Collectively, these
applications highlight the strategic importance of land
cover in supporting conservation policies and adaptation
to environmental change.

Land cover mapping using field surveys demands
considerable time and resources. The development

of geographic information systems, remote sensing
technologies, and machine learning algorithms has
increased the efficiency of this process. Random Forest
(RF) is one of the most commonly used algorithms for
land cover classification. This algorithm uses a bootstrap
aggregation (bagging) method by building multiple
decision trees from random subsets of the training data
(Altman and Krzywinski, 2017; Rivai et al, 2023). At each
node, RF randomly chooses a subset of features to improve
model diversity (Ibrahim, 2023). It is particularly effective at
managing imbalanced training data (Chahal et al, 2024),
which makes it highly suitable for land cover classification
tasks. In these tasks, training data across different classes
are usually uneven, especially when the proportions of
land cover are very uneven.

RF is a reliable algorithm for land cover classification,
with the number of trees (ntree) being its most critical
hyperparameter. RF is widely used in pixel-based land
cover classification due to its ability to deliver high accuracy
with relatively efficient computational performance. This
approach is considered more practical than object-based
methods, which require complex and computationally
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intensive segmentation steps (Ye et al, 2023; Behera et
al,, 2024). Consequently, pixel-based classification remains
a common approach for generating land cover maps.
However, pixel-based classification results often suffer from
salt-and-pepper noise. This refers to pixels that are classified
differently from their surrounding areas (Ebrahimy et al,
2021; El-Deen Taha and Mandouh, 2024; Fu et al., 2017). This
issue is frequently overlooked in land cover classification
studies. The focus is typically placed on improving overall
accuracy without adequately addressing the presence of
noise. Although statistical accuracy may appear high, such
noise can distort area estimations for each class and lead to
misinterpretation of the results. This presents a challenge
when the output is intended to support decision-making
processes.

Studies aimed at improving image quality have shown
that majority filtering effectively removes salt-and-pepper
noise in raster data (Olariu et al.,, 2022; Maleki et al., 2024).
Salt-and-pepper noise typically appears as isolated pixels
with values that differ from their neighbours, affecting
both visual interpretation and quantitative analysis.
Majority filtering tackles this by substituting the central
pixel with the most common value among its surrounding
pixels (Bayazit et al, 2025). This process helps to reduce
local anomalies without significantly distorting the image
structure. Applying this technique to the outputs of pixel-
based classification can improve the accuracy and overall
quality of land cover data generated using machine
learning algorithmes.

Sukajaya District, located in Bogor Regency, holds
strategic importance within a conservation area due
to its position in a mountainous region. Research by
Tjahjono et al., (2024) indicates that Sukajaya District is
highly prone to landslides. The local government has
implemented ecologically oriented strategies to preserve
the environmental quality of the area. Land cover
mapping is crucial for generating accurate data to support
environmentally based policy decisions. To effectively
and efficiently detect detailed land cover features using
open-source data, Sentinel-2 imagery with a 10 m
resolution is well-suited for classification purposes. This
study aims to enhance the quality of pixel-based RF land
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cover classification in Sukajaya District. To achieve high
classification accuracy while minimising salt-and-pepper
noise, the ntree was tuned and post-processing was
applied using a majority filter to reduce noise and improve
spatial coherence.

MATERIALS AND METHODS
Study Area

Sukajaya District is an administrative district within
Bogor Regency, West Java Province (Fig. 1). Administratively,
Sukajaya District shares borders with several districts in two
regencies.To the west, it borders Cipanas and Lebakgedong
Districts (Lebak Regency). To the south, it borders Cibeber
District (Lebak Regency) and Nanggung District (Bogor
Regency). To the east, it borders Nanggung and Cigudeg
Districts (Bogor Regency). To the north, it borders Jasinga
District (Bogor Regency). Situated within the Halimun
Mountains and characterised by intense human activities,
land use in Sukajaya District has become increasingly
fragmented across different land cover types. This situation
has led to more noticeable landscape fragmentation
between land cover classes (Pramesti et al,, 2025). Sukajaya
District’s varied landscape makes it an ideal study area
for evaluating the performance of the RF classification
algorithm and the use of majority filtering to improve land
cover map accuracy. This is crucial for supporting spatial
planning.

Materials

The administrative boundary of Sukajaya District was
obtained from the Ina-Geoportal website. Sentinel-2
imagery from the year 2024 was used for land cover
classification. Harmonised surface reflectance data from
Sentinel-2 were retrieved via Google Earth Engine (GEE)
and cloud masking was applied to remove contaminated
pixels. To further reduce residual artefacts and temporal
inconsistencies, a median filter was applied. All bands used
in the analysis were resampled to a spatial resolution of 10
m using the nearest neighbour method, which preserves
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original pixel values without introducing interpolation,
thereby maintaining the integrity of the reflectance data.
The specific Sentinel-2 bands used in the classification are
listed in Table 1.

Land cover classes were defined following field surveys
conducted in Sukajaya District. The classes and the number
of datasets per class are presented in Table 2. The dataset
consists of points derived from field verification and
interpretation using Google Earth. This dataset was split
using a 70/30 ratio, with 70 percent used as training data and
30 percent as validation data, following common practice in
machine learning applications (Joseph, 2022). Consistently,
the training data were used for land cover classification using
the RF algorithm, with the ntree increasing incrementally
from 100 to 700 in steps of 100. The validation data were
used to assess the classification accuracy of both the RF
results and the outputs after majority filtering in the post-
processing stage.

Methods

Random Forest for Land Cover Classification

Random Forest (RF) is a supervised machine learning
algorithm that works by building multiple decision trees
in parallel during training, a technique called ensemble
learning. The algorithm then combines the voting results
from each tree to produce a more stable final decision
(Breiman, 2001). The RF algorithm was implemented using
GEE, which uses the Statistical Machine Intelligence and
Learning Engine (SMILE) library as its backend. The SMILE
RF library allows for efficient large-scale processing of

geospatial data (Aji et al,, 2024). This efficiency is achieved
through direct integration with GEE's geospatial datasets
and its support for parallel training. The number of trees
(ntree) was tuned from 100 to 700 in steps of 100. With 10
Sentinel-2 bands, the number of variables per split was set
to three, following the default setting of the square root of
the input features.

Majority Filtering

Majority filtering is an image processing method used
to reduce salt-and-pepper noise. It replaces the value of a
central pixel with the majority value of its neighbouring pixels
(S. Liu and Gu, 2017). Majority filtering was applied using the
Sieve feature in QGIS to improve the land cover classification
results from RF. This process uses an 8-neighbour rule
(Avila-Mosqueda et al,, 2025), which considers all adjacent
neighbouring pixels to determine the majority value for the
central pixel. The majority filter assigns a pixel value based
on the dominant value among its neighbouring pixels
(Svoboda et al, 2022; Al-Aarajy et al., 2024). Mathematically,
the original raster R consists of pixel values R(i,), where i and
Jj represent the pixel coordinates. For each pixel (i), a local
window N(ij) is defined, which includes neighbours within
a certain radius. The new pixel value R'(j) is calculated by
taking the mode of N(ij), as shown in Equation 1:

R'(i,j) =mode (N (i,j)) ()

Here, R(ij) is the new pixel value obtained after applying
majority filtering, and mode(N(ij)) is the most frequent
value within the local window N(ij).

Table 1. Sentinel-2 bands used

Band Description Wavelength (nm) Resolution (m) ResamUpslng(e;c))Iution
B2 Blue 490 10 10
B3 Green 560 10 10
B4 Red 665 10 10
BS Red Edge 1 705 20 10
B6 Red Edge 2 740 20 10
B7 Red Edge 3 783 20 10
B8 Near Infrared (NIR) 842 10 10

B8A Narrow NIR 865 20 10
B11 Short Wave Infrared 1 1610 20 10
B12 Short Wave Infrared 2 2190 20 10

Table 2. The amount of training and validation data collected for each land cover class

Land cover class Data training amount Data validation amount

Water body 405 173
Forest 401 172
Mixed garden 407 174
Oil palm plantation 412 177
Rice field 401 172
Bare land 169 72
Built-up area 403 173
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Land Cover Class-based Accuracy Assessment

The classification results of the Random Forest model for
each tested tree number, both without and with majority
filtering, were evaluated based on accuracy per land cover
class. The commonly used accuracy metrics in land cover
classification are User's Accuracy (UA) and Producer’s
Accuracy (PA). UA represents the probability that a classified
label is correct. This means it shows how accurately the pixels
classified into a certain class truly belong to that class in the
validation data. The formula for UA is presented in Equation 2.

UAC=TPC/(TPC+FPC) 2)

PA indicates the classifier’s ability to correctly identify
pixels belonging to a specific class. It measures how many
pixels from the actual class are correctly classified. The formula
for PA'is presented in Eq. 3.

PAC=TPC/(TPC+FNC) 3)

When the number of validation samples is unbalanced
across classes, it is recommended to use the F1-Score as an
additional metric. This is because the F1-Score combines UA
and PA into a single harmonic metric (Amin et al,, 2024). The
dataset sizes between subsets are unbalanced, resulting in
unequal validation data for each land cover class. Therefore,
in addition to calculating UA and PA, this research also uses
the F1-Score metric. The formula for calculating the F1-Score
is presented in Eq. 4.

Flc=(2><UAcxPAC)/(UAC+PAC) (@)

Here, F1_is the F1-score for class ¢, UA. is the user’s
accuracy forclass ¢, PA_is the producer’s accuracy for the land
cover class ¢, TP is the number of pixels correctly classified
as class ¢, FP_is the number of pixels incorrectly classified as
class ¢ but actually belong to other classes, and FN_ is the
number of pixels that belong to class ¢ but were misclassified
as other classes.

Comprehensive Accuracy Assessment

The accuracy of the RF classification results, including
tree number tuning and majority filtering, was assessed
using Overall Accuracy (OA) and the Kappa Coefficient (KC).
OArepresents the percentage of total pixels or samples that
were correctly classified when compared to the validation
data. The formula for calculating OA is presented in Eq. 5.

K
0A=D," TP N )

TP is the number of pixels correctly classified as class /.
K is the total number of land cover classes. N is the total
number of validation pixels across all classes.

Kappa coefficient (KC) is a statistical metric that
measures the level of agreement between classification
results and reference data, after correcting for the
possibility of chance agreement. In short, KC accounts
for the probability that a classification was correct purely
by chance. The formula for calculating KC is presented in
Equation 6.

k:(Po—Pe)/(l—Pe) (©)

P_is the number of correctly classified pixels divided by
the total number of validation pixels, and P_is derived from
the product of the marginal totals in the classification and
reference data.

RESULTS

Land Cover Raster from Random Forest with and without
Maijority Filtering

Pixel-based RF classification was conducted for each
tested ntree without a majority filter. The results are
illustrated in Fig. 2, and the corresponding land cover areas
are presented in Fig. 3. The resulting land cover maps show
variations in area depending on the ntree applied.

Number of Trees: 100 Number of Trees: 200

Number of Trees: 300

Number of Trees: 400

Number of Trees: 500 Number of Trees: 600

Number of Trees: 700

A

2024 m
[ 1

Land Cover Classes
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[ Mixed Garden

[ Oil Palm Plantation
[ Rice Field

[l Bare Land

Built-up Area

Fig. 2. Land cover classification using Random Forest without majority filter post-processing
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Fig. 3. Land cover class area from Random Forest classification without majority filter post-processing

Consistently, forest appeared as the dominant land
cover, ranging from 7,000 to 7,070 ha. This was followed by
mixed garden (5,297 to 5,341 ha), rice field (1,489 to 1,503
ha), water body (1,378 to 1,468 ha), oil palm plantation
(842 t0 910 ha), and bare land (405 to 441 ha). The smallest
land cover class was built-up area, ranging from 247 to
259 ha. Despite these results, the classification outputs
still show salt-and-pepper noise. This is characterised
by small, scattered pixels that differ from the dominant
surrounding class. This limitation comes from the pixel-
based classification approach. In this method, each pixel
is treated independently without considering the spatial
pattern around it. This reduces both the accuracy and the
visual quality of the land cover raster data.

Through the application of a majority filter, these noise
speckles can be replaced by aligning pixel values with the
dominant surrounding class. The post-processing results of
the majority filterare shownin Fig.4,and the area of each land
cover class is presented in Fig. 5. The filtered output displays
the same ranking of land cover areas from largest to smallest
as in the unfiltered classification. However, differences in
area are observed following the application of the majority
filter. Forest remains the dominant land cover, ranging from
7,243 to0 7,303 ha, followed by mixed garden (5,540 to 5,598
ha), rice field (1,481 to 1,505 ha), water body (1,091 to 1,151
ha), oil palm plantation (695 to 754 ha), and bare land (360
to 399 ha). Built-up area continues to represent the smallest
land cover class, with an area between 261 and 273 ha.

Number of Trees: 100, Number of Trees: 200,
(with Majority Filter) (with Majority Filter)

Number of Trees: 300,
(with Majority Filter)

Number of Trees: 400,
(with Majority Filter)

Number of Trees: 500,
(with Majority Filter)

Number of Trees: 600,
(with Majority Filter)

Number of Trees: 700,
(with Majority Filter)
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Land Cover Classes

[l Water Body

I Forest

[ Mixed Garden

[ Oil Palm Plantation
Rice Field

Il Bare Land

Built-up Area

Fig. 4. Land cover classification using Random Forest with majority filter post-processing
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Fig. 5. Land cover class area from Random Forest classification with majority filter post-processing

A zoomed-in view is presented in Fig. 6 to illustrate
in greater detail the differences between land cover
classification results before and after applying the majority
filter. The RF classification results using ntree values ranging
from 100 to 700 without majority filtering display scattered
speckles consisting of one to four pixels. These patterns give
the impression of randomly distributed land cover patches
with extremely small areas, approximately 100 to 400 m2.
After applying the majority filter to each classification
output across different ntree values, these speckles are
eliminated. The majority filter works by reassigning pixel
values to the most dominant land cover class within their
neighbourhood, effectively transforming isolated pixels into

more homogeneous clusters. As a result, small fragmented
patches tend to shrink, while larger contiguous areas are
expanded.

Accuracy of Land Cover Classification Per-Class with and
without Majority Filtering

Visually, the majority filter enhances the quality of the land
cover classification results. To better understand its impact
on classification accuracy, an assessment was carried out for
each land cover class. The classification accuracy per class was
evaluated using User's Accuracy (UA) (Table 3), Producer’s
Accuracy (PA) (Table 4), and the F1-Score metric (Table 5).

Ntree

100 | Ntree 200 |

Without Majority Filter

Ntree

With Majority Filter Without Majority Filter With Majority Filter

300 Ntree 400

Without Majority Filter

Nnee

With Majority Filter Without Majority Filter

500 Ntree 600

Without Majority Filter

Ntree

Without Majority Filter

700

Without Majority Filter

Detail view of selected area

Fig. 6. Zoom-in comparison of land cover cIaSS|ﬁcat|on features using ntree 100 700 without and with majority filtering
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The lowest accuracy values were observed for the
bare land and water body classes. This can be attributed
to the tropical wet conditions in Sukajaya District, where
frequent rainfall causes bare land to become moist and
appear non-homogeneous, complicating the classification
process. This contrasts with bare land classifications in arid
desert regions, which tend to be easier to classify (Darem
et al, 2023; Du et al, 2023; Elmahdy and Mohamed, 2023).
Similarly, water bodies in Sukajaya District are generally
shallow, with partially exposed land and surrounding
vegetation extending over the edges, resulting in high
variability in conditions. This contributes to the reduced
classification accuracy for this class. In contrast, other
land cover classes that are relatively more homogeneous
exhibit higher accuracy. Overall, classification accuracy is
influenced by the degree of homogeneity within a land
cover class; the more homogeneous the class, the higher
its classification accuracy.

Based on UA values before and after applying the
majority filter, accuracy shifts were generally positive,
indicating that the majority filter improved the per-class
accuracy of the land cover classification. This suggests
a trend of increased accuracy in most land cover classes
after the filter was applied, although variations in accuracy
changes between classes were observed. Exceptions
were found in the mixed garden class (except at ntree
200), bare land (ntree 400), and built-up area (ntree 400),
which experienced decreases in accuracy. On average, the
absolute change in UA reached 2.10 percentage points,
showing that the majority filter had a measurable impact
on classification accuracy. Based on PA values before and
after the majority filter, only the bare land class showed
a decline in accuracy, while the oil palm plantation class
showed no improvements in accuracy. These results were
consistent across ntree values from 100 to 700. The average
absolute change in PA was calculated at 2.13 percentage
points.

Based on F1-Score values before and after the application
of the majority filter, the mixed garden class experienced a
decrease in accuracy only at ntree 500. The bare land class
showed an increase in accuracy only at ntree 600 and 700.
Aside from these exceptions, a consistent improvement in
accuracy was observed across ntree values from 100 to 700.
The average absolute change was 1.88 points, reinforcing the
finding that the filter tends to enhance the balance between
UA and PA, despite slight variations in response across classes.
Accuracy reductions in specific land cover classes based on
UA, PA, and F1-Score metrics may occur when those classes
are represented as small fragments. Although such fragments
may have been correctly classified initially, the majority filter
replaces them with the dominant surrounding class, thereby
reducing the accuracy for those specific land cover categories.

Comprehensive Accuracy Assessment of Land Cover
Classifications Before and After Majority Filtering

The comprehensive classification performance was
evaluated using OA and KC, as shown in Fig. 7. In the first
RF classification experiment with ntree set to 100, the map
achieved a comprehensive accuracy with an OA of 81.94%
and a KC of 78.72%. As the ntree value increased in increments
of 100, the performance of the RF classifier improved,
reaching its peak at ntree 400 for land cover classification.
At this point, the model achieved an OA of 83.02% and a KC
of 79.99%. Therefore, in this model, ntree 400 represents a
plateau. A plateau refers to the stage where further increases
in ntree do not result in additional performance gains (Probst
and Boulesteix, 2018). When ntree was further increased
in increments of 100, the accuracy exhibited diminishing
returns. This indicates that after the RF model reaches its
optimal accuracy, increasing the ntree may lead to a decline
in performance. Similar results were also reported by Liu et
al. (2021), who found that once the optimal ntree is reached,
furtherincreasesin ntree can resultin decreased performance.

Table 3. User’s accuracy per land cover class from Random Forest classification
(Ntree 100-700) without and with majority filtering

User's Accuracy
Method
Water Body | Forest | Mixed Garden | Oil Palm Plantation | Rice Field | Bare Land Built-up Area
RF Ntree 100 67.20 78.60 75.90 94.50 8130 67.90 99.40
RF Ntree 200 69.30 79.50 74.70 94.00 81.30 68.40 99.40
RF Ntree 300 69.80 80.70 75.60 95.60 81.50 70.20 99.40
RF Ntree 400 7040 81.00 75.10 95.60 81.50 70.20 99.40
RF Ntree 500 7040 79.70 7540 96.10 82.80 66.10 99.40
RF Ntree 600 69.60 81.80 7530 95.10 82.80 64.40 99.40
RF Ntree 700 70.00 80.80 75.10 94.50 8240 65.00 99.40
RF Ntree 100 with Majority Filter 7030 81.00 7530 95.00 87.20 68.50 99.40
RF Ntree 200 with Majority Filter 72.90 80.90 7530 95.10 86.50 69.80 99.40
RF Ntree 300 with Majority Filter 74.60 82.10 73.80 96.10 87.60 7040 99.40
RF Ntree 400 with Majority Filter 75.90 82.30 75.00 97.70 83.70 68.50 98.80
RF Ntree 500 with Majority Filter 74.90 80.80 72.70 96.60 88.70 68.50 99.40
RF Ntree 600 with Majority Filter 72.80 82.80 74.40 96.70 87.60 68.50 99.40
RF Ntree 700 with Majority Filter 76.30 82.10 74.90 96.10 84.30 69.10 99.40
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Table 4. Producer’s Accuracy per land cover class from Random Forest classification
(Ntree 100 - 700) without and with Majority Filtering

Producer’s Accuracy
Method
Water Body | Forest | Mixed Garden | Oil Palm Plantation | Rice Field | BareLand | Built-up Area
RF Ntree 100 71.10 79.10 74.10 97.20 86.00 52.80 96.00
RF Ntree 200 71.70 76.70 74.70 97.70 88.40 54.20 95.40
RF Ntree 300 7340 77.90 74.70 97.70 89.50 55.60 95.40
RF Ntree 400 72.80 79.10 74.70 97.70 89.50 55.60 95.40
RF Ntree 500 72.80 79.70 74.10 97.70 89.50 54.20 95.40
RF Ntree 600 74.00 78.50 73.60 98.30 89.50 52.80 95.40
RF Ntree 700 72.80 7850 73.00 97.70 90.10 54.20 95.40
RF Ntree 100 with Majority Filter 74.00 82.00 78.70 97.20 87.20 51.40 96.50
RF Ntree 200 with Majority Filter 74.60 81.40 78.70 97.70 89.50 5140 96.50
RF Ntree 300 with Majority Filter 76.30 82.60 77.60 97.70 90.70 52.80 96.50
RF Ntree 400 with Majority Filter 76.30 83.70 77.60 97.70 89.50 5140 96.50
RF Ntree 500 with Majority Filter 75.70 83.10 76.40 97.70 91.30 51.40 96.50
RF Ntree 600 with Majority Filter 77.50 81.40 77.00 98.30 90.70 5140 96.50
RF Ntree 700 with Majority Filter 76.30 82.60 77.00 97.70 90.70 52.80 96.50
Table 5. F1-Score per land cover class from Random Forest classification
(Ntree 100-700) without and with majority filtering
F1-Score
Method
Water Body | Forest | Mixed Garden | Oil Palm Plantation | Rice Field | Bare Land Built-up Area
RF Ntree 100 69.10 78.80 75.00 95.80 83.60 5940 97.60
RF Ntree 200 70.50 78.10 74.70 95.80 84.70 60.50 97.30
RF Ntree 300 71.50 79.30 75.10 96.60 85.30 62.00 97.30
RF Ntree 400 71.60 80.00 74.90 96.60 85.30 62.00 97.30
RF Ntree 500 71.60 79.70 74.80 96.90 86.00 59.50 97.30
RF Ntree 600 71.70 80.10 74.40 96.70 86.00 58.00 97.30
RF Ntree 700 71.40 79.60 74.10 96.10 86.10 59.10 97.30
RF Ntree 100 with Majority Filter 7210 81.50 77.00 96.10 87.20 5870 97.90
RF Ntree 200 with Majority Filter 73.70 81.20 77.00 96.40 88.00 59.20 97.90
RF Ntree 300 with Majority Filter 7540 82.30 75.60 96.90 89.10 60.30 97.90
RF Ntree 400 with Majority Filter 76.10 83.00 76.30 97.70 86.50 5870 97.70
RF Ntree 500 with Majority Filter 7530 81.90 74.50 97.20 90.00 58.70 97.90
RF Ntree 600 with Majority Filter 75.10 82.10 75.70 97.50 89.10 58.70 97.90
RF Ntree 700 with Majority Filter 76.30 82.30 75.90 96.90 87.40 59.80 97.90
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Fig. 7. Comprehensive accuracy of land cover classification using Random Forest
(Ntree 100 - 700) with and without majority filter post-processing

After applying the majority filter, changes were
observed in both OA and KC. Both metrics increased,
confirming that post-classification processing with a
majority filter can improve land cover classification quality
by addressing salt-and-pepper noise. On average, OA
increased by 1.80 percentage points, while KC saw a larger
average improvement of 2.11 percentage points. However,
this also led to a shift in the point of optimal accuracy. In
the original classification results, the highest accuracy was
achieved with an ntree value of 400. After majority filtering,
the highest accuracy was instead observed with an ntree
value of 300. Initially, the classification at ntree 400 had
an OA of 83.02% and a KC of 79.99%, while ntree 300 had
an OA of 82.93% and a KC of 79.89%. After the majority
filter was applied, ntree 300 improved by 1.80 percentage
points in OA and 2.11 percentage points in KC. In contrast,
ntree 400 only improved by 1.62 percentage points in OA
and 1.90 percentage points in KC. These findings confirm
that the majority filter consistently enhances land cover
classification quality. However, the extent of improvement
does not directly correspond to the accuracy levels
before post-processing. This is likely due to the inherent
differences in classification outcomes produced by varying
ntree settings, which lead to variations in the pixels most
susceptible to reclassification during majority filtering.

Identical accuracy results were observed for ntree
values of 400, 600, and 700 after applying the majority filter,
despite their OA values being different before this filtering
process. This indicates that although the initial classification
results varied, the final outputs became identical after
applying the majority filter, particularly in the areas used for
validation. In other words, initial differences in classification
had little impact on accuracy values because the majority
filter produced uniform maps in the validation areas.
However, a slight distinction remains in the KC values. The
KC for ntree 400 and 600 remained the same after filtering,
while the value for ntree 700 was slightly higher by 0.01
percentage points. This is due to the nature of the KC,
which accounts for chance agreement. As a result, minor
variations in classification patterns can still be detected,
even when OA values are identical.
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DISCUSSION

The study results indicate that majority filtering plays
a vital role in enhancing the spatial coherence of land
cover classification maps produced by RF by reducing salt-
and-pepper noise. This finding aligns with the application
of majority filtering demonstrated by Chen et al. (2023),
where salt-and-pepper noise, consisting of minority pixels,
is replaced by the majority class of neighbouring pixels.
Although numerous studies have applied this technique
and emphasised the advantages in reducing classification
noise and enhancing spatial coherence, few have critically
examined potential drawbacks. One notable yet often
overlooked consequence is the removal of pixels that
were correctly classified but belong to small, fragmented
land cover patches. Such areas, despite being accurate
representations of actual land cover, are susceptible to
elimination due to excessively small spatial size. This effect
is evident in the water body, oil palm plantation, rice field,
and bare land classes, which consistently from ntree 100 to
700 experienced reductions in area after majority filtering.
Conversely, land cover types characterised by larger
fragment sizes such as forest, mixed garden, and built-up
area consistently from ntree 100 to 700 showed increases
in area.

Both the results with and without majority filtering
consistently show that forest remains the dominant land
cover in Sukajaya District, while built-up areas are the
least extensive. Nevertheless, noticeable changes in area
are clearly observed. The results after applying majority
filtering are considered better, as the salt-and-pepper
noise has been removed. Forest dominance is expected,
as Sukajaya District, which spans from mountainous areas
to the foothills, partly lies within a National Park forest area.
Mountainous regions are often designated as protected
zones, making forest cover the dominant class (Li et al,
2022). Findings from other highland regions consistently
show that forest is the predominant land cover type
(Adhikari et al., 2022; Ismail et al,, 2021; Ratnayake et al,
2024). In the Himalayas, where permanent snow exists,
forest is the second most dominant class after snow (Singh
and Pandey, 2021). However, the presence of plantations
or agricultural land as classes competing with forest for
dominance is also frequently observed in areas that have
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undergone deforestation. These differences largely depend
on conservation policies and their enforcement, which
shape human activities and the intensity of anthropogenic
land use (Chen et al., 2025).

Through tuning the ntree, it was found that accuracy
per land cover class generally improved, but some classes
experienced a decline. The claim by Kuntla and Manjusree
(2020) that majority filtering reduces commission errors and
thus improves per-class accuracy cannot be fully accepted.
This study demonstrates that, in the case of the bare land
class, almost all ntree values tested showed decreases in
both area and accuracy. This is because bare land is the
most fragmented class, making it highly susceptible to
negative externalities from majority filtering.

In studies using RF, tuning the ntree is typically
performed to achieve high accuracy (Manafifard, 2024).
Logically, the plateau point of ntree in RF is expected
to yield higher accuracy than other ntree values, both
before and after majority filtering. Although this has not
been definitively proven, the present study suggests that
accuracy can improve beyond the plateau point after
post-classification majority filtering. The shift of maximum
accuracy from ntree 400 (before filtering), which was
considered the plateau in this experiment, to ntree 300
(after filtering) indicates that the relationship between the
RF ntree tuning parameter and classification accuracy is
not strictly linear when majority filtering is applied in post-
processing. Even though ntree 400 initially produced the
best overall accuracy, after majority filtering the best results
shifted to ntree 300. This suggests that models with slightly
lower initial performance may produce better results after
majority filtering, depending on how the post-filtering
changes align with the validation data locations.

It is important to emphasise that majority filtering is
a post-classification procedure and does not affect the
internal learning dynamics of the RF model. However,
different ntree values can vyield slightly different
classification patterns (Sun and Ongsomwang, 2023). These
differences influence the distribution of salt-and-pepper
noise, which in turn determines the susceptibility of pixels
to the majority filtering process. This phenomenon reflects
the inherent randomness of the RF algorithm, arising from
the bootstrapping process and random feature selection
during tree construction, which ultimately affects the
classification results (Salman et al, 2024). Consequently,
although ntree 400 may produce the highest initial
accuracy, the combination of noise distribution, filtering
effects, and coincidentally more favourable variability
at ntree 300 with slightly lower initial accuracy can lead
to a more optimal improvement after majority filtering.
Moreover, the accuracy difference between ntree 400 and
ntree 300 prior to filtering is very small.

The phenomenon of identical OA values for ntree
400, 600, and 700 after filtering, despite different values
before filtering, highlights the limitation of OA. OA only
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measures the proportion of correctly classified samples
and does not account for agreement due to chance. In
contrast, KC, which adjusts for random agreement, remains
more sensitive in distinguishing model performance. This
underscores the importance of using multiple accuracy
metrics in land cover map evaluation. For this reason, land
cover classification studies often employ both OA and KC
as evaluation tools (Zeferino et al, 2020). These findings
emphasise the importance of integrating pixel-based
machine learning classification algorithms with spatial
majority filtering techniques to support operational land
cover mapping.

Majority filtering has proven effective in enhancing the
spatial coherence of classificationresultsandreducing noise.
Therefore, studies that rely on pixel-based classification for
purposes such as land cover change analysis (Kaur et al.,
2023), urban expansion (Zhang et al, 2021), deforestation
monitoring (Silva et al,, 2022), estimating carbon stock
changes (Wahyuni et al, 2025), soil erosion assessment
(Belay and Mengistu, 2021), delineating geohazard-prone
areas (Tempa and Aryal, 2022), and projecting land cover
dynamics (Hakim et al, 2020) should apply majority
filtering as a post-processing step to produce cleaner
and more accurate results. Majority filtering also has the
potential to remove small land cover patches that may
have been correctly classified but are spatially vulnerable
to being filtered out. This creates a trade-off between the
visual accuracy gained from the positive effects of majority
filtering and the preservation of spatial details that risk
being lost due to its negative effects. Nevertheless, the
overall benefits of applying majority filtering outweigh its
side effects.

CONCLUSIONS

This study demonstrates that the RF algorithm can
classify pixel-based land cover from Sentinel-2 imagery
in Sukajaya District, Bogor Regency, with a performance
plateau reached at ntree 400. However, the initial
classification results still exhibit salt-and-pepper noise due
to the inherent limitations of the pixel-based approach.
The application of majority filtering improves land
cover classification accuracy. This improvement allows
performance to surpass that of the model with the best
parameters before filtering, as evidenced by the accuracy
of ntree 300 exceeding that of ntree 400 after filtering.
Majority filtering affects land cover classes. Classes with
large but fragmented patches tend to increase in size,
whereas classes initially composed of small units tend to
decrease. Overall, majority filtering effectively enhances
the quality of classification results. It is recommended as
a standard component in the workflow for pixel-based
land cover classification. This supports evidence-based
planning by offering an objective foundation for assessing
environmental conditions. [l
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