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ABSTRACT. High-quality land cover data are essential for environmental policy, spatial planning, and ecosystem monitoring. 
However, pixel-based classification methods, while widely used due to their practicality, often suffer from salt-and-pepper 
noise, which undermines map reliability. This study aimed to integrate Random Forest (RF) classification and majority filtering 
to enhance the quality of land cover mapping in Sukajaya District, Bogor Regency. RF was applied to Sentinel-2 image data with 
varying numbers of trees (ntree) to determine the optimal model performance. Subsequently, majority filtering was applied 
to each classification result to reduce noise and improve spatial coherence. The evaluation employed multiple accuracy 
metrics, including User’s Accuracy (UA), Producer’s Accuracy (PA), F1-Score, Overall Accuracy (OA), and Kappa Coefficient 
(KC). Comprehensive accuracy increased with the ntree until reaching an optimal point. Beyond this point, additional ntree 
resulted in diminishing returns. Applying majority filtering as a post-processing procedure led to further improvements in 
classification accuracy. While majority filtering can reduce classification noise and improve the visual quality of land cover 
maps, it also carries the risk of removing small, accurately classified land cover patches. This consequence is rarely discussed 
in similar studies. These findings highlight the importance of integrating pixel-based machine learning classification with 
majority filtering in land cover classification workflows, while emphasising a trade-off that tends to favour visual accuracy 
over the preservation of spatial detail.
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INTRODUCTION

	 Land cover is a critical aspect of the Earth’s surface 
and a key consideration in territorial policymaking. It 
reflects the spatial distribution of ecosystems and provides 
quantitative indications of land-based service potentials 
(Anthony et al., 2024). This information supports evidence-
based planning by offering an objective foundation for 
assessing environmental conditions (Aslam et al., 2024). 
When analysed temporally, land cover data can be used to 
identify landscape dynamics (Qacami et al., 2023). Variations 
in land cover types influence carbon stock differences, 
making it a vital component in emissions accounting 
(Solomon et al., 2018; Zhu et al., 2022). This data also plays 
a crucial role in hydrological process modelling (Mensah et 
al., 2022) and habitat suitability assessments for biodiversity 
conservation (Edosa and Erena, 2024). Collectively, these 
applications highlight the strategic importance of land 
cover in supporting conservation policies and adaptation 
to environmental change.
	 Land cover mapping using field surveys demands 
considerable time and resources. The development 

of geographic information systems, remote sensing 
technologies, and machine learning algorithms has 
increased the efficiency of this process. Random Forest 
(RF) is one of the most commonly used algorithms for 
land cover classification. This algorithm uses a bootstrap 
aggregation (bagging) method by building multiple 
decision trees from random subsets of the training data 
(Altman and Krzywinski, 2017; Rivai et al., 2023). At each 
node, RF randomly chooses a subset of features to improve 
model diversity (Ibrahim, 2023). It is particularly effective at 
managing imbalanced training data (Chahal et al., 2024), 
which makes it highly suitable for land cover classification 
tasks. In these tasks, training data across different classes 
are usually uneven, especially when the proportions of 
land cover are very uneven.
	 RF is a reliable algorithm for land cover classification, 
with the number of trees (ntree) being its most critical 
hyperparameter. RF is widely used in pixel-based land 
cover classification due to its ability to deliver high accuracy 
with relatively efficient computational performance. This 
approach is considered more practical than object-based 
methods, which require complex and computationally 
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intensive segmentation steps (Ye et al., 2023; Behera et 
al., 2024). Consequently, pixel-based classification remains 
a common approach for generating land cover maps. 
However, pixel-based classification results often suffer from 
salt-and-pepper noise. This refers to pixels that are classified 
differently from their surrounding areas (Ebrahimy et al., 
2021; El-Deen Taha and Mandouh, 2024; Fu et al., 2017). This 
issue is frequently overlooked in land cover classification 
studies. The focus is typically placed on improving overall 
accuracy without adequately addressing the presence of 
noise. Although statistical accuracy may appear high, such 
noise can distort area estimations for each class and lead to 
misinterpretation of the results. This presents a challenge 
when the output is intended to support decision-making 
processes.
	 Studies aimed at improving image quality have shown 
that majority filtering effectively removes salt-and-pepper 
noise in raster data (Olariu et al., 2022; Maleki et al., 2024). 
Salt-and-pepper noise typically appears as isolated pixels 
with values that differ from their neighbours, affecting 
both visual interpretation and quantitative analysis. 
Majority filtering tackles this by substituting the central 
pixel with the most common value among its surrounding 
pixels (Bayazit et al., 2025). This process helps to reduce 
local anomalies without significantly distorting the image 
structure. Applying this technique to the outputs of pixel-
based classification can improve the accuracy and overall 
quality of land cover data generated using machine 
learning algorithms.
	 Sukajaya District, located in Bogor Regency, holds 
strategic importance within a conservation area due 
to its position in a mountainous region. Research by 
Tjahjono et al., (2024) indicates that Sukajaya District is 
highly prone to landslides. The local government has 
implemented ecologically oriented strategies to preserve 
the environmental quality of the area. Land cover 
mapping is crucial for generating accurate data to support 
environmentally based policy decisions. To effectively 
and efficiently detect detailed land cover features using 
open-source data, Sentinel-2 imagery with a 10 m 
resolution is well-suited for classification purposes. This 
study aims to enhance the quality of pixel-based RF land 

cover classification in Sukajaya District. To achieve high 
classification accuracy while minimising salt-and-pepper 
noise, the ntree was tuned and post-processing was 
applied using a majority filter to reduce noise and improve 
spatial coherence.

MATERIALS AND METHODS

Study Area

	 Sukajaya District is an administrative district within 
Bogor Regency, West Java Province (Fig. 1). Administratively, 
Sukajaya District shares borders with several districts in two 
regencies. To the west, it borders Cipanas and Lebakgedong 
Districts (Lebak Regency). To the south, it borders Cibeber 
District (Lebak Regency) and Nanggung District (Bogor 
Regency). To the east, it borders Nanggung and Cigudeg 
Districts (Bogor Regency). To the north, it borders Jasinga 
District (Bogor Regency). Situated within the Halimun 
Mountains and characterised by intense human activities, 
land use in Sukajaya District has become increasingly 
fragmented across different land cover types. This situation 
has led to more noticeable landscape fragmentation 
between land cover classes (Pramesti et al., 2025). Sukajaya 
District’s varied landscape makes it an ideal study area 
for evaluating the performance of the RF classification 
algorithm and the use of majority filtering to improve land 
cover map accuracy. This is crucial for supporting spatial 
planning.

Materials

	 The administrative boundary of Sukajaya District was 
obtained from the Ina-Geoportal website. Sentinel-2 
imagery from the year 2024 was used for land cover 
classification. Harmonised surface reflectance data from 
Sentinel-2 were retrieved via Google Earth Engine (GEE) 
and cloud masking was applied to remove contaminated 
pixels. To further reduce residual artefacts and temporal 
inconsistencies, a median filter was applied. All bands used 
in the analysis were resampled to a spatial resolution of 10 
m using the nearest neighbour method, which preserves 
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Fig. 1. The Map of Sukajaya District
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original pixel values without introducing interpolation, 
thereby maintaining the integrity of the reflectance data. 
The specific Sentinel-2 bands used in the classification are 
listed in Table 1.
	 Land cover classes were defined following field surveys 
conducted in Sukajaya District. The classes and the number 
of datasets per class are presented in Table 2. The dataset 
consists of points derived from field verification and 
interpretation using Google Earth. This dataset was split 
using a 70/30 ratio, with 70 percent used as training data and 
30 percent as validation data, following common practice in 
machine learning applications (Joseph, 2022). Consistently, 
the training data were used for land cover classification using 
the RF algorithm, with the ntree increasing incrementally 
from 100 to 700 in steps of 100. The validation data were 
used to assess the classification accuracy of both the RF 
results and the outputs after majority filtering in the post-
processing stage.

Methods

Random Forest for Land Cover Classification

	 Random Forest (RF) is a supervised machine learning 
algorithm that works by building multiple decision trees 
in parallel during training, a technique called ensemble 
learning. The algorithm then combines the voting results 
from each tree to produce a more stable final decision 
(Breiman, 2001). The RF algorithm was implemented using 
GEE, which uses the Statistical Machine Intelligence and 
Learning Engine (SMILE) library as its backend. The SMILE 
RF library allows for efficient large-scale processing of 

geospatial data (Aji et al., 2024). This efficiency is achieved 
through direct integration with GEE’s geospatial datasets 
and its support for parallel training. The number of trees 
(ntree) was tuned from 100 to 700 in steps of 100. With 10 
Sentinel-2 bands, the number of variables per split was set 
to three, following the default setting of the square root of 
the input features.

Majority Filtering

	 Majority filtering is an image processing method used 
to reduce salt-and-pepper noise. It replaces the value of a 
central pixel with the majority value of its neighbouring pixels 
(S. Liu and Gu, 2017). Majority filtering was applied using the 
Sieve feature in QGIS to improve the land cover classification 
results from RF. This process uses an 8-neighbour rule 
(Ávila-Mosqueda et al., 2025), which considers all adjacent 
neighbouring pixels to determine the majority value for the 
central pixel. The majority filter assigns a pixel value based 
on the dominant value among its neighbouring pixels 
(Svoboda et al., 2022; Al-Aarajy et al., 2024). Mathematically, 
the original raster R consists of pixel values R(i,j), where i and 
j represent the pixel coordinates. For each pixel (i,j), a local 
window N(i,j) is defined, which includes neighbours within 
a certain radius. The new pixel value R'(i,j) is calculated by 
taking the mode of N(i,j), as shown in Equation 1:

	 Here, R’(i,j) is the new pixel value obtained after applying 
majority filtering, and mode(N(i,j)) is the most frequent 
value within the local window N(i,j).

Table 2. The amount of training and validation data collected for each land cover class

Table 1. Sentinel-2 bands used

Land cover class Data training amount Data validation amount

Water body 405 173

Forest 401 172

Mixed garden 407 174

Oil palm plantation 412 177

Rice field 401 172

Bare land 169 72

Built-up area 403 173

Band Description Wavelength (nm) Resolution (m)
Resample Resolution 

Used (m)

B2 Blue 490 10 10

B3 Green 560 10 10

B4 Red 665 10 10

B5 Red Edge 1 705 20 10

B6 Red Edge 2 740 20 10

B7 Red Edge 3 783 20 10

B8 Near Infrared (NIR) 842 10 10

B8A Narrow NIR 865 20 10

B11 Short Wave Infrared 1 1610 20 10

B12 Short Wave Infrared 2 2190 20 10

(1)
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Land Cover Class-based Accuracy Assessment

	 The classification results of the Random Forest model for 
each tested tree number, both without and with majority 
filtering, were evaluated based on accuracy per land cover 
class. The commonly used accuracy metrics in land cover 
classification are User’s Accuracy (UA) and Producer’s 
Accuracy (PA). UA represents the probability that a classified 
label is correct. This means it shows how accurately the pixels 
classified into a certain class truly belong to that class in the 
validation data. The formula for UA is presented in Equation 2.

	 PA indicates the classifier’s ability to correctly identify 
pixels belonging to a specific class. It measures how many 
pixels from the actual class are correctly classified. The formula 
for PA is presented in Eq. 3.

	 When the number of validation samples is unbalanced 
across classes, it is recommended to use the F1-Score as an 
additional metric. This is because the F1-Score combines UA 
and PA into a single harmonic metric (Amin et al., 2024). The 
dataset sizes between subsets are unbalanced, resulting in 
unequal validation data for each land cover class. Therefore, 
in addition to calculating UA and PA, this research also uses 
the F1-Score metric. The formula for calculating the F1-Score 
is presented in Eq. 4.

	 Here, F1
C
 is the F1-score for class c, UA

C
 is the user’s 

accuracy for class  c, PA
C
 is the producer’s accuracy for the land 

cover class c, TP
C
 is the number of pixels correctly classified 

as class c, FP
C
 is the number of pixels incorrectly classified as 

class c but actually belong to other classes, and FN
C
 is the 

number of pixels that belong to class c but were misclassified 
as other classes.

Comprehensive Accuracy Assessment

	 The accuracy of the RF classification results, including 
tree number tuning and majority filtering, was assessed 
using Overall Accuracy (OA) and the Kappa Coefficient (KC). 
OA represents the percentage of total pixels or samples that 
were correctly classified when compared to the validation 
data. The formula for calculating OA is presented in Eq. 5.

	 TP
i
 is the number of pixels correctly classified as class i. 

K is the total number of land cover classes. N is the total 
number of validation pixels across all classes.
	 Kappa coefficient (KC) is a statistical metric that 
measures the level of agreement between classification 
results and reference data, after correcting for the 
possibility of chance agreement. In short, KC accounts 
for the probability that a classification was correct purely 
by chance. The formula for calculating KC is presented in 
Equation 6.

	 P
o
 is the number of correctly classified pixels divided by 

the total number of validation pixels, and P
e
 is derived from 

the product of the marginal totals in the classification and 
reference data.

RESULTS

Land Cover Raster from Random Forest with and without 
Majority Filtering

	 Pixel-based RF classification was conducted for each 
tested ntree without a majority filter. The results are 
illustrated in Fig. 2, and the corresponding land cover areas 
are presented in Fig. 3. The resulting land cover maps show 
variations in area depending on the ntree applied.

Fig. 2. Land cover classification using Random Forest without majority filter post-processing

(2)

(5)

(3)

(6)

(4)
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	 Consistently, forest appeared as the dominant land 
cover, ranging from 7,000 to 7,070 ha. This was followed by 
mixed garden (5,297 to 5,341 ha), rice field (1,489 to 1,503 
ha), water body (1,378 to 1,468 ha), oil palm plantation 
(842 to 910 ha), and bare land (405 to 441 ha). The smallest 
land cover class was built-up area, ranging from 247 to 
259 ha. Despite these results, the classification outputs 
still show salt-and-pepper noise. This is characterised 
by small, scattered pixels that differ from the dominant 
surrounding class. This limitation comes from the pixel-
based classification approach. In this method, each pixel 
is treated independently without considering the spatial 
pattern around it. This reduces both the accuracy and the 
visual quality of the land cover raster data.

	 Through the application of a majority filter, these noise 
speckles can be replaced by aligning pixel values with the 
dominant surrounding class. The post-processing results of 
the majority filter are shown in Fig. 4, and the area of each land 
cover class is presented in Fig. 5. The filtered output displays 
the same ranking of land cover areas from largest to smallest 
as in the unfiltered classification. However, differences in 
area are observed following the application of the majority 
filter. Forest remains the dominant land cover, ranging from 
7,243 to 7,303 ha, followed by mixed garden (5,540 to 5,598 
ha), rice field (1,481 to 1,505 ha), water body (1,091 to 1,151 
ha), oil palm plantation (695 to 754 ha), and bare land (360 
to 399 ha). Built-up area continues to represent the smallest 
land cover class, with an area between 261 and 273 ha.

Fig. 4. Land cover classification using Random Forest with majority filter post-processing

Fig. 3. Land cover class area from Random Forest classification without majority filter post-processing
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	 A zoomed-in view is presented in Fig. 6 to illustrate 
in greater detail the differences between land cover 
classification results before and after applying the majority 
filter. The RF classification results using ntree values ranging 
from 100 to 700 without majority filtering display scattered 
speckles consisting of one to four pixels. These patterns give 
the impression of randomly distributed land cover patches 
with extremely small areas, approximately 100 to 400 m2. 
After applying the majority filter to each classification 
output across different ntree values, these speckles are 
eliminated. The majority filter works by reassigning pixel 
values to the most dominant land cover class within their 
neighbourhood, effectively transforming isolated pixels into 

more homogeneous clusters. As a result, small fragmented 
patches tend to shrink, while larger contiguous areas are 
expanded.

Accuracy of Land Cover Classification Per-Class with and 
without Majority Filtering

	 Visually, the majority filter enhances the quality of the land 
cover classification results. To better understand its impact 
on classification accuracy, an assessment was carried out for 
each land cover class. The classification accuracy per class was 
evaluated using User’s Accuracy (UA) (Table 3), Producer’s 
Accuracy (PA) (Table 4), and the F1-Score metric (Table 5).

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY	 2025

Fig. 5. Land cover class area from Random Forest classification with majority filter post-processing

Fig. 6. Zoom-in comparison of land cover classification features using ntree 100–700 without and with majority filtering
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	 The lowest accuracy values were observed for the 
bare land and water body classes. This can be attributed 
to the tropical wet conditions in Sukajaya District, where 
frequent rainfall causes bare land to become moist and 
appear non-homogeneous, complicating the classification 
process. This contrasts with bare land classifications in arid 
desert regions, which tend to be easier to classify (Darem 
et al., 2023; Du et al., 2023; Elmahdy and Mohamed, 2023). 
Similarly, water bodies in Sukajaya District are generally 
shallow, with partially exposed land and surrounding 
vegetation extending over the edges, resulting in high 
variability in conditions. This contributes to the reduced 
classification accuracy for this class. In contrast, other 
land cover classes that are relatively more homogeneous 
exhibit higher accuracy. Overall, classification accuracy is 
influenced by the degree of homogeneity within a land 
cover class; the more homogeneous the class, the higher 
its classification accuracy.
	 Based on UA values before and after applying the 
majority filter, accuracy shifts were generally positive, 
indicating that the majority filter improved the per-class 
accuracy of the land cover classification. This suggests 
a trend of increased accuracy in most land cover classes 
after the filter was applied, although variations in accuracy 
changes between classes were observed. Exceptions 
were found in the mixed garden class (except at ntree 
200), bare land (ntree 400), and built-up area (ntree 400), 
which experienced decreases in accuracy. On average, the 
absolute change in UA reached 2.10 percentage points, 
showing that the majority filter had a measurable impact 
on classification accuracy. Based on PA values before and 
after the majority filter, only the bare land class showed 
a decline in accuracy, while the oil palm plantation class 
showed no improvements in accuracy. These results were 
consistent across ntree values from 100 to 700. The average 
absolute change in PA was calculated at 2.13 percentage 
points.

	 Based on F1-Score values before and after the application 
of the majority filter, the mixed garden class experienced a 
decrease in accuracy only at ntree 500. The bare land class 
showed an increase in accuracy only at ntree 600 and 700. 
Aside from these exceptions, a consistent improvement in 
accuracy was observed across ntree values from 100 to 700. 
The average absolute change was 1.88 points, reinforcing the 
finding that the filter tends to enhance the balance between 
UA and PA, despite slight variations in response across classes. 
Accuracy reductions in specific land cover classes based on 
UA, PA, and F1-Score metrics may occur when those classes 
are represented as small fragments. Although such fragments 
may have been correctly classified initially, the majority filter 
replaces them with the dominant surrounding class, thereby 
reducing the accuracy for those specific land cover categories.

Comprehensive Accuracy Assessment of Land Cover 
Classifications Before and After Majority Filtering

	 The comprehensive classification performance was 
evaluated using OA and KC, as shown in Fig. 7. In the first 
RF classification experiment with ntree set to 100, the map 
achieved a comprehensive accuracy with an OA of 81.94% 
and a KC of 78.72%. As the ntree value increased in increments 
of 100, the performance of the RF classifier improved, 
reaching its peak at ntree 400 for land cover classification. 
At this point, the model achieved an OA of 83.02% and a KC 
of 79.99%. Therefore, in this model, ntree 400 represents a 
plateau. A plateau refers to the stage where further increases 
in ntree do not result in additional performance gains (Probst 
and Boulesteix, 2018). When ntree was further increased 
in increments of 100, the accuracy exhibited diminishing 
returns. This indicates that after the RF model reaches its 
optimal accuracy, increasing the ntree may lead to a decline 
in performance. Similar results were also reported by Liu et 
al. (2021), who found that once the optimal ntree is reached, 
further increases in ntree can result in decreased performance.

Table 3. User’s accuracy per land cover class from Random Forest classification 
(Ntree 100–700) without and with majority filtering

Method
User’s Accuracy

Water Body Forest Mixed Garden Oil Palm Plantation Rice Field Bare Land Built-up Area

RF Ntree 100 67.20 78.60 75.90 94.50 81.30 67.90 99.40

RF Ntree 200 69.30 79.50 74.70 94.00 81.30 68.40 99.40

RF Ntree 300 69.80 80.70 75.60 95.60 81.50 70.20 99.40

RF Ntree 400 70.40 81.00 75.10 95.60 81.50 70.20 99.40

RF Ntree 500 70.40 79.70 75.40 96.10 82.80 66.10 99.40

RF Ntree 600 69.60 81.80 75.30 95.10 82.80 64.40 99.40

RF Ntree 700 70.00 80.80 75.10 94.50 82.40 65.00 99.40

RF Ntree 100 with Majority Filter 70.30 81.00 75.30 95.00 87.20 68.50 99.40

RF Ntree 200 with Majority Filter 72.90 80.90 75.30 95.10 86.50 69.80 99.40

RF Ntree 300 with Majority Filter 74.60 82.10 73.80 96.10 87.60 70.40 99.40

RF Ntree 400 with Majority Filter 75.90 82.30 75.00 97.70 83.70 68.50 98.80

RF Ntree 500 with Majority Filter 74.90 80.80 72.70 96.60 88.70 68.50 99.40

RF Ntree 600 with Majority Filter 72.80 82.80 74.40 96.70 87.60 68.50 99.40

RF Ntree 700 with Majority Filter 76.30 82.10 74.90 96.10 84.30 69.10 99.40
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Table 4. Producer’s Accuracy per land cover class from Random Forest classification 
(Ntree 100 – 700) without and with Majority Filtering

Method
Producer’s Accuracy

Water Body Forest Mixed Garden Oil Palm Plantation Rice Field Bare Land Built-up Area

RF Ntree 100 71.10 79.10 74.10 97.20 86.00 52.80 96.00

RF Ntree 200 71.70 76.70 74.70 97.70 88.40 54.20 95.40

RF Ntree 300 73.40 77.90 74.70 97.70 89.50 55.60 95.40

RF Ntree 400 72.80 79.10 74.70 97.70 89.50 55.60 95.40

RF Ntree 500 72.80 79.70 74.10 97.70 89.50 54.20 95.40

RF Ntree 600 74.00 78.50 73.60 98.30 89.50 52.80 95.40

RF Ntree 700 72.80 78.50 73.00 97.70 90.10 54.20 95.40

RF Ntree 100 with Majority Filter 74.00 82.00 78.70 97.20 87.20 51.40 96.50

RF Ntree 200 with Majority Filter 74.60 81.40 78.70 97.70 89.50 51.40 96.50

RF Ntree 300 with Majority Filter 76.30 82.60 77.60 97.70 90.70 52.80 96.50

RF Ntree 400 with Majority Filter 76.30 83.70 77.60 97.70 89.50 51.40 96.50

RF Ntree 500 with Majority Filter 75.70 83.10 76.40 97.70 91.30 51.40 96.50

RF Ntree 600 with Majority Filter 77.50 81.40 77.00 98.30 90.70 51.40 96.50

RF Ntree 700 with Majority Filter 76.30 82.60 77.00 97.70 90.70 52.80 96.50

Table 5. F1-Score per land cover class from Random Forest classification 
(Ntree 100–700) without and with majority filtering

Method
F1-Score

Water Body Forest Mixed Garden Oil Palm Plantation Rice Field Bare Land Built-up Area

RF Ntree 100 69.10 78.80 75.00 95.80 83.60 59.40 97.60

RF Ntree 200 70.50 78.10 74.70 95.80 84.70 60.50 97.30

RF Ntree 300 71.50 79.30 75.10 96.60 85.30 62.00 97.30

RF Ntree 400 71.60 80.00 74.90 96.60 85.30 62.00 97.30

RF Ntree 500 71.60 79.70 74.80 96.90 86.00 59.50 97.30

RF Ntree 600 71.70 80.10 74.40 96.70 86.00 58.00 97.30

RF Ntree 700 71.40 79.60 74.10 96.10 86.10 59.10 97.30

RF Ntree 100 with Majority Filter 72.10 81.50 77.00 96.10 87.20 58.70 97.90

RF Ntree 200 with Majority Filter 73.70 81.20 77.00 96.40 88.00 59.20 97.90

RF Ntree 300 with Majority Filter 75.40 82.30 75.60 96.90 89.10 60.30 97.90

RF Ntree 400 with Majority Filter 76.10 83.00 76.30 97.70 86.50 58.70 97.70

RF Ntree 500 with Majority Filter 75.30 81.90 74.50 97.20 90.00 58.70 97.90

RF Ntree 600 with Majority Filter 75.10 82.10 75.70 97.50 89.10 58.70 97.90

RF Ntree 700 with Majority Filter 76.30 82.30 75.90 96.90 87.40 59.80 97.90
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	 After applying the majority filter, changes were 
observed in both OA and KC. Both metrics increased, 
confirming that post-classification processing with a 
majority filter can improve land cover classification quality 
by addressing salt-and-pepper noise. On average, OA 
increased by 1.80 percentage points, while KC saw a larger 
average improvement of 2.11 percentage points. However, 
this also led to a shift in the point of optimal accuracy. In 
the original classification results, the highest accuracy was 
achieved with an ntree value of 400. After majority filtering, 
the highest accuracy was instead observed with an ntree 
value of 300. Initially, the classification at ntree 400 had 
an OA of 83.02% and a KC of 79.99%, while ntree 300 had 
an OA of 82.93% and a KC of 79.89%. After the majority 
filter was applied, ntree 300 improved by 1.80 percentage 
points in OA and 2.11 percentage points in KC. In contrast, 
ntree 400 only improved by 1.62 percentage points in OA 
and 1.90 percentage points in KC. These findings confirm 
that the majority filter consistently enhances land cover 
classification quality. However, the extent of improvement 
does not directly correspond to the accuracy levels 
before post-processing. This is likely due to the inherent 
differences in classification outcomes produced by varying 
ntree settings, which lead to variations in the pixels most 
susceptible to reclassification during majority filtering.
	 Identical accuracy results were observed for ntree 
values of 400, 600, and 700 after applying the majority filter, 
despite their OA values being different before this filtering 
process. This indicates that although the initial classification 
results varied, the final outputs became identical after 
applying the majority filter, particularly in the areas used for 
validation. In other words, initial differences in classification 
had little impact on accuracy values because the majority 
filter produced uniform maps in the validation areas. 
However, a slight distinction remains in the KC values. The 
KC for ntree 400 and 600 remained the same after filtering, 
while the value for ntree 700 was slightly higher by 0.01 
percentage points. This is due to the nature of the KC, 
which accounts for chance agreement. As a result, minor 
variations in classification patterns can still be detected, 
even when OA values are identical.

DISCUSSION

	 The study results indicate that majority filtering plays 
a vital role in enhancing the spatial coherence of land 
cover classification maps produced by RF by reducing salt-
and-pepper noise. This finding aligns with the application 
of majority filtering demonstrated by Chen et al. (2023), 
where salt-and-pepper noise, consisting of minority pixels, 
is replaced by the majority class of neighbouring pixels. 
Although numerous studies have applied this technique 
and emphasised the advantages in reducing classification 
noise and enhancing spatial coherence, few have critically 
examined potential drawbacks. One notable yet often 
overlooked consequence is the removal of pixels that 
were correctly classified but belong to small, fragmented 
land cover patches. Such areas, despite being accurate 
representations of actual land cover, are susceptible to 
elimination due to excessively small spatial size. This effect 
is evident in the water body, oil palm plantation, rice field, 
and bare land classes, which consistently from ntree 100 to 
700 experienced reductions in area after majority filtering. 
Conversely, land cover types characterised by larger 
fragment sizes such as forest, mixed garden, and built-up 
area consistently from ntree 100 to 700 showed increases 
in area.
	 Both the results with and without majority filtering 
consistently show that forest remains the dominant land 
cover in Sukajaya District, while built-up areas are the 
least extensive. Nevertheless, noticeable changes in area 
are clearly observed. The results after applying majority 
filtering are considered better, as the salt-and-pepper 
noise has been removed. Forest dominance is expected, 
as Sukajaya District, which spans from mountainous areas 
to the foothills, partly lies within a National Park forest area. 
Mountainous regions are often designated as protected 
zones, making forest cover the dominant class (Li et al., 
2022). Findings from other highland regions consistently 
show that forest is the predominant land cover type 
(Adhikari et al., 2022; Ismail et al., 2021; Ratnayake et al., 
2024). In the Himalayas, where permanent snow exists, 
forest is the second most dominant class after snow (Singh 
and Pandey, 2021). However, the presence of plantations 
or agricultural land as classes competing with forest for 
dominance is also frequently observed in areas that have 

Fig. 7. Comprehensive accuracy of land cover classification using Random Forest 
(Ntree 100 – 700) with and without majority filter post-processing



180

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY	 2025

undergone deforestation. These differences largely depend 
on conservation policies and their enforcement, which 
shape human activities and the intensity of anthropogenic 
land use (Chen et al., 2025).
	 Through tuning the ntree, it was found that accuracy 
per land cover class generally improved, but some classes 
experienced a decline. The claim by Kuntla and Manjusree 
(2020) that majority filtering reduces commission errors and 
thus improves per-class accuracy cannot be fully accepted. 
This study demonstrates that, in the case of the bare land 
class, almost all ntree values tested showed decreases in 
both area and accuracy. This is because bare land is the 
most fragmented class, making it highly susceptible to 
negative externalities from majority filtering.
	 In studies using RF, tuning the ntree is typically 
performed to achieve high accuracy (Manafifard, 2024). 
Logically, the plateau point of ntree in RF is expected 
to yield higher accuracy than other ntree values, both 
before and after majority filtering. Although this has not 
been definitively proven, the present study suggests that 
accuracy can improve beyond the plateau point after 
post-classification majority filtering. The shift of maximum 
accuracy from ntree 400 (before filtering), which was 
considered the plateau in this experiment, to ntree 300 
(after filtering) indicates that the relationship between the 
RF ntree tuning parameter and classification accuracy is 
not strictly linear when majority filtering is applied in post-
processing. Even though ntree 400 initially produced the 
best overall accuracy, after majority filtering the best results 
shifted to ntree 300. This suggests that models with slightly 
lower initial performance may produce better results after 
majority filtering, depending on how the post-filtering 
changes align with the validation data locations.
	 It is important to emphasise that majority filtering is 
a post-classification procedure and does not affect the 
internal learning dynamics of the RF model. However, 
different ntree values can yield slightly different 
classification patterns (Sun and Ongsomwang, 2023). These 
differences influence the distribution of salt-and-pepper 
noise, which in turn determines the susceptibility of pixels 
to the majority filtering process. This phenomenon reflects 
the inherent randomness of the RF algorithm, arising from 
the bootstrapping process and random feature selection 
during tree construction, which ultimately affects the 
classification results (Salman et al., 2024). Consequently, 
although ntree 400 may produce the highest initial 
accuracy, the combination of noise distribution, filtering 
effects, and coincidentally more favourable variability 
at ntree 300 with slightly lower initial accuracy can lead 
to a more optimal improvement after majority filtering. 
Moreover, the accuracy difference between ntree 400 and 
ntree 300 prior to filtering is very small.
	 The phenomenon of identical OA values for ntree 
400, 600, and 700 after filtering, despite different values 
before filtering, highlights the limitation of OA. OA only 

measures the proportion of correctly classified samples 
and does not account for agreement due to chance. In 
contrast, KC, which adjusts for random agreement, remains 
more sensitive in distinguishing model performance. This 
underscores the importance of using multiple accuracy 
metrics in land cover map evaluation. For this reason, land 
cover classification studies often employ both OA and KC 
as evaluation tools (Zeferino et al., 2020). These findings 
emphasise the importance of integrating pixel-based 
machine learning classification algorithms with spatial 
majority filtering techniques to support operational land 
cover mapping.
	 Majority filtering has proven effective in enhancing the 
spatial coherence of classification results and reducing noise. 
Therefore, studies that rely on pixel-based classification for 
purposes such as land cover change analysis (Kaur et al., 
2023), urban expansion (Zhang et al., 2021), deforestation 
monitoring (Silva et al., 2022), estimating carbon stock 
changes (Wahyuni et al., 2025), soil erosion assessment 
(Belay and Mengistu, 2021), delineating geohazard-prone 
areas (Tempa and Aryal, 2022), and projecting land cover 
dynamics (Hakim et al., 2020) should apply majority 
filtering as a post-processing step to produce cleaner 
and more accurate results. Majority filtering also has the 
potential to remove small land cover patches that may 
have been correctly classified but are spatially vulnerable 
to being filtered out. This creates a trade-off between the 
visual accuracy gained from the positive effects of majority 
filtering and the preservation of spatial details that risk 
being lost due to its negative effects. Nevertheless, the 
overall benefits of applying majority filtering outweigh its 
side effects.

CONCLUSIONS

	 This study demonstrates that the RF algorithm can 
classify pixel-based land cover from Sentinel-2 imagery 
in Sukajaya District, Bogor Regency, with a performance 
plateau reached at ntree 400. However, the initial 
classification results still exhibit salt-and-pepper noise due 
to the inherent limitations of the pixel-based approach. 
The application of majority filtering improves land 
cover classification accuracy. This improvement allows 
performance to surpass that of the model with the best 
parameters before filtering, as evidenced by the accuracy 
of ntree 300 exceeding that of ntree 400 after filtering. 
Majority filtering affects land cover classes. Classes with 
large but fragmented patches tend to increase in size, 
whereas classes initially composed of small units tend to 
decrease. Overall, majority filtering effectively enhances 
the quality of classification results. It is recommended as 
a standard component in the workflow for pixel-based 
land cover classification. This supports evidence-based 
planning by offering an objective foundation for assessing 
environmental conditions.
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