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ABSTRACT. This study analyses the spatiotemporal dynamics of Land Use and Land Cover (LULC) in the Berrechid-Settat area
of Morocco throughout three reference years: 2010, 2015, and 2023. Satellite images from Landsat 7 (ETM+) and Landsat
8 OLI were processed using the Google Earth Engine (GEE) platform to facilitate quick access, preprocessing, and analysis
of extensive datasets. To classify LULC changes and assess the efficacy of machine learning models, Random Forest (RF),
Decision Tree (DT), and Support Vector Machine (SVM) were examined. These models were used to categorise five principal
LULC classes: water bodies, forests, urban regions, vegetation, and barren lands. Our findings indicated that Random Forest
consistently yielded the highest classification accuracy, achieving an Overall Accuracy (OA) of 91.84% and a Kappa Coefficient
(KC) of 0.86 in 2023, thereby affirming its efficacy for multi-temporal land use and land cover mapping. The Decision Tree
exhibited competitive performance in 2010 (87.36% OA, a KC of 0.79) but showed diminished stability in later years. The
SVM displayed middling performance, particularly excelling in the classification of urban areas (about 94%) but exhibiting
reduced accuracy for forest regions. This analysis emphasises the efficacy of GEE and Python libraries in analysing large
satellite imagery and the proficiency of DT and RF models in land use and land cover classification. The results can guide
regional planning and land management policies, fostering sustainable development.
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INTRODUCTION now allow for more efficient detection of changes in LULC
(Li et al. 2019). In recent years, remote sensing imaging has

The alteration of LULC has a significant influence on  been increasingly utilised to identify changes in LULC and
ecological components (Bhungeni et al. 2024; Z. Zhao et  vegetation. The abundance of historical data and remote
al. 2024). This provides essential ecosystem services that  sensing imagery has made it convenient to study the
are advantageous to both society and biodiversity. These  impact of human activities on LULC (Ali and Johnson 2022).
services include the supply of drinkable water, support  Classifying LULC is essential for detecting changes, and the
for farming activities, recreational opportunities, and the  approaches and strategies used for classifying LULC and
conservation of natural habitats. However, human-induced  extracting precise data from remote sensing images are
changes in LULC pose a substantial risk to the preservation  highly adaptable. Mapping and monitoring LULC changes
of natural land cover and freshwater resources in various  are essential for gaining insight into the spatial distribution
countries, particularly in watershed areas. Examining  of human activities on land and their impact on the natural
alterations in the Earth’s surface is crucial for understanding  environment (Dong et al. 2019). This knowledge is crucial
ecological and societal transformations (Peterson and  for water resource managers and environmental health
Levinson 2020). Traditional approaches and aerial imagery  practitioners to formulate efficient environmental strategies.
fordata collection are time-intensive and often lack sufficient Management plans and regulations. Remote sensing
accuracy. The latest analysis techniques for satellite images  techniques have largely replaced conventional field
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observation methods for LULC mapping. They offer a
cost-efficient and effective way to gather spatiotemporal
data across large areas. Remote sensing data can be
systematically recorded, stored, and shared, making it a
valuable resource for studying different landscapes. Many
studies have shown that machine learning methods are
very effective at classifying LULC using remote sensing
data (Andrew et al. 2023).

The extensive body of research on LULC dynamics
in Morocco is primarily limited by the lack of a uniform
spatiotemporal scale and a generalised methodology.
Most of the existing literature on the topic is either
localised or methodologically constrained or temporally
disjointed. This is often combined with the use of
conventional classification methods such as maximum
likelihood or minimum distance. These limitations make
it difficult to ensure reliability due to the possibility of
misclassification and low transferability across sensors.
Most studies did not combine multi-temporal Landsat
datasets from both Landsat 7 and Landsat 8 with uniform
preprocessing, spectral harmonisation, and atmospheric
correction, especially in the Berrechid-Settat region. This
region is characterised by high rates of urban expansion
and agricultural intensification but is exposed to increased
pressure on water and land resources. Most of these studies
did not include a comparative assessment of machine-
learning methods using the same training and validation
datasets. They have almost focused on assessing a single
model or did not report significant statistical differences
in accuracy metrics, which include Overall Accuracy,
Producer’s Accuracy, User's Accuracy, and Kappa. Finally,
all regional studies demonstrated a lack of data due to the
absence of efficient GEE-based computing for extensive,
cloud-based analysis and standard temporal mosaicking.
Consequently, this study tried to respond to this lack by (i)
combining imageries from Landsat 7 ETM+ and Landsat 8
OLIwithin the same GEE workflow; (ii) rigorously comparing
three robust classifiers, SVM, RF and DT, implemented
under the same conditions; and (iii) investigating land use
and land cover transitions for two decades, i.e., between
2010 and 2023, in a key agro-industrial corridor in Morocco.
Thus, the approach presents not only the most up-to-date
and consistently mapped landscape of Berrechid-Settat
but also an adaptable methodology for studying other
semi-arid regions grappling with similar environmental
challenges and urban sprawl (Chomani and Pshdari 2024a).

The primary goal of our study is to categorise changes
in LULC and assess the effectiveness of three machine
learning algorithms. The classification process involved five
LULC categories: vegetation, built-up areas, forests, barren
land, and water bodies. The efficacy of these models was
evaluated using accuracy metrics such as Overall Accuracy
(OA), User's Accuracy (UA), Producer’s Accuracy (PA), and
Kappa Coefficient (KC). Our findings indicate that the DT
model performed better in 2010, achieving an overall
accuracy of 87.36% and a Kappa coefficient of 0.79,
highlighting a strong agreement between the reference
and classified data. By 2015, the RF model had emerged as
the top performer with an overall accuracy of 88.74% and
a Kappa coefficient of 0.81, while DT continued to perform
strongly. In 2023, RF remained the best-performing model,
with an OA of 91.84% and a KC of 0.86, underscoring its
robustness in classifying LULC changes over time. The
objective of this study is to enhance the existing knowledge
on LULC classification and offer valuable insights for
environmental management and policy development in
the Berrechid-Settat area. Furthermore, it showcases the
efficacy of GEE in efficiently obtaining and manipulating
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vast quantities of satellite imagery data, providing vital
insights for land planning and management in the region,
fostering sustainable development (Achahboun et al. 2023;
Laalaoui et al. 2024; Sellami and Rhinane 2023).

MATERIALS AND METHODS
Study area

The Berrechid Settat area, situated in the Casablanca-
Settat region of Morocco (Figure 1), has been chosen as the
study location due to its diverse landscape (El Assaoui 2023;
Elgendy and Abdelatif 2021). Berrechid Settat lies between
the Casablanca region to the north and the Marrakech-Safi
region to the south (Bouzekraoui et al. 2020).

The area is situated between longitudes 7° 43" 48" W
and 7°10"48'W,
and the latitudes of 32° 57" 36" N and 33° 25" 12" N. The
total land area measures 2062 square kilometres. It has
varied topography, including agricultural plains, urbanised
regions, and forests (Koukal et al. 2020).

The Berrechid Settat region is mainly known for its large
agricultural areas, where a considerable amount of land
is used for growing crops. It also includes forested areas
with different amounts of tree cover, from dense forests
to lighter woodlands. The area is experiencing significant
urban expansion, with much development taking place
in the areas on the outskirts of cities (El Assaoui Fouad
Amraoui and El Mansouri 2015; Laalaoui et al. 2024).

Dataset

In this work, we employed Landsat satellite images,
specifically utilising Landsat 7 for the year 2010 and Landsat
8 OLI for the years 2015 and 2023.

The Landsat satellites provide multispectral imagery
with various resolutions (Pickens et al. 2020). For our
analysis, we used the blue, green, red, near-infrared (NIR),
and short-wave infrared (SWIR) bands (D. Chen et al. 2018).
Additionally, several spectral indices were computed to
improve classification accuracy.

All Landsat imagery was preprocessed in Google Earth
Engine to ensure radiometric and temporal uniformity for
the years 2010, 2015, and 2023. Specifically, for Landsat
8 OLI (2015, 2023) and Landsat 7 ETM+ (2010), we used
the Collection 2 Surface Reflectance (SR) tier 1 products.
Atmospheric correction was applied using LaSRC for
Landsat 8 and LEDAPS for Landsat 7. Furthermore, masks
were utilised to remove clouds, cloud shadows, dilated
clouds, cirrus, and snow, based on the QA_PIXEL bitmask,
and saturated pixels according to QA_RADSAT, retaining
only clear observations. Additionally, the optical reflectance
bands were adjusted using the Collection-2 SR scale and
offset. Subsequently, these corrected images were clipped
to the relevant year (from 1 January to 31 December) and
Area of Interest (AQI). Composites were built using the
median to generate a cloud-free image for this period,
reducing residual cloud cover and avoiding Landsat-7 SLC-
off striping artefacts. This cloud-free imagery dataset is
spectrally consistent between Landsat sensors and across
dates, serving as the input for LULC. Table 1 summarises the
data, including the imagery acquisition and bands used
(Achahboun et al. 2023; Bhungeni et al. 2024; Wachowska
et al. 2018).

For each year, a composite image was generated by
processing the entire Landsat dataset. Using Google Earth
Engine (GEE), the median value for each pixel over the
selected time period was computed. The code defines
the Area of Interest (AQI) and retrieves Landsat image
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Fig. 1. The location of the study area (Berrechid-Settat area) Casablanca-Settat region
Table 1. Summary of imagery acquisition parameters for LULC classification in the Berrechid-Settat region
Satellite / ' Acquisition Spatial Processing | Nbr of Bands
vear Sensor ProductType Collection Period Resolution (m) Level Used Remarks
Landsat 7 Surface Collection2 | Jan1-Dec LEDAPS ) 6 spectral used forl LULC
2010 i 30m atmospheric | bands (B1- baseline
ETM+ Reflectance (SR) Tier 1 31,2010 ! ; )
correction B5, B7) classification
) LaSRC 6 spectral provides mid-
2015 | Landsat 8 OLI ourface Collgct|on 2| JanT-Dec 30m atmospheric | bands (B2- | decade LULC
Reflectance (SR) Tier 1 31,2015 )
correction B7) update
i LaSRC 6 spectral represents the
2023 | Landsat 8 OLI Surface Collgcnon 2 | Jani-Dec 30m atmospheric | bands (B2- most recent
Reflectance (SR) Tier 1 31,2023 )
correction B7) LULC status

collections for the specified years. Filters are applied to
match the AQOI and relevant dates, and the appropriate
bands are selected for analysis. The composite images
are created by calculating the median pixel value for each
year and clipping the result to the AOI. These images are
then displayed on the map using GEE's visualisation tools
(Sellami and Rhinane 2023; Z. Zhao et al. 2024).

In the classification process, to promote class
separability, multiple spectral indices were derived from the
ATM-corrected Landsat datasets. Each index was selected
to highlight a specific surface characteristic relevant to the
land use and land cover (LULC) patterns of the Berrechid—
Settat area. The Normalised Difference Vegetation Index
(NDVI) was applied to highlight vegetated areas. Near-
infrared (NIR) represents band 4 of LANDSAT 7 (L7) and
band 5 of LANDSAT 8 (L8), while Red denotes band 3 from
L7 and band 4 from L8. The Normalised Difference Built-up

Index (NDBI) was used to identify urban and impervious
patch areas by contrasting short-wave infrared and near-
infrared bands B5 and B4 for L7, and B5 and B6 for L8. Water
bodies were enhanced using the Normalised Difference
Water Index (NDWI), which incorporates the green band
B2 for L7 and B3 for L8, and the near-infrared band B4 for
L7 and B5 for L8. The Bare Soil Index (BSI) (equation 4) was
computed to determine bare and sparsely vegetated areas
by integrating reflectance information from the blue, red,
NIR, and SWIR spectral bands B1, B3, B4, B5 from L7, and
B2, B4, B5, B6 for L8 (Harfouche et al. 2020). All indices were
computed within the GEE environment and included as
additional predictor layers to the reflectance composites,
thus increasing the spectral feature space used by the
machine-learning algorithms SVM, RF, and DT for land
use and land cover classification (Aydin and Sefercik 2025;
Dong et al. 2019; Harfouche et al. 2020).
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The processed composite images were subsequently
used for further analysis and classification with machine
learning models (Du et al. 2018; Lee et al. 2017). This allowed
for the detection of changes in land use and land cover (LULC)
within the Berrechid-Settat area across the selected years.

After choosing the set of Landsat 7 images for the year
2010, as well as Landsat 8 OLI images for the years 2015
and 2023, the selected images underwent a cloud-masking
process to guarantee the clarity and accuracy of the data.
Subsequently, five datasets were created, comprising the
blue (B2), green (B3), red (B4), near-infrared (B5), and short-
wave infrared (B6) bands (J. Chen et al. 2017). In order to
train and validate our data, sampling and validation were
used. Independent reference data were collected using a
stratified random design with a minimum of approximately
60 points per class (total n = 300) interpreted from high-
resolution imagery and local knowledge. Validation points
were withheld from training and enforced a =300 m buffer
from training AOIs to limit spatial autocorrelation. These
points were distributed proportionally to mapped class area
(Belgiu and Drdgut, 2016). Accuracy was quantified using
confusion matrices to derive OA, PA, UA, and Kappa, with
95% confidence intervals computed via bootstrap under a
stratified estimator. This sample size provides stable per-class
estimates for the five LULC categories: Vegetation, Built-up,
Forest, Bareland, and Water Body.

The models were then examined by integrating the
outcomes with testing data viaaccuracy assessments (Amin
et al. 2024). Ultimately, the LULC maps were generated for
the years 2010, 2015, and 2023. Figure 2 illustrates the
Google Earth Engine (GEE) platform (Harfouche et al. 2020).

Classification Methods

To conduct a pixel-based supervised classification,
a distinct collection of training samples was acquired for
each year (2010, 2015, and 2023) (Conrad et al. 2020). The
assignment of each training sample pixel to a LULC class
was determined using additional data sources, such as
high-resolution photography and pre-existing LULC maps.
The categorisation was executed with Support Vector
Machine (SVM), Random Forest (RF), and Decision Tree
(DT) classifiers within the Google Earth Engine platform (El
Assaoui et al. 2023; Kamusoko and Gamba 2016).

The three selected algorithms have been chosen for
their reliable performance and complementary strengths
in remote sensing. The SVM classifier is particularly
recognised for its resilience to high-dimensional spectral
data and few training samples, making it appropriate for a
heterogeneous environment. The RF has ensured liability
against overfitting and offers excellent performance on
multi-class tasks through ensemble learning. The DT,

1.Data acquisition

Training & Validation, Data Preparation

{
Splitting Data ‘

e ol

3. Machine Learning Classification
(Python)
e Algorithms: SVM, Random Forest,
Decision Tree
. Libraries: scikit-learn, rasterio,
geopandas
» Output: Classified LULC maps (2010,
2015, 2023)

!

o LANDSAT7 ETM+(2010) & LANDSATS8 OLI (2015,2023)
Source: Google Earth Engine (Collection 2 Tier 1)

|

4. Accuracy Assessment (Python)
¢ Confusion matrix, OA, PA, UA, Kappa
¢ Feedback loop: Model refinement if
accuracy < threshold

5. Post-Classification Change Detection

Fig. 2. A conceptual flowchart illustrating the methodology

Table 2. Name and Description of LULC Classes Scheme

D Class Description

1 Vegetation Agricultural land, grasslands, shrubs, and other types of vegetation cover.

2 Built-up Residential, commercial, and industrial areas; roads; transportation networks; and urban infrastructure.
3 Forest Dense forests, mixed forests, and open forests.

4 Barren lands Sandy areas, rocky areas, barren land, and areas with minimal or no vegetation.

5 Water Bodies Lakes, reservoirs, rivers, and other water features.
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while the most straightforward method, does not suffer
from the black box problem and is computationally
accelerated. Therefore, it provides a perfect error metric
with more complicated ensemble and kernel methods,
offering interpretability and computational efficiency.
Their combination enables a comprehensive evaluation
of classification performance under differing algorithmic
assumptions (Chomani and Pshdari 2024b; Feng et al.
2015).

The three classifiers used in this study for LULC
categorisation are detailed below:

A Support Vector Machine (SVM) is a type of supervised
learning algorithm used for both regression and
classification. During the training phase, SVM classifiers
construct an optimal hyperplane that effectively divides
classes by minimising the misclassification of pixels from
input datasets. Crucial factors for Support Vector Machines
(SVM) include kernel functions, cost parameters, and
gamma (Audebert et al. 2018).

Random Forest (RF) is an ensemble classifier that
builds multiple decision trees using random subsets of the
training data and attributes. The key input parameters for
RF are the size of the training dataset and the number of
trees created. In this study, 300 trees were used to improve
the accuracy and performance of the classification.

A Decision Tree (DT) is a classification system that uses
specified thresholds to make decisions. It splits nodes until
it reaches terminal nodes. This approach involves grouping
input data into distinct sets and then generating trees for
the purpose of classification (Akar and Gormus 2021).

Data Processing

The LULC maps were produced entirely using Python-
based workflows. Raster and vector datasets were imported
and processed using libraries such as rasterio (v1.3.8),
geopandas (v0.14.3), and numpy (v1.26.4). These tools
facilitated image stacking, band alignment, and clipping of
imagery to the Berrechid-Settat study area, preparing the
data for classification. Only essential preprocessing tasks,
such as cloud masking to remove pixels affected by cloud
cover, were performed in Google Earth Engine (GEE). We
used temporal aggregation methods, such as mean and
median calculations, to fill in gaps left by cloud interference
(Carlson et al. 2018; Wu 2020).

The LULC maps were produced entirely using
Python-based workflows (He et al. 2020). High-resolution
orthophoto images and pre-existing LULC maps were
used to collect training and validation samples. These
samples were saved as shapefiles and then imported into
the Python environment to train the classifiers. The LULC
classification in this study included five primary categories:
forest, built-up land, barren land, bodies of water, and
vegetation (Sharnagat et al. 2025).

Data normalisation, model training

For randomness in stratified sampling without attrition,
maintaining the proportional representation of all LULC
classes in both subsets was crucial for class balance. To
reduce spatialautocorrelation and avoid overfitting, training
and validation points were dispersed geographically
within the AOIl. A suitable minimum distance was also
implemented between samples of the same class (Riche et
al. 2024).This methodology enhanced the independence of
the test data, which facilitated the model’s generalisation.
The samples were divided using the same ratios. Before
training the model, min-max normalisation was applied
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to the spectral bands and resulting indices. This brought
all features to a uniform scale of 0—1. This was achieved
using the StandardScaler and MinMaxScaler functions
from the scikit-learn.preprocessing package (v1.4.2)
(Sagr et al. 2025). This standardisation helped to lessen
the variations in range across the reflectance of different
bands. It assisted the algorithms in maintaining numerical
stability, particularly in distance-based models such as
SVM and RF. This normalisation ensured that each feature
contributed equally to classification, thereby improving
the performance of all considered models through
convergence.

After preparing the training and testing data, the
models were run with default settings. First, supervised
classification was implemented using the Scikit-learn library
(v1.4.2). Parameters were specified for the SVM model, such
as the kernel type (e.g. 'rbf’). After initialising the model,
the ‘fit()’ function was used to train it on the training
data. Predictions were then evaluated using the test data
(Phan et al. 2020). The accuracy score function from Scikit-
learn assesses the model's accuracy for the predictions.
The datasets used in this study were generated through
stratified random sampling, with 70% allocated for training
and 30% for validation et al. 2020). The accuracy score
function from Scikit-learn assesses the model's accuracy
for the predictions. The datasets used in this study were
generated through stratified random sampling, with 70%
allocated for training and 30% for validation (Chomani and
Pshdari 2024b; Lu et al. 2021).

Accuracy Assessment

Evaluation of classification accuracy was conducted by
measuring overall accuracy (OA) and the Kappa coefficient
(K), producer’s accuracy (PA), and user’s accuracy (UA).
Their formulas are detailed below in equations 1, 2, 3, and
4 (Kobayashi et al. 2022). These metrics assess the quality
of classification by quantifying the accuracy of the test
data and the agreement between classified and reference
data. Their calculations were performed using scikit-learn.
metrics (V1.4.2), with functions such as confusion_matrix,
classification_report, and cohen_kappa_score. Results
were displayed and interpreted using matplotlib (V3.8.4)
combined with seaborn (V0.13.2) for graphical display,
statistics, and confusion matrices (Figure 5).

Total Correctly Classified Pixels
A = Y i x 100 (1 )

Total Sample Pixels

Observed Accuracy — Change agreement

)

KC

1 — Chance Agreement

NO of correctly classified samples in a class

100 (3)

"~ Total No of referense samples in that class (column total)

NO of correctly Classified Pixels in a class
s Y i 100 (4)

"~ Total No of referense samples in that class (row total)

Where:

- Observed accuracy = Overall Accuracy (OA);

- Chance agreement is the proportion of agreement
that could occur randomly based on the totals in the
confusion matrix.

Kappa values range between 0 and 1, where:

+ > 0.80 = strong agreement,

- 0.40-0.80 = moderate agreement,

+ < 040 = weak agreement.
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Predicting and Exporting Data

The final step involved using the trained models to
generate predictions and exporting the results as GeoTIFF
files (Dong et al. 2019). While various tools such as GDAL or
GeoPandas/Geocube are available, they are not well-suited
for large-scale geographic operations (Drusch et al. 2017).
An efficient approach using the rasterio library is presented
below (Gerber et al. 2018).

First, the original inputimage is retrieved, and metadata
attributes such as height, width, and CRS are extracted. The
input image is then preprocessed to align with the data
used during model training. If additional features like NDVI
or elevation were included during training, they must be
combined with the input image before proceeding. This
process ensures scalability for generating predictions over
large geographic areas (Jiang et al. 2021). The results are
saved in GeoTlFF format for further analysis.

Once the model training and validation were complete,
each machine learning classifier was applied to the entire
Landsat imagery to predict the LULC category for each
year of the study: 2010, 2015, and 2023. The prediction
process was then performed using the ‘predict()’ function
from the scikit-learn library (v1.4.2), which resulted in pixel-
wise classification outcomes. Finally, the resulting arrays
were restructured and converted to raster formats using
rasterio (v1.3.8) to ensure the geospatial conformity of
the final outputs with the imagery. The classified rasters
were then exported as GeoTIFF files for further processing
and map production (Peterson and Levinson 2020). High-
quality theme map production and post-processing were
carried out using matplotlib (v3.8.4), geopandas (v0.14.3),

Classified Image 2010 - SVM

Classified Image 2010 - RF

and rasterio.plot modules. A unique colour scheme was
assigned to each land category, including vegetation,
urban, forest, barren land, and water body (Gerber et al.
2018; Wu 2020). Additional map elements, such as the
title, legend, north arrow, and scale bar, were included
to improve map interpretation. All the final maps were
exported at a resolution of 600 dpi, which is suitable for
publishing and scientific sharing. This process helped to
create accurate geo-referenced outputs that showed the
precise spatial distribution and temporal changes of LULC
in the area of interest (Sharnagat et al. 2025; Q. Zhao et al.
2021).

RESULTS AND DISCUSSION
Mapping the Spatial Distribution of LULC Classes

Fig. 3 shows the LULC classification maps produced by
three machine learning algorithms: SVM, RF, and DT, over
the 13 years of the study. For each classifier, these colour-
coded images display the spatial distribution pattern of
five LULC classes: vegetation, built-up, forest, bareland, and
water body. SVM’s classification exhibits much smoother
and more homogeneous class boundaries, whereas RF
and DT show local heterogeneity. In contrast, the green
colour representing bareland varies more across the years,
indicating the classifiers’ sensitivity to spectral variation.
These multi-model maps offer a suitable platform for visual
comparison of spatial patterns and temporal dynamics,
which highlighted the observation of continuous urban
expansion and a slight reduction in vegetation cover
between 2010 and 2023.

Classified Image 2010 - DT
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Fig. 3. LULC classification maps of the AOI for 2010, 2015, and 2023 generated using Support Vector Machine (SVM),
Random Forest (RF), and Decision Tree (DT) classifiers
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Land Use and Land Cover (LULC) Classification Areas (2010-2023)
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Fig. 4. Comparison of LULC class areas (in km?) in the AOI for 2010, 2015, and 2023, derived from Support Vector Machine
(SVM), Random Forest (RF), and Decision Tree (DT) classifiers. The bar chart highlights differences between models and
changes over time across five major LULC categories: vegetation, built-up, forest, bareland, and water body

The classified area distributions, as shown in Figure
4 and Table 3, reveal distinct temporal shifts and model-
based fluctuations in the AOI over 13 years of the study.
Vegetation, covering approximately 1200 to 1400 km?”across
all classifiers, continues to dominate this class. However, it
decreased slightly by 2023, while built-up areas increased
from about 200 km? in 2010 to over 300 km? in 2023. This
data aligns well with the area’s ongoing urban expansion
and agricultural land modification (Du et al. 2018). The
forest class maintained intermediate values between 250-
350 km? with little temporal change across models and
years. Bareland, however, showed a gradual reduction from
150-200 km? to less than 100 km? in 2023. Water bodies
represented the smallest fraction, less than 70 km?, with a
barely noticeable reduction over time (Carrara et al. 2024;
Congalton and Green 2019). DT classifiers produced slightly
higher vegetation estimates in 2010 compared to other
classifiers. RF outputs were more balanced and consistent
in the following years, particularly for built-up and bareland
classes. The SVM model performed between these two
methods, yielding slightly lower vegetation and higher
built-up estimates due to its effectiveness in distinguishing
mixed spectral signatures (Ali and Johnson 2022).
Generally, the three algorithms reported similar temporal
trends, which increases confidence in our classification
methodology. RF is, however, the most suitable method
for multi-temporal LULC mapping in this region because of
its stable intra-class ratio and consistent spatial predictions
(Meghraoui et al. 2024).

Evaluation of the Mapping Precision of Machine Learning
Algorithms

Each modeloperated onaconfusion matrix derived from
30% of the entire figure 5. A confusion matrix is a statistical
construct that illustrates the correlation between the
actual class (ground truth) and the predicted or generated
map (Nicolau et al. 2023). The confusion matrices derive
overall accuracy (OA), Kappa coefficient, user’s accuracy
(UA), and producer’s accuracy (PA) by land use/land cover
type (Belgiu and GCsillik 2018). Therefore, the confusion
matrices yield the following OA and Kappa coefficients for
the classification trees. The SVM confusion matrix shows
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an OA of 91.7% and a Kappa coefficient of 0.810. The RF
confusion matrix shows an OA of 91.84% and a Kappa of
0.86. The DT confusion matrix shows an OA of 91.16% and
a Kappa of 0.68. A Kappa of 0.845 was recorded for 2023.
Table 4 and Figure 5 show the overall model performance
over the years and classifications. However, the RF model
had the highest overall OA and Kappa from all datasets. The
classes performed across the models. The built-up land use
class was achieved in all models with UA and PA exceeding
97% for 2023 RF. SVM and DT also had UA and PA exceeding
89%. On the other hand, the forest class performed less
well with SVM, showing a PA as low as 75.2% in 2023 (Wang
et al. 2018). Similarly, the numerical classifications for bare
land and waterbody. The only inconsistency is the 81% PA
for forest classification in 2020, which is still a decent score
but 6% lower than the DT for forest classification accuracy.
Where the forest category was not accurately represented
was in built-up areas. This is similar to how the forest was
perfectly classified in 2020 across all three models. However,
all three models struggled with this over the years, with
SVM again showing the highest omission errors (El Assaoui
et al. 2015; J. Jiang et al. 2025). This resembles a replica of
a city covered up by what should have been classified as
non-built-up pixel values. Where SVM struggled, the RF
model excelled, achieving the best classification for built-
up in 2023 at 88.4%. The lowered classification accuracy
for some classes in 2023 means that for bareland and
waterbody classes, DT's PA values were lower than RF and
SVM. However, it still achieved fairly good accuracy for built-
up and vegetation classes (Congalton and Green 2019).

CONCLUSION

The study has illustrated the effectiveness of various
machine learning algorithms, including SVM, RF, and DT, in
categorising land use and land cover (LULC) changes in the
Berrechid Settat region for the years 2010, 2015, and 2023
(El Assaoui et al. 2021; Kussul et al. 2017). A comprehensive
assessment of accuracy measurements, such as Overall
Accuracy (OA), Kappa Coefficient, User's Accuracy (UA),
and Producer’s Accuracy (PA), shows that each approach
has distinct advantages and disadvantages when used for
different LULC classes.
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Table 3. LULC Classification Areas and Percentages (2010, 2015, 2023)

2010-SVM

2010 - RF 2010-DT
Class
Area (km?) (%) Area (km?) (%) Area (km?) (%)
Vegetation 1350.20 65.48 1385.25 67.18 1402.57 68.02
Builtup 207.23 10.05 22692 11.01 247.65 12.01
Forest 309.63 15.02 29218 14.17 310.95 15.08
Bareland 151.56 7.35 131.14 6.36 84.34 4.09
Waterbody 61.88 3.00 4145 2.01 21.65 1.05
2015 - SVM 2015 -RF 2015-DT
Class
Area (km?) (%) Area (km?) (%) Area (km?) (%)
Vegetation 1312.67 63.66 1319.70 64.00 1362.16 66.06
Builtup 248.68 12.06 281.46 13.65 288.76 14.00
Forest 268.88 13.04 247.85 12.02 268.22 13.00
Bareland 188.67 9.15 165.58 8.03 104.34 5.06
Waterbody 62.27 3.02 61.88 3.00 41.28 2.00
2023 - SVM 2023 - RF 2023 -DT
Class
Area (km?) (%) Area (km?) (%) Area (km?) (%)
Vegetation 1237.51 60.01 1261.53 61.18 1220.50 59.19
Builtup 348.48 16.93 363.94 17.65 351.37 16.55
Forest 24785 12.02 27043 13.11 278.12 13.12
Bareland 165.62 8.03 14452 7.01 156.35 7.38
Waterbody 35.04 1.71 4134 2.00 20.74 1.01
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Table 4. Classification Accuracy Metrics (2010, 2015, 2023)

Year Classifier LULC Class UA (%) CE (%) PA (%) OE (%) OA & KC
Vegetation 90.42 9.58 84.85 15.15
Builtup 94.20 5.80 90.05 9.95
SYM Forest 8181 1819 79.05 2095 84'2)?;/2 g‘”d
Bareland 66.10 33.90 69.65 30.35
Waterbody 0.00 100.00 0.00 100.00
Vegetation 89.20 10.80 83.10 16.90
Builtup 94,00 6.00 90.95 9.05
2010 RF Forest 100.00 0.00 100.00 0.00 82.26% and
0.736
Bareland 94.90 510 9145 8.55
Waterbody 94.70 530 90.95 9.05
Vegetation 90.00 10.00 88.05 11.95
Builtup 94.20 5.80 90.95 9.05
OT Forest 100.00 0.00 100.00 0.00 87%%5“
Bareland 94.50 5.50 91.35 8.65
Waterbody 93.20 6.80 90.75 9.25
Vegetation 91.22 8.78 90.45 9.55
Builtup 95.00 5.00 95.65 435
SVM Forest 8261 17.39 84.65 15.35 8539% and
0.768
Bareland 66.90 33.10 7525 2475
Waterbody 83.30 16.70 7144 28.56
Vegetation 90.00 10.00 88.70 11.30
Builtup 94.80 5.20 96.55 345
2015 RF Forest 86.69 14.31 75.02 2498 88'24;? f“d
Bareland 95.70 430 97.05 2.95
Waterbody 9550 450 96.55 345
Vegetation 90.80 9.20 93.65 6.35
Builtup 95.00 5.00 96.55 345
T Forest 79.96 20.04 100.00 0.00 88.16% and
0.799
Bareland 95.30 470 96.95 3.05
Waterbody 94.00 6.00 96.35 3.65
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2025

Vegetation 94.32 5.68 91.70 8.24
Builtup 98.10 185 96.90 3.09
0,
SVM Forest 85.71 1428 85.90 17,60 88:49% and
0810
Bareland 70.00 29.90 76.5 2341
Waterbody 100.00 0.00 100.00 0.00
2023
Vegetation 93.10 6.82 89.95 1005
Builtup 97.90 2.04 97.80 214
[0)
RF Forest 70,80 29,60 75,20 24,76 91.84% and
0857
Bareland 98,80 1,18 98,30 1,70
Waterbody 98,60 133 97,80 2,18
Vegetation 93.90 6.10 94.90 5.10
Builtup 98.10 190 97.80 218
91.16% and
DT Forest 68.30 3160 81.70 1821 0o
Bareland 98.40 152 98.20 175
Waterbody 97.10 2.84 97.60 2.32

Random Forest (RF) consistently achieved the highest
accuracy throughout all years, particularly excelling in
the classification of built-up, water body, and barren
lands categories (Fentaw and Abegaz 2024), attaining
elevated user’s accuracy (UA) and producer’s accuracy
(PA) values. This indicates that RF is an effective model
for land use and land cover (LULC) mapping, especially
in intricate systems characterised by significant spatial
variability. Conversely, the Support Vector Machine (SVM)
exhibited commendable performance. Nevertheless, it
faced difficulties in distinguishing certain classes, such as
forest and bare ground (Baatz et al. 2025), resulting in more
omission errors for these categories. The Decision Tree (DT)
displayed similar accuracy across many classes but showed
a slight decrease in performance, especially for smaller or
more heterogeneous categories such as water body and
barren land.

A notable discovery is that all models successfully
distinguished the built-up class, which is essential for
tracking urban expansion and land development in swiftly
urbanising areas such as Berrechid-Settat. The forest class
presented the most significant obstacle among all models,
highlighting the necessity for enhanced spectral feature
selection or the integration of supplementary data to
improve forest classification accuracy (Andrew et al. 2023;
Drusch et al. 2017).
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In summary, RF has demonstrated the highest reliability
for LULC classification in this area, especially for classes
with distinct spectral signatures, such as built-up areas
and aquatic bodies (Dharumarajan and Hegde, 2022). SVM
and DT offered significant insights, particularly regarding
processing efficiency and the management of intricate
decision boundaries. This study highlights the importance
of model selection in remote sensing applications and
provides a foundation for future research focused on
improving LULC classification accuracy through more
sophisticated hybrid models or by including other data
sources such as topography and climate factors (Alshari
and Gawali 2021; Amazirh et al. 2024; El Assaoui et al. 2023).

This analysis offers a thorough understanding of LULC
dynamics in the region, providing significant insights for
land management, urban planning, and environmental
monitoring.

Our functional framework for land monitoring could be
useful in regional urban planning and water management
initiatives. However, the classification accuracy could be
improved by using Sentinel-2 imagery or higher-resolution
data, or by incorporating an object-based approach to the
research. Furthermore, future research should focus on
including socio-economic and hydro-climatic variables to
better explain the drivers of LULC changes.
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