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ABSTRACT. This study analyses the spatiotemporal dynamics of Land Use and Land Cover (LULC) in the Berrechid-Settat area 
of Morocco throughout three reference years: 2010, 2015, and 2023. Satellite images from Landsat 7 (ETM+) and Landsat 
8 OLI were processed using the Google Earth Engine (GEE) platform to facilitate quick access, preprocessing, and analysis 
of extensive datasets. To classify LULC changes and assess the efficacy of machine learning models, Random Forest (RF), 
Decision Tree (DT), and Support Vector Machine (SVM) were examined. These models were used to categorise five principal 
LULC classes: water bodies, forests, urban regions, vegetation, and barren lands. Our findings indicated that Random Forest 
consistently yielded the highest classification accuracy, achieving an Overall Accuracy (OA) of 91.84% and a Kappa Coefficient 
(KC) of 0.86 in 2023, thereby affirming its efficacy for multi-temporal land use and land cover mapping. The Decision Tree 
exhibited competitive performance in 2010 (87.36% OA, a KC of 0.79) but showed diminished stability in later years. The 
SVM displayed middling performance, particularly excelling in the classification of urban areas (about 94%) but exhibiting 
reduced accuracy for forest regions. This analysis emphasises the efficacy of GEE and Python libraries in analysing large 
satellite imagery and the proficiency of DT and RF models in land use and land cover classification. The results can guide 
regional planning and land management policies, fostering sustainable development.
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INTRODUCTION

	 The alteration of LULC has a significant influence on 
ecological components (Bhungeni et al. 2024; Z. Zhao et 
al. 2024). This provides essential ecosystem services that 
are advantageous to both society and biodiversity. These 
services include the supply of drinkable water, support 
for farming activities, recreational opportunities, and the 
conservation of natural habitats. However, human-induced 
changes in LULC pose a substantial risk to the preservation 
of natural land cover and freshwater resources in various 
countries, particularly in watershed areas. Examining 
alterations in the Earth’s surface is crucial for understanding 
ecological and societal transformations (Peterson and 
Levinson 2020). Traditional approaches and aerial imagery 
for data collection are time-intensive and often lack sufficient 
accuracy. The latest analysis techniques for satellite images 

now allow for more efficient detection of changes in LULC 
(Li et al. 2019). In recent years, remote sensing imaging has 
been increasingly utilised to identify changes in LULC and 
vegetation. The abundance of historical data and remote 
sensing imagery has made it convenient to study the 
impact of human activities on LULC (Ali and Johnson 2022). 
Classifying LULC is essential for detecting changes, and the 
approaches and strategies used for classifying LULC and 
extracting precise data from remote sensing images are 
highly adaptable. Mapping and monitoring LULC changes 
are essential for gaining insight into the spatial distribution 
of human activities on land and their impact on the natural 
environment (Dong et al. 2019). This knowledge is crucial 
for water resource managers and environmental health 
practitioners to formulate efficient environmental strategies.
	 Management plans and regulations. Remote sensing 
techniques have largely replaced conventional field 

https://doi.org/10.24057/2071-9388-2020-136
https://doi.org/10.24057/2071-9388-2020-136
https://crossmark.crossref.org/dialog/?doi=10.24057/2071-9388-2025-3980&domain=pdf&date_stamp=2025-12-31


159

observation methods for LULC mapping. They offer a 
cost-efficient and effective way to gather spatiotemporal 
data across large areas. Remote sensing data can be 
systematically recorded, stored, and shared, making it a 
valuable resource for studying different landscapes. Many 
studies have shown that machine learning methods are 
very effective at classifying LULC using remote sensing 
data (Andrew et al. 2023).
	 The extensive body of research on LULC dynamics 
in Morocco is primarily limited by the lack of a uniform 
spatiotemporal scale and a generalised methodology. 
Most of the existing literature on the topic is either 
localised or methodologically constrained or temporally 
disjointed. This is often combined with the use of 
conventional classification methods such as maximum 
likelihood or minimum distance. These limitations make 
it difficult to ensure reliability due to the possibility of 
misclassification and low transferability across sensors. 
Most studies did not combine multi-temporal Landsat 
datasets from both Landsat 7 and Landsat 8 with uniform 
preprocessing, spectral harmonisation, and atmospheric 
correction, especially in the Berrechid–Settat region. This 
region is characterised by high rates of urban expansion 
and agricultural intensification but is exposed to increased 
pressure on water and land resources. Most of these studies 
did not include a comparative assessment of machine-
learning methods using the same training and validation 
datasets. They have almost focused on assessing a single 
model or did not report significant statistical differences 
in accuracy metrics, which include Overall Accuracy, 
Producer’s Accuracy, User’s Accuracy, and Kappa. Finally, 
all regional studies demonstrated a lack of data due to the 
absence of efficient GEE-based computing for extensive, 
cloud-based analysis and standard temporal mosaicking. 
Consequently, this study tried to respond to this lack by (i) 
combining imageries from Landsat 7 ETM+ and Landsat 8 
OLI within the same GEE workflow; (ii) rigorously comparing 
three robust classifiers, SVM, RF and DT, implemented 
under the same conditions; and (iii) investigating land use 
and land cover transitions for two decades, i.e., between 
2010 and 2023, in a key agro-industrial corridor in Morocco. 
Thus, the approach presents not only the most up-to-date 
and consistently mapped landscape of Berrechid–Settat 
but also an adaptable methodology for studying other 
semi-arid regions grappling with similar environmental 
challenges and urban sprawl (Chomani and Pshdari 2024a).
	 The primary goal of our study is to categorise changes 
in LULC and assess the effectiveness of three machine 
learning algorithms. The classification process involved five 
LULC categories: vegetation, built-up areas, forests, barren 
land, and water bodies. The efficacy of these models was 
evaluated using accuracy metrics such as Overall Accuracy 
(OA), User’s Accuracy (UA), Producer’s Accuracy (PA), and 
Kappa Coefficient (KC). Our findings indicate that the DT 
model performed better in 2010, achieving an overall 
accuracy of 87.36% and a Kappa coefficient of 0.79, 
highlighting a strong agreement between the reference 
and classified data. By 2015, the RF model had emerged as 
the top performer with an overall accuracy of 88.74% and 
a Kappa coefficient of 0.81, while DT continued to perform 
strongly. In 2023, RF remained the best-performing model, 
with an OA of 91.84% and a KC of 0.86, underscoring its 
robustness in classifying LULC changes over time. The 
objective of this study is to enhance the existing knowledge 
on LULC classification and offer valuable insights for 
environmental management and policy development in 
the Berrechid-Settat area. Furthermore, it showcases the 
efficacy of GEE in efficiently obtaining and manipulating 

vast quantities of satellite imagery data, providing vital 
insights for land planning and management in the region, 
fostering sustainable development (Achahboun et al. 2023; 
Laalaoui et al. 2024; Sellami and Rhinane 2023).

MATERIALS AND METHODS

Study area

	 The Berrechid Settat area, situated in the Casablanca-
Settat region of Morocco (Figure 1), has been chosen as the 
study location due to its diverse landscape (El Assaoui 2023; 
Elgendy and Abdelatif 2021). Berrechid Settat lies between 
the Casablanca region to the north and the Marrakech-Safi 
region to the south (Bouzekraoui et al. 2020).
	 The area is situated between longitudes 7° 43’ 48’ W 
and 7° 10’ 48’ W,
and the latitudes of 32° 57’ 36’ N and 33° 25’ 12’ N. The 
total land area measures 2062 square kilometres. It has 
varied topography, including agricultural plains, urbanised 
regions, and forests (Koukal et al. 2020).
	 The Berrechid Settat region is mainly known for its large 
agricultural areas, where a considerable amount of land 
is used for growing crops. It also includes forested areas 
with different amounts of tree cover, from dense forests 
to lighter woodlands. The area is experiencing significant 
urban expansion, with much development taking place 
in the areas on the outskirts of cities (El Assaoui Fouad 
Amraoui and El Mansouri 2015; Laalaoui et al. 2024).
 
Dataset

	 In this work, we employed Landsat satellite images, 
specifically utilising Landsat 7 for the year 2010 and Landsat 
8 OLI for the years 2015 and 2023.
	 The Landsat satellites provide multispectral imagery 
with various resolutions (Pickens et al. 2020). For our 
analysis, we used the blue, green, red, near-infrared (NIR), 
and short-wave infrared (SWIR) bands (D. Chen et al. 2018). 
Additionally, several spectral indices were computed to 
improve classification accuracy.
	 All Landsat imagery was preprocessed in Google Earth 
Engine to ensure radiometric and temporal uniformity for 
the years 2010, 2015, and 2023. Specifically, for Landsat 
8 OLI (2015, 2023) and Landsat 7 ETM+ (2010), we used 
the Collection 2 Surface Reflectance (SR) tier 1 products. 
Atmospheric correction was applied using LaSRC for 
Landsat 8 and LEDAPS for Landsat 7. Furthermore, masks 
were utilised to remove clouds, cloud shadows, dilated 
clouds, cirrus, and snow, based on the QA_PIXEL bitmask, 
and saturated pixels according to QA_RADSAT, retaining 
only clear observations. Additionally, the optical reflectance 
bands were adjusted using the Collection-2 SR scale and 
offset. Subsequently, these corrected images were clipped 
to the relevant year (from 1 January to 31 December) and 
Area of Interest (AOI). Composites were built using the 
median to generate a cloud-free image for this period, 
reducing residual cloud cover and avoiding Landsat-7 SLC-
off striping artefacts. This cloud-free imagery dataset is 
spectrally consistent between Landsat sensors and across 
dates, serving as the input for LULC. Table 1 summarises the 
data, including the imagery acquisition and bands used 
(Achahboun et al. 2023; Bhungeni et al. 2024; Wachowska 
et al. 2018).
	 For each year, a composite image was generated by 
processing the entire Landsat dataset. Using Google Earth 
Engine (GEE), the median value for each pixel over the 
selected time period was computed. The code defines 
the Area of Interest (AOI) and retrieves Landsat image 
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collections for the specified years. Filters are applied to 
match the AOI and relevant dates, and the appropriate 
bands are selected for analysis. The composite images 
are created by calculating the median pixel value for each 
year and clipping the result to the AOI. These images are 
then displayed on the map using GEE’s visualisation tools 
(Sellami and Rhinane 2023; Z. Zhao et al. 2024).
	 In the classification process, to promote class 
separability, multiple spectral indices were derived from the 
ATM-corrected Landsat datasets. Each index was selected 
to highlight a specific surface characteristic relevant to the 
land use and land cover (LULC) patterns of the Berrechid–
Settat area. The Normalised Difference Vegetation Index 
(NDVI) was applied to highlight vegetated areas. Near-
infrared (NIR) represents band 4 of LANDSAT 7 (L7) and 
band 5 of LANDSAT 8 (L8), while Red denotes band 3 from 
L7 and band 4 from L8. The Normalised Difference Built-up 

Index (NDBI) was used to identify urban and impervious 
patch areas by contrasting short-wave infrared and near-
infrared bands B5 and B4 for L7, and B5 and B6 for L8. Water 
bodies were enhanced using the Normalised Difference 
Water Index (NDWI), which incorporates the green band 
B2 for L7 and B3 for L8, and the near-infrared band B4 for 
L7 and B5 for L8. The Bare Soil Index (BSI) (equation 4) was 
computed to determine bare and sparsely vegetated areas 
by integrating reflectance information from the blue, red, 
NIR, and SWIR spectral bands B1, B3, B4, B5 from L7, and 
B2, B4, B5, B6 for L8 (Harfouche et al. 2020). All indices were 
computed within the GEE environment and included as 
additional predictor layers to the reflectance composites, 
thus increasing the spectral feature space used by the 
machine-learning algorithms SVM, RF, and DT for land 
use and land cover classification (Aydin and Sefercik 2025; 
Dong et al. 2019; Harfouche et al. 2020).

Fig. 1. The location of the study area (Berrechid-Settat area) Casablanca-Settat region
Table 1. Summary of imagery acquisition parameters for LULC classification in the Berrechid–Settat region

Year
Satellite / 

Sensor
Product Type Collection

Acquisition 
Period

Spatial 
Resolution (m)

Processing 
Level

Nbr of Bands 
Used

Remarks

2010
Landsat 7 

ETM+
Surface 

Reflectance (SR)
Collection 2 

Tier 1
Jan 1 – Dec 

31, 2010
30 m

LEDAPS 
atmospheric 

correction

6 spectral 
bands (B1–

B5, B7)

used for LULC 
baseline 

classification

2015 Landsat 8 OLI
Surface 

Reflectance (SR)
Collection 2 

Tier 1
Jan 1 – Dec 

31, 2015
30 m

LaSRC 
atmospheric 

correction

6 spectral 
bands (B2–

B7)

provides mid-
decade LULC 

update

2023 Landsat 8 OLI
Surface 

Reflectance (SR)
Collection 2 

Tier 1
Jan 1 – Dec 

31, 2023
30 m

LaSRC 
atmospheric 

correction

6 spectral 
bands (B2–

B7)

represents the 
most recent 
LULC status
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	 The processed composite images were subsequently 
used for further analysis and classification with machine 
learning models (Du et al. 2018; Lee et al. 2017). This allowed 
for the detection of changes in land use and land cover (LULC) 
within the Berrechid-Settat area across the selected years.
	 After choosing the set of Landsat 7 images for the year 
2010, as well as Landsat 8 OLI images for the years 2015 
and 2023, the selected images underwent a cloud-masking 
process to guarantee the clarity and accuracy of the data. 
Subsequently, five datasets were created, comprising the 
blue (B2), green (B3), red (B4), near-infrared (B5), and short-
wave infrared (B6) bands (J. Chen et al. 2017). In order to 
train and validate our data, sampling and validation were 
used. Independent reference data were collected using a 
stratified random design with a minimum of approximately 
60 points per class (total n = 300) interpreted from high-
resolution imagery and local knowledge. Validation points 
were withheld from training and enforced a ≥300 m buffer 
from training AOIs to limit spatial autocorrelation. These 
points were distributed proportionally to mapped class area 
(Belgiu and Drăguţ, 2016). Accuracy was quantified using 
confusion matrices to derive OA, PA, UA, and Kappa, with 
95% confidence intervals computed via bootstrap under a 
stratified estimator. This sample size provides stable per-class 
estimates for the five LULC categories: Vegetation, Built-up, 
Forest, Bareland, and Water Body.

	 The models were then examined by integrating the 
outcomes with testing data via accuracy assessments (Amin 
et al. 2024). Ultimately, the LULC maps were generated for 
the years 2010, 2015, and 2023. Figure 2 illustrates the 
Google Earth Engine (GEE) platform (Harfouche et al. 2020).

Classification Methods

	 To conduct a pixel-based supervised classification, 
a distinct collection of training samples was acquired for 
each year (2010, 2015, and 2023) (Conrad et al. 2020). The 
assignment of each training sample pixel to a LULC class 
was determined using additional data sources, such as 
high-resolution photography and pre-existing LULC maps. 
The categorisation was executed with Support Vector 
Machine (SVM), Random Forest (RF), and Decision Tree 
(DT) classifiers within the Google Earth Engine platform (El 
Assaoui et al. 2023; Kamusoko and Gamba 2016).
	 The three selected algorithms have been chosen for 
their reliable performance and complementary strengths 
in remote sensing. The SVM classifier is particularly 
recognised for its resilience to high-dimensional spectral 
data and few training samples, making it appropriate for a 
heterogeneous environment. The RF has ensured liability 
against overfitting and offers excellent performance on 
multi-class tasks through ensemble learning. The DT, 
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Fig. 2. A conceptual flowchart illustrating the methodology

Table 2. Name and Description of LULC Classes Scheme

ID Class Description

1 Vegetation Agricultural land, grasslands, shrubs, and other types of vegetation cover.

2 Built-up Residential, commercial, and industrial areas; roads; transportation networks; and urban infrastructure.

3 Forest Dense forests, mixed forests, and open forests.

4 Barren lands Sandy areas, rocky areas, barren land, and areas with minimal or no vegetation.

5 Water Bodies Lakes, reservoirs, rivers, and other water features.
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while the most straightforward method, does not suffer 
from the black box problem and is computationally 
accelerated. Therefore, it provides a perfect error metric 
with more complicated ensemble and kernel methods, 
offering interpretability and computational efficiency. 
Their combination enables a comprehensive evaluation 
of classification performance under differing algorithmic 
assumptions (Chomani and Pshdari 2024b; Feng et al. 
2015).
	 The three classifiers used in this study for LULC 
categorisation are detailed below:
	 A Support Vector Machine (SVM) is a type of supervised 
learning algorithm used for both regression and 
classification. During the training phase, SVM classifiers 
construct an optimal hyperplane that effectively divides 
classes by minimising the misclassification of pixels from 
input datasets. Crucial factors for Support Vector Machines 
(SVM) include kernel functions, cost parameters, and 
gamma (Audebert et al. 2018).
	 Random Forest (RF) is an ensemble classifier that 
builds multiple decision trees using random subsets of the 
training data and attributes. The key input parameters for 
RF are the size of the training dataset and the number of 
trees created. In this study, 300 trees were used to improve 
the accuracy and performance of the classification.
	 A Decision Tree (DT) is a classification system that uses 
specified thresholds to make decisions. It splits nodes until 
it reaches terminal nodes. This approach involves grouping 
input data into distinct sets and then generating trees for 
the purpose of classification (Akar and Gormus 2021).

Data Processing

	 The LULC maps were produced entirely using Python-
based workflows. Raster and vector datasets were imported 
and processed using libraries such as rasterio (v1.3.8), 
geopandas (v0.14.3), and numpy (v1.26.4). These tools 
facilitated image stacking, band alignment, and clipping of 
imagery to the Berrechid–Settat study area, preparing the 
data for classification. Only essential preprocessing tasks, 
such as cloud masking to remove pixels affected by cloud 
cover, were performed in Google Earth Engine (GEE). We 
used temporal aggregation methods, such as mean and 
median calculations, to fill in gaps left by cloud interference 
(Carlson et al. 2018; Wu 2020).
	 The LULC maps were produced entirely using 
Python-based workflows (He et al. 2020). High-resolution 
orthophoto images and pre-existing LULC maps were 
used to collect training and validation samples. These 
samples were saved as shapefiles and then imported into 
the Python environment to train the classifiers. The LULC 
classification in this study included five primary categories: 
forest, built-up land, barren land, bodies of water, and 
vegetation (Sharnagat et al. 2025).

Data normalisation, model training

	 For randomness in stratified sampling without attrition, 
maintaining the proportional representation of all LULC 
classes in both subsets was crucial for class balance. To 
reduce spatial autocorrelation and avoid overfitting, training 
and validation points were dispersed geographically 
within the AOI. A suitable minimum distance was also 
implemented between samples of the same class (Riche et 
al. 2024). This methodology enhanced the independence of 
the test data, which facilitated the model’s generalisation. 
The samples were divided using the same ratios. Before 
training the model, min-max normalisation was applied 

to the spectral bands and resulting indices. This brought 
all features to a uniform scale of 0–1. This was achieved 
using the StandardScaler and MinMaxScaler functions 
from the scikit-learn.preprocessing package (v1.4.2) 
(Saqr et al. 2025). This standardisation helped to lessen 
the variations in range across the reflectance of different 
bands. It assisted the algorithms in maintaining numerical 
stability, particularly in distance-based models such as 
SVM and RF. This normalisation ensured that each feature 
contributed equally to classification, thereby improving 
the performance of all considered models through 
convergence.
	 After preparing the training and testing data, the 
models were run with default settings. First, supervised 
classification was implemented using the Scikit-learn library 
(v1.4.2). Parameters were specified for the SVM model, such 
as the kernel type (e.g., ‘rbf’). After initialising the model, 
the ‘fit()’ function was used to train it on the training 
data. Predictions were then evaluated using the test data 
(Phan et al. 2020). The accuracy score function from Scikit-
learn assesses the model’s accuracy for the predictions. 
The datasets used in this study were generated through 
stratified random sampling, with 70% allocated for training 
and 30% for validation  et al. 2020). The accuracy score 
function from Scikit-learn assesses the model’s accuracy 
for the predictions. The datasets used in this study were 
generated through stratified random sampling, with 70% 
allocated for training and 30% for validation (Chomani and 
Pshdari 2024b; Lu et al. 2021).

Accuracy Assessment

Evaluation of classification accuracy was conducted by 
measuring overall accuracy (OA) and the Kappa coefficient 
(K), producer’s accuracy (PA), and user’s accuracy (UA). 
Their formulas are detailed below in equations 1, 2, 3, and 
4 (Kobayashi et al. 2022). These metrics assess the quality 
of classification by quantifying the accuracy of the test 
data and the agreement between classified and reference 
data. Their calculations were performed using scikit-learn.
metrics (V1.4.2), with functions such as confusion_matrix, 
classification_report, and cohen_kappa_score. Results 
were displayed and interpreted using matplotlib (V3.8.4) 
combined with seaborn (V0.13.2) for graphical display, 
statistics, and confusion matrices (Figure 5).

	 Where:
	 • Observed accuracy = Overall Accuracy (OA);
	 • Chance agreement is the proportion of agreement 
that could occur randomly based on the totals in the 
confusion matrix.
	 Kappa values range between 0 and 1, where:
	 • > 0.80 = strong agreement,
	 • 0.40–0.80 = moderate agreement,
	 • < 0.40 = weak agreement.

(1)

(2)

(3)

(4)
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Predicting and Exporting Data

	 The final step involved using the trained models to 
generate predictions and exporting the results as GeoTIFF 
files (Dong et al. 2019). While various tools such as GDAL or 
GeoPandas/Geocube are available, they are not well-suited 
for large-scale geographic operations (Drusch et al. 2017). 
An efficient approach using the rasterio library is presented 
below (Gerber et al. 2018).
	 First, the original input image is retrieved, and metadata 
attributes such as height, width, and CRS are extracted. The 
input image is then preprocessed to align with the data 
used during model training. If additional features like NDVI 
or elevation were included during training, they must be 
combined with the input image before proceeding. This 
process ensures scalability for generating predictions over 
large geographic areas (Jiang et al. 2021). The results are 
saved in GeoTIFF format for further analysis.
	 Once the model training and validation were complete, 
each machine learning classifier was applied to the entire 
Landsat imagery to predict the LULC category for each 
year of the study: 2010, 2015, and 2023. The prediction 
process was then performed using the ‘predict()’ function 
from the scikit-learn library (v1.4.2), which resulted in pixel-
wise classification outcomes. Finally, the resulting arrays 
were restructured and converted to raster formats using 
rasterio (v1.3.8) to ensure the geospatial conformity of 
the final outputs with the imagery. The classified rasters 
were then exported as GeoTIFF files for further processing 
and map production (Peterson and Levinson 2020). High-
quality theme map production and post-processing were 
carried out using matplotlib (v3.8.4), geopandas (v0.14.3), 

and rasterio.plot modules. A unique colour scheme was 
assigned to each land category, including vegetation, 
urban, forest, barren land, and water body (Gerber et al. 
2018; Wu 2020). Additional map elements, such as the 
title, legend, north arrow, and scale bar, were included 
to improve map interpretation. All the final maps were 
exported at a resolution of 600 dpi, which is suitable for 
publishing and scientific sharing. This process helped to 
create accurate geo-referenced outputs that showed the 
precise spatial distribution and temporal changes of LULC 
in the area of interest (Sharnagat et al. 2025; Q. Zhao et al. 
2021).

RESULTS AND DISCUSSION

Mapping the Spatial Distribution of LULC Classes

	 Fig. 3 shows the LULC classification maps produced by 
three machine learning algorithms: SVM, RF, and DT, over 
the 13 years of the study. For each classifier, these colour-
coded images display the spatial distribution pattern of 
five LULC classes: vegetation, built-up, forest, bareland, and 
water body. SVM’s classification exhibits much smoother 
and more homogeneous class boundaries, whereas RF 
and DT show local heterogeneity. In contrast, the green 
colour representing bareland varies more across the years, 
indicating the classifiers’ sensitivity to spectral variation. 
These multi-model maps offer a suitable platform for visual 
comparison of spatial patterns and temporal dynamics, 
which highlighted the observation of continuous urban 
expansion and a slight reduction in vegetation cover 
between 2010 and 2023.

Fig. 3. LULC classification maps of the AOI for 2010, 2015, and 2023 generated using Support Vector Machine (SVM), 
Random Forest (RF), and Decision Tree (DT) classifiers
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	 The classified area distributions, as shown in Figure 
4 and Table 3, reveal distinct temporal shifts and model-
based fluctuations in the AOI over 13 years of the study. 
Vegetation, covering approximately 1200 to 1400 km² across 
all classifiers, continues to dominate this class. However, it 
decreased slightly by 2023, while built-up areas increased 
from about 200 km² in 2010 to over 300 km² in 2023. This 
data aligns well with the area’s ongoing urban expansion 
and agricultural land modification (Du et al. 2018). The 
forest class maintained intermediate values between 250–
350 km² with little temporal change across models and 
years. Bareland, however, showed a gradual reduction from 
150–200 km² to less than 100 km² in 2023. Water bodies 
represented the smallest fraction, less than 70 km², with a 
barely noticeable reduction over time (Carrara et al. 2024; 
Congalton and Green 2019). DT classifiers produced slightly 
higher vegetation estimates in 2010 compared to other 
classifiers. RF outputs were more balanced and consistent 
in the following years, particularly for built-up and bareland 
classes. The SVM model performed between these two 
methods, yielding slightly lower vegetation and higher 
built-up estimates due to its effectiveness in distinguishing 
mixed spectral signatures (Ali and Johnson 2022). 
Generally, the three algorithms reported similar temporal 
trends, which increases confidence in our classification 
methodology. RF is, however, the most suitable method 
for multi-temporal LULC mapping in this region because of 
its stable intra-class ratio and consistent spatial predictions 
(Meghraoui et al. 2024).

Evaluation of the Mapping Precision of Machine Learning 
Algorithms

	 Each model operated on a confusion matrix derived from 
30% of the entire figure 5. A confusion matrix is a statistical 
construct that illustrates the correlation between the 
actual class (ground truth) and the predicted or generated 
map (Nicolau et al. 2023). The confusion matrices derive 
overall accuracy (OA), Kappa coefficient, user’s accuracy 
(UA), and producer’s accuracy (PA) by land use/land cover 
type (Belgiu and Csillik 2018). Therefore, the confusion 
matrices yield the following OA and Kappa coefficients for 
the classification trees. The SVM confusion matrix shows 

an OA of 91.7% and a Kappa coefficient of 0.810. The RF 
confusion matrix shows an OA of 91.84% and a Kappa of 
0.86. The DT confusion matrix shows an OA of 91.16% and 
a Kappa of 0.68. A Kappa of 0.845 was recorded for 2023. 
Table 4 and Figure 5 show the overall model performance 
over the years and classifications. However, the RF model 
had the highest overall OA and Kappa from all datasets. The 
classes performed across the models. The built-up land use 
class was achieved in all models with UA and PA exceeding 
97% for 2023 RF. SVM and DT also had UA and PA exceeding 
89%. On the other hand, the forest class performed less 
well with SVM, showing a PA as low as 75.2% in 2023 (Wang 
et al. 2018). Similarly, the numerical classifications for bare 
land and waterbody. The only inconsistency is the 81% PA 
for forest classification in 2020, which is still a decent score 
but 6% lower than the DT for forest classification accuracy. 
Where the forest category was not accurately represented 
was in built-up areas. This is similar to how the forest was 
perfectly classified in 2020 across all three models. However, 
all three models struggled with this over the years, with 
SVM again showing the highest omission errors (El Assaoui 
et al. 2015; J. Jiang et al. 2025). This resembles a replica of 
a city covered up by what should have been classified as 
non-built-up pixel values. Where SVM struggled, the RF 
model excelled, achieving the best classification for built-
up in 2023 at 88.4%. The lowered classification accuracy 
for some classes in 2023 means that for bareland and 
waterbody classes, DT’s PA values were lower than RF and 
SVM. However, it still achieved fairly good accuracy for built-
up and vegetation classes (Congalton and Green 2019).

CONCLUSION

	 The study has illustrated the effectiveness of various 
machine learning algorithms, including SVM, RF, and DT, in 
categorising land use and land cover (LULC) changes in the 
Berrechid Settat region for the years 2010, 2015, and 2023 
(El Assaoui et al. 2021; Kussul et al. 2017). A comprehensive 
assessment of accuracy measurements, such as Overall 
Accuracy (OA), Kappa Coefficient, User’s Accuracy (UA), 
and Producer’s Accuracy (PA), shows that each approach 
has distinct advantages and disadvantages when used for 
different LULC classes.

Fig. 4. Comparison of LULC class areas (in km²) in the AOI for 2010, 2015, and 2023, derived from Support Vector Machine 
(SVM), Random Forest (RF), and Decision Tree (DT) classifiers. The bar chart highlights differences between models and 

changes over time across five major LULC categories: vegetation, built-up, forest, bareland, and water body
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Table 3. LULC Classification Areas and Percentages (2010, 2015, 2023)

Class
2010 - SVM 2010 - RF 2010 - DT

Area (km2) (%) Area (km2) (%) Area (km2) (%)

Vegetation 1350.20 65.48 1385.25 67.18 1402.57 68.02

Builtup 207.23 10.05 226.92 11.01 247.65 12.01

Forest 309.63 15.02 292.18 14.17 310.95 15.08

Bareland 151.56 7.35 131.14 6.36 84.34 4.09

Waterbody 61.88 3.00 41.45 2.01 21.65 1.05

Class
2015 - SVM 2015 - RF 2015 - DT

Area (km2) (%) Area (km2) (%) Area (km2) (%)

Vegetation 1312.67 63.66 1319.70 64.00 1362.16 66.06

Builtup 248.68 12.06 281.46 13.65 288.76 14.00

Forest 268.88 13.04 247.85 12.02 268.22 13.00

Bareland 188.67 9.15 165.58 8.03 104.34 5.06

Waterbody 62.27 3.02 61.88 3.00 41.28 2.00

Class
2023 - SVM 2023 - RF 2023 - DT

Area (km2) (%) Area (km2) (%) Area (km2) (%)

Vegetation 1237.51 60.01 1261.53 61.18 1220.50 59.19

Builtup 348.48 16.93 363.94 17.65 351.37 16.55

Forest 247.85 12.02 270.43 13.11 278.12 13.12

Bareland 165.62 8.03 144.52 7.01 156.35 7.38

Waterbody 35.04 1.71 41.34 2.00 20.74 1.01
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Fig. 5. Confusion matrices for 2010, 2015, and 2023
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Table 4. Classification Accuracy Metrics (2010, 2015, 2023)

Year Classifier LULC Class UA (%) CE (%) PA (%) OE (%) OA & KC

2010

SVM

Vegetation 90.42 9.58 84.85 15.15

84.19% and 
0.766

Builtup 94.20 5.80 90.05 9.95

Forest 81.81 18.19 79.05 20.95

Bareland 66.10 33.90 69.65 30.35

Waterbody 0.00 100.00 0.00 100.00

RF

Vegetation 89.20 10.80 83.10 16.90

82.26% and 
0.736

Builtup 94.00 6.00 90.95 9.05

Forest 100.00 0.00 100.00 0.00

Bareland 94.90 5.10 91.45 8.55

Waterbody 94.70 5.30 90.95 9.05

DT

Vegetation 90.00 10.00 88.05 11.95

87.36% and 
0.794

Builtup 94.20 5.80 90.95 9.05

Forest 100.00 0.00 100.00 0.00

Bareland 94.50 5.50 91.35 8.65

Waterbody 93.20 6.80 90.75 9.25

2015

SVM

Vegetation 91.22 8.78 90.45 9.55

85.39% and 
0.768

Builtup 95.00 5.00 95.65 4.35

Forest 82.61 17.39 84.65 15.35

Bareland 66.90 33.10 75.25 24.75

Waterbody 83.30 16.70 71.44 28.56

RF

Vegetation 90.00 10.00 88.70 11.30

88.74% and 
0.811

Builtup 94.80 5.20 96.55 3.45

Forest 86.69 14.31 75.02 24.98

Bareland 95.70 4.30 97.05 2.95

Waterbody 95.50 4.50 96.55 3.45

DT

Vegetation 90.80 9.20 93.65 6.35

88.16% and 
0.799

Builtup 95.00 5.00 96.55 3.45

Forest 79.96 20.04 100.00 0.00

Bareland 95.30 4.70 96.95 3.05

Waterbody 94.00 6.00 96.35 3.65
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	 Random Forest (RF) consistently achieved the highest 
accuracy throughout all years, particularly excelling in 
the classification of built-up, water body, and barren 
lands categories (Fentaw and Abegaz 2024), attaining 
elevated user’s accuracy (UA) and producer’s accuracy 
(PA) values. This indicates that RF is an effective model 
for land use and land cover (LULC) mapping, especially 
in intricate systems characterised by significant spatial 
variability. Conversely, the Support Vector Machine (SVM) 
exhibited commendable performance. Nevertheless, it 
faced difficulties in distinguishing certain classes, such as 
forest and bare ground (Baatz et al. 2025), resulting in more 
omission errors for these categories. The Decision Tree (DT) 
displayed similar accuracy across many classes but showed 
a slight decrease in performance, especially for smaller or 
more heterogeneous categories such as water body and 
barren land.
	 A notable discovery is that all models successfully 
distinguished the built-up class, which is essential for 
tracking urban expansion and land development in swiftly 
urbanising areas such as Berrechid-Settat. The forest class 
presented the most significant obstacle among all models, 
highlighting the necessity for enhanced spectral feature 
selection or the integration of supplementary data to 
improve forest classification accuracy (Andrew et al. 2023; 
Drusch et al. 2017).

	 In summary, RF has demonstrated the highest reliability 
for LULC classification in this area, especially for classes 
with distinct spectral signatures, such as built-up areas 
and aquatic bodies (Dharumarajan and Hegde, 2022). SVM 
and DT offered significant insights, particularly regarding 
processing efficiency and the management of intricate 
decision boundaries. This study highlights the importance 
of model selection in remote sensing applications and 
provides a foundation for future research focused on 
improving LULC classification accuracy through more 
sophisticated hybrid models or by including other data 
sources such as topography and climate factors (Alshari 
and Gawali 2021; Amazirh et al. 2024; El Assaoui et al. 2023).
	 This analysis offers a thorough understanding of LULC 
dynamics in the region, providing significant insights for 
land management, urban planning, and environmental 
monitoring.
	 Our functional framework for land monitoring could be 
useful in regional urban planning and water management 
initiatives. However, the classification accuracy could be 
improved by using Sentinel-2 imagery or higher-resolution 
data, or by incorporating an object-based approach to the 
research. Furthermore, future research should focus on 
including socio-economic and hydro-climatic variables to 
better explain the drivers of LULC changes.

2023

SVM

Vegetation 94.32 5.68 91.70 8.24

88.49% and 
0.810

Builtup 98.10 1.85 96.90 3.09

Forest 85.71 14.28 85.90 17.60

Bareland 70.00 29.90 76.5 23.41

Waterbody 100.00 0.00 100.00 0.00

RF

Vegetation 93.10 6.82 89.95 10.05

91.84% and 
0.857

Builtup 97.90 2.04 97.80 2.14

Forest 70,80 29,60 75,20 24,76

Bareland 98,80 1,18 98,30 1,70

Waterbody 98,60 1,33 97,80 2,18

DT

Vegetation 93.90 6.10 94.90 5.10

91.16% and 
0.845

Builtup 98.10 1.90 97.80 2.18

Forest 68.30 31.60 81.70 18.21

Bareland 98.40 1.52 98.20 1.75

Waterbody 97.10 2.84 97.60 2.32
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