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ABSTRACT. Global warming, driven by the rising concentration of greenhouse gases (GHGs), demands innovative, data-
driven approaches to assess emission vulnerability at regional scales. This study developed a novel framework utilizing an 
unsupervised Convolutional Autoencoder (CAE) deep learning model combined with multi-sensor satellite data to map GHG 
emission vulnerability. The framework integrated nine environmental indicators, including tropospheric gases, land surface 
temperature, vegetation cover, anthropogenic proxies, and elevation, all sourced from freely accessible remote sensing 
platforms. The CAE model effectively captured complex spatial patterns and reduced high-dimensional inputs into 128 latent 
features, enabling vulnerability assessment without requiring labeled training data. Results indicated that southern coastal 
regions, particularly Denpasar and Badung, exhibited the highest vulnerability due to dense urbanization and tourism-related 
activities. Based on zonal statistics, 11.31% of local administrative zones were identified as having high to very high vulnerability, 
while 18.72% were classified as moderate, and 69.97% as low to very low. The most vulnerable areas were concentrated along 
the southern coastline, known as a hub for tourism and economic activity, with additional pockets of vulnerability found in 
several northern coastal zones. These findings demonstrate the capacity of unsupervised deep learning to detect emission 
hotspots and spatial variability, particularly in data-limited environments. The integration of scalable algorithms with open-
access satellite data allows for rapid, cost-efficient assessments to inform evidence-based climate planning and mitigation 
strategies. This study introduces a practical and transferable approach for spatial quantification of GHG vulnerability, offering 
actionable insights for advancing global climate policy and supporting the Sustainable Development Goals.
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INTRODUCTION

	 Global climate change is widely recognized as one 
of the most urgent environmental challenges of the 21st 
century, with far-reaching implications for ecological 
sustainability, human health, and socio-economic 
development (Scafetta 2024). The primary cause of this 
phenomenon is the rising concentration of greenhouse 
gases (GHGs) in the atmosphere, which intensifies the 

natural greenhouse effect and contributes significantly to 
global warming (Yang et al., 2022). GHGs such as carbon 
dioxide (CO2), methane (CH4), nitrogen dioxide (NO2), and 
sulfur dioxide (SO2) trap outgoing longwave radiation 
(Bhatti et al., 2024), thereby leading to an increase in 
Earth’s surface temperatures (Rahaman et al., 2022). The 
accumulation of these gases is associated with a wide 
range of adverse effects, including more frequent extreme 
weather events, declining air quality, and disrupted 
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regional climate systems (Edo et al., 2024). These impacts 
present substantial obstacles to the achievement of the 
United Nations Sustainable Development Goals (SDGs), 
particularly Goal 13 on climate action.
	 Climate change, beyond its atmospheric implications, 
also affects the structural integrity of ecosystems and 
the functionality of biomes. The warming of Earth’s 
climate alters species distributions, hydrological cycles, 
and ecosystem services that support agriculture, forestry, 
and coastal livelihoods (Dar et al., 2020; Grimm et al., 
2013; Pecl et al., 2017). The majority of GHG emissions are 
anthropogenic, stemming from sectors such as energy, 
industry, transportation, agriculture, land-use change, 
and waste management (Priyadarshini et al., 2025). 
Urbanization exacerbates these emissions, with dense 
population centers contributing disproportionately 
through increased infrastructure, vehicular activity, and 
energy consumption. Over time, these patterns of emission 
become spatially correlated with zones of intense human 
activity and temporally aligned with rapid economic 
expansion (Yu et al., 2024). To address these spatial and 
systemic complexities, remote sensing and Geographic 
Information Systems (GIS) have emerged as indispensable 
tools for environmental analysis. Remote sensing enables 
continuous monitoring of Earth’s surface parameters, while 
GIS allows for spatially explicit modeling of environmental 
indicators and anthropogenic pressures. These tools 
provide a basis for multi-scale climate vulnerability 
assessments, from local urban settings to regional and 
global contexts. For example, Valjarević et al. (2022) utilized 
satellite and GIS-based approaches to update global 
climate classification, revealing nuanced climate dynamics 
and spatial vulnerabilities.
	 Bali Province, Indonesia, a globally recognized tourism 
hotspot, is experiencing substantial environmental stress 
due to accelerated land-use transformation (Saifulloh et al., 
2025). Recent research indicates that surface temperatures 
in Bali have been increasing at an average rate of 0.01°C per 
year (Sunarta et al., 2022). This trend is closely associated 
with the widespread conversion of natural landscapes into 
built environments, including hotels, resorts, restaurants, 
and urban settlements (Andyana et al., 2023; Diara et al., 
2024; Sunarta and Saifulloh, 2022a). The loss of vegetative 
cover resulting from urban expansion significantly reduces 
the landscape’s capacity for carbon sequestration (Sudarma 
et al., 2024; Susila et al., 2024; Trigunasih and Saifulloh, 2022), 
while emissions from transportation, hospitality operations, 
solid waste, and agricultural practices continue to intensify. 
Despite the significance of these transformations, there 
remains a lack of spatially explicit data and systematic 
assessments of GHG emission vulnerability for the region. 
This data gap highlights the need for robust geospatial 
methodologies to inform mitigation strategies and policy 
interventions.
	 Although various studies have sought to analyze 
GHG vulnerability, most have been constrained by 
limited spatial, temporal, or variable coverage. For 
instance, (Hassaan et al., 2023) assessed CO and PM2.5 
exposure using discrete point-source data, lacking spatial 
continuity. Sakti et al. (2023) employed Sentinel-5P to 
monitor gaseous pollutants such as CO, NO2, and SO2, 
yet failed to incorporate critical environmental metrics 
such as vegetation and temperature (Pan et al., 2024). 
While meteorological influences have been examined in 
studies by (Ayyamperumal et al., 2024; Z. Feng et al., 2023), 
few efforts have systematically integrated these variables 
within spatially scalable frameworks. In the region of 
Bali Province, NO2 concentrations have been examined 

for the year 2020 (Sunarta and Saifulloh, 2022b), though 
such assessments were not embedded within a broader 
vulnerability framework. Meanwhile, spatial machine 
learning models such as fuzzy geographically weighted 
clustering (Grekousis et al., 2024) have incorporated static 
demographic indicators but still fall short of accounting for 
dynamic spatiotemporal GHG variability.
	 To overcome these limitations, the present study 
introduces a comprehensive approach for mapping GHG 
vulnerability through unsupervised deep learning. The 
framework employs a convolutional autoencoder (CAE), a 
class of neural networks capable of learning latent feature 
representations without requiring labeled data (Azarang et 
al., 2019; Cui et al., 2018). All input variables are derived from 
freely available multi-sensor satellite datasets, retrieved 
via the Google Earth Engine (GEE) platform (Gorelick et 
al., 2017). These include primary GHG indicators (NO2, CO, 
SO2, and Aerosol Optical Depth), environmental variables 
(temperature and vegetation indices), human activity 
proxies (population density and nighttime lights), and 
topographic data.
	 This method enables detailed spatial and temporal 
characterization of emission vulnerability, eliminating 
the need for resource-intensive field data collection. 
By forgoing reliance on labeled training data, the CAE 
model supports rapid, cost-effective, and reproducible 
assessments of environmental vulnerability. The innovation 
of this research lies in the fusion of multi-source satellite 
data with unsupervised deep learning to detect spatial 
patterns of vulnerability, particularly in data-limited regions 
such as Bali. Ultimately, this research advances both the 
scientific understanding and practical management of 
GHG emissions, contributing meaningfully to global 
climate resilience and sustainability agendas.

MATERIALS AND METHODS

Study area

	 The study was conducted in Bali Province, Indonesia, 
an island located in Southeast Asia with significant 
ecological sensitivity and economic reliance on tourism. 
Geographically, Bali lies around 8°00'S latitude and 115°40'E 
longitude, covering a land area of 5,593.60 km2 (Fig. 1). 
Administratively, the province consists of nine regencies 
and one city: Denpasar, Badung, Gianyar, Buleleng, 
Tabanan, Jembrana, Klungkung, Bangli, and Karangasem, 
encompassing 57 subdistricts and 716 villages. According 
to the 2025 provincial census (BPS Bali, 2025), Bali has a 
population of approximately 4.46 million, with an average 
density of 798 people/km2. Denpasar City has the highest 
population density (6,058 people/km2), followed by Gianyar 
(1,447 people/km2) and Badung (1,426 people/km2), which 
are the primary centers of tourism and urban development 
(BPS Provinsi Bali, 2025).
	 In terms of long-term climatic conditions, Bali 
experiences a tropical monsoon climate with a distinct 
wet and dry season. Based on historical records, average 
temperatures have ranged between 22.5 and 27.5°C, 
while projections suggest future increases to 25.5–
29.5°C. Northern Bali in particular is projected to face 
temperature anomalies ranging from 1.6 to 2.9°C, coupled 
with declining humidity levels, especially in the north. In 
contrast, southern areas may experience slight increases 
in humidity. Under the representative concentration 
pathways (RCP) 4.5 climate scenario, Bali is predicted to 
lose areas with comfortable climate zones (20–26°C), giving 
way to predominately hot and dry conditions (Toersilowati 
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Fig. 1. Research location in Bali Province, Indonesia

et al., 2022). Similarly, long-term projections suggest 
rainfall will fluctuate annually but remain within a relatively 
stable range of 2,066–2,170 mm, with both maximum 
and minimum temperatures continuing to rise by up to 
2°C (Puspitasari and Wu, 2025). These climatic shifts pose 
significant implications for urban planning, agriculture, and 
environmental resilience in Bali, underscoring the urgent 
need for spatially explicit assessments of greenhouse gas 
vulnerability.
 
Workflow framework and data sources

	 To assess greenhouse gas (GHG) emission vulnerability 
spatially, a systematic methodological framework was 
developed, integrating multi-sensor satellite observations 
with unsupervised deep learning. The methodological 
workflow (Fig. 2) comprises three core phases: (1) data 
acquisition and preprocessing using Google Earth Engine 
(GEE), (2) deep learning modeling using a convolutional 
autoencoder (CAE), and (3) postprocessing and 
interpretation using zonal statistics.
	 In Phase I, remotely sensed variables were selected to 
reflect GHG emission sources, environmental sensitivity, 
and anthropogenic exposure. Table 1 outlines the nine 
indicators used: NO2, CO, SO2 (Sentinel-5P), NDVI, LST, AOD 
(MODIS), population density (WorldPop), nighttime lights 
(VIIRS), and elevation (SRTM). All datasets were resampled 
to 1 km2 and reprojected to WGS 1984 UTM Zone 50S. 
	 The open-source remote sensing data utilized in this 
study originated from multiple sensors with native spatial 
resolutions ranging from 30 meters to approximately 
1,000 meters. Most of the datasets representing sources of 
greenhouse gas emissions, particularly from atmospheric 
sensors, are provided at a coarser resolution of around 1 
km. Therefore, for consistency and compatibility within 
the modeling process, all variables were resampled to a 

uniform spatial resolution of 1 km2. This harmonization 
of spatial resolution is essential for feeding standardized 
input into the unsupervised deep learning model, 
ensuring that data dimensions are consistent (Y. Han et 
al., 2024; Li et al., 2024). To maintain temporal consistency 
across datasets, pollutant-related variables and other 
emission source indicators (such as NO2, CO, SO2, AOD, 
NDVI, and LST) were accessed using mean values coded 
over the 2022–2024 period via GEE. In contrast, datasets 
lacking temporal resolution, such as SRTM elevation and 
WorldPop population data, used the most recent available 
data. Given that this is a preliminary study conducted at a 
regional mapping scale, a 1 km2 resolution is appropriate 
and consistent with similar studies implemented in other 
parts of the world (Garajeh et al., 2023; Maurya et al., 2022; 
Xiong et al., 2021).

Data preprocessing and tensor construction

	 Each raster file was imported using the rasterio library 
and converted to 32-bit floating-point arrays. Missing 
values were replaced with zero, particularly for elevation 
data beyond the study boundary. After spatial alignment, 
each dataset was normalized using min-max scaling to 
standardize feature ranges to [0, 1], following Eq. 1:

	 where x'
ik
 denotes the normalized value of variable k at 

pixel i, while min (x
k
) and max (x

k
) represent the minimum 

and maximum values observed across the entire raster for 
variable kk. This ensures comparability among different 
datasets during model training.

(1)
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Fig. 2. Workflow Framework of the Research

Table 1. Multi-Sensor Satellite Data and Functional Roles in Regional GHG Vulnerability Modeling

№ Data source (GEE) Extracted variable Spatial & temporal resolution Functional role in the model

1
Sentinel-5P TROPOMI 

(COPERNICUS/S5P/OFFL/
L3_NO2)

Tropospheric NO2 (mol/m2)
• Pixel Size: 1113.2 meters
• Revisit Interval: 2 Days

Proxy for traffic and industrial 
emissions; indicates nitrogen-

based pollution intensity

2
Sentinel-5P TROPOMI 

(COPERNICUS/S5P/OFFL/
L3_CO)

Tropospheric CO (mol/m2)
• Pixel Size: 1113.2 meters
• Revisit Interval: 2 Days

Represents incomplete 
combustion from fossil fuel and 

biomass burning

3
Sentinel-5P TROPOMI 

(COPERNICUS/S5P/OFFL/
L3_SO2)

Tropospheric SO2 (mol/m2)
• Pixel Size: 1113.2 meters
• Revisit Interval: 2 Days

Emission from power plants, 
volcanic activity, and smelting 

industries

4
MODIS MCD19A2

(MODIS/061/MCD19A2_
GRANULES)

Aerosol Optical Depth (unitless)
• Pixel Size: 1000 meters
• Revisit Interval: Daily

Indicator of atmospheric 
particulate concentration; 
linked to PM2.5 exposure

5
MODIS Terra MOD13Q1 
(MODIS/061/MOD13Q1)

NDVI (unitless)
• Pixel Size: 250 meters

• Revisit Interval: 16 Days

Vegetative cover and 
greenness; indicator of carbon 

sequestration capacity

6
MODIS Terra MOD11A2 
(MODIS/061/MOD11A2)

Land Surface Temperature (°C)
• Pixel Size: 1000 meters
• Revisit Interval: 8 Days

Surface heat intensity; 
associated with urbanization 

and land energy balance

7
WorldPop 100m (WorldPop/

GP/100m/pop)
Population Density (people/

km2)
• Pixel Size: 92.77 meters

• Revisit Interval: -

Proxy for population exposure 
to emissions; measures human 

concentration in space

8
VIIRS Nighttime Lights (NOAA/

VIIRS/DNB/MONTHLY_V1/
VCMCFG)

Nighttime Light Radiance (nW/
cm2/sr)

• Pixel Size: 463.83 meters
• Revisit Interval: Monthly

Indicator of anthropogenic 
energy use and urban footprint

9
SRTM DEM (USGS/

SRTMGL1_003)
Elevation (meters)

• Pixel Size: 30 meters
• Revisit Interval: -

Terrain factor affecting air flow 
and pollutant accumulation in 

lowland areas

	 The normalized raster stack was reshaped into a 3D 
tensor Д Є RCxHxW, where C is the number of channels (or 
features), and H and W are the spatial dimensions of the 
input. This tensor was further converted into a 4D tensor   
X Є R1xCxHxW  to match the input format required by the 
convolutional autoencoder.

Convolutional autoencoder (CAE) modeling

	 The CAE model was implemented using the PyTorch 
library (Costa et al., 2024; Subramanian, 2018). It consisted 

of an encoder that extracted feature representations and a 
decoder that reconstructed the input. The architecture was 
as follows.

Encoder Layers:

	 • Conv2D (9 ➝ 32) ➝ BatchNorm ➝ ReLU
	 • Conv2D (32 ➝ 64) ➝ BatchNorm ➝ ReLU
	 • Conv2D (64 ➝ 128) ➝ BatchNorm ➝ ReLU
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Decoder Layers:

	 • ConvTranspose2D (128 ➝ 64) ➝ BatchNorm ➝ ReLU
	 • ConvTranspose2D (64 ➝ 32) ➝ BatchNorm ➝ ReLU
	 • ConvTranspose2D (32 ➝ 9) ➝ Sigmoid
The model was trained using the Mean Squared Error (MSE) 
loss function, defined by Eq. 2:

	 where x
i
 denotes the original input tensor value at 

index i, and  is the corresponding reconstructed output. 
The loss function penalizes reconstruction errors, thereby 
guiding the encoder to learn compact yet informative 
representations. The Adam optimizer was employed with 
a learning rate of 0.001 over 100 training epochs.

GHG vulnerability index

	 Upon convergence, the encoder output was extracted 
as a latent tensor Z Є R128xHxW, where 128 is the number of 
abstract feature channels. To collapse this multidimensional 
feature space into a single-band vulnerability index, mean 
pooling was applied across all channels (Eq. 3):

	 where GHG
index

 is the final greenhouse gas emission 
vulnerability index, and Z

c
 is the activation of the cth feature 

channel. The resulting index was again normalized to the 
range [0, 1] to facilitate interpretation. Higher index values 
indicate areas with a greater confluence of emission-
related stressors and limited ecological buffering.
	 For policy-oriented interpretation, the vulnerability 
index raster was intersected with Bali’s district-level 
administrative boundaries. The average vulnerability score 
for each administrative unit mm was calculated as Eq. 4:

	 where V
m

 represents the mean vulnerability index of zone m, 
calculated by summing all pixel-level vulnerability values v

i
 within 

the set of spatial units Z
m

, and dividing the result by the total 
number of pixels |Z

m
| within that zone. This procedure translated 

fine-resolution pixel values into actionable administrative-level 
metrics that can guide localized climate mitigation planning, 
land use policy, and emission reduction initiatives.

RESULTS

Dataset from Multi-Sensor Satellite

	 This study utilized nine environmental variables derived 
from freely available multi-sensor satellite products. These 
included tropospheric gases (NO2, CO, SO2), Aerosol Optical 
Depth (AOD), Land Surface Temperature (LST), vegetation 
indices (NDVI), anthropogenic proxies (Nighttime Light 
Radiance and Population Density), and Elevation (Fig. 3). All 
raster datasets were resampled to a uniform spatial resolution of 
1 km2 and aligned to the WGS 1984 UTM Zone 50S coordinate 
system. Each variable was normalized to a [0,1] scale to ensure 
consistent input for the convolutional model.
	 Elevated values of NO2, CO, SO2, and AOD were predominantly 
observed in lowland urban regions. These concentrations 
reflect intense combustion activity and atmospheric pollutant 
accumulation from transportation and industrial sources. Such 
hotspots were spatially clustered in urban centers and along 
coastal corridors characterized by dense infrastructure and 
minimal vegetative cover. Other variables, such as LST, NDVI, 
population density, and nighttime lights, mirrored patterns of 
urban expansion. Built-up zones displayed higher land surface 
temperatures and lower vegetation greenness. Population 
and light radiance levels further emphasized anthropogenic 
pressure, while elevation helped determine pollutant dispersion 
across terrain gradients.

(4)

(2)

Fig. 3. Environmental variables derived from multi-sensor satellite datasets used in greenhouse gas emission 
vulnerability modeling

(3)
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Fig. 4. Correlation matrix of environmental variables used in GHG vulnerability modeling

Multivariate Relationships and Feature Space Analysis

	 The correlation matrix (Fig. 4) identified strong 
associations among several variables. AOD exhibited high 
correlation with CO (r = 0.98), NDVI (r = 0.93), and LST 
(r = 0.92), indicating that areas with higher particulate 
concentrations often coincide with vegetation decline and 
thermal stress. NO2 also showed strong correlations with 
CO (r = 0.92) and LST (r = 0.88). Additionally, nighttime 
light radiance and population density were closely linked 
(r = 0.89), reinforcing their combined role as indicators of 
urbanization intensity.

Autoencoder Training and Latent Representation

	 The convolutional autoencoder was trained for 100 
epochs using the Adam optimizer with a learning rate of 
0.001. Training loss, calculated using mean squared error 
(MSE), decreased from 0.195 to 0.0021 (Fig. 5), confirming 
effective convergence. The encoder architecture 
featured three convolutional layers integrated with batch 
normalization and ReLU activations, compressing the 
nine-band input into 128 latent features. The decoder then 
reconstructed the input using transposed convolutional 
layers and activation functions.
	 The latent feature space effectively captured non-linear 
dependencies among input variables, enabling the model 
to identify complex spatial patterns of vulnerability. For 
example, locations with elevated LST, high NO2, and low 
NDVI were consistently abstracted into high-risk zones. The 
low reconstruction error confirmed the model’s capability 
to retain meaningful spatial representations. A single-band 
vulnerability index was generated via mean pooling across 
all latent feature channels.

	 The GHG vulnerability index was classified using the 
Jenks Natural Breaks method, which separates values 
into statistically distinct classes by minimizing within-
class variance and maximizing variance between classes. 
This method is widely recognized for its suitability in 
environmental vulnerability assessments (Hou et al., 2022; 
Ke et al., 2023; Rzasa and Ciski, 2021). The spatial distribution 
(Fig. 6) showed that very high vulnerability zones were 
concentrated in southern Bali, particularly in Denpasar and 
coastal Badung, where index values exceeded 0.66. These 
areas exhibited characteristics such as dense urbanization, 
extensive infrastructure, low vegetation cover, and 
intensified human activity. High vulnerability also appeared 
in segments of southern Gianyar and Klungkung. Moderate 
vulnerability values were observed in transitional inland 
regions, while low to very low vulnerability was dominant 
in upland and northern areas with greater ecological 
stability.
	 Further analysis of administrative-level units revealed 
that 11.31% were categorized as high or very high 
vulnerability, 18.72% as moderate, and 69.97% as low to 
very low (Fig. 7). These village-level areas represent local 
jurisdictions responsible for implementing environmental 
policy. The highest vulnerability scores were recorded 
in Denpasar, southern Badung, Gilimanuk (Jembrana), 
and Singaraja (Buleleng), all of which are recognized for 
concentrated tourism and urban development.

DISCUSSION 

	 This study presents a significant advancement in 
spatial modeling of greenhouse gas (GHG) emission 
vulnerability by integrating a convolutional autoencoder 
(CAE) deep learning approach with multi-sensor satellite 
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Fig. 5. Convergence of training loss in convolutional autoencoder over 100 epochs

Fig. 6. Spatial distribution and proportional area of GHG emission vulnerability in Bali Province
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Fig. 7. Spatial alignment of GHG vulnerability with administrative boundaries

data. The unsupervised CAE model eliminated the need for 
labeled training data, addressing a persistent challenge in 
regional-scale environmental assessments where ground-
based measurements are often unavailable. Previous 
research has demonstrated that autoencoders are effective 
for extracting latent features and reconstructing complex 
geospatial patterns in remote sensing applications (X. Han 
et al., 2017; Pintelas et al., 2021). In this study, the model 
achieved rapid convergence and low reconstruction 
loss, affirming its ability to process and learn from high-
dimensional environmental inputs.
	 The resulting vulnerability index revealed distinct spatial 
gradients, with high-risk zones concentrated in southern 
coastal areas, such as Denpasar and southern Badung. These 
regions are associated with dense urbanization, tourism-
related development, and intensive energy use. These 
findings align with global studies showing that atmospheric 
pollutants like NO2, CO, and AOD are often concentrated in 
urban-industrial zones (Fioletov et al., 2025; Wang et al., 2025). 
The integration of land surface temperature, NDVI, nighttime 
lights, and population density further substantiated the 
mapping of anthropogenic stressors and ecological 
degradation (Liu et al., 2015; McRoberts et al., 2020).
	 A key innovation of this research is its use of openly 
accessible satellite data and an unsupervised deep learning 
approach to generate a replicable and cost-effective GHG 
vulnerability mapping framework. Designed to be compatible 
with Google Earth Engine and other open-source platforms, 
this methodology can be scaled to other regions lacking 
the technical capacity or financial means for traditional 
emissions monitoring. This approach complements previous 
efforts in urban classification and land use mapping, where 
autoencoder-based models have demonstrated effective 
generalization across geographic contexts (Jiang, 2018). 
The framework provides critical support for environmental 
planning and is aligned with the objectives of SDG 13 on 
climate action.

	 This study also acknowledges certain methodological 
constraints. The use of 1 km2 spatial resolution, while 
adequate for regional-scale visualization, may not capture 
the fine-scale variability needed for local urban or zoning 
applications. Additionally, while MODIS and Sentinel-5P 
data offer global consistency, they may lack sensitivity 
to site-specific emission patterns or infrastructure 
dynamics. To enhance spatial detail and accuracy, future 
research should incorporate higher-resolution datasets 
such as Sentinel-1 and Sentinel-2 imagery. Furthermore, 
integrating thematic variables like road networks, industrial 
zones, localized greenhouse gas emissions inventories, and 
spatially distributed land use categories would provide a 
more comprehensive picture of emissions at finer scales 
(Q. Feng et al., 2021). Additional consideration should be 
given to incorporating landscape circulatory factors and 
pollutant dispersion mechanisms using digital elevation 
models and meteorological data that capture prevailing 
wind directions. The findings validate the effectiveness 
of combining unsupervised deep learning with multi-
sensor remote sensing for emission vulnerability mapping. 
The proposed framework is transferable, cost-efficient, 
and capable of identifying high-risk areas, particularly 
in urbanizing regions. This method serves as a valuable 
tool for supporting spatially informed climate mitigation 
strategies and advancing global climate governance.

CONCLUSIONS 

	 This study demonstrated a rapid and cost-effective 
approach to mapping greenhouse gas (GHG) emission 
vulnerability by integrating multi-sensor satellite data 
with an unsupervised convolutional autoencoder (CAE) 
deep learning model. The framework avoided the need for 
field-based training data and extracted 128 latent features 
from a range of environmental indicators, enabling robust 
spatial characterization of emission risks. The vulnerability 
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index showed distinct spatial gradients, with the highest 
values concentrated in southern coastal areas experiencing 
dense anthropogenic activity, particularly from tourism 
and urbanization. These results confirm the effectiveness 
of unsupervised deep learning in identifying emission 
hotspots and spatial variability in data-limited settings. 
Utilizing open-access datasets and scalable computational 
methods, the framework offers a replicable solution 
for other regions, especially in developing countries 
where financial and technical constraints hinder regular 
monitoring. It presents a practical tool to support emission 

analysis and planning aligned with climate mitigation 
strategies. To enhance precision, future improvements 
should incorporate high-resolution imagery through 
data fusion techniques, such as integrating Sentinel-2 
or commercial satellite data. This advancement would 
allow for more detailed mapping suitable for urban-
scale planning and targeted mitigation. This research 
contributes a transferable, efficient methodology for spatial 
quantification of GHG emission vulnerability, offering 
actionable insights to support climate policy and advance 
the Sustainable Development Goals (SDGs).
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