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ABSTRACT. Global warming, driven by the rising concentration of greenhouse gases (GHGs), demands innovative, data-
driven approaches to assess emission vulnerability at regional scales. This study developed a novel framework utilizing an
unsupervised Convolutional Autoencoder (CAE) deep learning model combined with multi-sensor satellite data to map GHG
emission vulnerability. The framework integrated nine environmental indicators, including tropospheric gases, land surface
temperature, vegetation cover, anthropogenic proxies, and elevation, all sourced from freely accessible remote sensing
platforms. The CAE model effectively captured complex spatial patterns and reduced high-dimensional inputs into 128 latent
features, enabling vulnerability assessment without requiring labeled training data. Results indicated that southern coastal
regions, particularly Denpasar and Badung, exhibited the highest vulnerability due to dense urbanization and tourism-related
activities. Based on zonal statistics, 11.31% of local administrative zones were identified as having high to very high vulnerability,
while 18.72% were classified as moderate, and 69.97% as low to very low. The most vulnerable areas were concentrated along
the southern coastline, known as a hub for tourism and economic activity, with additional pockets of vulnerability found in
several northern coastal zones. These findings demonstrate the capacity of unsupervised deep learning to detect emission
hotspots and spatial variability, particularly in data-limited environments. The integration of scalable algorithms with open-
access satellite data allows for rapid, cost-efficient assessments to inform evidence-based climate planning and mitigation
strategies. This study introduces a practical and transferable approach for spatial quantification of GHG vulnerability, offering
actionable insights for advancing global climate policy and supporting the Sustainable Development Goals.
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INTRODUCTION natural greenhouse effect and contributes significantly to
global warming (Yang et al, 2022). GHGs such as carbon

Global climate change is widely recognized as one dioxide (CO), methane (CH,), nitrogen dioxide (NO,), and

of the most urgent environmental challenges of the 21 sulfur dioxide (SO,) trap outgoing longwave radiation
century, with far-reaching implications for ecological (Bhatti et al, 2024), thereby leading to an increase in
sustainability, human health, and socio-economic  Earth’s surface temperatures (Rahaman et al, 2022). The
development (Scafetta 2024). The primary cause of this accumulation of these gases is associated with a wide
phenomenon is the rising concentration of greenhouse  range of adverse effects, including more frequent extreme
gases (GHGs) in the atmosphere, which intensifies the weather events, declining air quality, and disrupted
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regional climate systems (Edo et al,, 2024). These impacts
present substantial obstacles to the achievement of the
United Nations Sustainable Development Goals (SDGs),
particularly Goal 13 on climate action.

Climate change, beyond its atmospheric implications,
also affects the structural integrity of ecosystems and
the functionality of biomes. The warming of Earth’s
climate alters species distributions, hydrological cycles,
and ecosystem services that support agriculture, forestry,
and coastal livelihoods (Dar et al, 2020; Grimm et al,
2013; Pecl et al,, 2017). The majority of GHG emissions are
anthropogenic, stemming from sectors such as energy,
industry, transportation, agriculture, land-use change,
and waste management (Priyadarshini et al, 2025).
Urbanization exacerbates these emissions, with dense
population centers contributing  disproportionately
through increased infrastructure, vehicular activity, and
energy consumption. Over time, these patterns of emission
become spatially correlated with zones of intense human
activity and temporally aligned with rapid economic
expansion (Yu et al,, 2024). To address these spatial and
systemic complexities, remote sensing and Geographic
Information Systems (GIS) have emerged as indispensable
tools for environmental analysis. Remote sensing enables
continuous monitoring of Earth’s surface parameters, while
GIS allows for spatially explicit modeling of environmental
indicators and anthropogenic pressures. These tools
provide a basis for multi-scale climate vulnerability
assessments, from local urban settings to regional and
global contexts. For example, Valjarevic¢ et al. (2022) utilized
satellite and GIS-based approaches to update global
climate classification, revealing nuanced climate dynamics
and spatial vulnerabilities.

Bali Province, Indonesia, a globally recognized tourism
hotspot, is experiencing substantial environmental stress
due to accelerated land-use transformation (Saifulloh et al,,
2025). Recent research indicates that surface temperatures
in Bali have been increasing at an average rate of 0.01°C per
year (Sunarta et al., 2022). This trend is closely associated
with the widespread conversion of natural landscapes into
built environments, including hotels, resorts, restaurants,
and urban settlements (Andyana et al,, 2023; Diara et al,
2024; Sunarta and Saifulloh, 2022a). The loss of vegetative
cover resulting from urban expansion significantly reduces
the landscape’s capacity for carbon sequestration (Sudarma
etal, 2024; Susila et al., 2024; Trigunasih and Saifulloh, 2022),
while emissions from transportation, hospitality operations,
solid waste, and agricultural practices continue to intensify.
Despite the significance of these transformations, there
remains a lack of spatially explicit data and systematic
assessments of GHG emission vulnerability for the region.
This data gap highlights the need for robust geospatial
methodologies to inform mitigation strategies and policy
interventions.

Although various studies have sought to analyze
GHG vulnerability, most have been constrained by
limited spatial, temporal, or variable coverage. For
instance, (Hassaan et al, 2023) assessed CO and PM2.5
exposure using discrete point-source data, lacking spatial
continuity. Sakti et al. (2023) employed Sentinel-5P to
monitor gaseous pollutants such as CO, NO,, and SO,,
yet failed to incorporate critical environmental metrics
such as vegetation and temperature (Pan et al, 2024).
While meteorological influences have been examined in
studies by (Ayyamperumal et al., 2024; Z. Feng et al,, 2023),
few efforts have systematically integrated these variables
within spatially scalable frameworks. In the region of
Bali Province, NO, concentrations have been examined
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for the year 2020 (Sunarta and Saifulloh, 2022b), though
such assessments were not embedded within a broader
vulnerability framework. Meanwhile, spatial machine
learning models such as fuzzy geographically weighted
clustering (Grekousis et al., 2024) have incorporated static
demographic indicators but still fall short of accounting for
dynamic spatiotemporal GHG variability.

To overcome these limitations, the present study
introduces a comprehensive approach for mapping GHG
vulnerability through unsupervised deep learning. The
framework employs a convolutional autoencoder (CAE), a
class of neural networks capable of learning latent feature
representations without requiring labeled data (Azarang et
al, 2019; Cuietal, 2018). All input variables are derived from
freely available multi-sensor satellite datasets, retrieved
via the Google Earth Engine (GEE) platform (Gorelick et
al, 2017). These include primary GHG indicators (NO,, CO,
SO, and Aerosol Optical Depth), environmental variables
(temperature and vegetation indices), human activity
proxies (population density and nighttime lights), and
topographic data.

This method enables detailed spatial and temporal
characterization of emission vulnerability, eliminating
the need for resource-intensive field data collection.
By forgoing reliance on labeled training data, the CAE
model supports rapid, cost-effective, and reproducible
assessments of environmental vulnerability. The innovation
of this research lies in the fusion of multi-source satellite
data with unsupervised deep learning to detect spatial
patterns of vulnerability, particularly in data-limited regions
such as Bali. Ultimately, this research advances both the
scientific understanding and practical management of
GHG emissions, contributing meaningfully to global
climate resilience and sustainability agendas.

MATERIALS AND METHODS
Study area

The study was conducted in Bali Province, Indonesia,
an island located in Southeast Asia with significant
ecological sensitivity and economic reliance on tourism.
Geographically, Bali lies around 8°00'S latitude and 115°40'E
longitude, covering a land area of 5,593.60 km? (Fig. 1).
Administratively, the province consists of nine regencies
and one city: Denpasar, Badung, Gianyar, Buleleng,
Tabanan, Jembrana, Klungkung, Bangli, and Karangasem,
encompassing 57 subdistricts and 716 villages. According
to the 2025 provincial census (BPS Bali, 2025), Bali has a
population of approximately 4.46 million, with an average
density of 798 people/km?. Denpasar City has the highest
population density (6,058 people/km?), followed by Gianyar
(1,447 people/km?) and Badung (1,426 people/km?), which
are the primary centers of tourism and urban development
(BPS Provinsi Bali, 2025).

In terms of long-term climatic conditions, Bali
experiences a tropical monsoon climate with a distinct
wet and dry season. Based on historical records, average
temperatures have ranged between 225 and 27.5°C,
while projections suggest future increases to 25.5-
29.5°C. Northern Bali in particular is projected to face
temperature anomalies ranging from 1.6 to 2.9°C, coupled
with declining humidity levels, especially in the north. In
contrast, southern areas may experience slight increases
in  humidity. Under the representative concentration
pathways (RCP) 4.5 climate scenario, Bali is predicted to
lose areas with comfortable climate zones (20-26°C), giving
way to predominately hot and dry conditions (Toersilowati
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et al, 2022). Similarly, long-term projections suggest
rainfall will fluctuate annually but remain within a relatively
stable range of 2,066-2,170 mm, with both maximum
and minimum temperatures continuing to rise by up to
2°C (Puspitasari and Wu, 2025). These climatic shifts pose
significant implications for urban planning, agriculture, and
environmental resilience in Bali, underscoring the urgent
need for spatially explicit assessments of greenhouse gas
vulnerability.

Workflow framework and data sources

To assess greenhouse gas (GHG) emission vulnerability
spatially, a systematic methodological framework was
developed, integrating multi-sensor satellite observations
with unsupervised deep learning. The methodological
workflow (Fig. 2) comprises three core phases: (1) data
acquisition and preprocessing using Google Earth Engine
(GEE), (2) deep learning modeling using a convolutional
autoencoder (CAE), and (3) postprocessing and
interpretation using zonal statistics.

In Phase |, remotely sensed variables were selected to
reflect GHG emission sources, environmental sensitivity,
and anthropogenic exposure. Table 1 outlines the nine
indicators used: NO2, CO, SO2 (Sentinel-5P), NDVI, LST, AOD
(MODIS), population density (WorldPop), nighttime lights
(VIIRS), and elevation (SRTM). All datasets were resampled
to 1 km? and reprojected to WGS 1984 UTM Zone 508S.

The open-source remote sensing data utilized in this
study originated from multiple sensors with native spatial
resolutions ranging from 30 meters to approximately
1,000 meters. Most of the datasets representing sources of
greenhouse gas emissions, particularly from atmospheric
sensors, are provided at a coarser resolution of around 1
km. Therefore, for consistency and compatibility within
the modeling process, all variables were resampled to a

114°40'0"E

115°0'0"E

uniform spatial resolution of 1 km?2 This harmonization
of spatial resolution is essential for feeding standardized
input into the unsupervised deep learning model,
ensuring that data dimensions are consistent (Y. Han et
al,, 2024; Li et al,, 2024). To maintain temporal consistency
across datasets, pollutant-related variables and other
emission source indicators (such as NO,, CO, SO,, AOD,
NDVI, and LST) were accessed using mean values coded
over the 2022-2024 period via GEE. In contrast, datasets
lacking temporal resolution, such as SRTM elevation and
WorldPop population data, used the most recent available
data. Given that this is a preliminary study conducted at a
regional mapping scale, a 1 km? resolution is appropriate
and consistent with similar studies implemented in other
parts of the world (Garajeh et al,, 2023; Maurya et al., 2022;
Xiong et al.,, 2021).

Data preprocessing and tensor construction

Each raster file was imported using the rasterio library
and converted to 32-bit floating-point arrays. Missing
values were replaced with zero, particularly for elevation
data beyond the study boundary. After spatial alignment,
each dataset was normalized using min-max scaling to
standardize feature ranges to [0, 1], following Eq. 1:

(%)
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1
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X, (M

where x’, denotes the normalized value of variable k at
pixel i, while min (x ) and max (x) represent the minimum
and maximum values observed across the entire raster for
variable kk. This ensures comparability among different

datasets during model training.
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Fig. 1. Research location in Bali Province, Indonesia
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Fig. 2. Workflow Framework of the Research
Table 1. Multi-Sensor Satellite Data and Functional Roles in Regional GHG Vulnerability Modeling

Ne Data source (GEE) Extracted variable

Spatial & temporal resolution

Functional role in the model

Sentinel-5P TROPOMI

« Pixel Size: 1113.2 meters

Proxy for traffic and industrial

(MODIS/061/MOD11A2)

« Revisit Interval: 8 Days

1 (COPERNICUS/S5P/OFFL/ Tropospheric NO, (mol/m?) . Revisit Interval: 2 Davs emissions; indicates nitrogen-
L3_NO2) ’ y based pollution intensity
Sentinel-5P TROPOMI . Pixel Size: 11132 meters Represents incomplete
2 (COPERNICUS/S5P/OFFL/ Tropospheric CO (mol/m?) - N combustion from fossil fuel and
- Revisit Interval: 2 Days : :
L3_CO) biomass burning
Sentinel-5P TROPOM| . Pixel Size: 11132 meters Emission from power plants,
3 (COPERNICUS/S5P/OFFL/ Tropospheric SO, (mol/m?) N . volcanic activity, and smelting
2 « Revisit Interval: 2 Days . .
[3_502) industries
MODIS MCD19A2 - Pixel Size: 1000 meters Indicator of atmospheric
4 (MODIS/061/MCD19A2_ Aerosol Optical Depth (unitless) . Revisit Iﬁterval' Dail particulate concentration;
GRANULES) Spaly linked to PM2.5 exposure
5 MODIS Terra MOD1 3Q1 NDVI (unitless) - Pixel Size: 250 meters ree;/igiaitr:\(/jeic;otgf;?erbon
(MODIS/061/MOD13Q1) - Revisit Interval: 16 Days g o :
sequestration capacity
e Surface heat intensity;
6 MODIS Terra MODT1A2 Land Surface Temperature (°C) - Pixel Size: 1000 meters associated with urbanization

and land energy balance

WorldPop 100m (WorldPop/
GP/100m/pop)

Population Density (people/
km?2)

- Pixel Size: 92.77 meters
- Revisit Interval: -

Proxy for population exposure
to emissions; measures human
concentration in space

VIIRS Nighttime Lights (NOAA/
8 VIIRS/DNB/MONTHLY_V1/
VCMCFG)

Nighttime Light Radiance (nW/
cm2/sr)

- Pixel Size: 463.83 meters
- Revisit Interval: Monthly

Indicator of anthropogenic
energy use and urban footprint

SRTM DEM (USGS/

SRTMGL1_003) Elevation (meters)

- Pixel Size: 30 meters
- Revisit Interval: -

Terrain factor affecting air flow
and pollutant accumulation in
lowland areas

The normalized raster stack was reshaped into a 3D
tensor £ € R where C is the number of channels (or
features), and H and W are the spatial dimensions of the
input. This tensor was further converted into a 4D tensor
X € RO 1o match the input format required by the
convolutional autoencoder.

Convolutional autoencoder (CAE) modeling

The CAE model was implemented using the PyTorch
library (Costa et al., 2024; Subramanian, 2018). It consisted
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Encoder Layers:

of an encoder that extracted feature representations and a
decoder that reconstructed the input. The architecture was
as follows.

«Conv2D (9 — 32) — BatchNorm — RelLU
- Conv2D (32 — 64) — BatchNorm — Rel.U
- Conv2D (64 — 128) — BatchNorm — RelU
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Decoder Layers:

- ConvTranspose2D (128 — 64) — BatchNorm — RelLU
- ConvTranspose2D (64 — 32) — BatchNorm — RelU
- ConvTranspose2D (32 — 9) — Sigmoid
The model was trained using the Mean Squared Error (MSE)
loss function, defined by Eq. 2:

1 n
E:;Z:(xi_)%i)z

where x, _denotes the original input tensor value at
index /i, and x is the corresponding reconstructed output.
The loss funct|on penalizes reconstruction errors, thereby
guiding the encoder to learn compact yet informative
representations. The Adam optimizer was employed with
a learning rate of 0.001 over 100 training epoch:s.

@

GHG vulnerability index

Upon convergence, the encoder output was extracted
as a latent tensor Z € R7?®" where 128 is the number of
abstract feature channels.To collapse this multidimensional
feature space into a single-band vulnerability index, mean
pooling was applied across all channels (Eq. 3):

1 128

128

where GHG, . is the final greenhouse gas emission
vulnerability index, and Z_is the activation of the ¢ feature
channel. The resulting index was again normalized to the
range [0, 1] to facilitate interpretation. Higher index values
indicate areas with a greater confluence of emission-
related stressors and limited ecological buffering.

For policy-oriented interpretation, the vulnerability
index raster was intersected with Bali's district-level
administrative boundaries. The average vulnerability score
for each administrative unit mm was calculated as Eq. 4:

GHG G)

mdex c

1

|Zm | i EZ

where V_represents the mean vulnerability index of zone m,
calculated by summing all pixel-level vulnerability values v within
the set of spatial units Z , and dividing the result by the total
number of pixels |Z_| within that zone. This procedure translated
fine-resolution pixel values into actionable administrative-level
metrics that can guide localized climate mitigation planning,
land use policy, and emission reduction initiatives.

"o v, (4)

RESULTS
Dataset from Multi-Sensor Satellite

This study utilized nine environmental variables derived
from freely available multi-sensor satellite products. These
included tropospheric gases (NO,, CO, SO, Aerosol Optical
Depth (AOD), Land Surface Temperature (LST), vegetation
indices (NDVI), anthropogenic proxies (Nighttime Light
Radiance and Population Density), and Elevation (Fig. 3). All
raster datasets were resampled to a uniform spatial resolution of
1 km2 and aligned to the WGS 1984 UTM Zone 50S coordinate
system. Each variable was normalized to a [0,1] scale to ensure
consistent input for the convolutional model.

ElevatedvaluesofNO,,CO,50,,and AOD were predominantly
observed in lowland urban regions. These concentrations
reflect intense combustion activity and atmospheric pollutant
accumulation from transportation and industrial sources. Such
hotspots were spatially clustered in urban centers and along
coastal corridors characterized by dense infrastructure and
minimal vegetative cover. Other variables, such as LST, NDVI,
population density, and nighttime lights, mirrored patterns of
urban expansion. Built-up zones displayed higher land surface
temperatures and lower vegetation greenness. Population
and light radiance levels further emphasized anthropogenic
pressure, while elevation helped determine pollutant dispersion
across terrain gradients.

NO; (umol/m?)
| High : 27.66

CO (umol/m?)
[ High : 30157

Eow:227 | Low : 23178

SO, (umolim?) >
m High : 184.68

Low : -62.30

LST (°C)
| High : 35.48

. Low : 15.82

Population

5 NTL (nW/cm?/sr
I igh:124.1 H|(g :126.33 )
Low:0.22 I Low : 0.21

Elevation (m)
High : 2820

“Llow:0

Fig. 3. Environmental variables derived from multi-sensor satellite datasets used in greenhouse gas emission
vulnerability modeling
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Multivariate Relationships and Feature Space Analysis

The correlation matrix (Fig. 4) identified strong
associations among several variables. AOD exhibited high
correlation with CO (r = 0.98), NDVI (r = 0.93), and LST
(r = 0.92), indicating that areas with higher particulate
concentrations often coincide with vegetation decline and
thermal stress. NO, also showed strong correlations with
CO (r = 0.92) and LST (r = 0.88). Additionally, nighttime
light radiance and population density were closely linked
(r = 0.89), reinforcing their combined role as indicators of
urbanization intensity.

Autoencoder Training and Latent Representation

The convolutional autoencoder was trained for 100
epochs using the Adam optimizer with a learning rate of
0.001. Training loss, calculated using mean squared error
(MSE), decreased from 0.195 to 0.0021 (Fig. 5), confirming
effective  convergence. The encoder architecture
featured three convolutional layers integrated with batch
normalization and RelU activations, compressing the
nine-band input into 128 latent features. The decoder then
reconstructed the input using transposed convolutional
layers and activation functions.

The latent feature space effectively captured non-linear
dependencies among input variables, enabling the model
to identify complex spatial patterns of vulnerability. For
example, locations with elevated LST, high NO2, and low
NDVI were consistently abstracted into high-risk zones. The
low reconstruction error confirmed the model’s capability
to retain meaningful spatial representations. A single-band
vulnerability index was generated via mean pooling across
all latent feature channels.

The GHG vulnerability index was classified using the
Jenks Natural Breaks method, which separates values
into statistically distinct classes by minimizing within-
class variance and maximizing variance between classes.
This method is widely recognized for its suitability in
environmental vulnerability assessments (Hou et al,, 2022;
Ke etal, 2023; Rzasa and Ciski, 2021). The spatial distribution
(Fig. 6) showed that very high vulnerability zones were
concentrated in southern Bali, particularly in Denpasar and
coastal Badung, where index values exceeded 0.66. These
areas exhibited characteristics such as dense urbanization,
extensive infrastructure, low vegetation cover, and
intensified human activity. High vulnerability also appeared
in segments of southern Gianyar and Klungkung. Moderate
vulnerability values were observed in transitional inland
regions, while low to very low vulnerability was dominant
in upland and northern areas with greater ecological
stability.

Further analysis of administrative-level units revealed
that 11.31% were categorized as high or very high
vulnerability, 18.72% as moderate, and 69.97% as low to
very low (Fig. 7). These village-level areas represent local
jurisdictions responsible for implementing environmental
policy. The highest vulnerability scores were recorded
in Denpasar, southern Badung, Gilimanuk (Jembrana),
and Singaraja (Buleleng), all of which are recognized for
concentrated tourism and urban development.

DISCUSSION

This study presents a significant advancement in
spatial modeling of greenhouse gas (GHG) emission
vulnerability by integrating a convolutional autoencoder
(CAE) deep learning approach with multi-sensor satellite

Correlation Matrix of Input Variables

S02 POP NTL NO2 NDVI LST co AOD

ELEV

0358

I 1 1 1
AOD co LST NDVI NO2

1.0

0.8

-0.6

-0.4

0.2

0.0
NTL

POP

S02 ELEV

Fig. 4. Correlation matrix of environmental variables used in GHG vulnerability modeling
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Fig. 5. Convergence of training loss in convolutional autoencoder over 100 epochs

Nasorejo

Index ® 0.093 - 0.16
0.17 - 0.22
0.23-0.27
0.28-0.33
0.34-0.4
0.41-0.48
0.49 - 0.58
0.59-0.7
0.71-0.83
0.84 -1

384m

Fig. 6. Spatial distribution and proportional area of GHG emission vulnerability in Bali Province
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Fig. 7. Spatial alignment of GHG vulnerability with administrative boundaries

data.The unsupervised CAE model eliminated the need for
labeled training data, addressing a persistent challenge in
regional-scale environmental assessments where ground-
based measurements are often unavailable. Previous
research has demonstrated that autoencoders are effective
for extracting latent features and reconstructing complex
geospatial patterns in remote sensing applications (X. Han
et al, 2017; Pintelas et al, 2021). In this study, the model
achieved rapid convergence and low reconstruction
loss, affirming its ability to process and learn from high-
dimensional environmental inputs.

The resulting vulnerability index revealed distinct spatial
gradients, with high-risk zones concentrated in southern
coastal areas, such as Denpasar and southern Badung. These
regions are associated with dense urbanization, tourism-
related development, and intensive energy use. These
findings align with global studies showing that atmospheric
pollutants like NO,, CO, and AOD are often concentrated in
urban-industrial zones (Fioletov et al.,, 2025; Wang et al.,, 2025).
The integration of land surface temperature, NDVI, nighttime
lights, and population density further substantiated the
mapping of anthropogenic stressors and ecological
degradation (Liu et al, 2015; McRoberts et al,, 2020).

A key innovation of this research is its use of openly
accessible satellite data and an unsupervised deep learning
approach to generate a replicable and cost-effective GHG
vulnerability mapping framework. Designed to be compatible
with Google Earth Engine and other open-source platforms,
this methodology can be scaled to other regions lacking
the technical capacity or financial means for traditional
emissions monitoring. This approach complements previous
efforts in urban classification and land use mapping, where
autoencoder-based models have demonstrated effective
generalization across geographic contexts (Jiang, 2018).
The framework provides critical support for environmental
planning and is aligned with the objectives of SDG 13 on
climate action.
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This study also acknowledges certain methodological
constraints. The use of 1 km? spatial resolution, while
adequate for regional-scale visualization, may not capture
the fine-scale variability needed for local urban or zoning
applications. Additionally, while MODIS and Sentinel-5P
data offer global consistency, they may lack sensitivity
to site-specific emission patterns or infrastructure
dynamics. To enhance spatial detail and accuracy, future
research should incorporate higher-resolution datasets
such as Sentinel-1 and Sentinel-2 imagery. Furthermore,
integrating thematic variables like road networks, industrial
zones, localized greenhouse gas emissions inventories, and
spatially distributed land use categories would provide a
more comprehensive picture of emissions at finer scales
(Q. Feng et al, 2021). Additional consideration should be
given to incorporating landscape circulatory factors and
pollutant dispersion mechanisms using digital elevation
models and meteorological data that capture prevailing
wind directions. The findings validate the effectiveness
of combining unsupervised deep learning with multi-
sensor remote sensing for emission vulnerability mapping.
The proposed framework is transferable, cost-efficient,
and capable of identifying high-risk areas, particularly
in urbanizing regions. This method serves as a valuable
tool for supporting spatially informed climate mitigation
strategies and advancing global climate governance.

CONCLUSIONS

This study demonstrated a rapid and cost-effective
approach to mapping greenhouse gas (GHG) emission
vulnerability by integrating multi-sensor satellite data
with an unsupervised convolutional autoencoder (CAE)
deep learning model. The framework avoided the need for
field-based training data and extracted 128 latent features
from a range of environmental indicators, enabling robust
spatial characterization of emission risks. The vulnerability
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index showed distinct spatial gradients, with the highest
values concentrated in southern coastal areas experiencing
dense anthropogenic activity, particularly from tourism
and urbanization. These results confirm the effectiveness
of unsupervised deep learning in identifying emission
hotspots and spatial variability in data-limited settings.
Utilizing open-access datasets and scalable computational
methods, the framework offers a replicable solution
for other regions, especially in developing countries
where financial and technical constraints hinder regular
monitoring. It presents a practical tool to support emission
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