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ABSTRACT. Mangrove forests provide critical ecosystem services, including coastal protection, habitat for biodiversity, and 
carbon sequestration. Monitoring these ecosystems is essential for their conservation and sustainable management. This 
study was conducted on Pramuka Island, Indonesia, focusing on high-density Rhizophora stylosa vegetation. Data was 
collected using the DJI M300 RTK UAV equipped with the Zenmuse L1 LiDAR sensor, which generated a Canopy Height 
Model (CHM) and identified treetops. Various kernel sizes (3×3, 5×5, 9×9, 11×11, 21×21) and Local Maximum Filter (LMF) 
window sizes (0.5, 1, 3 meters) were applied to analyze mangrove tree density. The study found that the combination of a 3×3 
kernel with a 0.5 meter window size yielded the best results, achieving the highest F-score and balancing precision and recall. 
However, despite the optimized settings, LiDAR still struggled to detect individual trees in dense mangrove stands, resulting 
in the underestimation of tree counts compared to field data. This highlights the challenges LiDAR faces in dense vegetation 
environments. The study emphasizes the need for optimized kernel and window size configurations for more accurate tree 
detection and calls for further development of LiDAR-based algorithms to improve detection in mangrove forests. Improved 
methodologies will enhance the effectiveness of mangrove forest conservation and management efforts.
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INTRODUCTION

	 Mangrove forests are vital coastal ecosystems that 
provide a wide range of ecological services. They play a 
crucial role in carbon sequestration, capturing CO2 and 
storing it in their biomass and soil (Mumby et al. 2004; Himes-
Cornell 2018; Sharifi 2022). These unique ecosystems act as 
natural barriers against storm surges and coastal erosion, 
safeguarding coastal communities and infrastructure (Sahu 
2015; Giri et al. 2015; Carugati et al. 2018; Giri 2021; Sharifi 
2022). Additionally, mangroves support many marine and 
terrestrial species, making them biodiversity hotspots 
(Mumby et al. 2004; Sahu 2015; Giri 2021). The role of 
mangroves in carbon sequestration is particularly vital in 

mitigating climate change, as they can store up to four 
times more carbon per unit area than terrestrial forests.
	 Monitoring mangrove forests is crucial for their 
conservation and sustainable management. Traditional 
methods of counting mangrove trees using ground surveys 
are labor-intensive, time-consuming, and expensive. These 
methods often require significant human resources, 
making them less feasible for large-scale monitoring (Tran 
et al. 2022). Moreover, the challenging muddy terrain 
and dangerous wildlife in mangrove ecosystems pose 
significant risks to researchers, further complicating ground 
surveys (Rajpar and Zakaria 2014; Saini et al. 2020).
	 Remote sensing techniques have been widely 
employed for mangrove monitoring, with satellite imagery 
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playing a prominent role. Early studies applied terrestrial 
vegetation indices to mangrove environments (Green et al. 
1998), followed by advancements in mangrove classification 
(Lasalle et al., 2023), development of mangrove-specific 
indices (Gupta et al. 2018; Diniz et al. 2019; Prayudha 
et al. 2024), and carbon and biomass estimation from 
satellite data (Suardana et al. 2023). However, satellite-
based methods face limitations in spatial resolution and 
temporal frequency, constraining their ability to provide 
detailed information at the scale of individual trees or 
small clusters. To address these limitations, advancements 
in remote sensing technologies such as unmanned aerial 
vehicles (UAVs) have enabled the collection of high-
resolution imagery and data over targeted areas with 
greater efficiency and reduced cost (Jones et al. 2020; 
Tian et al. 2023; Yin et al. 2024). UAVs reduce the need for 
extensive ground surveys, minimizing risks and logistical 
challenges (Tamimi and Toth 2024), and provide access to 
areas difficult to survey on foot.
	 Among UAV-based technologies, Light Detection and 
Ranging (LiDAR) is particularly promising for mangrove 
monitoring. LiDAR employs laser pulses to measure distances 
between the sensor and objects on the Earth’s surface, 
providing accurate and detailed data on forest structure1. The 
system calculates the time taken for the laser pulses to travel 
to the object and back, using this information to determine 
the distance with high precision. In mangrove forests, LiDAR 
can capture detailed images of canopy height, density, 
and tree distribution, which provide important information 
regarding the forest’s health and composition (Wang et al. 
2019; Yin and Wang 2019; Tian et al. 2023; Yin et al. 2024).
	 LiDAR technology has proven effective in various forest 
monitoring applications. For instance, studies that specifically 
utilize LiDAR for mangrove detection have been conducted 
by various researchers to observe, both to estimate the 
number of trees and tree height (Kasai et al. 2024; Yin et al. 
2024) as well as to calculate mangrove biomass (Fatoyinbo 
et al. 2018; Qiu et al. 2019; Wang et al. 2019; Wang et al. 2022; 
Salum et al. 2020; Tian et al. 2021). However, the application of 
this technology still faces challenges in terms of accuracy and 
efficiency, particularly in areas with high vegetation density, 
where under-detection of trees occurs (Yin and Wang 2019).
	 The Seribu Islands, particularly Pramuka Island, serve as 
the focus of this study due to their characteristic mangrove 
plantations. The area consists primarily of a single species, 
Rhizophora stylosa, planted in clusters through community 
reforestation efforts2. This clustered planting results in 
high tree density, relatively short trees due to nutrient 
competition, and limited electromagnetic wave penetration, 
which complicates data acquisition and individual 
tree discrimination. These conditions provide a unique 
opportunity to evaluate and optimize the effectiveness of 
UAV-based LiDAR for individual tree detection in mangrove 
plantations.
	 Our research is expected to make a contribution to the 
conservation and sustainable management of mangrove 
forests by addressing the challenge of individual tree 
detection in dense mangrove plantations using UAV LiDAR 
data. Specifically, we investigate how the smoothing process 

and detection window size can affect the accuracy of 
individual tree detection in this challenging environment. By 
optimizing these parameters, we seek to enhance detection 
performance, providing more precise data on mangrove 
forest structure to support sustainability and environmental 
management.

MATERIALS AND METHODS

Study Area

	 The data was collected on Pramuka Island, a small island 
in the Seribu Islands, Indonesia (Fig. 1). The observed area 
covers approximately 0.6 ha (6,000 m2), delineated using 
a rectangular boundary. It consists of a single mangrove 
species, Rhizophora stylosa, resulting from community 
planting efforts. The planting technique involved grouping 
seedlings in clusters, leading to a high-density stand of trees3. 
As a result, the trees are relatively short due to competition 
for nutrients. The density of the mangroves also causes low 
penetration of electromagnetic waves, resulting in limited 
information availability for ground data. Furthermore, the 
relatively homogeneous tree height across the plantation 
makes it difficult to discriminate between individual canopies. 
These circumstances are interesting to observe, as they 
provide an opportunity to test the effectiveness of the LiDAR 
sensor applied in the mangrove plantation community.

Data collection

	 Aerial imagery was acquired using the DJI M300 RTK 
UAV equipped with the Zenmuse L1 LiDAR sensor. The 
LiDAR sensor provides high-resolution point cloud data, 
which is crucial for accurately mapping and analyzing forest 
structures. The sensor is capable of a pulse repetition rate of 
up to 240,000 pulses per second, enabling high-density data 
recording. Additionally, the sensor integrates data with Global 
Navigation Satellite System (GNSS) and Inertial Measurement 
Unit (IMU) systems4, providing very high georeferencing 
accuracy and resulting in highly detailed and accurate data. 
Table 1 presents the aircraft specifications and sensor used for 
the acquisition.
	 The data collection was conducted at 10:00 a.m. local 
time under clear sky conditions (minimal cloud cover) with a 
flying altitude of 80 meters. This acquisition process resulted 
in a total of 339,316 points, providing sufficient detail to 
capture the structural complexity of the mangrove canopy. 
Details of the flight settings are provided in Table 2. 
	 Ground truth data were collected through a 10m2 transect, 
encompassing measurements of tree density (including 
trees, saplings, and seedlings), diameter at breast height 
(DBH), average tree height, substrate type, and mangrove 
species composition. GPS was used solely to mark the 
transect location without recording the exact coordinates of 
individual trees. This limitation hindered the direct validation 
of LiDAR data. However, the ground truth data were utilized 
to estimate tree density and average height as a reference 
for evaluating the accuracy of individual tree detection (ITD) 
from the Canopy Height Model (CHM). 
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1Codex Y. (2023). Predicting Species Distributions using High-Resolution Remote Sensing Data: A Comprehensive Review and 
Assessment. Available at: https://codex.yubetsu.com/article/c004a755544b427a942af6ed2580f3f7 [Accessed 10 January 2025]
2Kementerian Lingkungan Hidup dan Kehutanan (KLHK) (2023). Penanaman mangrove dengan sistem rumpun berjarak di Kepulauan 
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Data pre-processing

	 Fig. 2 illustrates the entire process conducted in this 
study. The captured LiDAR data was initially processed 
using WebODM, an open-source photogrammetry and 3D 
reconstruction tool, to generate the 3D point cloud data 
(LAS file). Processing began with the lidR package (Roussel 
and Auty 2024) in an R environment5.
	 The LAS file was first converted into a Digital Surface 
Model (DSM) using the Point-to-Raster (P2R) tool. This step 
involves transforming the LiDAR points into a 2D raster grid, 
where each cell (with a pixel size of 0.1 meter) represents 

the maximum elevation from the points within the cell. The 
resulting DSM captures the elevation, both terrain and all 
above-ground objects, such as vegetation and structures.
	 To generate a Digital Terrain Model (DTM) a more 
detailed workflow was applied. The original point cloud 
was then classified, separating bare earth from vegetation 
and other non-ground features. The ground-classified 
points were then interpolated using the Inverse Distance 
Weighting (IDW) method. This interpolation imparts more 
weight to nearby ground points, ensuring a smooth and 
accurate terrain surface (Mohan et al. 2021). 

5R Core Team (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 
Available at: https://www.R-project.org/. [Accessed: 10 August 2024]

Fig. 1. The study site is located on Pramuka Island. The red box indicates the selected area for this study

Table 1. Aircraft and sensor specifications1

DJI M300 RTK (Aircraft) DJI Zenmuse L1 (Camera)

RTK Positioning Accuracy
RTK enabled and fixed:

1 cm + 1 ppm (horizontal)
1.5 cm + 1 ppm (vertical)

Point Rate
Single return: 2,400,000 pts/s

Multiple returns: 480,000 pts/s

Hovering Accuracy (P-mode with GPS)
Vertical:

±0.1 m (Vision system enabled)
±0.5 m (GPS enabled)
±0.1 m (RTK enabled)

Horizontal:
±0.3 m (Vision system enabled)

±1.5 m (GPS enabled)
±0.1 m (RTK enabled)

System Accuracy
Horizontal: 10 cm @ 50 m

Vertical: 5 cm @ 50 cm

Operating Frequency
2.4000 - 2.4835 GHz

5.725 - 5.850 GHz

Field of View (FOV)
Repetitive line scan: 70.4° × 4.5°

Non-repetitive line scan: 70.4° × 77.2°

Max Wind Resistance
12 m/s

Scan Modes
Repetitive line scan mode

Non-repetitive petal scan mode

GNSS
GPS + GLONASS + BeiDou + Galileo

Maximum Return Supported: 3
Ranging Accuracy: 3 cm @ 100 m
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	 Following this, the CHM was produced by normalizing 
DSM with DTM, specifically by subtracting the DSM 
with DTM (Pertille et al. 2024). This process removes the 
ground elevation from the DSM, leaving only the height 
of vegetation or other objects above the ground. Once 
the basic data was prepared, the next step was to detect 
individual trees.

Individual tree detection

Filtering treatment

	 In tree detection using CHM data, the process typically 
involves an initial smoothing stage to reduce noise and 
minor irrelevant variations in the canopy height data. 
This reduction in noise results in more representative and 
accurate peak detection. Smoothing also clarifies treetops 
by diminishing minor variations, making the highest points 
that represent the treetops more prominent and distinct. 
Additionally, smoothing helps eliminate minor anomalies or 
outliers that may not be part of the tree structure, ensuring 
that irrelevant data does not disrupt peak detection (Pertille 
et al. 2024).
	 In this study, the Gaussian method was applied as a 
filtering treatment. The application of Gaussian filtering 
plays a crucial role in refining the CHM and improving the 
accuracy of individual tree detection. In this study, we tested 
a range of square-shaped kernel sizes, including unfiltered 
CHM and 3×3, 5×5, 9×9, 11×11, and 21×21 kernel sizes. 
These filters were used to smooth the CHM and remove 
noise while retaining critical information for detecting 
individual mangrove trees (Pertille et al. 2024).

Local maxima method and window size treatment

	 A relatively straightforward method for detecting 
individual trees on the LiDAR-derived CHM is the Local Maxima 
(LM) algorithm. The LM method assumes that local height 
maxima in the CHM represent treetops (Korpela 2006). This 
method is relatively simple and uses two main parameters: 
a smoothing parameter, often referred to as the smoothing 
window size (SWS), and a fixed window size (FWS) for tree 
detection (Silva et al. 2016). As the FWS increases, the number 
of detected trees decreases (Mohan et al. 2017). Applying 
smoothing filters helps eliminate invalid local maxima caused 
by significant, spreading tree branches, thereby reducing 
the number of detected local maxima and improving the 
algorithm’s accuracy (Lindberg and Hollaus 2012).
	 In this study, we tested various combinations of CHM 
smoothing kernel sizes and LMF window sizes to evaluate 
their effect on individual tree detection performance. The 
smoothing kernel sizes included unfiltered, 3×3, 5×5, 9×9, 
11×11, and 21×21, each applied with LMF window sizes of 0.5 
m, 1 m, and 3 m.

F-score calculation

	 To evaluate the accuracy of individual tree detection, this 
study employed the F-score (F1) as a performance metric. The 
F-score is the harmonic mean of precision and recall, which 
balances the trade-off between detecting true positives (TP) 
while minimizing false positives (FP) and false negatives (FN) 
(Power 2011). This metric has also been widely adopted in 
similar studies related to UAV-based tree detection (Mohan et 
al. 2017; Ahmadi et al. 2022)
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Table 2. General flight setting

Parameters Setting

Fly height 80 m

Drone speed (while recording) 8 m/s

Side overlap 50%

Fig. 2. Workflow of LiDAR data pre-processing and local-maxima-based individual tree detection (ITD) methodology. (A) 
LiDAR data pre-processing steps include filtering, normalization, point classification, noise removal, and data fusion to 
prepare the data for analysis. (B) Local-maxima-based individual tree detection involves the generation of the Canopy 

Height Model (CHM), followed by the detection of local maxima to identify tree tops and subsequent clustering to 
delineate individual trees
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Fig. 3. 3D RGB LiDAR data of mangrove in Pramuka Island

	 Given that UAV-based tree detection can result in both 
overestimation (FP > 0) and underestimation (FN < 0), this 
metric provides a comprehensive measure of detection 
effectiveness. The precision (P), recall (R), and F-score (F1) 
were calculated using the following Eqs. 1-3 (Power 2011):

	 True positives (TP) represent the number of trees 
detected by the UAV that match the expected tree count 
in the field. False negatives (FN) refer to trees that were 
present in the field but were not detected by the UAV. On 
the other hand, false positives (FP) indicate trees that were 
counted by the UAV but do not correspond to trees in the 
field. These definitions help evaluate the accuracy of the 
UAV-based tree detection system by assessing how well the 
detected trees align with the actual tree count in the field. 
Since ground-truth data on tree positions were unavailable, 
TP, FP, and FN were estimated based on the total number of 
trees recorded in the field rather than a tree-to-tree spatial 
validation. This is a clear limitation of the study, as the lack 
of spatial correspondence between UAV-detected trees 
and field-observed trees prevents the accurate matching 
of individual trees. As an alternative, TP, FP, and FN were 
approximated using total tree counts per plot. A detection 
was considered a true positive if it occurred within the 
plot area and the total number of UAV-detected trees did 
not exceed the field count. In underestimation cases (UAV 
count < field count), all detected trees were assumed to be 
true positives, and FP was set to zero. In contrast, if the UAV 
count exceeded the field count, the surplus detections 
were considered false positives. While this method does 
not allow spatially explicit matching between detected and 
actual trees, it does not replace precise spatial validation 
and should be interpreted accordingly.

RESULT

	 The UAV-acquired imagery was precisely cropped at 
the observation site to obtain more accurate and reliable 
data. This cropping process was designed to exclude non-
target objects such as buildings, water bodies, or non-
mangrove vegetation. By eliminating these elements, the 
precision of the CHM information was enhanced, resulting 
in cleaner data with minimal external interference. This 
process ensures that the analytical results have a high 
level of accuracy and are relatively free from errors, thereby 
improving the reliability of the data for this study. Fig. 3 

shows the results of the 3D point cloud cropped specifically 
for the selected area.

CHM Normalization

	 The DSM showed elevation values ranging from 25.6 to 
34.10 meters, capturing both ground and above-ground 
features such as vegetation and structures. In contrast, 
the DTM exhibited a narrower elevation range of 25.6 to 
26.853 meters, indicating minimal elevation difference 
across the terrain. This relatively flat ground surface is 
consistent with typical mangrove habitats. However, in 
several areas, the DTM failed to fully represent the terrain 
due to limited ground returns. These gaps are not visually 
apparent in DTM figures but should be taken into account 
when interpreting the CHM result. Despite the limitation, 
the CHM was successfully generated by normalizing DSM 
with DTM (Gomroki et al. 2017), producing a height range 
from -0.24 to 7.59 meters. Fig. 4 illustrates the difference in 
height patterns before and after normalization.

Effects of Kernel and Window Size on Tree Detection 
Accuracy

	 The unfiltered CHM produced a noisy image with 
numerous local maxima that did not correspond to actual 
tree tops, primarily due to variations in the canopy structure, 
such as large branches or small gaps. This excessive noise 
compromised tree detection accuracy using the Local 
Maxima (LM) algorithm (Lisiewicz et al. 2022). In contrast, 
the 3×3 kernel applied a light smoothing filter, effectively 
reducing noise while preserving important canopy details. 
It eliminated minor irregularities and allowed for more 
accurate tree detection, especially in dense and uniform 
canopy structures. Visually, the CHM with a 3×3 kernel 
would show a more controlled and smoother image, with 
less color variation between areas, preserving the essential 
tree structures while softening the noise (Fig. 5). 
	 As the kernel size increased to 5×5, 9×9, 11×11, 
21×21, the CHM became progressively smoother. The 5×5 
kernel removed additional noise and minor fluctuations, 
providing a balance between smoothing and preserving 
canopy details. However, larger kernel sizes like 9×9, 
11×11, and 21×21 introduced excessive smoothing, 
which led to the merging of nearby treetops and a 
significant underestimation of the number of detected 
trees. The 21×21 kernel, in particular, overgeneralized the 
canopy, removing critical details about individual trees 
and rendering it unsuitable for dense mangrove forests 
(Tanhuanpaa et al. 2019; Quan et al. 2021).
	 Various combinations of kernel sizes (unfiltered, 
3×3, 5×5, 9×9, 11×11, 21×21) and Local Maximum Filter 
(LMF) window sizes (0.5, 1, and 3 meters) were applied to 
analyze mangrove tree density (Fig. 6). The results indicate 
that smaller window sizes detect more trees due to their 

(1)

(2)

(3)
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Fig. 4. Visualization of data at different stages: A) Digital Surface Model (DSM) before normalization; 
B) Digital Terrain Model (DTM); and C) Canopy Height Model (CHM) after normalization – in meter

Fig. 5. Gaussian filtering for different pixel kernel – in meter
sensitivity to local variations. However, these findings may 
lead to overestimation in dense mangrove stands, where 
the algorithm may misidentify non-tree objects as treetops 
(Yan et al. 2024).
	 On the other hand, larger kernels and window sizes 
smooth out local variations, producing more refined 
estimates by reducing over-detection errors. While such 
practices may reduce the risk of excessive detection 
errors, using large kernels and window sizes can obscure 
important local details and lead to underestimating the 
number of trees (Balsi et al. 2018).
	 Given the limited field data obtained specifically from 
Pramuka Island, we attempted to broaden the scope of 
analysis by incorporating field data from several observation 

points on other islands within the Seribu Islands (Table 
3). This approach is feasible due to the homogeneity of 
mangrove ecosystems across the Seribu Islands, where 
most of the mangroves are cultivated, predominantly 
consisting of Rhizophora mucronata and Rhizophora 
stylosa, and planted using a clustered spacing system6. This 
uniformity results in relatively similar structural patterns 
across the mangrove areas in the region.
	 The detection results show that using a window size 
of 0.5 meters, supported by kernels 3×3, 5×5, and 9×9, 
provides more accurate detection of mangroves, aligning 
with the average number of tree-phase mangroves found 
in the Seribu Islands (Fig. 7). This smaller window size is 
particularly effective in dense mangrove conditions, where 

6Kementerian Lingkungan Hidup dan Kehutanan (KLHK) (2023). Penanaman mangrove dengan sistem rumpun berjarak di Kepulauan 
Seribu. Available at: https://itjen.menlhk.go.id/berita/penanaman-mangrove-dengan-sistem-rumpun-berjarak-di-kepulauan-seribu 
[Accessed 10 January 2025].
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it can detect individual trees more accurately, especially 
in high-density areas (Kim et al., 2020). In contrast, using 
larger window sizes, such as 1 and 3 meters, tends to 
result in underestimates, except for the 1-meter window 
size combined with the 3×3 kernel, which aligns well 
with field data. Larger window sizes often lead to over 
smoothing, which hinders the detection of smaller or 
hidden trees beneath larger canopies (Balsi et al., 2018). 
Additionally, unfiltered data combined with a 0.5×0.5 
meter window size leads to an overestimate, as unfiltered 
data does not distinguish well between mangrove trees 
and other objects, resulting in more trees being detected 
than are actually present. Despite these configurations 
yielding better results, all detection outcomes (except for 

the unfiltered configuration with kernel 0.5×0.5) are still 
underestimated compared to mangrove plots at specific 
locations on Pramuka Island. This highlights that LiDAR 
still struggles to distinguish individual mangrove trees 
with homogeneous heights, as this condition creates a 
bias where crowns overlap, making it difficult to clearly 
define the boundaries between individual trees (Galvincio 
& Popescu, 2016).
	 The analysis revealed that mangrove plots that 
had reached the tree growth stage—where tree-stage 
mangroves are the only ones detectable via drone imagery, 
unlike saplings and seedlings, which are often obscured by 
the tree canopy—contained between 19 and 63 individuals 
per 100 m2. Additionally, the areas observed by drone 

Fig. 6. Tree detection using the Local Maxima function with different window sizes for each kernel. In every kernel, 
a window size of 1 meter provides more detailed and numerous tree point information compared to larger window sizes 

(3 and 5 meters)
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Fig. 7. Treetop Detection Density (ind./100m2) Across Different Kernel Sizes and Window Sizes Compared to Field Data 
(Pramuka 1: 63 ind/100m2)

Table 3. Field Data of 10 mangrove plot points in the Seribu Islands, including substrate type, trees, saplings, and 
seedlings measurements

Plot Code Lat (°) Lon (°) Substrate Type Trees (ind./plot) Saplings (ind./plot) Seedlings (ind./plot)

Panggang 1 -5.74243 106.6041 Sandy mud 57 56 0

Panggang 2 -5.74196 106.6039 Sandy mud 21 96 4

Kelapa 1 -5.64895 106.5671 Sandy mud 0 390 0

Kelapa 2 -5.6568 106.5639 Sandy mud 25 216 0

Kelapa-Harapan -5.65228 106.5743 Muddy sand 9 229 0

Harapan -5.65379 106.5808 Muddy sand 9 243 0

Pari -5.85288 106.6208 Sandy mud 43 4 10

Pramuka 1 -5.74391 106.6162 Sandy mud 63 65 2

Pramuka 2 -5.74527 106.615 Sandy mud 61 66 0

Pramuka 3 -5.74874 106.6116 Sandy mud 6 209 0

specifically consisted of tree-stage mangroves, as this is the 
only stage where accurate observation and counting from 
aerial imagery are feasible, given the limitations of drone 
detection for saplings and seedlings (Hsu et al., 2020; Bakar 
et al., 2024).
	 Conversely, plots containing mangroves at the seedling 
stage exhibited much higher densities, with over 200 
individuals per 100 m2. This is due to the clustered spacing 
planting method7, which supports mangrove growth up to 
the seedling stage. 

Evaluation of F-score in UAV-based tree detection

	 This study applied various combinations of smoothing 
kernel sizes and local maxima filtering (LMF) window sizes 
to optimize individual tree detection from CHM (Table 
4). The F-score was calculated for each combination 
to determine which method yielded the best balance 
between minimizing false positives (FP) and maximizing 
true positives (TP) while reducing false negatives (FN). 

A higher F-score indicates that the method correctly 
identifies trees and minimizes errors.
	 The highest F-score was achieved using the Kernel 
3×3/WS 0.5 method (F1-score = 0.854), which provided 
the best trade-off between precision and recall. This 
method detected 47 of the 63 trees recorded in the field, 
resulting in a relatively high recall (0.746). This combination 
effectively minimized FN, making it the most balanced 
approach in the study. In contrast, methods with larger 
smoothing kernels and window sizes (e.g., Kernel 9×9/WS 
3, Kernel 21×21/WS 3) had extremely low recall (0.031–
0.047), leading to F-scores below 0.1. These methods failed 
to detect a significant portion of the trees due to excessive 
smoothing, which merged adjacent treetops and resulted 
in severe under detection.

DISCUSSION

	 This study aimed to detect and analyze individual 
mangrove trees using LiDAR-derived Canopy Height 

7Kementerian Lingkungan Hidup dan Kehutanan (KLHK) (2023). Penanaman mangrove dengan sistem rumpun berjarak di Kepulauan 
Seribu. Available at: https://itjen.menlhk.go.id/berita/penanaman-mangrove-dengan-sistem-rumpun-berjarak-di-kepulauan-seribu 
[Accessed 10 January 2025].
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Model (CHM) in a dense mangrove forest. The challenge 
of accurately extracting tree heights and positions 
in such complex environments is well-known due to 
structural variability and occlusions in the canopy. LiDAR 
data processing, including Digital Terrain Model (DTM) 
generation and smoothing of CHM data, plays a critical 
role in minimizing errors and improving tree detection 
accuracy.
	 One significant limitation encountered was the dense 
mangrove canopy, which likely obstructed the LiDAR 
sensor’s ability to penetrate through to the ground, 
resulting in interpolation gaps and uneven terrain surfaces 
(Wannasiri et al. 2013; Balsi et al. 2018; Yin & Wang 2019; 
Li et al. 2023; Wijaya et al. 2023). This limited ground 
return coverage can affect the accuracy and reliability of 
the DTM, which in turn impacts the derived CHM and its 
interpretation. Although these interpolation gaps are not 
visually apparent in the DTM figures, they may lead to 
underestimation or spatial inconsistency in canopy height 
measurements. Future studies could consider integrating 
additional ground-based surveys or complementary 
remote sensing data to improve terrain representation in 
dense mangrove environments.
	 The unfiltered CHM’s noise was mainly caused by 
structural variations in the canopy, such as large branches 
or small gaps, leading to numerous false local maxima and 
reduced tree detection accuracy with the Local Maxima 
algorithm (Lisiewicz et al. 2022). Applying a 3×3 Gaussian 
kernel offered light smoothing, which effectively reduced 
noise while preserving essential canopy features, thus 
improving detection in dense mangrove canopies.
	 Increasing kernel sizes progressively smoothed 
the CHM but introduced trade-offs. The 5×5 kernel 

balanced noise reduction and detail preservation, while 
larger kernels (9×9 and above) excessively smoothed 
the canopy, causing merging of adjacent treetops and 
underestimation of tree counts. The 21×21 kernel was 
particularly overgeneralizing, losing vital individual tree 
information and making it unsuitable for dense mangrove 
forests. This excessive smoothing reduces color and height 
variation, impairing the ability to distinguish individual 
trees in complex environments (Tanhuanpaa et al. 2019; 
Quan et al. 2021).
	 Choosing an appropriate kernel size is therefore critical 
to optimize the balance between noise suppression and 
canopy detail preservation in mangrove tree detection. 
These findings indicate a significant trade-off in selecting 
kernel and window sizes for optimal tree detection. Smaller 
LMF window sizes, while sensitive to minor variations, may 
not be appropriate in dense mangrove conditions, as 
they increase the likelihood of detecting false positives. 
Conversely, larger kernels and window sizes improve 
robustness against noise but risk underestimating true tree 
counts by merging individual tree signals and suppressing 
fine-scale canopy variation. While the 3×3 kernel and 
0.5-meter window size yielded the best results in this study, 
this outcome should be interpreted with caution. The 
performance of these parameters is strongly influenced 
by the CHM pixel resolution (10 cm) and the relatively 
high density and structural uniformity of mangrove trees 
in the Seribu Islands. Parameter effectiveness may vary in 
different contexts, such as areas with lower tree density, 
heterogeneous canopy structures, or different CHM 
resolutions. Therefore, selecting kernel and window sizes 
should be context-specific, reflecting both the spatial 
resolution and vegetation characteristics of the study area.

Table 4. F1-score for all of the configuration

Method UAV Count TP FP FN Precision Recall F1-Score

Kernel 3×3/WS 0.5 47 47 0 16 1 0.746 0.8545

Unfiltered/WS 0.5 101 63 38 0 0.6238 1 0.7683

Kernel 5×5/WS 0.5 34 34 0 29 1 0.54 0.701

Kernel 9x9/WS 0.5 23 23 0 40 1 0.365 0.5349

Unfiltered/WS 1 21 21 0 42 1 0.333 0.5

Kernel 11×11/WS 0.5 19 19 0 44 1 0.302 0.4634

Kernel 3×3/WS 1 17 17 0 46 1 0.27 0.425

Kernel 5×5/WS 1 17 17 0 46 1 0.27 0.425

Kernel 9×9/WS 1 10 10 0 53 1 0.159 0.2739

Kernel 11×11/WS 1 7 7 0 56 1 0.111 0.2

Kernel 21×21/WS 0.5 7 7 0 56 1 0.111 0.2

Unfiltered/WS 3 3 3 0 60 1 0.048 0.0909

Kernel 3×3/WS 3 3 3 0 60 1 0.048 0.0909

Kernel 5×5/WS 3 3 3 0 60 1 0.048 0.0909

Kernel 9×9/WS 3 2 2 0 61 1 0.032 0.0615

Kernel 11×11/WS 3 2 2 0 61 1 0.032 0.0615

Kernel 21×21/WS 1 2 2 0 61 1 0.032 0.0615

Kernel 21×21/WS 3 1 1 0 62 1 0.016 0.0313
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	 Due to the lack of spatial ground-truth data containing 
exact tree positions, the F-score calculation in this study 
was based solely on the total number of detected trees 
rather than a one-to-one comparison of detected and 
actual trees. As a result, precision remained at 1.0 for all 
methods except Unfiltered/WS 0.5 since false positives (FP) 
were assumed to be zero in all underestimated cases. This 
means that every detected tree was considered correct 
despite the potential presence of undetected trees (false 
negatives, FN). Consequently, although precision appears 
perfect, recall remains significantly lower in most cases, 
leading to low F-scores for many methods. This highlights 
the limitations of relying solely on precision when 
evaluating detection performance in an underestimation 
scenario.

CONCLUSION

	 This study successfully demonstrated the potential of 
UAV LiDAR technology in monitoring mangrove forests. 
The optimum configuration, using a 3×3 kernel with a 0.5 
meter window size, achieved the best balance between 
detection accuracy and noise reduction. These findings 
highlight that parameter tuning is critical to optimize 

detection performance, especially in complex and dense 
vegetation environments like mangroves. Despite its 
potential, LiDAR’s limited ability to penetrate dense 
vegetation is a significant challenge. Thick foliage and 
branches obstruct the sensor’s signal, making it difficult 
for the signal to reach the ground, which in turn limits the 
availability of accurate ground elevation. The selection of 
kernel and window sizes plays a key role in tree detection 
accuracy. Smaller window sizes tend to capture more trees 
by focusing on finer local details. However, smaller windows 
might lead to overcounting trees or misidentifying non-
tree objects as treetops in areas with dense vegetation. 
On the other hand, using larger kernels and window sizes 
can reduce the level of detail and smooth the data, which 
may lead to a loss of local variations and a decrease in the 
accuracy of tree detection.
	 Future research should to refine measurement 
parameters to enhance tree detection in dense mangrove 
forests. It is also critical to develop more advanced 
algorithms that consider the specific conditions of the 
study area. By integrating LiDAR data with other monitoring 
methods, the overall quality and accuracy of the data can 
be improved, further supporting the conservation and 
management of mangrove forests.
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