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ABSTRACT. Mangrove forests provide critical ecosystem services, including coastal protection, habitat for biodiversity, and
carbon sequestration. Monitoring these ecosystems is essential for their conservation and sustainable management. This
study was conducted on Pramuka Island, Indonesia, focusing on high-density Rhizophora stylosa vegetation. Data was
collected using the DJI M300 RTK UAV equipped with the Zenmuse L1 LiDAR sensor, which generated a Canopy Height
Model (CHM) and identified treetops. Various kernel sizes (3x3, 5x5, 9x9, 11x11, 21x21) and Local Maximum Filter (LMF)
window sizes (0.5, 1, 3 meters) were applied to analyze mangrove tree density. The study found that the combination of a 3x3
kernel with a 0.5 meter window size yielded the best results, achieving the highest F-score and balancing precision and recall.
However, despite the optimized settings, LIDAR still struggled to detect individual trees in dense mangrove stands, resulting
in the underestimation of tree counts compared to field data. This highlights the challenges LiDAR faces in dense vegetation
environments. The study emphasizes the need for optimized kernel and window size configurations for more accurate tree
detection and calls for further development of LiDAR-based algorithms to improve detection in mangrove forests. Improved
methodologies will enhance the effectiveness of mangrove forest conservation and management efforts.
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INTRODUCTION mitigating climate change, as they can store up to four
times more carbon per unit area than terrestrial forests.
Mangrove forests are vital coastal ecosystems that Monitoring mangrove forests is crucial for their

provide a wide range of ecological services. They play a  conservation and sustainable management. Traditional
crucial role in carbon sequestration, capturing CO, and methods of counting mangrove trees using ground surveys
storingitin theirbiomassand soil (Mumby et al. 2004; Himes- are labor-intensive, time-consuming, and expensive. These
Cornell 2018; Sharifi 2022). These unique ecosystems actas ~ methods often require significant human resources,
natural barriers against storm surges and coastal erosion,  making them less feasible for large-scale monitoring (Tran
safeqguarding coastal communities and infrastructure (Sahu et al. 2022). Moreover, the challenging muddy terrain
2015; Giri et al. 2015; Carugati et al. 2018; Giri 2021; Sharifi and dangerous wildlife in mangrove ecosystems pose
2022). Additionally, mangroves support many marine and significant risks to researchers, further complicating ground
terrestrial species, making them biodiversity hotspots  surveys (Rajpar and Zakaria 2014; Saini et al. 2020).

(Mumby et al. 2004; Sahu 2015; Giri 2021). The role of Remote sensing techniques have been widely
mangroves in carbon sequestration is particularly vital in ~ employed for mangrove monitoring, with satellite imagery
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playing a prominent role. Early studies applied terrestrial
vegetation indices to mangrove environments (Green et al.
1998), followed by advancementsin mangrove classification
(Lasalle et al, 2023), development of mangrove-specific
indices (Gupta et al. 2018; Diniz et al. 2019; Prayudha
et al. 2024), and carbon and biomass estimation from
satellite data (Suardana et al. 2023). However, satellite-
based methods face limitations in spatial resolution and
temporal frequency, constraining their ability to provide
detailed information at the scale of individual trees or
small clusters. To address these limitations, advancements
in remote sensing technologies such as unmanned aerial
vehicles (UAVs) have enabled the collection of high-
resolution imagery and data over targeted areas with
greater efficiency and reduced cost (Jones et al. 2020;
Tian et al. 2023; Yin et al. 2024). UAVs reduce the need for
extensive ground surveys, minimizing risks and logistical
challenges (Tamimi and Toth 2024), and provide access to
areas difficult to survey on foot.

Among UAV-based technologies, Light Detection and
Ranging (LIDAR) is particularly promising for mangrove
monitoring. LIDAR employs laser pulses to measure distances
between the sensor and objects on the Earth's surface,
providing accurate and detailed data on forest structure'. The
system calculates the time taken for the laser pulses to travel
to the object and back, using this information to determine
the distance with high precision. In mangrove forests, LiDAR
can capture detailed images of canopy height, density,
and tree distribution, which provide important information
regarding the forest’s health and composition (Wang et al.
2019;Yin and Wang 2019; Tian et al. 2023; Yin et al. 2024).

LIDAR technology has proven effective in various forest
monitoring applications. For instance, studies that specifically
utilize LIDAR for mangrove detection have been conducted
by various researchers to observe, both to estimate the
number of trees and tree height (Kasai et al. 2024; Yin et al.
2024) as well as to calculate mangrove biomass (Fatoyinbo
etal. 2018; Qiu et al. 2019; Wang et al. 2019; Wang et al. 2022;
Salum et al. 2020; Tian et al. 2021). However, the application of
this technology still faces challenges in terms of accuracy and
efficiency, particularly in areas with high vegetation density,
where under-detection of trees occurs (Yin and Wang 2019).

The Seribu Islands, particularly Pramuka Island, serve as
the focus of this study due to their characteristic mangrove
plantations. The area consists primarily of a single species,
Rhizophora stylosa, planted in clusters through community
reforestation efforts?. This clustered planting results in
high tree density, relatively short trees due to nutrient
competition, and limited electromagnetic wave penetration,
which  complicates data acquisition and individual
tree discrimination. These conditions provide a unique
opportunity to evaluate and optimize the effectiveness of
UAV-based LIiDAR for individual tree detection in mangrove
plantations.

Our research is expected to make a contribution to the
conservation and sustainable management of mangrove
forests by addressing the challenge of individual tree
detection in dense mangrove plantations using UAV LiDAR
data. Specifically, we investigate how the smoothing process

and detection window size can affect the accuracy of
individual tree detection in this challenging environment. By
optimizing these parameters, we seek to enhance detection
performance, providing more precise data on mangrove
forest structure to support sustainability and environmental
management.

MATERIALS AND METHODS
Study Area

The data was collected on Pramuka Island, a small island
in the Seribu Islands, Indonesia (Fig. 1). The observed area
covers approximately 0.6 ha (6,000 m?), delineated using
a rectangular boundary. It consists of a single mangrove
species, Rhizophora stylosa, resulting from community
planting efforts. The planting technique involved grouping
seedlings in clusters, leading to a high-density stand of trees?.
As a result, the trees are relatively short due to competition
for nutrients. The density of the mangroves also causes low
penetration of electromagnetic waves, resulting in limited
information availability for ground data. Furthermore, the
relatively homogeneous tree height across the plantation
makes it difficult to discriminate between individual canopies.
These circumstances are interesting to observe, as they
provide an opportunity to test the effectiveness of the LiDAR
sensor applied in the mangrove plantation community.

Data collection

Aerial imagery was acquired using the DJI M300 RTK
UAV equipped with the Zenmuse L1 LiDAR sensor. The
LIDAR sensor provides high-resolution point cloud data,
which is crucial for accurately mapping and analyzing forest
structures. The sensor is capable of a pulse repetition rate of
up to 240,000 pulses per second, enabling high-density data
recording. Additionally, the sensor integrates data with Global
Navigation Satellite System (GNSS) and Inertial Measurement
Unit (IMU) systems*, providing very high georeferencing
accuracy and resulting in highly detailed and accurate data.
Table 1 presents the aircraft specifications and sensor used for
the acquisition.

The data collection was conducted at 10:00 a.m. local
time under clear sky conditions (minimal cloud cover) with a
flying altitude of 80 meters. This acquisition process resulted
in a total of 339,316 points, providing sufficient detail to
capture the structural complexity of the mangrove canopy.
Details of the flight settings are provided in Table 2.

Ground truth data were collected through a 10m?transect,
encompassing measurements of tree density (including
trees, saplings, and seedlings), diameter at breast height
(DBH), average tree height, substrate type, and mangrove
species composition. GPS was used solely to mark the
transect location without recording the exact coordinates of
individual trees. This limitation hindered the direct validation
of LiDAR data. However, the ground truth data were utilized
to estimate tree density and average height as a reference
for evaluating the accuracy of individual tree detection (ITD)
from the Canopy Height Model (CHM).

'Codex Y. (2023). Predicting Species Distributions using High-Resolution Remote Sensing Data: A Comprehensive Review and
Assessment. Available at: https://codex.yubetsu.com/article/c004a755544b427a942af6ed2580f3f7 [Accessed 10 January 2025]
’Kementerian Lingkungan Hidup dan Kehutanan (KLHK) (2023). Penanaman mangrove dengan sistem rumpun berjarak di Kepulauan
Seribu. Available at: https://itjen.menlhk.go.id/berita/penanaman-mangrove-dengan-sistem-rumpun-berjarak-di-kepulauan-seribu

[Accessed 10 January 2025]

*Kementerian Lingkungan Hidup dan Kehutanan (KLHK) (2023). Penanaman mangrove dengan sistem rumpun berjarak di Kepulauan
Seribu. Available at: https://itien.menlhk.go.id/berita/penanaman-mangrove-dengan-sistem-rumpun-berjarak-di-kepulauan-seribu

[Accessed 10 January 2025].

‘DJI (2024). Zenmuse L1 specifications. Available at: https://enterprise.dji.com/zenmuse-11/specs [Accessed: 6 August 2024].
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Fig. 1. The study site is located on Pramuka Island. The red box indicates the selected area for this study

Table 1. Aircraft and sensor specifications’

DJI M300 RTK (Aircraft)

DJI Zenmuse L1 (Camera)

RTK Positioning Accuracy
RTK enabled and fixed:
Tcm+ 1 ppm (horizontal)
1.5cm + 1 ppm (vertical)

Point Rate
Single return: 2,400,000 pts/s
Multiple returns: 480,000 pts/s

Hovering Accuracy (P-mode with GPS)
Vertical:

+0.1 m (Vision system enabled)
+0.5 m (GPS enabled)
+0.1 m (RTK enabled)

Horizontal:

+0.3 m (Vision system enabled)
+1.5 m (GPS enabled)
+0.1 m (RTK enabled)

System Accuracy
Horizontal: 10 cn @ 50 m
Vertical: 5cm @ 50 cm

Operating Frequency
24000 - 2.4835 GHz
5.725-5.850 GHz

Field of View (FOV)
Repetitive line scan: 70.4° x 4.5°
Non-repetitive line scan: 70.4° x 77.2°

Max Wind Resistance
12m/s

Scan Modes
Repetitive line scan mode
Non-repetitive petal scan mode

GNSS
GPS + GLONASS + BeiDou + Galileo

Maximum Return Supported: 3
Ranging Accuracy:3cm @ 100 m

Data pre-processing

Fig. 2 illustrates the entire process conducted in this
study. The captured LiDAR data was initially processed
using WebODM, an open-source photogrammetry and 3D
reconstruction tool, to generate the 3D point cloud data
(LAS file). Processing began with the lidR package (Roussel
and Auty 2024) in an R environment®.

The LAS file was first converted into a Digital Surface
Model (DSM) using the Point-to-Raster (P2R) tool. This step
involves transforming the LIDAR points into a 2D raster grid,
where each cell (with a pixel size of 0.1 meter) represents

the maximum elevation from the points within the cell. The
resulting DSM captures the elevation, both terrain and all
above-ground objects, such as vegetation and structures.

To generate a Digital Terrain Model (DTM) a more
detailed workflow was applied. The original point cloud
was then classified, separating bare earth from vegetation
and other non-ground features. The ground-classified
points were then interpolated using the Inverse Distance
Weighting (IDW) method. This interpolation imparts more
weight to nearby ground points, ensuring a smooth and
accurate terrain surface (Mohan et al. 2021).

°R Core Team (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Available at: https://www.R-project.org/. [Accessed: 10 August 2024]
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Table 2. General flight setting

Parameters Setting

Fly height 80m

Drone speed (while recording) 8m/s
Side overlap 50%

Following this, the CHM was produced by normalizing
DSM  with DTM, specifically by subtracting the DSM
with DTM (Pertille et al. 2024). This process removes the
ground elevation from the DSM, leaving only the height
of vegetation or other objects above the ground. Once
the basic data was prepared, the next step was to detect
individual trees.

Individual tree detection

Filtering treatment

In tree detection using CHM data, the process typically
involves an initial smoothing stage to reduce noise and
minor irrelevant variations in the canopy height data.
This reduction in noise results in more representative and
accurate peak detection. Smoothing also clarifies treetops
by diminishing minor variations, making the highest points
that represent the treetops more prominent and distinct.
Additionally, smoothing helps eliminate minor anomalies or
outliers that may not be part of the tree structure, ensuring
thatirrelevant data does not disrupt peak detection (Pertille
et al. 2024).

In this study, the Gaussian method was applied as a
filtering treatment. The application of Gaussian filtering
plays a crucial role in refining the CHM and improving the
accuracy of individual tree detection. In this study, we tested
a range of square-shaped kernel sizes, including unfiltered
CHM and 3x3, 5x5, 9x9, 11x11, and 21x21 kernel sizes.
These filters were used to smooth the CHM and remove
noise while retaining critical information for detecting
individual mangrove trees (Pertille et al. 2024).

Local maxima method and window size treatment

A relatively straightforward method for detecting
individual trees on the LiDAR-derived CHM is the Local Maxima
(LM) algorithm. The LM method assumes that local height
maxima in the CHM represent treetops (Korpela 2006). This
method is relatively simple and uses two main parameters:
a smoothing parameter, often referred to as the smoothing
window size (SWS), and a fixed window size (FWS) for tree
detection (Silva et al. 2016). As the FWS increases, the number
of detected trees decreases (Mohan et al. 2017). Applying
smoothing filters helps eliminate invalid local maxima caused
by significant, spreading tree branches, thereby reducing
the number of detected local maxima and improving the
algorithm's accuracy (Lindberg and Hollaus 2012).

In this study, we tested various combinations of CHM
smoothing kernel sizes and LMF window sizes to evaluate
their effect on individual tree detection performance. The
smoothing kernel sizes included unfiltered, 3x3, 5x5, 9x9,
11x11,and 21x21, each applied with LMF window sizes of 0.5
m, 1 m,and 3 m.

F-score calculation

To evaluate the accuracy of individual tree detection, this
study employed the F-score (F1) as a performance metric. The
F-score is the harmonic mean of precision and recall, which
balances the trade-off between detecting true positives (TP)
while minimizing false positives (FP) and false negatives (FN)
(Power 2011). This metric has also been widely adopted in
similar studies related to UAV-based tree detection (Mohan et
al. 2017; Ahmadi et al. 2022)

A
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{las/laz) vegetation points Model (DSM) normalization Model (CHM)
Digital Terrain
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B
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Fig. 2. Workflow of LiDAR data pre-processing and local-maxima-based individual tree detection (ITD) methodology. (A)
LiDAR data pre-processing steps include filtering, normalization, point classification, noise removal, and data fusion to
prepare the data for analysis. (B) Local-maxima-based individual tree detection involves the generation of the Canopy
Height Model (CHM), followed by the detection of local maxima to identify tree tops and subsequent clustering to
delineate individual trees
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Given that UAV-based tree detection can result in both
overestimation (FP > 0) and underestimation (FN < 0), this
metric provides a comprehensive measure of detection
effectiveness. The precision (P), recall (R), and F-score (F1)
were calculated using the following Egs. 1-3 (Power 2011):

o TP
Precision = —— (1)
TP + FP
TP
Recall = ——— )
TP+ FN

Precision X Recall

F1—score=2x 3)

Precision + Recall

True positives (TP) represent the number of trees
detected by the UAV that match the expected tree count
in the field. False negatives (FN) refer to trees that were
present in the field but were not detected by the UAV. On
the other hand, false positives (FP) indicate trees that were
counted by the UAV but do not correspond to trees in the
field. These definitions help evaluate the accuracy of the
UAV-based tree detection system by assessing how well the
detected trees align with the actual tree count in the field.
Since ground-truth data on tree positions were unavailable,
TP FP, and FN were estimated based on the total number of
trees recorded in the field rather than a tree-to-tree spatial
validation. This is a clear limitation of the study, as the lack
of spatial correspondence between UAV-detected trees
and field-observed trees prevents the accurate matching
of individual trees. As an alternative, TP, FP. and FN were
approximated using total tree counts per plot. A detection
was considered a true positive if it occurred within the
plot area and the total number of UAV-detected trees did
not exceed the field count. In underestimation cases (UAV
count < field count), all detected trees were assumed to be
true positives, and FP was set to zero. In contrast, if the UAV
count exceeded the field count, the surplus detections
were considered false positives. While this method does
not allow spatially explicit matching between detected and
actual trees, it does not replace precise spatial validation
and should be interpreted accordingly.

RESULT

The UAV-acquired imagery was precisely cropped at
the observation site to obtain more accurate and reliable
data. This cropping process was designed to exclude non-
target objects such as buildings, water bodies, or non-
mangrove vegetation. By eliminating these elements, the
precision of the CHM information was enhanced, resulting
in cleaner data with minimal external interference. This
process ensures that the analytical results have a high
level of accuracy and are relatively free from errors, thereby
improving the reliability of the data for this study. Fig. 3

shows the results of the 3D point cloud cropped specifically
for the selected area.

CHM Normalization

The DSM showed elevation values ranging from 25.6 to
34.10 meters, capturing both ground and above-ground
features such as vegetation and structures. In contrast,
the DTM exhibited a narrower elevation range of 25.6 to
26.853 meters, indicating minimal elevation difference
across the terrain. This relatively flat ground surface is
consistent with typical mangrove habitats. However, in
several areas, the DTM failed to fully represent the terrain
due to limited ground returns. These gaps are not visually
apparent in DTM figures but should be taken into account
when interpreting the CHM result. Despite the limitation,
the CHM was successfully generated by normalizing DSM
with DTM (Gomroki et al. 2017), producing a height range
from -0.24 to 7.59 meters. Fig. 4 illustrates the difference in
height patterns before and after normalization.

Effects of Kernel and Window Size on Tree Detection
Accuracy

The unfiltered CHM produced a noisy image with
numerous local maxima that did not correspond to actual
tree tops, primarily due to variations in the canopy structure,
such as large branches or small gaps. This excessive noise
compromised tree detection accuracy using the Local
Maxima (LM) algorithm (Lisiewicz et al. 2022). In contrast,
the 3x3 kernel applied a light smoothing filter, effectively
reducing noise while preserving important canopy details.
It eliminated minor irregularities and allowed for more
accurate tree detection, especially in dense and uniform
canopy structures. Visually, the CHM with a 3x3 kernel
would show a more controlled and smoother image, with
less color variation between areas, preserving the essential
tree structures while softening the noise (Fig. 5).

As the kernel size increased to 5x5, 9x9, 11x11,
21x21, the CHM became progressively smoother. The 5x5
kernel removed additional noise and minor fluctuations,
providing a balance between smoothing and preserving
canopy details. However, larger kernel sizes like 9x9,
11x11, and 21x21 introduced excessive smoothing,
which led to the merging of nearby treetops and a
significant underestimation of the number of detected
trees. The 21x21 kernel, in particular, overgeneralized the
canopy, removing critical details about individual trees
and rendering it unsuitable for dense mangrove forests
(Tanhuanpaa et al. 2019; Quan et al. 2021).

Various combinations of kernel sizes (unfiltered,
3%3, 5%5, 9x9, 11x11, 21x21) and Local Maximum Filter
(LMF) window sizes (0.5, 1, and 3 meters) were applied to
analyze mangrove tree density (Fig. 6). The results indicate
that smaller window sizes detect more trees due to their

Fig. 3. 3D RGB LiDAR data of mangrove in Pramuka Island
92
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sensitivity to local variations. However, these findings may
lead to overestimation in dense mangrove stands, where
the algorithm may misidentify non-tree objects as treetops
(Yan et al. 2024).

On the other hand, larger kernels and window sizes
smooth out local variations, producing more refined
estimates by reducing over-detection errors. While such
practices may reduce the risk of excessive detection
errors, using large kernels and window sizes can obscure
important local details and lead to underestimating the
number of trees (Balsi et al. 2018).

Given the limited field data obtained specifically from
Pramuka Island, we attempted to broaden the scope of
analysis byincorporating field data from several observation

3x3 Kernel

9x9 Kernel

."
| ‘s

Fig. 5. Gaussian filtering for different pixel kernel - in meter

11x11 Kernel

5x5 Kernel

21x21 Kernel

]

0.0
meter

points on other islands within the Seribu Islands (Table
3). This approach is feasible due to the homogeneity of
mangrove ecosystems across the Seribu Islands, where
most of the mangroves are cultivated, predominantly
consisting of Rhizophora mucronata and Rhizophora
stylosa, and planted using a clustered spacing system®. This
uniformity results in relatively similar structural patterns
across the mangrove areas in the region.

The detection results show that using a window size
of 0.5 meters, supported by kernels 3x3, 5x5, and 9x9,
provides more accurate detection of mangroves, aligning
with the average number of tree-phase mangroves found
in the Seribu Islands (Fig. 7). This smaller window size is
particularly effective in dense mangrove conditions, where

®Kementerian Lingkungan Hidup dan Kehutanan (KLHK) (2023). Penanaman mangrove dengan sistem rumpun berjarak di Kepulauan
Seribu. Available at: https://itien.menlhk.go.id/berita/penanaman-mangrove-dengan-sistem-rumpun-berjarak-di-kepulauan-seribu

[Accessed 10 January 2025].
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Fig. 6. Tree detection using the Local Maxima function with different window sizes for each kernel. In every kernel,
a window size of 1 meter provides more detailed and numerous tree point information compared to larger window sizes
(3 and 5 meters)

it can detect individual trees more accurately, especially
in high-density areas (Kim et al, 2020). In contrast, using
larger window sizes, such as 1 and 3 meters, tends to
result in underestimates, except for the 1-meter window
size combined with the 3x3 kernel, which aligns well
with field data. Larger window sizes often lead to over
smoothing, which hinders the detection of smaller or
hidden trees beneath larger canopies (Balsi et al., 2018).
Additionally, unfiltered data combined with a 0.5x0.5
meter window size leads to an overestimate, as unfiltered
data does not distinguish well between mangrove trees
and other objects, resulting in more trees being detected
than are actually present. Despite these configurations
yielding better results, all detection outcomes (except for

94

the unfiltered configuration with kernel 0.5x0.5) are still
underestimated compared to mangrove plots at specific
locations on Pramuka Island. This highlights that LiDAR
still struggles to distinguish individual mangrove trees
with homogeneous heights, as this condition creates a
bias where crowns overlap, making it difficult to clearly
define the boundaries between individual trees (Galvincio
& Popescu, 2016).

The analysis revealed that mangrove plots that
had reached the tree growth stage—where tree-stage
mangroves are the only ones detectable via drone imagery,
unlike saplings and seedlings, which are often obscured by
the tree canopy—contained between 19 and 63 individuals
per 100 m?. Additionally, the areas observed by drone
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Table 3. Field Data of 10 mangrove plot points in the Seribu Islands, including substrate type, trees, saplings, and
seedlings measurements

Plot Code Lat () Lon (%) Substrate Type | Trees (ind./plot) | Saplings (ind./plot) | Seedlings (ind./plot)
Panggang 1 -5.74243 106.6041 Sandy mud 57 56 0
Panggang 2 -5.74196 106.6039 Sandy mud 21 96 4

Kelapa 1 -5.64895 106.5671 Sandy mud 0 390 0

Kelapa 2 -5.6568 106.5639 Sandy mud 25 216 0

Kelapa-Harapan -5.65228 106.5743 Muddy sand 9 229 0

Harapan -5.65379 106.5808 Muddy sand 9 243 0

Pari -5.85288 106.6208 Sandy mud 43 4 10

Pramuka 1 -5.74391 106.6162 Sandy mud 63 65 2
Pramuka 2 -5.74527 106.615 Sandy mud 61 66 0
Pramuka 3 -5.74874 1066116 Sandy mud 6 209 0

120
o 100
£
o
o
= 80
®
E 50 Pramuka 1: 63 ind/100m2 —----
o
o
a
o 40
L]
2
E 20
0 -
Window size: 0.5 Window size: 1 Window size: 3
0= Unfiltered 1013813646 21.42595851 3.483895692
—o0—Kernel 3x3 47 5551762 17 85496542 3.179054819
Kernel 5x5 34 14217778 1733238107 3.222603515

23.90823419
19.68401066
7.969411396

=== Kernel 9x9
=0==Kemel 11x11
=p==Kermnel 21x21

10.10329751
7.229083561
2.83066525

2.656470465
2.2645322
1.262912188

Fig. 7. Treetop Detection Density (ind./100m?) Across Different Kernel Sizes and Window Sizes Compared to Field Data
(Pramuka 1: 63 ind/100m?)

specifically consisted of tree-stage mangroves, as this is the
only stage where accurate observation and counting from
aerial imagery are feasible, given the limitations of drone
detection for saplings and seedlings (Hsu et al.,, 2020; Bakar
et al., 2024).

Conversely, plots containing mangroves at the seedling
stage exhibited much higher densities, with over 200
individuals per 100 m?. This is due to the clustered spacing
planting method’, which supports mangrove growth up to
the seedling stage.

Evaluation of F-score in UAV-based tree detection

This study applied various combinations of smoothing
kernel sizes and local maxima filtering (LMF) window sizes
to optimize individual tree detection from CHM (Table
4). The F-score was calculated for each combination
to determine which method vyielded the best balance
between minimizing false positives (FP) and maximizing
true positives (TP) while reducing false negatives (FN).

A higher F-score indicates that the method correctly
identifies trees and minimizes errors.

The highest F-score was achieved using the Kernel
3x3/WS 0.5 method (F1-score = 0.854), which provided
the best trade-off between precision and recall. This
method detected 47 of the 63 trees recorded in the field,
resulting in a relatively high recall (0.746). This combination
effectively minimized FN, making it the most balanced
approach in the study. In contrast, methods with larger
smoothing kernels and window sizes (e.g., Kernel 9x9/WS
3, Kernel 21x21/WS 3) had extremely low recall (0.031-
0.047), leading to F-scores below 0.1. These methods failed
to detect a significant portion of the trees due to excessive
smoothing, which merged adjacent treetops and resulted
in severe under detection.

DISCUSSION

This study aimed to detect and analyze individual
mangrove trees using LiDAR-derived Canopy Height

’Kementerian Lingkungan Hidup dan Kehutanan (KLHK) (2023). Penanaman mangrove dengan sistem rumpun berjarak di Kepulauan
Seribu. Available at: https://itjen.menlhk.go.id/berita/penanaman-mangrove-dengan-sistem-rumpun-berjarak-di-kepulauan-seribu

[Accessed 10 January 2025].
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Table 4. F1-score for all of the configuration

Method UAV Count TP FP FN Precision Recall F1-Score
Kernel 3x3/WS 0.5 47 47 0 16 1 0.746 0.8545
Unfiltered/WS 0.5 101 63 38 0 0.6238 1 0.7683
Kernel 5x5/WS 0.5 34 34 0 29 1 0.54 0.701
Kernel 9x9/WS 0.5 23 23 0 40 1 0.365 0.5349

Unfiltered/WS 1 21 21 0 42 1 0.333 0.5
Kernel 11x11/WS 0.5 19 19 0 44 1 0.302 04634
Kernel 3x3/WS 1 17 17 0 46 1 027 0.425
Kernel 5x5/WS 1 17 17 0 46 1 0.27 0.425
Kernel 9x9/WS 1 10 10 0 53 1 0.159 0.2739

Kernel 11x11/WS 1 7 7 0 56 1 0.111 0.2

Kernel 21x21/WS 0.5 7 7 0 56 1 0.111 0.2
Unfiltered/WS 3 3 3 0 60 1 0.048 0.0909
Kernel 3x3/WS 3 3 3 0 60 1 0.048 0.0909
Kernel 5x5/WS 3 3 3 0 60 1 0.048 0.0909
Kernel 9x9/WS 3 2 2 0 61 1 0.032 0.0615
Kernel 11x11/WS 3 2 2 0 61 1 0.032 0.0615
Kernel 21x21/WS 1 2 2 0 61 1 0.032 0.0615
Kernel 21x21/WS 3 1 1 0 62 1 0.016 0.0313

Model (CHM) in a dense mangrove forest. The challenge
of accurately extracting tree heights and positions
in such complex environments is well-known due to
structural variability and occlusions in the canopy. LIDAR
data processing, including Digital Terrain Model (DTM)
generation and smoothing of CHM data, plays a critical
role in minimizing errors and improving tree detection
accuracy.

One significant limitation encountered was the dense
mangrove canopy, which likely obstructed the LiDAR
sensor’s ability to penetrate through to the ground,
resulting in interpolation gaps and uneven terrain surfaces
(Wannasiri et al. 2013; Balsi et al. 2018; Yin & Wang 2019;
Li et al. 2023; Wijaya et al. 2023). This limited ground
return coverage can affect the accuracy and reliability of
the DTM, which in turn impacts the derived CHM and its
interpretation. Although these interpolation gaps are not
visually apparent in the DTM figures, they may lead to
underestimation or spatial inconsistency in canopy height
measurements. Future studies could consider integrating
additional ground-based surveys or complementary
remote sensing data to improve terrain representation in
dense mangrove environments.

The unfiltered CHM's noise was mainly caused by
structural variations in the canopy, such as large branches
or small gaps, leading to numerous false local maxima and
reduced tree detection accuracy with the Local Maxima
algorithm (Lisiewicz et al. 2022). Applying a 3x3 Gaussian
kernel offered light smoothing, which effectively reduced
noise while preserving essential canopy features, thus
improving detection in dense mangrove canopies.

Increasing kernel sizes progressively smoothed
the CHM but introduced trade-offs. The 5x5 kernel
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balanced noise reduction and detail preservation, while
larger kernels (9x9 and above) excessively smoothed
the canopy, causing merging of adjacent treetops and
underestimation of tree counts. The 21x21 kernel was
particularly overgeneralizing, losing vital individual tree
information and making it unsuitable for dense mangrove
forests. This excessive smoothing reduces color and height
variation, impairing the ability to distinguish individual
trees in complex environments (Tanhuanpaa et al. 2019,
Quan et al. 2021).

Choosing an appropriate kernel size is therefore critical
to optimize the balance between noise suppression and
canopy detail preservation in mangrove tree detection.
These findings indicate a significant trade-off in selecting
kernel and window sizes for optimal tree detection. Smaller
LMF window sizes, while sensitive to minor variations, may
not be appropriate in dense mangrove conditions, as
they increase the likelihood of detecting false positives.
Conversely, larger kernels and window sizes improve
robustness against noise but risk underestimating true tree
counts by merging individual tree signals and suppressing
fine-scale canopy variation. While the 3x3 kernel and
0.5-meter window size yielded the best results in this studly,
this outcome should be interpreted with caution. The
performance of these parameters is strongly influenced
by the CHM pixel resolution (10 cm) and the relatively
high density and structural uniformity of mangrove trees
in the Seribu Islands. Parameter effectiveness may vary in
different contexts, such as areas with lower tree density,
heterogeneous canopy structures, or different CHM
resolutions. Therefore, selecting kernel and window sizes
should be context-specific, reflecting both the spatial
resolution and vegetation characteristics of the study area.
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HOW DRONES AND LIDAR HELP IN COUNTING MANGROVE TREES: ...

Due to the lack of spatial ground-truth data containing
exact tree positions, the F-score calculation in this study
was based solely on the total number of detected trees
rather than a one-to-one comparison of detected and
actual trees. As a result, precision remained at 1.0 for all
methods except Unfiltered/WS 0.5 since false positives (FP)
were assumed to be zero in all underestimated cases. This
means that every detected tree was considered correct
despite the potential presence of undetected trees (false
negatives, FN). Consequently, although precision appears
perfect, recall remains significantly lower in most cases,
leading to low F-scores for many methods. This highlights
the limitations of relying solely on precision when
evaluating detection performance in an underestimation
scenario.

CONCLUSION

This study successfully demonstrated the potential of
UAV LiDAR technology in monitoring mangrove forests.
The optimum configuration, using a 3x3 kernel with a 0.5
meter window size, achieved the best balance between
detection accuracy and noise reduction. These findings
highlight that parameter tuning is critical to optimize
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