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ABSTRACT. In the context of climate change, forests are a vital source of ecosystem services for humankind, acting primarily 
as carbon sinks. The aim of this study is to use the machine learning algorithms available in the Google Earth Engine (GEE) to 
predict the above-ground biomass of the Azrou forest in the Middle Atlas Mountains of Morocco. After a literature review, the 
work consisted of characterizing the natural features through Land Use Land Cover analysis (LULC) and forest stand types. The 
accuracy of the forest stand type classification was assessed at 81.55% using the kappa index. Analysis of vegetation cover 
time series data, derived from NASA imagery and MODIS, was carried out, focusing on four key indices: NDVI (Normalized 
Difference Vegetation Index), EVI (Enhanced Vegetation Index), LAI (Leaf Area Index), and FPAR (Fraction of Photo synthetically 
Active Radiation). The study predicted biomass using the Random Forest machine-learning model, implemented in GEE with 
JavaScript. NASA/ORNL biomass data for 2010 served as the dependent variable, while LULC, elevation, and the four indices 
were used (selected summer period) as independent explanatory variables. In addition, forest stand types were integrated to 
calculate total biomass for specific stand types and for the study area as a whole for the years 2015, 2020 and 2024. In 2024, 
the predicted biomass is 461,587 tons, compared with 501,172 tons in 2010. The biomass median values by species were 
29 tons/ha for pure Atlas cedar (Cedrus atlantica Manetti), 24 tons/ha for pure holm oak (Quercus ilex) and 31 tons/ha for a 
mixture of Atlas cedar and holm oak. The results highlight challenging conditions for the Azrou forest, with a notable decline 
in biomass over the study period. These results will serve as a basis for future forestry planning in the context of climate 
change.
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INTRODUCTION

	 In the 21st century, global climate change becomes 
more severe which is due to greenhouse gas emissions, 
which are recognized as one of the key drivers of ecosystem 
degradation and climate disruption (Scott et al. 2020). This 
phenomenon has had serious consequences, including 
global warming, ocean acidification, accelerated glacier 
melt, and an increase in the frequency and intensity of 
extreme weather events (Calvin et al., 2023).
	 In the context of climate change, the uptake of carbon 
dioxide by forest ecosystems is precarious for regulating 
it (Friedlingstein et al., 2022). They play a key role since 
maintaining and increasing the sink capacity of forests is 
essential to reduce growing greenhouse gas emissions into 
the atmosphere (Friedlingstein et al., 2022; R. B. Myneni et al., 

2001; Pan et al., 2024; Schilling et al., 2012). In December 2015, 
the COP 21 in Paris led to an agreement within the United 
Nations Convention on Climate Change with the purpose 
of keeping the increase in global surface temperature well 
under 2°C, while pursuing efforts to limit the rise to 1.5°C. In 
this concern, each party involved in the agreement has to 
establish a national goal to limit greenhouse gas emissions 
(Erickson & Brase, 2020; Ourbak & Magnan, 2018). Biomass 
carbon pools act as a sink for atmospheric CO2 and, in the 
Mediterranean region, carbon sequestration by forests 
ranges between 0.01 and 1.08 t C ha-1 annually (Merlo & 
Croitoru, 2005). The ability to quantify forest carbon stock 
at the regional and local levels is expected to support 
compliance with the treaty and its goals.
	 Forests are a vital source of ecosystem services for humans 
and mainly act as carbon sinks (FAO, 2020). Nonetheless, forest 
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improvement activities and changes in land and forest use 
emanate directly from forests and account for all emissions 
from agriculture and other related uses (Laaribya et al., 2024; 
Nourelbait et al., 2016; Rudel et al., 2005). In addition, activities 
linked to deforestation, reforestation, and forest conservation 
are important. Combined with the effects of deforestation and 
acceptable sustainable harvesting, forests can also act as a 
source of carbon long before the agreement. In this context, 
the reduction of greenhouse gas emissions from deforestation 
and increased forest degradation is part of a sustainable 
development approach and enhances carbon storage (Alaoui 
et al., 2021; Forsell et al., 2016; García et al., 2010; Laaribya et al., 
2021; Sinha, 2022).
	 Although much research has been carried out on the Atlas 
cedar forest to assess its state of conservation, much remains 
to be discovered about its capacity to store carbon in biomass 
and the long-term sustainability of this emblematic Moroccan 
ecosystem (Boulmane et al., 2015; El Mderssa, 2022; El Mderssa 
et al., 2019; Laaribya, 2024; Laaribya et al., 2024; Linares et al., 
2011; Terrab et al., 2006; Zaher et al., 2020a). This work has 
highlighted the need to improve conservation strategies to 
preserve this ecosystem, as its ability to act as a carbon sink 
is highly dependent on its sustainability and maintenance. 
Indeed, this remarkable ecosystem plays an essential role in 
carbon sequestration, helping to mitigate climate change.
	 The aim of this study is to use the available machine 
learning techniques, adapted inside the GEE environment, to 
assess the cover dynamic and to predict the above-ground 
biomass of the Azrou Cedar Atlas forest in the Middle Atlas 
Mountains in Morocco. 
	 Satellite imagery, coupled with the power of Artificial 
Intelligence (AI) and cloud-based platforms like GEE, has 
revolutionized the way environmental monitoring is 
conducted, making it possible to analyze vast forest landscapes 
over extended periods efficiently (Laaribya & Alaoui, 2025; 
Mutanga & Kumar, 2019; Zhao et al., 2021). Indeed, given that 
traditional methods are difficult to meet the requirements in 
this field due to the long period of experimentation in the field, 
the availability of timber cuttings, and the high cost. Nowadays, 
machine learning (ML) is emerging as a new research paradigm 
to facilitate research in the field of machine learning for forest 
biomass prediction.

MATERIALS AND METHODS

Study area

	 The Azrou forest is located on the northern edge of the 
Middle Atlas plateau (Morocco) and covers an area of 17,807 ha. 
Contrasting relief characterizes it, with altitudes ranging from 
1,100 m to 2,100 m. Precipitation is relatively high and comes 
in the form of rain or snow. Annual rainfall varies between 563 
mm and 1122 mm, while maximum temperatures range from 
30.3°C to 43°C, with July and August being the hottest months 
(Laaribya, 2024).
	 The bioclimate is humid Mediterranean with a cold 
variant and subhumid with a temperate variant. Atlas 
Cedar (Cedrus atlantica Manetti) is the main species in 
this forest, and depending on the nature of the substrate, 
it forms pure stands or a mixture with holm oak (Quercus 
ilex) (Laaribya, 2024). The topographic characteristics of the 
study area are shown in Fig. 2.
	 Referring to the International Soil Classification System 
(WRB 2014), the study area offers three main soil groups 
(Fig. 3). 
In our study area, analysis of the Gaussen Index (Bagnouls 
& Gaussen, 1953) (Fig. 4) reveals a dry period lasting 
approximately four months, from June to September 
(1985-2022). This prolonged aridity significantly affects 
vegetation cover and tree growth in the Azrou forest.

Data collection

	 To achieve our objectives, we used a dual approach 
to analyze environmental changes and biomass evolution 
over time (Fig. 5). This study relies on various data from 
reliable and verified sources. All thematic maps were 
produced using software tools ArcGIS 10.8. 

Forest stand types mapping and accuracy assessment

	 The accuracy of the forest stand types classification is 
assessed using a confusion matrix, which compares the 
stand type results to a set of reference data (ground truth 
or other high-quality datasets). 
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Fig. 1. Study area (the Azrou forest)

Fig. 2. Topographic maps of the study area
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Fig. 3. Soil type in the study area (map based on the soil maps (INRA 2000) not published)

Fig. 4. Bagnouls and Gaussen climate diagrams (1985-2022)

Fig. 5. Methodological Framework
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	 User’s accuracy: Measures the accuracy of classification 
from the user’s perspective (correctly classified instances 
out of all instances predicted for a given class) (Eq. 1).

	 Producer’s accuracy: Evaluates the accuracy of the 
classification from the producer’s perspective (correctly 
classified instances out of all instances belonging to a 
given class) (Eq. 2).

	 Kappa coefficient (K): A statistical measure that assesses 
the overall accuracy of the classification, accounting for 
random chance (Eq. 3).

	 Spatio-temporal comparisons of vegetation 
conditions (2001-2024)

	 Monitoring and change detection for indices used 
throughout the year (mean for 4 seasons) all over the 2001-
2024 period.
	 For analyzing the vegetation conditions across time, 
global MODIS vegetation indices (NDVI, EVI, LAI and FPAR) 
were used (Table 1). The two indices provide insights into 
vegetation health and productivity:
	 Normalized Difference Vegetation Index (NDVI): Used 
to assess vegetation density and health, where higher 
values correspond to denser vegetation.
	 The Normalized Difference Vegetation Index (NDVI) 
(Tucker, 1979) is the most commonly used vegetation 
index for observe greenery globally (Eq. 4):

	 where NIR - Near-Infrared reflectance, R - Red reflectance
	 Enhanced Vegetation Index (EVI): Similar to NDVI but 
includes corrections for atmospheric and soil variations, 
making it particularly useful in areas with dense vegetation.
The Enhanced Vegetation Index (Huete, 1997) is an 
improved version of the NDVI, designed to minimize the 
influence of atmospheric conditions and soil reflectance, 
particularly in areas with dense vegetation (Eq. 5):

	 where:  NIR: Near-Infrared reflectance,  R: Red reflectance,  
Blue: Blue reflectance, G: Gain factor, C1: Coefficient for 
the red band, C2: Coefficient for the blue band, L: Canopy 
background adjustment 
	 Leaf Area Index (LAI) : LAI (Eq. 6) is broadly defined as 
the amount of leaf area (m2) in a canopy per unit ground 
area (m2) (Watson, 1958). Leaf area index (LAI) is one of the 
most frequently used parameters for the analysis of canopy 
structure and is an important structural characteristic of 
crop monitoring and crop productivity (Behera et al., 2010).

	 Variables: LA: Leaf area m2), P: Ground area (m2)
	 Note also that if LAI is the mean leaf area per plant, and 
n is the plant density, then also (Eq. 7)

Variables: LA: Leaf area of a single plant (in m² or cm²),
n: Plant density the number of plants per unit ground area 
(e.g., plants/m²)
	 Fraction of photosynthetic active radiation (FPAR): 
Photosynthetic active radiation used by plants in the 
photosynthesis process. PAR knowledge can provide key 
inputs for modeling biomass and forestry production 
(Aguiar et al., 2012; García-Rodríguez et al., 2021). 
	 The two indices LAI and FPAR were used from the 
MOD15A2H V6.1 (MODIS product) combining leaf area 
index (LAI) and fraction of photosynthetically active 
radiation (FPAR) in an 8-day composite dataset at 500 m 
resolution (R. Myneni et al., 2021).

Trend analysis and change detection for NDVI and EVI 

	 To detect trends and changes in vegetation conditions, 
the following statistical methods were applied especially 
to NDVI and EVI indices:
	 Sen’s slope estimator: A non-parametric method for 
estimating the slope of a trend in time series data. It is 
widely used for trend analysis when dealing with datasets 
that may contain non-linear trends or outliers (Sen, 1968).

Random forest machine learning algorithm in GEE

	 To to apply biomass prediction over 3 years (2015, 
2020 and 2024), we have used the summer period (month 
5 to month 9) to calculate the biomass explanatory indices 
NDVI, EVI, LAI, and FPAR. The median was used to perform all 
those parameters. Indeed, the summer period is generally 
the best time to calculate the values of these indices, 
making it easier to identify patterns, assess vegetation 
health, and monitor changes.
	 Given the model’s robustness in prediction, we 
have used the Random Forest Machin Learning 
algorithm. The dependent variable is biomass 2010 (ee.
ImageCollection(‘NASA/ORNL/biomass_carbon_density/
v1’). This is the carbon stock density of the above-ground 
living biomass of the combined woodland and herbaceous 
cover in 2010. This includes carbon stored in living plant 
tissues above the earth’s surface (stems, bark, branches, 
and twigs) (Spawn et al., 2020). 
	 The random forest is an ensemble learning method 
mainly used for modeling. Its principle is to build a multitude 
of decision trees during training and merge their results to 
improve overall accuracy and control overfitting (Schonlau 
& Zou, 2020). Random forests are a combination of tree 
predictors such that each tree depends on the values of a 
random vector sampled independently and with the same 
distribution for all trees in the forest (Breiman, 2001). The 
model parameters and their characteristics are presented 
in Table 1 below. Other parameters (excluding indices) are 
also included in the Random Forest model as independent 
variables.

Biomass = f (NDVI, EVI, LAI, FPAR, LULC, Elevation)
Var dataset = ee.Image.cat([NDVI, EVI, LAI, FPAR, LULC, 

Elevation])

RESULTS

Lund Use Land Cover 

Analysis of the LULC map shows that our study area 
is marked by a diversity of vegetation cover, mainly 
grassland, which accounts for more than half the surface 
area (57%). Forest cover appears to be open and in a state 
of degradation all over the study area (Fig. 6 and Table 2). 

(4)

(5)

(1)

(2)

(3)

(6)

(7)
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Table 1. Parameters and data collection

Parameters Collection Snippet Resolution (m) Date

Biomass (‘agb’ Band)
NASA/ORNL/biomass_carbon_density/v1

(Global Aboveground and Belowground Biomass Carbon Density Maps)
300 2010 

NDVI MOD13Q1.061 (Terra Vegetation Indices 16-Day Global 250m) 250 2001-2024

EVI MOD13Q1.061 (Terra Vegetation Indices 16-Day Global 250m) 250 2001-2024

LAI (Leaf Area Index)
FPAR (Fraction of 

Photosynthetically Active 
Radiation)

MOD15A2H.061 (Terra Leaf Area Index/FPAR 8-Day Global 500m) 500 2001-2024

Elevation USGS/GTOPO30
30 arc seconds 

(equiv 1 km)
1996

LULC
MODIS/061/MCD12Q1

Land Cover Type Yearly Global
500 2010/2022

Fig. 6. Landover map 2022
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Table 2. LULC 2022 area (ha)

LULC Area (Ha) %

Water 404 2.3%

Evergreen Needleleaf Forest 2,468 13.9%

Open Shrublands 660 3.7%

Woody Savannas 511 2.9%

Savannas 2,064 11.6%

Grasslands 10,148 57%

Permanent Wetlands 106 0.6%

Croplands 1,404 7.9%

Urban and Built-up Lands 43 0.2%

Total 17,807 100%

	 To deepen the analysis and prepare data for the 
prediction of forest biomass, we prepared a map of forest 
stand types based on data from the National Forest 
Inventory. An accuracy assessment was carried out to 
determine the validity of the classification of the results of 
this inventory in the field.
	 The composition of the forest species in our study 
area includes pure stands of Atlas cedar (Cedrus atlantica) 
(8.4%), Atlas cedar mixed mainly with holm oak (Quercus 
ilex) (40.3%), pure holm oak stands (24.8%) and other areas 
(24.7%) (Secondary species and non-wooded areas) (Fig. 7 
and Table 3). 
	 The Atlas cedar is a noble Moroccan species with a 
much more majestic and imposing appearance than other 
species.
	 The higher Kappa (81.55%) coefficient obtained in our 
analysis (Table 4) is a strong validation of the classification 
accuracy, allowing us to confidently focus our study on 
Forest stand. This robust classification framework forms 
the basis for assessing spatio-temporal trends in the main 
indices and corresponding land cover classes, in particular 
trees, crops, and pasture, over the selected study period 
(2001-2024).

Time series analysis during 2001-2024

	 The vegetation assessment parameters NDVI and EVI 
are widely used to analyze the condition of forest areas. 
According to the results obtained for the period 2001-2024, 
NDVI values are generally higher than EVI values over time 
in the study area (Figs. 9 and 10). In addition to the NDVI 
index, the use of the EVI index offers additional benefits by 
mitigating the effects of saturation and correcting for soil 
and atmospheric influences. The two vegetation indices 
complement each other and improve the detection of 
changes in vegetation. 
	 Analysis of the descriptive statistics for the two series 
(2001-2024) confirms the results of the LULC classification, 
where vegetation cover is generally sparse and in a 
degraded state. The coefficient of variation varies by 13 
and 15% for NDVI and EVI, respectively (relatively low 
variability), with relatively low mean values of 0.53 and 0.27 
(Table 5).
	 The coefficient of variation varies from 32% to 17% for 
LAI and FPAR indices, respectively, with relatively low mean 
values of 0.99 and 4.13 (Table 5).These results show that the 
LAI index is the most variable, reflecting direct changes in 

leaf area over time or space. FPAR is slightly more variable 
than NDVI and EVI but less than LAI, representing small 
fluctuations in vegetation productivity (Figs. 11 and 12).
In conclusion, overall vegetation cover and greenness in 
the study area remain relatively low and stable in space 
and time in the period 2001-2024.
	 The differences in dynamics between the two indices 
(NDVI and LAI) are normal, as they are sensitive to different 
vegetation characteristics. NDVI reflects chlorophyll 
content and greenness, but it reaches saturation in dense 
or mature vegetation. However, LAI continues to increase 
with leaf growth and vegetation cover stratification, linking 
it more directly to leaf areas and biomass. NDVI reacts 
more quickly to greening at the beginning of the season, 
while LAI shows more gradual and sustained growth. 
During senescence, NDVI decreases more rapidly, while LAI 
continues to increase until significant leaf loss occurs.

Spatio-temporal analysis / change detection

	 For further statistical evaluation, we applied Sen’s 
slope spatio-temporal trend analysis to both the NDVI 
and EVI series (2001-2024). This method was chosen for 
its robustness in detecting monotonic trends, making it 
particularly suitable for analyzing vegetation dynamics 
over time. The results of this analysis, detailed below, offer 
an explanation for the spatial evolution of vegetation over 
the study period.. A summary of results is presented in the 
following Table 6. 
	 Spatio-temporal analysis carried out over the entire 
study area reveals both positive and negative trends in 
vegetation dynamics (NDVI and EVI) (Figs. 13 and 14). These 
trends vary and cover the entire study area. The decreasing 
values of Sen’s slope in the study area confirm the findings 
of forest degradation and the impact of climate change 
in the area. The two vegetation indices complement each 
other and improve the detection of changes in the study 
area. 
Degradation is occurring mainly in forest ecosystems 
conquered by Atlas cedar (Cedrus atlantica), as well as in 
mixed stands of Atlas cedar and holm oak (Quercus ilex). 
These forest ecosystems are predominantly vulnerable 
due to a combination of natural and anthropogenic 
pressures.	
	 Spatio-temporal analysis carried out over the entire 
study area reveals both positive and negative trends in 
vegetation dynamics (NDVI and EVI) (Figs. 13 and 14). These 
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Fig. 7. Classification of the forest stand types in the study area 

Table 3. Classification of the forest stand types in the study area

Stand type Area (ha) %

Pure Atlas cedar (Cedrus atlantica) 1497 8.4

Pure holm oak (Quercus ilex) 4420 24.8

Cedar mixed with holm oak 7182 40.3

Others 4708 24.7

Total 17,807 100

Table 4. Forest stand Accuracy assessment

Landuse
Pure Atlas 

cedar (Cedrus 
atlantica)

Pure holm oak 
(Quercus ilex)

Cedar mixed 
with holm oak

Others
Total 
(user)

User accuracy (%)

Pure Atlas cedar (Cedrus atlantica) 23 0 3 0 26 88%

Pure holm oak (Quercus ilex) 3 9 1 0 13 69%

Cedar mixed with holm oak 1 2 17 1 21 81%

Others 0 0 0 21 21 100%

Total (producer) 27 11 21 22 81  

Producer accuracy (%) 85% 82% 81% 95%  
Overall Accuracy = 

86.44%

          Kappa = 81.55%

Table 5. Descriptive statistics for the time series indices (2001-2024)

Indices Min Max Mean Median St dev Coefficient of variation (%)

NDVI 0.196 0.65 0.53 0.54 0.07 13

EVI 0.11 0.37 0.27 0.27 0.04 15

LAI 0.04 1.84 0.99 1.02 0.32 32

FPAR 0.25 5.59 4.13 4.23 0.72 17
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Fig. 8. Box plot for studied vegetation parameters (2001-2024)

Fig. 9. NDVI time series (2001-2024)

Fig. 10. EVI time series (2001-2024)
trends vary and cover the entire study area. The decreasing 
values of Sen’s slope in the study area confirm the findings 
of forest degradation and the impact of climate change 
in the area. The two vegetation indices complement each 
other and improve the detection of changes in the study 
area. 
	 Degradation is occurring mainly in forest ecosystems 
conquered by Atlas cedar (Cedrus atlantica), as well as in 
mixed stands of Atlas cedar and holm oak (Quercus ilex). 
These forest ecosystems are predominantly vulnerable due 
to a combination of natural and anthropogenic pressures.

Biomass prediction using Machine Learning in GEE

	 Biomass estimation models based on remote sensing 
data (NDVI, EVI, LAI, FPAR) are sensitive to changes in 
vegetation structure and vigor, which can decrease without 
any visible change in land cover type. Biomass modelling 
provided an assessment of the mass in the forest area 
studied, expressed in dry weight, of the woody parts (stem, 
bark, branches and twigs) of all living trees, excluding 
stumps and roots (Spawn et al., 2020). The Random Forest 
model designed for our prediction (correlation = 0, 7 with a 



52

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY	 2025

p-value < 0, 05) has enabled us to obtain the first results by 
period (2010, 2015, 2020 and 2024) in the forest study area 
for data based on the satellite dataset (Fig. 15).  
	 The results obtained showed a decrease in value (-8%) 
between 2010 and 2024, with a biomass of 501,172 tons/ha in 
2010 versus 461,587 tons/ha predicted by our model for 2024. 
	 In 2024, the biomass median values by species were 29 
tons/ha for pure Atlas cedar, 24 tons/ha for pure holm oak, 
and 31 tons/ha for a mixture of Atlas cedar and holm oak 
(Table 7, Figs. 16 and 17).  
	 Generally, between holm oak (Quercus ilex) and Atlas cedar 
(Cedrus atlantica), above-ground biomass potential depends 
on several factors such as region, ecological conditions (soil 
type, climate, elevation), stand density and tree age.
	 These results further confirm that Atlas cedar produces 
a higher above-ground biomass than holm oak, particularly 
under favorable conditions. These results provide a 
comprehensive approach to mapping biomass estimation in 
forestry and suggest guidelines for forest planning. 

DISCUSSION

	 In addition to vegetation condition over time and 
space, this research work examines the assessment of 
forest biomass by machine learning algorithms in GEE. 
This innovative approach replaces the use of costly field 
investigations. The biomass values obtained are reference 
values for the main forest species in the area, namely Atlas 
cedar and holm oak. 
	 A negative evolution was highlighted, in biomass 
values, between 2010 and 2024, materializing the negative 
trend in vegetation parameters studied in the area. In 
2024, the predicted biomass is 461,587 tons, compared 
with 501,172 tons in 2010. This measurement is the carbon 
stock density of the above-ground living biomass of the 
combined woodland and herbaceous cover. The biomass 
median values by species were 29 tons/ha for pure Atlas 
cedar, 24 tons/ha for pure holm oak, and 31 tons/ha for a 
mixture of Atlas cedar and holm oak. According to the FAO 
(2006) in (Oubrahim et al., 2016), carbon stocks in forests 

Fig. 11. LAI time series (2001-2024)

Fig. 12. FPAR time series (2001-2024)

Table 6. Sen’s slope class for NDVI and EVI

Indices/Sen’s slope Decreasing Stable Increasing

NDVI -2.23 to 0 0-1 1 to 3.6

EVI -1.4 to 0 0-1 1 to 3.4
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Fig. 13. NDVI Sen’s slope (2001-2024)

Fig. 14. EVI Sen’s slope (2001-2024)
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Table 7. Biomass predicted by period in the study area 

(Units of measurement are expressed in megagrams (Mg) per hectare. 1 Mg = 1 metric ton)

Biomass 
Stand type

 Atlas cedar 
(Cedrus atlantica)

Holm oak 
(Quercus ilex)

Atlas Cedar mixed 
with holm oak

Others Total

Area (ha) 1,497 4,420 7,182 4,708 17,807

Biomass 2010  
Median (Mg/ha) 32 26 34 20 ---- 

Total (Mg) 47,904 114,920 244,188 94,160 501,172

Biomass 
predicted 2015

Median (Mg/ha) 31 26 33 20  ---- 

Total (Mg/ha) 46,407 114,920 237,006 94,160 492,493

Biomass 
predicted 2020

Median (Mg/ha) 30 24 32 19 ----  

Total (Mg) 44,910 106,080 229,824 89,452 470,266

Biomass 
predicted 2024

Median (Mg/ha) 29 24 31 19 ----  

Total (Mg) 43,413 106,080 222,642 89,452 461,587

Fig. 15. Biomass 2010 and biomass prediction 2015, 2020 and 2024 (Megagrams (Mg) per hectare)
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in North Africa (the total carbon in biomass, dead wood, 
forest floor and the first 30 cm of the soil profile) were on 
average 64.9 tons/ha.
	 In the Middle Atlas cedar area, in four reservoirs, i.e., 
aboveground biomass, belowground biomass (roots), 
necromass (litter and deadwood) and the soil, carbon 
stocks were esteemed at 395.37 Mg/ha for the natural 
cedar Atlas and 76.05 Mg/ha for the cleared area. Analysis of 
the carbon stock distribution in the ecosystem discovered 
that soil was the largest reservoir. Indeed, the soil carbon 
stock varies from 46.4% to 93.5%, that of the biomass 
(aboveground and belowground) fluctuates between 4.3% 
and 52.7% and in the necromass, it is between 0.8 and 2.2% 
(Zaher et al., 2020b).
	 The highest carbon stocks are found in the most densely 
wooded areas (dense forests). This finding is confirmed 
by other studies on the subject (Le Clec’h et al., 2013; 
Oubrahim et al., 2016). In addition to aboveground biomass, 

assessing the contribution of forest soils makes it possible 
to estimate the total biomass level of the ecosystem. Forest 
soils are a significant reservoir of carbon; more than 40% 
of the total organic carbon in terrestrial ecosystems is 
stored in forest soils (Wei et al., 2014; Weston & Whittaker, 
2004). In the banj oak forests (Quercus leucotrichophora) of 
the Central Himalaya, tree biomass declined by 62% from 
undisturbed to degraded forests, the carbon sequestration 
rate decreased by 73%, peaking in moderately disturbed-A 
forests, while total soil carbon fell by 79% (Pandey et al., 
2020).
	 The decline in biomass values in our increasingly 
fragile ecosystem is attributed to several interdependent 
processes and factors that do not necessarily involve a 
change in LULC classification. Firstly, we can note the 
degradation of forest areas, such as the excessive logging 
of precious Atlas cedar wood and overgrazing that exceeds 
the carrying capacity, which can significantly reduce 

Fig. 16. Biomass (Mg) predicted by period

Fig. 17. Median biomass predicted by period
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biomass even though the overall forest cover appears 
unchanged. Secondly, reduced tree density and stress 
can also lead to lower biomass estimates. Known climatic 
stress factors in recent decades (droughts and rising 
temperatures, etc.) have limited tree growth and health, 
thereby reducing biomass accumulation. 
	 The increased stress on vegetation in the area was 
highlighted by analyzing spatial and temporal variations in 
vegetation indices (NDVI, EVI, LAI and FPAR). These indices 
are reliable indicators of vegetation health and are sensitive 
to changes in vegetation cover and structural properties 
(González‐Alonso et al., 2006; Shammi & Meng, 2021). 
	 The negative trends observed for NDVI and EVI 
indices reflect a reduction in photosynthetic activity and 
vegetation density in the forest study area. Shortened 
vegetation affects carbon sequestration, biodiversity, and 
ecosystem services in the study area.
	 Models based on remote sensing and machine-
learning techniques have made it possible to detect subtle 
changes in biomass, even in areas where LULC cover does 
not appear to have changed visibly. We can therefore 
conclude that these tools are powerful for monitoring and 
assessing the state of forest ecosystems beyond simple 
changes in land use.
	 The downward trends observed in biomass, particularly 
in cedar forests and mixed oak and cedar forests, reflect both 
local degradation processes and regional environmental 
pressures. In our area, carbon stocks vary considerably 
depending on the type of forest. The ecosystem is vulnerable 
to degradation, which reduces its carbon sequestration 
potential. Overgrazing and deforestation not only reduce 
above-ground biomass but also lead to soil erosion and loss 
of organic matter, contributing to a decrease in soil carbon 
stocks. In a regional context marked by human pressures 
and climate change (Del Río et al., 2017; Gómez et al., 2012; 
Vayreda et al., 2012), intensified land use, and difficulties 
in natural regeneration, similar trends in biomass decline 
and carbon loss are observed, suggesting that these trends 
may be regional. Globally, these findings are consistent 
with broader concerns about the declining carbon storage 
capacity of dry Mediterranean forests, pointing to the 
importance of sustainable management strategies.
	 It would be interesting to take into account local data 
validation (forest inventories or biomass measurements 

in the field) for a more accurate comparison. Assessment 
of biomass by species would be more interesting if we 
focused on results by station type, taking into account the 
main ecological (soil, climate, stand age, elevation) and 
local socio-economic factors. In fact, human and pastoral 
pressure on the environment would have a negative 
impact on the forest ecosystem in question. 

CONCLUSIONS 

	 Today, the adoption of innovative approaches offered 
by Google Earth Engine (GEE) combined with GIS and 
remote sensing tools is playing an increasingly central 
role in the analysis, monitoring, and management of forest 
ecosystems. Indeed, the use of these platforms in our work 
has provided very useful results for assessing the evolution 
of canopy dynamics and the prediction of aerial biomass in 
the study area.
	 This study reveals that between 2010 and 2024, biomass 
values in the Azrou forest studied showed a decline over 
time and space. This negative trend reflects a more general 
deterioration in vegetation vigor and health indicators. 
The main vegetation indices studied in the model, notably 
NDVI, EVI, LAI, and FPAR, followed descending trends. These 
trends are due to natural and human factors that have 
caused environmental stress. Overall, the results confirm 
a marked degradation of the ecosystem during the study 
period.
	 Significant spatio-temporal negative trends in 
vegetation indices and biomass levels underline the need 
for adaptive management strategies in the context of 
climate change. Future research should focus more on field 
investigations and the integration of socio-economic data 
to better understand the interactions of the studied forest 
ecosystem. Assessment of canopy and biomass dynamics 
would benefit from the integration of other environmental 
factors related to local sites (soil type and physico-chemical 
characteristics, stand structure, age, density). 
	 Future research should also focus on integrating 
local socioeconomic data to better understand human-
environment interactions and develop predictive models 
that promote effective mitigation and adaptation 
measures.
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