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ABSTRACT. In the context of climate change, forests are a vital source of ecosystem services for humankind, acting primarily
as carbon sinks. The aim of this study is to use the machine learning algorithms available in the Google Earth Engine (GEE) to
predict the above-ground biomass of the Azrou forest in the Middle Atlas Mountains of Morocco. After a literature review, the
work consisted of characterizing the natural features through Land Use Land Cover analysis (LULC) and forest stand types. The
accuracy of the forest stand type classification was assessed at 81.55% using the kappa index. Analysis of vegetation cover
time series data, derived from NASA imagery and MODIS, was carried out, focusing on four key indices: NDVI (Normalized
Difference Vegetation Index), EVI (Enhanced Vegetation Index), LAl (Leaf Area Index), and FPAR (Fraction of Photo synthetically
Active Radiation). The study predicted biomass using the Random Forest machine-learning model, implemented in GEE with
JavaScript. NASA/ORNL biomass data for 2010 served as the dependent variable, while LULC, elevation, and the four indices
were used (selected summer period) as independent explanatory variables. In addition, forest stand types were integrated to
calculate total biomass for specific stand types and for the study area as a whole for the years 2015, 2020 and 2024. In 2024,
the predicted biomass is 461,587 tons, compared with 501,172 tons in 2010. The biomass median values by species were
29 tons/ha for pure Atlas cedar (Cedrus atlantica Manetti), 24 tons/ha for pure holm oak (Quercus ilex) and 31 tons/ha for a
mixture of Atlas cedar and holm oak. The results highlight challenging conditions for the Azrou forest, with a notable decline
in biomass over the study period. These results will serve as a basis for future forestry planning in the context of climate
change.
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INTRODUCTION 2001;Panetal, 2024; Schilling etal.,, 2012).In December 2015,
the COP 21 in Paris led to an agreement within the United
In the 271 century, global climate change becomes  Nations Convention on Climate Change with the purpose
more severe which is due to greenhouse gas emissions,  of keeping the increase in global surface temperature well
which are recognized as one of the key drivers of ecosystem  under 2°C, while pursuing efforts to limit the rise to 1.5°C. In
degradation and climate disruption (Scott et al. 2020). This this concern, each party involved in the agreement has to
phenomenon has had serious consequences, including  establish a national goal to limit greenhouse gas emissions
global warming, ocean acidification, accelerated glacier (Erickson & Brase, 2020; Ourbak & Magnan, 2018). Biomass
melt, and an increase in the frequency and intensity of  carbon pools act as a sink for atmospheric CO, and, in the
extreme weather events (Calvin et al,, 2023). Mediterranean region, carbon sequestration by forests
In the context of climate change, the uptake of carbon  ranges between 0.01 and 1.08 t C ha' annually (Merlo &
dioxide by forest ecosystems is precarious for regulating  Croitoru, 2005). The ability to quantify forest carbon stock
it (Friedlingstein et al, 2022). They play a key role since  at the regional and local levels is expected to support
maintaining and increasing the sink capacity of forests is  compliance with the treaty and its goals.
essential to reduce growing greenhouse gas emissions into Forests are a vital source of ecosystem services for humans
the atmosphere (Friedlingstein et al, 2022; R.B. Mynenietal,  and mainly act as carbon sinks (FAO, 2020). Nonetheless, forest
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improvement activities and changes in land and forest use
emanate directly from forests and account for all emissions
from agriculture and other related uses (Laaribya et al., 2024;
Nourelbait et al., 2016; Rudel et al., 2005). In addition, activities
linked to deforestation, reforestation, and forest conservation
are important. Combined with the effects of deforestation and
acceptable sustainable harvesting, forests can also act as a
source of carbon long before the agreement. In this context,
the reduction of greenhouse gas emissions from deforestation
and increased forest degradation is part of a sustainable
development approach and enhances carbon storage (Alaoui
etal, 2021; Forsell et al,, 2016; Garcia et al,, 2010; Laaribya et al,,
2021; Sinha, 2022).

Although much research has been carried out on the Atlas
cedar forest to assess its state of conservation, much remains
to be discovered about its capacity to store carbon in biomass
and the long-term sustainability of this emblematic Moroccan
ecosystem (Boulmane et al, 2015; El Mderssa, 2022; El Mderssa
et al, 2019; Laaribya, 2024; Laaribya et al,, 2024; Linares et al,,
2011; Terrab et al, 2006; Zaher et al, 2020a). This work has
highlighted the need to improve conservation strategies to
preserve this ecosystem, as its ability to act as a carbon sink
is highly dependent on its sustainability and maintenance.
Indeed, this remarkable ecosystem plays an essential role in
carbon sequestration, helping to mitigate climate change.

The aim of this study is to use the available machine
learning techniques, adapted inside the GEE environment, to
assess the cover dynamic and to predict the above-ground
biomass of the Azrou Cedar Atlas forest in the Middle Atlas
Mountains in Morocco.

Satellite imagery, coupled with the power of Artificial
Intelligence (Al) and cloud-based platforms like GEE, has
revolutionized the way environmental monitoring is
conducted, making it possible to analyze vast forest landscapes
over extended periods efficiently (Laaribya & Alaoui, 2025;
Mutanga & Kumar, 2019; Zhao et al,, 2021). Indeed, given that
traditional methods are difficult to meet the requirements in
this field due to the long period of experimentation in the field,
the availability of timber cuttings, and the high cost. Nowadays,
machine learning (ML) is emerging as a new research paradigm
to facilitate research in the field of machine learning for forest
biomass prediction.
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MATERIALS AND METHODS
Study area

The Azrou forest is located on the northern edge of the
Middle Atlas plateau (Morocco) and covers an area of 17,807 ha.
Contrasting relief characterizes it, with altitudes ranging from
1,700 m to 2,100 m. Precipitation is relatively high and comes
in the form of rain or snow. Annual rainfall varies between 563
mm and 1122 mm, while maximum temperatures range from
30.3°C to 43°C, with July and August being the hottest months
(Laaribya, 2024).

The bioclimate is humid Mediterranean with a cold
variant and subhumid with a temperate variant. Atlas
Cedar (Cedrus atlantica Manetti) is the main species in
this forest, and depending on the nature of the substrate,
it forms pure stands or a mixture with holm oak (Quercus
ilex) (Laaribya, 2024). The topographic characteristics of the
study area are shown in Fig. 2.

Referring to the International Soil Classification System

(WRB 2014), the study area offers three main soil groups
(Fig. 3).
In our study area, analysis of the Gaussen Index (Bagnouls
& Gaussen, 1953) (Fig. 4) reveals a dry period lasting
approximately four months, from June to September
(1985-2022). This prolonged aridity significantly affects
vegetation cover and tree growth in the Azrou forest.

Data collection

To achieve our objectives, we used a dual approach
to analyze environmental changes and biomass evolution
over time (Fig. 5). This study relies on various data from
reliable and verified sources. All thematic maps were
produced using software tools ArcGIS 10.8.

Forest stand types mapping and accuracy assessment

The accuracy of the forest stand types classification is
assessed using a confusion matrix, which compares the
stand type results to a set of reference data (ground truth
or other high-quality datasets).

a

& @

X

* © O

o n ee-saidlaaribyal Q

Google Earth Engine Q "MODIS/061/MCD12Q1"
Bl i Docs Assets
Filter soripts.. Ex -

i 1 Map.addLayer(roi,{color:
~ Owner (1) 2  Map.centerObject(roi,1e);
~ users/saidlaaribyal/PNT 3

B Biomass_Pred X

NEN f A Pos
o i ~ uim/y 773 Miltaite dto
ol f -
+° /11
A

4
Kasbah'Ait
AaMMOUr==——

‘Ait Ouahi
P7209 & ]

ModisLandCover_ROI * T BT BT = 0 B || iespector Console TR

» var roi: Table users/saidlaaribyal/Peuplement_azrou

‘green’})

44

Search or cancel

multiple tasks in

the Task Manager® or try the
Tasks Page in the Cloud Console@

Layers Plan Sate\lme E\

T : r-::l
. & At \B | 1
' £ ’ .‘fr‘: f} & E?: : : 5
& ; S
% . j ; wagl

Z v)\zL

» .
Ait Said Ou
Heddou

Guigou
$5es -~
-, l
" AIT AHRA
Ait pameus
IBBE

e

Ait Hamza

s -
At Ghanem : ';;.uo- »

Al ol

B Coucher du soleil



Said Laaribya and Assmaa Alaoui

BIOMASS PREDICTION USING MACHINE LEARNING ...

5°15'W

5°10'W

5°5'W 5°W

33°30'N

33°25'N

33°20'N

5 0

Study area

5

s Km

Mediterranean Sea

Morocco Map

uesd0 onuepy

-l Azrou forest

Ifrane >
Vs
N
[ Province of Ifrane
[JFes Meknes Region
ﬂ Azrou forest

Fig. 1. Study area (the Azrou i?orest)

1w s1ew si030w sTw 33w sw s1raow 1w si030w sTw saow sw
I }N\
z z
£ s
2 2
5 g
] 2
Slope classes
I o0-25
. Elevation (m) . [ 26-50
‘ High : 2112 ‘ I 51-75
Low: 1182 [g [ 76 - 100 |z
5 25 0 5 - = 15 25 0 5 - &
— km b — km I 110- 150 |3
1w s1ew si030w sTw 33w sw s1raow 1w si030w sTw saow sw
N %\ N
£ : 4 £
£ s
2 2
5 g
B North @ E
[ Northeast
[ |East
I southeast Hlllshade
[ south High : 180
@' - I southwest '," -
. B West L -0
B Northwest & ow g
5 25 0 5 “ = 15 25 0 5 13
— Km 2| — Km 8

Fig. 2. Topographic maps of the study area
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User's accuracy: Measures the accuracy of classification
from the user’s perspective (correctly classified instances
out of all instances predicted for a given class) (Eq. 1).

(Number of Correctly Classified Pixels in each Category) 100 (1)
(Total number of Classified Pixels in that Category (The Row Total) )

Producer’s accuracy: Evaluates the accuracy of the

classification from the producer’s perspective (correctly

classified instances out of all instances belonging to a

given class) (Eq. 2).
Number of Correctly Classified Pixels in each Category

Total number of Reference Pixels in that Category (The Column Total) 100 (2)

Kappa coefficient (K): A statistical measure that assesses

the overall accuracy of the classification, accounting for
random chance (Eq. 3).

((TSx CS) — (Z (Column Total x Row Total)))

x 100 (3)
(TSXTS) — (2 (Column Total X Row Total))

Spatio-temporal of

conditions (2001-2024)

comparisons vegetation

Monitoring and change detection for indices used
throughout the year (mean for 4 seasons) all over the 2001-
2024 period.

For analyzing the vegetation conditions across time,
global MODIS vegetation indices (NDVI, EVI, LAl and FPAR)
were used (Table 1). The two indices provide insights into
vegetation health and productivity:

Normalized Difference Vegetation Index (NDVI): Used
to assess vegetation density and health, where higher
values correspond to denser vegetation.

The Normalized Difference Vegetation Index (NDVI)
(Tucker, 1979) is the most commonly used vegetation
index for observe greenery globally (Eq. 4):

4)

where NIR-Near-Infrared reflectance, R - Red reflectance

Enhanced Vegetation Index (EVI): Similar to NDVI but
includes corrections for atmospheric and soil variations,
making it particularly useful in areas with dense vegetation.
The Enhanced Vegetation Index (Huete, 1997) is an
improved version of the NDVI, designed to minimize the
influence of atmospheric conditions and soil reflectance,
particularly in areas with dense vegetation (Eq. 5):

NIR — R
NIR+ C1R - C2Blue+L

where: NIR:Near-Infrared reflectance, R:Red reflectance,
Blue: Blue reflectance, G: Gain factor, CI: Coefficient for
the red band, C2: Coefficient for the blue band, L: Canopy
background adjustment

Leaf Area Index (LAI) : LAI (Eq. 6) is broadly defined as
the amount of leaf area (m?) in a canopy per unit ground
area (m?) (Watson, 1958). Leaf area index (LAl) is one of the
most frequently used parameters for the analysis of canopy
structure and is an important structural characteristic of
crop monitoring and crop productivity (Behera et al.,, 2010).

LAI=LA/P (6)

Variables: LA: Leaf area m?), P: Ground area (m?)
Note also that if LAl is the mean leaf area per plant, and
n is the plant density, then also (Eq. 7)

LAI=LA Xn

EVI=G (5)

7)
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Variables: LA: Leaf area of a single plant (in m? or cm?),
n: Plant density the number of plants per unit ground area
(e.g., plants/m?)

Fraction of photosynthetic active radiation (FPAR):
Photosynthetic active radiation used by plants in the
photosynthesis process. PAR knowledge can provide key
inputs for modeling biomass and forestry production
(Aguiar et al., 2012; Garcia-Rodriguez et al., 2021).

The two indices LAl and FPAR were used from the
MOD15A2H V6.1 (MODIS product) combining leaf area
index (LAl) and fraction of photosynthetically active
radiation (FPAR) in an 8-day composite dataset at 500 m
resolution (R. Myneni et al,, 2021).

Trend analysis and change detection for NDVI and EVI

To detect trends and changes in vegetation conditions,
the following statistical methods were applied especially
to NDVI and EVI indices:

Sen’s slope estimator: A non-parametric method for
estimating the slope of a trend in time series data. It is
widely used for trend analysis when dealing with datasets
that may contain non-linear trends or outliers (Sen, 1968).

Random forest machine learning algorithm in GEE

To to apply biomass prediction over 3 years (2015,
2020 and 2024), we have used the summer period (month
5 to month 9) to calculate the biomass explanatory indices
NDVI, EVI, LAl and FPAR.The median was used to perform all
those parameters. Indeed, the summer period is generally
the best time to calculate the values of these indices,
making it easier to identify patterns, assess vegetation
health, and monitor changes.

Given the models robustness in prediction, we
have used the Random Forest Machin Learning
algorithm. The dependent variable is biomass 2010 (ee.
ImageCollection('NASA/ORNL/biomass_carbon_density/
v1). This is the carbon stock density of the above-ground
living biomass of the combined woodland and herbaceous
cover in 2010. This includes carbon stored in living plant
tissues above the earth’s surface (stems, bark, branches,
and twigs) (Spawn et al,, 2020).

The random forest is an ensemble learning method
mainly used formodeling.Its principleis to build a multitude
of decision trees during training and merge their results to
improve overall accuracy and control overfitting (Schonlau
& Zou, 2020). Random forests are a combination of tree
predictors such that each tree depends on the values of a
random vector sampled independently and with the same
distribution for all trees in the forest (Breiman, 2001). The
model parameters and their characteristics are presented
in Table 1 below. Other parameters (excluding indices) are
also included in the Random Forest model as independent
variables.

Biomass = f (NDVI, EVI, LAI, FPAR, LULC, Elevation)
Var dataset = ee.lmage.cat([NDVI, EVI, LAI, FPAR, LULC,
Elevation])

RESULTS

Lund Use Land Cover

Analysis of the LULC map shows that our study area
is marked by a diversity of vegetation cover, mainly
grassland, which accounts for more than half the surface
area (57%). Forest cover appears to be open and in a state
of degradation all over the study area (Fig. 6 and Table 2).
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Table 1. Parameters and data collection
Parameters Collection Snippet Resolution (m) Date
) o NASA/ORNL/biomass_carbon_density/v1
Biomass (aglo'Band) (Global Aboveground and Belowground Biomass Carbon Density Maps) 300 2010
NDVI MOD13Q1.061 (Terra Vegetation Indices 16-Day Global 250m) 250 2001-2024
EVI MOD13Q1.061 (Terra Vegetation Indices 16-Day Global 250m) 250 2001-2024
LAl (Leaf Area Index)
FPAR (Fraction of MOD15A2H.061 (Terra Leaf Area Index/FPAR 8-Day Global 500m) 500 2001-2024
Photosynthetically Active
Radiation)
Elevation USGS/GTOPO30 30arc seconds 1996
(equiv 1 km)
MODIS/061/MCD120Q1
LULC Land Cover Type Yearly Global 200 2010/2022
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Table 2. LULC 2022 area (ha)

LULC Area (Ha) %
Water 404 2.3%
Evergreen Needleleaf Forest 2,468 13.9%
Open Shrublands 660 3.7%
Woody Savannas 511 2.9%
Savannas 2,064 11.6%
Grasslands 10,148 57%
Permanent Wetlands 106 0.6%
Croplands 1,404 7.9%
Urban and Built-up Lands 43 0.2%
Total 17,807 100%

To deepen the analysis and prepare data for the
prediction of forest biomass, we prepared a map of forest
stand types based on data from the National Forest
Inventory. An accuracy assessment was carried out to
determine the validity of the classification of the results of
this inventory in the field.

The composition of the forest species in our study
area includes pure stands of Atlas cedar (Cedrus atlantica)
(8.4%), Atlas cedar mixed mainly with holm oak (Quercus
ilex) (40.3%), pure holm oak stands (24.8%) and other areas
(24.7%) (Secondary species and non-wooded areas) (Fig. 7
and Table 3).

The Atlas cedar is a noble Moroccan species with a
much more majestic and imposing appearance than other
species.

The higher Kappa (81.55%) coefficient obtained in our
analysis (Table 4) is a strong validation of the classification
accuracy, allowing us to confidently focus our study on
Forest stand. This robust classification framework forms
the basis for assessing spatio-temporal trends in the main
indices and corresponding land cover classes, in particular
trees, crops, and pasture, over the selected study period
(2001-2024).

Time series analysis during 2001-2024

The vegetation assessment parameters NDVI and EVI
are widely used to analyze the condition of forest areas.
According to the results obtained for the period 2001-2024,
NDVI values are generally higher than EVI values over time
in the study area (Figs. 9 and 10). In addition to the NDVI
index, the use of the EVI index offers additional benefits by
mitigating the effects of saturation and correcting for soil
and atmospheric influences. The two vegetation indices
complement each other and improve the detection of
changes in vegetation.

Analysis of the descriptive statistics for the two series
(2001-2024) confirms the results of the LULC classification,
where vegetation cover is generally sparse and in a
degraded state. The coefficient of variation varies by 13
and 15% for NDVI and EVI, respectively (relatively low
variability), with relatively low mean values of 0.53 and 0.27
(Table 5).

The coefficient of variation varies from 32% to 17% for
LAl and FPAR indices, respectively, with relatively low mean
values of 0.99 and 4.13 (Table 5).These results show that the
LAl index is the most variable, reflecting direct changes in
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leaf area over time or space. FPAR is slightly more variable
than NDVI and EVI but less than LA, representing small
fluctuations in vegetation productivity (Figs. 11 and 12).

In conclusion, overall vegetation cover and greenness in
the study area remain relatively low and stable in space
and time in the period 2001-2024.

The differences in dynamics between the two indices
(NDVI and LAIl) are normal, as they are sensitive to different
vegetation characteristics. NDVI reflects chlorophyll
content and greenness, but it reaches saturation in dense
or mature vegetation. However, LAl continues to increase
with leaf growth and vegetation cover stratification, linking
it more directly to leaf areas and biomass. NDVI reacts
more quickly to greening at the beginning of the season,
while LAl shows more gradual and sustained growth.
During senescence, NDVI decreases more rapidly, while LAl
continues to increase until significant leaf loss occurs.

Spatio-temporal analysis / change detection

For further statistical evaluation, we applied Sen’s
slope spatio-temporal trend analysis to both the NDVI
and EVI series (2001-2024). This method was chosen for
its robustness in detecting monotonic trends, making it
particularly suitable for analyzing vegetation dynamics
over time. The results of this analysis, detailed below, offer
an explanation for the spatial evolution of vegetation over
the study period.. A summary of results is presented in the
following Table 6.

Spatio-temporal analysis carried out over the entire

study area reveals both positive and negative trends in
vegetation dynamics (NDVIand EVI) (Figs. 13 and 14). These
trends vary and cover the entire study area. The decreasing
values of Sen’s slope in the study area confirm the findings
of forest degradation and the impact of climate change
in the area. The two vegetation indices complement each
other and improve the detection of changes in the study
area.
Degradation is occurring mainly in forest ecosystems
conquered by Atlas cedar (Cedrus atlantica), as well as in
mixed stands of Atlas cedar and holm oak (Quercus ilex).
These forest ecosystems are predominantly vulnerable
due to a combination of natural and anthropogenic
pressures.

Spatio-temporal analysis carried out over the entire
study area reveals both positive and negative trends in
vegetation dynamics (NDVI and EVI) (Figs. 13 and 14). These
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Fig. 7. Classification of the forest stand types in the study area
Table 3. Classification of the forest stand types in the study area
Stand type Area (ha) %

Pure Atlas cedar (Cedrus atlantica) 1497 8.4

Pure holm oak (Quercus ilex) 4420 248

Cedar mixed with holm oak 7182 40.3

Others 4708 24.7

Total 17,807 100

Table 4. Forest stand Accuracy assessment
Pure Atlas )
Landuse cedar (Cedrus Pure hOIm. oak ;edar mixed Others Total User accuracy (%)
) (Quercus ilex) | with holm oak (user)
atlantica)

Pure Atlas cedar (Cedrus atlantica) 23 0 3 0 26 88%
Pure holm oak (Quercus ilex) 3 9 1 0 13 69%
Cedar mixed with holm oak 1 2 17 1 21 81%

Others 0 0 0 21 21 100%
Total (producer) 27 11 21 22 81
Producer accuracy (%) 85% 82% 81% 95% Overall Accuracy =
y (70 0 o o 0 86.44%
Kappa = 81.55%

Table 5. Descriptive statistics for the time series indices (2001-2024)

Indices Min Max Mean Median Stdev Coefficient of variation (%)
NDVI 0.196 0.65 0.53 0.54 0.07 13
EVI 0.11 0.37 0.27 0.27 0.04 15
LA 0.04 1.84 0.99 1.02 032 32
FPAR 0.25 559 413 4.23 0.72 17
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trends vary and cover the entire study area. The decreasing
values of Sen’s slope in the study area confirm the findings
of forest degradation and the impact of climate change
in the area. The two vegetation indices complement each
other and improve the detection of changes in the study
area.

Degradation is occurring mainly in forest ecosystems
conquered by Atlas cedar (Cedrus atlantica), as well as in
mixed stands of Atlas cedar and holm oak (Quercus ilex).
These forest ecosystems are predominantly vulnerable due
to a combination of natural and anthropogenic pressures.

Biomass prediction using Machine Learning in GEE

Biomass estimation models based on remote sensing
data (NDVI, EVI, LAI, FPAR) are sensitive to changes in
vegetation structure and vigor, which can decrease without
any visible change in land cover type. Biomass modelling
provided an assessment of the mass in the forest area
studied, expressed in dry weight, of the woody parts (stem,
bark, branches and twigs) of all living trees, excluding
stumps and roots (Spawn et al., 2020). The Random Forest
model designed for our prediction (correlation =0, 7 with a
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Table 6. Sen’s slope class for NDVI and EVI
Indices/Sen’s slope Decreasing Stable Increasing
NDVI -2.23t00 0-1 1t03.6
EVI -141t00 0-1 1to34
p-value < 0, 05) has enabled us to obtain the first results by DISCUSSION

period (2010, 2015, 2020 and 2024) in the forest study area
for data based on the satellite dataset (Fig. 15).

The results obtained showed a decrease in value (-8%)
between 2010 and 2024, with a biomass of 501,172 tons/ha in
2010 versus 461,587 tons/ha predicted by our model for 2024.

In 2024, the biomass median values by species were 29
tons/ha for pure Atlas cedar, 24 tons/ha for pure holm oak,
and 31 tons/ha for a mixture of Atlas cedar and holm oak
(Table 7, Figs. 16 and 17).

Generally, between holm oak (Quercus ilex) and Atlas cedar
(Cedrus atlantica), above-ground biomass potential depends
on several factors such as region, ecological conditions (soil
type, climate, elevation), stand density and tree age.

These results further confirm that Atlas cedar produces
a higher above-ground biomass than holm oak, particularly
under favorable conditions. These results provide a
comprehensive approach to mapping biomass estimation in
forestry and suggest guidelines for forest planning.

52

In addition to vegetation condition over time and
space, this research work examines the assessment of
forest biomass by machine learning algorithms in GEE.
This innovative approach replaces the use of costly field
investigations. The biomass values obtained are reference
values for the main forest species in the area, namely Atlas
cedar and holm oak.

A negative evolution was highlighted, in biomass
values, between 2010 and 2024, materializing the negative
trend in vegetation parameters studied in the area. In
2024, the predicted biomass is 461,587 tons, compared
with 501,172 tons in 2010. This measurement is the carbon
stock density of the above-ground living biomass of the
combined woodland and herbaceous cover. The biomass
median values by species were 29 tons/ha for pure Atlas
cedar, 24 tons/ha for pure holm oak, and 31 tons/ha for a
mixture of Atlas cedar and holm oak. According to the FAO
(2006) in (Oubrahim et al., 2016), carbon stocks in forests
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Table 7. Biomass predicted by period in the study area
Stand type c dAtlas ctledatr ) (QHoIm o(:alk ) Atla.sthCEdlar mlxked Others Total
Biomass earus atlantiCa uercus riex WI olm Oa
Area (ha) 1,497 4,420 7,182 4,708 17,807
Median (Mg/ha) 32 26 34 20 -
Biomass 2010
Total (Mg) 47,904 114,920 244,188 94,160 501,172
Biomass Median (Mg/ha) 31 26 33 20 -
predicted 2015 1 10031 (Mg/ha) 46,407 114920 237,006 94,160 492,493
Biomass Median (Mg/ha) 30 24 32 19 -
predicted 2020 Total (Mg) 44,910 106,080 229,824 89,452 470266
Biomass Median (Mg/ha) 29 24 31 19 -
predicted 2024 Total (Mg) 43,413 106,080 222,642 89,452 461,587

(Units of measurement are expressed in megagrams (Mg) per hectare. 1 Mg = 1 metric ton)
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in North Africa (the total carbon in biomass, dead wood,
forest floor and the first 30 cm of the soil profile) were on
average 64.9 tons/ha.

In the Middle Atlas cedar area, in four reservoirs, ie.,
aboveground biomass, belowground biomass (roots),
necromass (litter and deadwood) and the soil, carbon
stocks were esteemed at 395.37 Mg/ha for the natural
cedar Atlasand 76.05 Mg/ha for the cleared area. Analysis of
the carbon stock distribution in the ecosystem discovered
that soil was the largest reservoir. Indeed, the soil carbon
stock varies from 46.4% to 93.5%, that of the biomass
(aboveground and belowground) fluctuates between 4.3%
and 52.7% and in the necromass, it is between 0.8 and 2.2%
(Zaher et al., 2020b).

The highest carbon stocks are foundinthe mostdensely
wooded areas (dense forests). This finding is confirmed
by other studies on the subject (Le Clec’h et al, 2013;
Oubrahimetal, 2016).In addition to aboveground biomass,
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assessing the contribution of forest soils makes it possible
to estimate the total biomass level of the ecosystem. Forest
soils are a significant reservoir of carbon; more than 40%
of the total organic carbon in terrestrial ecosystems is
stored in forest soils (Wei et al.,, 2014; Weston & Whittaker,
2004). In the banj oak forests (Quercus leucotrichophora) of
the Central Himalaya, tree biomass declined by 62% from
undisturbed to degraded forests, the carbon sequestration
rate decreased by 73%, peaking in moderately disturbed-A
forests, while total soil carbon fell by 79% (Pandey et al,
2020).

The decline in biomass values in our increasingly
fragile ecosystem is attributed to several interdependent
processes and factors that do not necessarily involve a
change in LULC classification. Firstly, we can note the
degradation of forest areas, such as the excessive logging
of precious Atlas cedar wood and overgrazing that exceeds
the carrying capacity, which can significantly reduce
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biomass even though the overall forest cover appears
unchanged. Secondly, reduced tree density and stress
can also lead to lower biomass estimates. Known climatic
stress factors in recent decades (droughts and rising
temperatures, etc) have limited tree growth and health,
thereby reducing biomass accumulation.

The increased stress on vegetation in the area was
highlighted by analyzing spatial and temporal variations in
vegetation indices (NDVI, EVI, LAl and FPAR). These indices
are reliable indicators of vegetation health and are sensitive
to changes in vegetation cover and structural properties
(Gonzélez-Alonso et al.,, 2006; Shammi & Meng, 2021).

The negative trends observed for NDVI and EVI
indices reflect a reduction in photosynthetic activity and
vegetation density in the forest study area. Shortened
vegetation affects carbon sequestration, biodiversity, and
ecosystem services in the study area.

Models based on remote sensing and machine-
learning techniques have made it possible to detect subtle
changes in biomass, even in areas where LULC cover does
not appear to have changed visibly. We can therefore
conclude that these tools are powerful for monitoring and
assessing the state of forest ecosystems beyond simple
changes in land use.

The downward trends observed in biomass, particularly
in cedar forests and mixed oak and cedar forests, reflect both
local degradation processes and regional environmental
pressures. In our area, carbon stocks vary considerably
dependingonthetype offorest. The ecosystemisvulnerable
to degradation, which reduces its carbon sequestration
potential. Overgrazing and deforestation not only reduce
above-ground biomass but also lead to soil erosion and loss
of organic matter, contributing to a decrease in soil carbon
stocks. In a regional context marked by human pressures
and climate change (Del Rio et al,, 2017; Gomez et al,, 2012;
Vayreda et al, 2012), intensified land use, and difficulties
in natural regeneration, similar trends in biomass decline
and carbon loss are observed, suggesting that these trends
may be regional. Globally, these findings are consistent
with broader concerns about the declining carbon storage
capacity of dry Mediterranean forests, pointing to the
importance of sustainable management strategies.

It would be interesting to take into account local data
validation (forest inventories or biomass measurements
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