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ABSTRACT. Nineteen bioclimatic parameters from BIOCLIM are widely used in Species Distribution Modeling (SDM). To
improve modeling quality, it is essential to reduce the number of parameters. Several approaches have been proposed to solve
this challenge, but each has its own limitations. In this study, we aimed to develop an effective statistical method based on
identifying correlation groups of parameters and selecting the least correlated ones. Several statistical techniques were used
to ensure a reliable parameter selection: simple correlation matrix analysis, cluster analysis (HDBSCAN), and factor analysis
(varimax and quartimax). As an example, bioclimatic parameter values for the period 1991-2020 were analyzed for the whole
globe. The results obtained using different methods show good consistency. Several correlation groups were identified,
ranging from four to five, depending on the interpretation of the negative correlations. One group of two parameters, BIO14
and BIO17, can also be identified based on the results of the varimax factor analysis, although this correlation group was not
identified by other methods. Finally, six bioclimatic parameters were selected (BIO2, BIO5, BIO7, BIO14, BIO15, and BIO18), one
from each group that demonstrated the minimum average value of the correlation coefficient with parameters from other
groups. The average correlation between the selected parameters was significantly lower than in the case of using previously
applied methods with the same number of selected parameters.
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INTRODUCTION 2017; Aradjo et al. 2019; Srivastava et al. 2019). Various
algorithms are used to construct these models, including
Living organisms, as open systems, are affected by  general-purpose machine learning techniques such as
the environment. Climatic factors, particularly ambient  support vector machines, logistic regression, and neural
temperature, are the most significant abiotic factors networks, as well as specialized methods designed for
determining the existence and reproduction of individuals ~ habitat modeling, the most commonly used of which is
and populations. For terrestrial organisms, humidity is also  MaxEnt (Phillips et al. 2004; Phillips et al. 2006).
an important factor (Bonan 2008; Schimel 2013). Climate Although a wide variety of environmental factors,
change has various effects on land and marine ecosystems,  both abiotic and biotic, can be used as predictors of
including their structure, species composition, and species distribution in these models, climate variables
relationships between components. The most significant  play a major role in almost all models, as they have a
issueistheimpactof climate and climate changeonspecies ~ fundamental limiting effect on organism ranges (Popova
distribution, including shifts in their ranges (McCarty 2001; and Popov 2013; Popova and Popov 2019). Obviously, it is
Gilman et al. 2010; Post 2013). possible to design a huge, if not infinite, number of such
The assessment of potential changes in species  variables. However, not all variables will correlate well with
distribution, particularly those important for economic  distribution data or be significant for range formation, and
activity and human health, presents a significant challenge  not all will be convenient for projecting models to other
for modern science. Currently, the main methodological  regions of the world.
approach to this issue is Species Distribution Modeling In 1984, BIOCLIM was proposed as one of the first
(SDM), which is a rapidly evolving field at the intersection methods for constructing Species Distribution Models
of ecology, biogeography, applied climatology, and (Nix 1986; Busby 1991). This software package included a
information technology (Franklin 2009; Peterson et al.  set of 12 climatic parameters, specifically designed to be
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biologically significant for most species and suitable for
projecting models across hemispheres. The package was
developed by a group of Australian scientists and was
initially used to assess the invasive potential of different
species. In 1996, a new version of this software package
was presented, with the number of bioclimatic parameters
increased to 19 (Booth 2018). Their list is given in Table 1.
The names of these parameters begin with the prefix BIO,
followed by a number from 1 to 19 (BIO1-BIO19).

As shown in Table 1, the first 11 parameters (BIO1-
BIO11) are related to temperature, while the remaining 8
(BIO12-BIO19) reflect a precipitation regime. There is no
specific mention of a particular month or season. Instead,
periods of the year with the highest or lowest temperatures,
or the highest or lowest precipitation, are used. This makes
it easy to move models between regions with different
annual climatic variation, like hemispheres. In addition,
four parameters (BIO8, BIO9, BIO18, and BIO19) are “mixed”,
reflecting the values of climatic factors of one type over
a period determined by factors of another type. Such
an arrangement can be useful for modeling the ranges
of certain species, but it can also cause some problems
in certain cases. For instance, they can have a very high
gradient of spatial variability in some regions, particularly
in equatorial and tropical areas. Some researchers
recommend avoiding the use of these parameters or using
them with extreme caution (Booth 2022).

The design of the BIOCLIM parameters has been so
successful that they are widely used in SDM and other areas
of ecological modeling. This set was further popularized
with the release of the WorldClim database in 2005 and its
second version in 2017'. This database contains values for

six continents and is interpolated onto a spatial grid with
a step of up to 30" (Hijmans et al. 2005; Fick and Hijmans
2017). According to the study (Bradie and Leunig 2017),
the BIOCLIM parameters have been used significantly
more often than other climate variables in the modeling of
nearly 1900 species in about 2000 publications.

However, using a large number of potential predictors
has several disadvantages. First, it introduces a challenge
known as the “curse of dimensionality”in machine learning.
As the number of independent variables increases, so does
the distance between samples in feature space. That can
result in inaccuracies in the classification of virtual space
(Hastie et al. 2009) and lead to overfitting of models, when
a model that fits too well to the training data classifies new
data with a high error rate. Additionally, a large number of
variables can significantly increase the computational load,
especially when analyzing large amounts of data.

In addition to the above-mentioned problems,
climate variables have a fairly strong correlation between
each other, which can also influence the performance of
several algorithms (for instance, in the case of MaxEnt).
Furthermore, when it is necessary to assess the predictor
significance for classification, which in SDM may be linked
to their biological significance for a particular species, the
presence of strongly correlated variables may lead to an
inaccurate assessment of their significance, especially
when using ensemble techniques based on decision trees
such as “random forest” or gradient boosting.

One possible approach to reducing the number of
predictors is to create new variables based on linear or
non-linear combinations of the original variables. These
new variables should retain as much information as

Table 1. Bioclimatic parameters

BIO1 annual mean temperature

BIO2 mean diurnal range (mean of monthly (max temp - min temp))
BIO3 isothermality (BIO2/BIO7) (x100)

BIO4 temperature seasonality (standard deviation x100)
BIOS max temperature of warmest month

BIO6 min temperature of coldest month

BIO7 temperature annual range (BIO5-BIO6)

BIO8 mean temperature of wettest quarter

BIO9 mean temperature of driest quarter

BIO10 mean temperature of warmest quarter
BIO11 mean temperature of coldest quarter

BIO12 annual precipitation

BIO13 precipitation of wettest month

BIO14 precipitation of driest month

BIO15 precipitation seasonality (coefficient of variation)
BIO16 precipitation of wettest quarter

BIO17 precipitation of driest quarter

BIO18 precipitation of warmest quarter

BIO19 precipitation of coldest quarter

" https.//www.worldclim.org
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possible while being significantly smaller in number.
Common methods for such reduction include various
versions of Principal Component Analysis (PCA), Locally-
Linear Embedding (LLE) and Multidimensional Scaling
(MDS), among others (Roweis and Saul 2000). In particular,
the study (Dinnage 2023) used a neural network Variable
Autoencoder (VAE) to reduce the set of WorldClim variables
to 5 synthetic variables without significant information
loss. These synthetic variables are nonlinear combinations
of the original 19 parameters. However, the disadvantage
of this approach is that the obtained variables are artificial.
It complicates a biological interpretation of the results.

An alternative approach is to identify correlation groups
of the actual variables, i.e., groups with a higher correlation
within than between them. From these groups, we can
select variables that either have the lowest correlation with
the other groups or are particularly significant for a specific
study. Typically, this approach eliminates variables that
demonstrate a high level of correlation with each other; for
example, if the value of a correlation coefficient is above a
certain threshold (Bellard et al. 2013; Petrosyan et al. 2023;
Zhang et al. 2023). However, such simultaneous pairwise
reduction may result in the loss of several important
variables since a variable that is highly correlated with one
or more variables may also be weakly correlated with other
variables. In addition, the choice of a selection threshold is
not always clear.

Asanalternative to the strategies described, we propose
using statistical methods to identify correlation groups.
This approach involves using algorithms that allow for the
identification of fine structures and groups in data based
on various types of relationships between its elements.
For this purpose, we used a modern, highly effective
clustering algorithm called HDBSCAN. Two methods of
factor analysis, varimax and quartimax, were also used as
an alternative approach to verifying the clustering results.
These three algorithms were used for the first time to solve
this problem.

After identifying the correlation groups, our approach
involves selecting one parameter from each group with the
least mean correlation to parameters from other groups. The
identification of correlation groups allows us to determine
the optimal number of selected parameters. This number
balances the minimization of the correlation between
parameters with their minimum sufficient quantity.

The aim of this study was to evaluate the effectiveness
of the proposed approach to reducing the number of SODM
predictors using 19 bioclimatic parameters calculated for
the entire globe as an example.

MATERIALS AND METHODS
Climate data

The climate data source used in this study was the CRU TS
405 database (Harris et al. 2020), which contains the results
of meteorological observations with a monthly resolution,
interpolated onto a regular spatial grid with a step of 0.5°.
This database is widely used in SDM. In particular, it forms the
basis for the popular bioclimatic database WorldClim, which
was discussed in the introduction. The fact that CRU is based
on meteorological observations affords it several advantages
over reanalysis, such as ERA5. Many studies have found that
reanalysis often produces erroneous results, especially with
respect to precipitation data, which is of special importance
for SDM (Purnadurga et al. 2019; Bodjrenou et al. 2025;
Fatolahzadeh et al. 2024).

’https://doi.org/10.5281/zenodo.13913422
*https://doi.org/10.5281/zenodo.13970876

In total, this grid contains 67,420 nodes with values, as
the nodes over the seas, oceans, and Antarctica do not have
climate variables’ values. Nineteen bioclimatic parameters
were calculated according to their description in Table 1 for
the entire globe, using temperature variables and monthly
precipitation amounts. These values were averaged over
the period 1991-2020 for each node in the spatial grid.

As a result of the calculations, each of the 67,420 spatial
nodes was characterized by 19 bioclimatic parameters.
Based on this data, linear correlation coefficients were
calculated for each pair of parameters to form a correlation
matrix with a size of 19x19.

All calculations in this work were performed using the
Python 3 programming language. A Python 3 module
for the calculation of bioclimatic parameters is available
in the repository?. Jupyter notebooks containing the
calculations and some additional materials are available in
the repository?.

Cluster analysis

To identify correlation groups among bioclimatic
parameters, cluster analysis was used. This method allows
the identification of groups of objects (in this study, sets
of bioclimatic parameter values) that are closer together
than other objects. In other words, it helps to detect
areas of increased density in the space of objects. Cluster
analysis can use different metrics to measure the distance
between objects. In this study we used metrics based on
the linear correlation coefficient to measure the distance
between the values of bioclimatic parameters. This allows
us to determine groups of parameters that have a higher
correlation with each other than with other parameters.

Currently, there are many methods of cluster analysis
(Wierzchon and Ktopotek 2018). In this work, we used the
HDBSCAN (Hierarchical Density-Based Spatial Clustering of
Applications with Noise) algorithm, which is an evolution
of the DBSCAN and OPTICS methods (Campello et al. 2013;
Mclnnes and Healy 2017). A special feature of this method
is that it can independently determine the number of
clusters and identify noise points — samples that do not
belong to any cluster and can be considered as single-
sized clusters. Furthermore, it does not require access to
the original data but only a matrix of distances between
the analyzed samples.

In its modern form, the HDBSCAN algorithm includes
several stages of data processing:

1. Transformation of the original sample space to
better select areas of increased density, using the method
described and justified in the paper (Eldridge et al. 2015).

2. Construction of a graph where the vertices are the
samples, and the edge weights are equal to the distance
between the samples. The graph is then transformed into
a minimum spanning tree, which is a graph where each
vertex has at least one connection to other vertices, and
the total weight of all the edges is minimized.

3. Construction of a hierarchical cluster tree based on
the obtained minimum connected tree.

4. Transformation of the hierarchical cluster tree into
a flat cluster system. At this stage, both user-defined
hyperparameters (minimum cluster size and € — minimum
allowable distance between clusters) and several
parameters calculated directly from the data are used.
This distinguishes the HDBSCAN method from DBSCAN,
which only identifies clusters based on the specified
hyperparameters.
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When analyzing a small number of samples, as in this
study, it is recommended to set the minimum cluster size
to 2. In this case, € becomes the only hyperparameter
that needs to be optimized to find the optimal value that
provides the best quality of cluster selections. (Malzer and
Baum 2020).

The distance between bioclimatic parameters was
determined using two different metrics. These metrics
differ in their assessment of negative correlations. Negative
correlation, like positive correlation, implies the presence
and duplication of information about one variable in
another variable, albeit in a different sense. This type of
correlation can also negatively affect the quality of the
modeling.

The first metric, d1, considers negative correlation
values as an indicator of a greater distance between
parameters. It is calculated using the Eq. 1:

dl =1-r

where ris the linear correlation coefficient.

This metric ranges from 0 (for parameters with a perfect
positive correlation) to 2 (for parameters with a perfect
negative correlation).

The second metric, dz, considers negative correlation as
equivalent to positive correlation. It is calculated using the
absolute value of the correlation coefficient (Eq. 2):

d,=1-]r|

M

)

This metric ranges from 0, where the parameters have
correlation coefficients of 1 or -1, to 1, where there is a
complete lack of correlation between the parameters.

To select the optimal value for the hyperparameter e,
the average value of the silhouette coefficients was used
(Rousseeuw 1987). This is one of the most commonly
used metrics for evaluating clustering quality. The
implementation of the HDBSCAN algorithm from the scikit-
learn machine learning library* was used in this study.

Factor analysis

Another alternative approach that we used to identify
correlation groups is factor analysis. This method is used in
conjunction with cluster analysis to increase the reliability
and validity of the results.

Factor analysis is based on the assumption that there
are a small number of latent variables (called factors)
underlying the observed variables. Observed variables
can be expressed as linear or non-linear combinations
of factors (Mulaik 2009; Gorsuch 2014). The most
common model currently used is the linear model for the
relationship between factors and observed variables. It can
be expressed mathematically as (Eqg. 3):

X=AP+U+E (3)

where X is a matrix of observed values with m rows
and n columns, corresponding to n observed variables
and m samples. Pis a matrix of factor scores. It has a size of
k xm (k << n)and contains columns with the coordinates
of the observed variables in the new space of k factors. U
is a matrix of deviations from the mean of the observed
values, and £ is an error matrix. A is called a factor matrix
of size n X k. Its elements are called factor loadings, which
are the coordinates of the factor space basis and reflect
the influence of the factors on the observed variables
(Reyment and Joreskog 1996).

Before conducting factor analysis, it is common to
standardize the values of the observed variables. This

* https.//scikit-learn.org/stable
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process leads to the matrix U becoming a zero matrix. This
simplifies further analysis.

The goal of further calculations is to determine a matrix
A in which the factor loadings of each variable for different
factors are as distinct as possible, while minimizing the
number of factors and the values of the elements in the
error matrix £. The most common approach to solving this
problem is the so-called “rotation”. It involves rotating the
initial basis or its subset in the space of observed variables
by a certain angle. This operation is done to satisfy the
criteria mentioned above. The resulting factors can be
either orthogonal or non-orthogonal, depending on the
specific rotation method used.

These methods are based on a specific criterion for
optimally choosing the factor matrix. Historically, the first
criterion was the quartimax method proposed in the
work (Ferguson 1954). This criterion corresponds to the
maximization of the criterion A which is the sum of the
factor loadings aij in the fourth power (Eqg. 4):

q,= Z aij4—>maximum )

A feature of this method is that it tends to produce
factorsthataretoo general. The number of factors produced
is too small, and each of these factors has too great an
influence on several observed variables simultaneously.
Nevertheless, this criterion is still in use today.

As a development of the quartimax method, the
varimax method was proposed in the work (Kaiser 1958).
According to it, the criterion to be maximized is

Cl..

var lmax Z
Tz
J

2

Za

— maximum

where a,are the elements of the factor matrix A and n'is
the number of observed variables.

There are several other rotation methods available, both
orthogonal (such as oblimax, equimax, and parsimax) and
non-orthogonal (including promax and quartimin). Each
of these methods has its set of benefits and drawbacks.
However,varimaxand quartimin,whichareboth orthogonal,
are currently the most commonly used in factor analysis.

As can be seen, the search for a factor matrix is reduced
to solving an optimization problem of the corresponding
criterion. Currently, several methods are used for this
purpose, the most effective of which is recognized as
the Gradient Projection Algorithm (GPA) (Jennrich 2001;
Jennrich 2004).

In this study, two rotation methods were used to
identify correlation groups among bioclimatic parameters:
quartimax and varimax. Their implementation in the scikit-
learn package was used. Before the analysis, the values of
the bioclimatic parameters were standardized.
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According to the accepted approach, it was considered
that the identified factor could be defined as the main factor
for a certain parameter (in other words, the parameter could
be attributed to a certain correlation group) if its loading value
was maximum (since loadings can have negative values, we
will talk hereinafter about their absolute values) and exceeded
the values of the loadings of other factors by at least 30%. If
there were one or more factors with a lower loading value and
the difference in loadings did not exceed 30% of the maximum
value, then a conclusion was drawn about the influence of
several main factors on the bioclimatic parameter (Mulaik
2009).

RESULTS

Correlation matrix analysis

Fig. 1 shows a heatmap of the correlation matrix for
all 19 bioclimatic parameters. This matrix contains Pearson
linear correlation coefficients r. As can be seen, all bioclimatic
parameters can be divided into several groups.

Firstly, two groups of parameters are distinguished,
containing temperature (BIO1-BIO11, excluding BIO4 and BIO7)
and humidity (BIO12-BIO19, excluding BIO15) factors. Within
these groups, the correlations are significantly higher than
those between parameters from different groups. Within the
first group, the correlation coefficients ranged from 0.53 to 0.99,
with an average of 0.829. In the second group, they ranged
from 0.45 to 0.99, averaging 0.712. The correlation coefficients
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between the groups ranged from -0.05 to 0.63, with an average
of 0.32.

Secondly, two factors stand out among the temperature
parameters: BIO4 and BIO7. These factors characterize the
annual temperature range and have a fairly strong negative
correlation with most other parameters, except for BIO7 and
BIO2. There is also a strong positive correlation between BIO4
and BIO7 (r=0.97).

The BIO2 parameter also stands out, having a fairly weak
positive correlation with the temperature parameters (ranging
from 0.08 to 0.29), and a weak negative correlation with the
humidity parameters (ranging from -0.14 to -0.3), except for
BIO15 (r=0.38).

The parameter BIO15, in turn, also stands out among
the other humidity parameters. It has a negative or very
weak positive (with BIO13) correlation with other humidity
parameters and a low positive correlation (from 0.17 to 0.38)
with most temperature parameters, except for the above-
described BIO4 and BIO7, with which it has r values equal to
-0.12 and -0.03, respectively.

Thus, five correlation groups can be distinguished already
at the stage of simple analysis of the correlation matrix of
bioclimatic parameters:

1. BIOT1, BIO3, BIO5, BIO6, BIO8-BIO11

2.BIO12-BIO14, BIO16-BIO19

3. BIO4, BIO7

4. BIO2

5.BIO15.
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Fig. 1. Heatmap of the correlation matrix of bioclimatic parameters
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Results of the cluster analysis

The optimal value of the hyperparameter ¢ for the
HDBSCAN algorithm was found by simply enumerating its
possible values in the range from 0.01 to 0.5, with a step
size of 0.01. For the metric dy, the optimal € value was found
to bein the range of 0.19-0.36, giving an average silhouette
coefficient of 0.6336. For the metric d,, the same range of
values (0.19-0.36) was found to provide the optimal €, with
an average silhouette coefficient of 0.5531.

Table 2 shows the obtained distribution of bioclimatic
parameters by clusters for the two distance metrics used.
The noise points are marked with a value of -1. As can be
seen, when using the d7 metric, the HDBSCAN algorithm
identified three clusters and two noise points. In the case
of the d, metric, two clusters and two noise points were
identified. In both cases, the BIO2 and BIO15 parameters
were identified as noise points. Cluster 1 was completely
the same for both metrics. Cluster 0, obtained for the dz
metric, when using the d, metric, was divided into two
clusters: 0 and 2. In this case, cluster 2 contained the
parameters BIO4 and BIO7.

As can be seen, the results of the cluster analysis
coincide completely with the results of a simple analysis
of the correlation matrix. The noise points (BIO2 and BIO15
parameters) were previously assigned to groups 4 and 5,
respectively. Cluster 1 corresponds to group 2, and cluster
0 (d, metric) includes groups 1 and 3. When the d, metric
is used, clusters 0 and 2 coincide completely with these
groups.

Results of the factor analysis

Table 3 shows the results of the factor analysis (factor
matrix and identified main factors) conducted using the
varimax method. As can be seen, varimax identifies 5
factors. Meanwhile, for most bioclimatic parameters, it can
be concluded that there is only one main factor.

The temperature parameters BIOT and BIO3-BIO11 are
influenced by the main factor 1, which is consistent with the
results of the correlation matrix analysis and cluster analysis.

The parameters BIO4 and BIO7 are also influenced by the
main factor 3. This conclusion is consistent with the results
of the cluster analysis, which allocated them to cluster 2
when using the metric d, and combined them with cluster
0, corresponding to factor T when using the metric d,. In this
case, theloadings of factor 1 forthese parameters are positive,
unlike the loadings of the other temperature parameters, for
which they are negative. This means a different nature of the
influence of factor 1 on these parameters, and corresponds
to the negative correlation of the parameters BIO4 and BIO7
with the other temperature parameters (except BIO2). These
circumstances allow us to allocate the parameters BIO4 and
BIO7 to a separate group, if we take into account the nature
of their correlation with other temperature parameters, or
to combine them if the sign of the correlation coefficient is
considered to be unimportant.

The BIO2 parameter has one main factor, 5, which is not
the main factor for any other parameter. This corresponds to
the allocation of this factor to a separate group 4 and to a
separate noise point.

Table 2. Belonging of the studied bioclimatic parameters to the selected clusters according to two metrics

Bioclimatic Cluster number
parameter metricd, ——
BIO1 0 0
BIO2 -1 q
BIO3 0 0
BIO4 2 0
BIOS 0 0
BIO6 0 0
BIO7 2 0
BIO8 0 0
BIO9 0 0
BIO10 0 0
BIO11 0 0
BIO12 1 1
BIO13 1 ]
BIO14 1 .
BIO15 -1 -1
BIO16 1 1
BIO17 1 .
BIO18 1 1
BIO19 1 1
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Table 3. Factor matrix of the bioclimatic parameters obtained using the varimax method
(loadings of the main factors are highlighted)

orometer Factor loadings Main
1 2 3 4 5 factor
BIO1 -0.9393 0.2066 -0.2091 0.0183 -0.0338 1
BIO2 -0.2896 -0.2246 -0.0365 -0.2483 -0.5180 5
BIO3 -0.6146 04194 -04777 0.0983 -0.1950 1
BIO4 0.6481 -0.3408 0.6066 -0.1174 0.0304 13
BIOS -0.9362 0.0151 01118 -0.0779 -0.0902 1
BIO6 -0.8679 0.2764 -0.3608 0.0902 0.0142 1
BIO7 0.5878 -0.3902 0.6036 -0.1867 -0.0852 13
BIO8 -0.8371 02314 0.1058 -0.0916 0.0079 1
BIO9 -0.8548 0.1491 -0.3749 0.0748 -0.0605 1
BIO10 -0.9579 0.0986 0.0285 -0.0312 -0.0168 1
BIO1 -0.8915 0.2533 -0.3324 0.0422 -0.0432 1
BIO12 -0.2235 0.8269 -0.1694 04163 0.0242 2
BIO13 -0.3051 0.8701 -0.1482 0.1011 0.0163 2
BIO14 -0.0141 04509 -0.0585 0.7711 0.0280 4
BIO15 -0.3547 -0.0657 0.0470 -0.5679 -0.1909 4
BIO16 -0.2923 0.8753 -0.1525 0.1422 0.0178 2
BIO17 -0.0488 05216 -0.1043 0.7473 0.0183 4
BIO18 -0.1147 0.7889 -0.0327 0.2531 0.0673 2
BIO19 -0.1780 0.5949 -0.2218 04326 -0.0451 2

The humidity parameters BIO12, BIO13, BIO16, BIO18,
and BIO19 have one main factor, 2, which corresponds to
their assignment to cluster 1 and correlation group 2.

The parameters BIO14, BIO15,and BIO17 are influenced
by one main factor, 4, which distinguishes them from the
other parameters. At first glance, they could be combined
into one group on this basis. However, the values of the
loadings of factor 4 for these parameters have a peculiarity:
the loading of the parameter BIO15 is negative, and that
of BIO14 and BIO17 is positive. This distinction means that
this factor determines these parameters in different senses:
it has a negative relationship with BIO15 and a positive
relationship with BIO14 and BIO17. This difference can also
be seen in the correlation matrix: BIO14 and BIO17 have
a strong positive correlation with each other (r = 0.98)
and a moderate negative correlation with BIO15 (r=-047
for both parameters). In addition, BIO14 and BIO17 have
quite large positive loadings for factor 2. The loadings of
the other humidity bioclimatic parameters, for which this
factor is the main one, are also positive. At the same time,
the loading of factor 2 for BIO15 is very low. These results
allow us to single out the parameter BIO15 as a separate
group, as well as the parameters BIO14 and BIO17, but this
group has a relative proximity to the parameters that are
influenced by factor 2, as by the main one.

Table 4 shows the factor matrix obtained as a result of
applying the quartimax method.

Alltemperature parameters, except BIO2, are influenced
by factor 1. Simultaneously, the parameters BIO4 and BIO7
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have loadings of the main factor with signs opposite to the
signs of loadings for the other parameters. This finding is
consistent with the negative correlation between these
groups of parameters. A similar situation was observed
when using the varimax method, as well as cluster
analysis, which, when using the d7 metric, singled out
these parameters into a separate group, and when using
the dz metric, combined them with other temperature
parameters.

The parameter BIO2 is influenced by one main factor,
4, for which it is the only parameter with a significant load
value.

All the humidity parameters are influenced by the
main factor 2. At the same time, the parameters BIO14
and BIO17 do not differ from other parameters, as was the
case with the varimax method. But the parameter BIO15 is
determined not only by the factor 2 but also by the main
factor 3, which does not influence any other parameter.
The loading value of factor 2 for BIO15 also has a different
sign from the sign of the loadings of this factor for other
humidity parameters. These results obtained on the
basis of the quartimax method allow us to single out the
parameter BIO15 into a separate group and to combine the
other humidity parameters. This data is consistent with the
results of the correlation matrix analysis, cluster analysis,
and partly with the results of using the varimax method.

In general, it is possible to note the consistency of the
results obtained from all applied methods for identifying
correlation groups. At the same time, factor analysis is
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Table 4. Factor matrix of bioclimatic parameters obtained using the quartimax method

(loadings of the main factors are highlighted)

barameter Factor loadings Main
1 2 3 4 factor
BIO1 -0.9782 0.0875 0.0013 0.0039 1
BIO2 -0.2851 -0.3667 -0.0766 -0.4936 4
BIO3 -0.7772 0.3583 -0.0554 -0.1790 1
BIO4 0.8274 -0.3108 -0.0107 0.0122 1
BIOS -0.8659 -0.1456 0.0005 -0.0456 1
BIO6 -0.9579 0.2029 0.0282 0.0449 1
BIO7 0.7688 -0.3988 -0.0406 -0.0978 1
BIO8 -0.7973 0.0454 -0.1254 0.0440 1
BIO9 -0.9367 0.0872 0.0772 -0.0274 1
BIO10 -0.9161 -0.0458 0.0047 0.0257 1
BIO11 -0.9731 0.1523 -0.0006 -0.0096 1
BIO12 -0.3533 0.9003 -0.0335 0.0069 2
BIO13 -0.4409 0.7659 -0.3197 0.0093 2
BIO14 -0.0623 0.7781 04386 0.0009 2
BIO15 -0.3410 -0.3957 -0.4259 -0.1593 2,3
BIO16 -0.4294 0.7930 -0.2879 0.0092 2
BIO17 -0.1186 0.8247 0.3872 -0.0083 2
BIO18 -0.2088 0.7885 -0.1648 0.0506 2
BIO19 -0.2984 0.7201 0.0901 -0.0608 2

distinguished by greater complexity in interpreting the
results, although it allows the detection of some subtle
properties of the data not revealed by other methods.

Selection of parameters from the identified correlation
groups

On the basis of the above results, it is possible to
identify five groups of bioclimatic parameters, the
correlation within which is higher than the correlation with
parameters from other groups. The composition of these
groups is presented in Table 5.

In case it is assumed that the negative correlation has
the same value as the positive one, it is possible to combine
groups 5 and 1. Also, from the results of the factor analysis
using the varimax method, it follows that the parameters
BIO14 and BIO17 can be separated, if necessary, from

group 2 into a separate group 6 (for example, if it is known
that they are of particular importance for modeling the
distribution of the species under study).

Next, a final selection of parameters was carried
out, one from each identified group that demonstrated
minimal correlation with parameters from other groups.
For this purpose, the average values of the corresponding
linear correlation coefficients and their absolute values
were calculated (Table 6).

Based on the results presented in Tables 5 and 6, a list
of selected bioclimatic parameters can be proposed as
follows:

1. BIO2 (mean diurnal range (mean of monthly (max
temp - min temp)))

2.BIO5 (max temperature of warmest month)

3. BIO7 (temperature annual range BIO5-BIO6)

4. BIO14 (precipitation of driest month)

Table 5. Identified correlation groups of bioclimatic parameters

Group Bioclimatic parameters
1 BIOT, BIO3, BIO5, BIO6, BIO8-BIO11
2 BIO12-BIO14, BIO16-BIO19
3 BIO2
4 BIO15
5 BIO4, BIO7
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Table 6. Average values of correlation coefficients r and average absolute values of correlation coefficients |r| between
bioclimatic parameters and parameters from other groups (the minimum values in each group are highlighted)

Average value

Bioclimatic parameter

r 7]
Group 1
BIO1 0.121 0.409
BIO3 0.206 0519
BIOS 0.064 0.242
BIO6 0.136 0.464
BIO8 0.117 0.303
BIO9 0.100 0.405
BIO10 0.087 0.296
BIO11 0.134 0452

Group 1 (including BIO4 and BIO7)

BIO1 0.324 0.324
BIO3 0.443 0443
BIO4 -0.396 0.396
BIOS 0.179 0.194
BIO6 0.367 0.367
BIO7 -0.404 0.422
BIO8 0.256 0.256
BIO9 0.308 0.308
BIO10 0.234 0.234
BIO11 0.358 0358
Group 2
BIO12 0.127 0.409
BIO13 0.201 0.429
BIO14 -0.034 0.211
BIO16 0.190 0.427
BIO17 -0.008 0.253
BIO18 0.073 0.282
BIO19 0.100 0.342

Group 2 (without BIO14 and BIO17)

BIO12 0.219 0.462
BIO13 0.242 0438
BIO16 0.239 0442
BIO18 0.149 0.328
BIO19 0.179 0.386
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Group 5
BIO4 -0.544 0.554
BIO7 -0.563 0.563
Group 6
BIO14 0.145 0.389
BIO17 0.184 0434

5. BIO15 (precipitation seasonality (coefficient of
variation))

6. If it is necessary to separate group 6 from group 2,
BIO18 (precipitation of the warmest quarter) can be added
to this list, but this should be done with caution due to the
mixed nature of this parameter and the possible negative
effects associated with it when constructing species
distribution models (see Introduction).

If the same meaning of positive and negative
correlations is accepted, the parameter BIO7 can be
removed from the list due to the merging of groups 2
and 5. Scatter plots of the mutual dispersion of these six
parameters and the values of their correlation coefficients r
are presented in Fig. 2.

r=-0.298| r=—0.049

r=-0.365

As can be seen in Fig. 2, the maximum value of the
correlation coefficient between the selected parameters is
0.389 (BIO5 and BIO15). In absolute value, it is -0.582 (BIO14
and BIO18). Generally, the correlation between these
selected parameters is quite low.

To compare the results obtained, we selected
parameters using a method based on pairwise correlation
threshold. Only those parameters were selected that had
values of the linear correlation coefficient r below a certain
value. As a result, only two parameters were selected at the
threshold of 0.7 (BIO2 and BIO15), three parameters were
selected at the threshold of 0.8 (BIO2, BIO15 and BIO19),
five parameters at the threshold of 0.85 (BIO2, BIO3, BIO15,
BIO18, and BIO19) and six parameters at the threshold of
0.9 (BIO 2, BIO 3, BIOS§, BIO15, BIO18 and BIO19). Different

r=-0.474

3000 1

— r=-0221] r=0.07
2000

2

5 1500 1
10004 .
5004 .

r=-0.183

10 20 30 0 20 40 20 40 60
BIO2 BIOS BIO7

10‘00 20’00 30‘00

BIO18

0 200 400 0 1 2 3 0
BIO14 BIO15

Fig. 2. Scatter plots, linear correlation coefficients r and histograms of distributions (on the diagonal) for six selected
bioclimatic parameters
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threshold values lead to different numbers of selected
parameters. What threshold must be used is unclear. At
threshold 0.85 maximum value of the linear correlation
coefficient is 0.575 (BIO3 and BIO8), which is significantly
higher than the maximum value for the method we used
(0.389). The number of parameters with low correlation
coefficients with other selected parameters were lost. As
can be seen, this comparative study indicates that the
approach we used for the analyzed data is more effective
than the commonly used method based on selection by
correlation threshold.

DISCUSSION

As noted in the introduction, the problem of reducing
the number of predictors in SDM, as in any classification
problem, is an important step in reducing the overfitting
of the constructed models. The resource for this reduction
is the presence of redundant information in the initial set of
predictors, expressed in a high level of correlation between
them.

As can be seen in the results of this study, the statistical
approach we proposed made it possible to reduce the
pairwise correlation to a low level. At the same time, the
number of selected predictors (5 or 6), as experience shows,
is sufficient to build effective species distribution models. It
can be noted that the number of main correlation groups
of bioclimatic parameters identified in this study coincides
with the number of synthetic variables obtained as a result
of using a neural network of the Variable Autoencoder type
in the paper (Dinnage 2023), which was mentioned in the
introduction.

The use of the HDBSCAN cluster analysis algorithm
to identify correlation groups in our study showed its
effectiveness. With its help, a fairly large number of
clusters with a good level of difference between them
were identified. At the same time, the technology of
its application and, importantly, the interpretation of
the obtained results are easy to use and can be applied
routinely.

The results of factor analysis, in general, with the
exception of some nuances, corresponded to the results of
the cluster analysis. This fact confirms the reliability of the
results of the clusteranalysis. The assignment of a number of
parameters to several main factors is quite consistent with
the presence of a high negative correlation between the
parameters. When using factor analysis, it is important to
pay attention to the sign of the loading. However, it should
be noted that the sufficient complexity and ambiguity of
the interpretation of the factor analysis results make it less
preferable for routine use in SDM practice compared to
cluster analysis.
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Our proposed approach to the final selection of
parameters from correlation groups is not the only possible
one. Firstly, it is possible to select them based on the
special significance of any parameter for the vital activity
of the organism, known in advance from physiological
or ecological studies. Secondly, it is possible to make a
selection based on the results of a preliminary distribution
modeling using an unreduced set of predictors, followed
by analysis of their importance for model construction.
Approaches based on the jackknife principle, with
successive elimination of parameters or modeling using
only one parameter, can be applied. Thirdly, the approach
used in our work can also estimate the correlation in the
final set of predictors in another way. For example, we
can use multiple correlation metrics, such as the variance
inflation factor (VIF).

In this study, the values of 19 bioclimatic parameters
were analyzed across the globe for the period of 1991-2020.
Obviously, even when analyzing this set of parameters for
a narrower geographic area or for a different time period,
different results can be obtained. The degree and nature
of the correlation between these variables vary in time
and space, and also depend on the spatial scale of their
calculation (Dormann et al. 2012).

Reducingthe number of predictors while preserving the
information they contain as much as possible isa common
problem in machine learning and predictive systems, as
noted in the introduction. The approach proposed in this
work can be applied to a wide variety of areas related to
modeling and forecasting, including both classification
and regression. First of all, it can be useful for climatological
and meteorological studies, since meteorological and
climatological parameters tend to strongly correlate with
each other.

CONCLUSIONS

In the course of the conducted studies, using several
methods, it was shown that, for the period 1991-2020, for
the entire territory of the Earth, it is possible to identify 4-6
correlation groups of bioclimatic parameters, depending
on the interpretation of the negative correlation. From
these groups, it is possible to select six bioclimatic
parameters that demonstrate a minimum average
correlation with parameters from other groups. The
obtained results are an illustration of the proposed method
for reducing bioclimatic parameters and focusing on the
selected time period and geographical area. They are of
a recommendatory nature. The developed approach to
reduce the number of predictors can be used in various
areas of statistical modeling and forecasting, both in
classification and in regression analysis. [l
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