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ABSTRACT. Nineteen bioclimatic parameters from BIOCLIM are widely used in Species Distribution Modeling (SDM). To 
improve modeling quality, it is essential to reduce the number of parameters. Several approaches have been proposed to solve 
this challenge, but each has its own limitations. In this study, we aimed to develop an effective statistical method based on 
identifying correlation groups of parameters and selecting the least correlated ones. Several statistical techniques were used 
to ensure a reliable parameter selection: simple correlation matrix analysis, cluster analysis (HDBSCAN), and factor analysis 
(varimax and quartimax). As an example, bioclimatic parameter values for the period 1991–2020 were analyzed for the whole 
globe. The results obtained using different methods show good consistency. Several correlation groups were identified, 
ranging from four to five, depending on the interpretation of the negative correlations. One group of two parameters, BIO14 
and BIO17, can also be identified based on the results of the varimax factor analysis, although this correlation group was not 
identified by other methods. Finally, six bioclimatic parameters were selected (BIO2, BIO5, BIO7, BIO14, BIO15, and BIO18), one 
from each group that demonstrated the minimum average value of the correlation coefficient with parameters from other 
groups. The average correlation between the selected parameters was significantly lower than in the case of using previously 
applied methods with the same number of selected parameters.
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INTRODUCTION

	 Living organisms, as open systems, are affected by 
the environment. Climatic factors, particularly ambient 
temperature, are the most significant abiotic factors 
determining the existence and reproduction of individuals 
and populations. For terrestrial organisms, humidity is also 
an important factor (Bonan 2008; Schimel 2013). Climate 
change has various effects on land and marine ecosystems, 
including their structure, species composition, and 
relationships between components. The most significant 
issue is the impact of climate and climate change on species 
distribution, including shifts in their ranges (McCarty 2001; 
Gilman et al. 2010; Post 2013).
	 The assessment of potential changes in species 
distribution, particularly those important for economic 
activity and human health, presents a significant challenge 
for modern science. Currently, the main methodological 
approach to this issue is Species Distribution Modeling 
(SDM), which is a rapidly evolving field at the intersection 
of ecology, biogeography, applied climatology, and 
information technology (Franklin 2009; Peterson et al. 

2011; Araújo et al. 2019; Srivastava et al. 2019). Various 
algorithms are used to construct these models, including 
general-purpose machine learning techniques such as 
support vector machines, logistic regression, and neural 
networks, as well as specialized methods designed for 
habitat modeling, the most commonly used of which is 
MaxEnt (Phillips et al. 2004; Phillips et al. 2006).
	 Although a wide variety of environmental factors, 
both abiotic and biotic, can be used as predictors of 
species distribution in these models, climate variables 
play a major role in almost all models, as they have a 
fundamental limiting effect on organism ranges (Popova 
and Popov 2013; Popova and Popov 2019). Obviously, it is 
possible to design a huge, if not infinite, number of such 
variables. However, not all variables will correlate well with 
distribution data or be significant for range formation, and 
not all will be convenient for projecting models to other 
regions of the world. 
	 In 1984, BIOCLIM was proposed as one of the first 
methods for constructing Species Distribution Models 
(Nix 1986; Busby 1991). This software package included a 
set of 12 climatic parameters, specifically designed to be 
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biologically significant for most species and suitable for 
projecting models across hemispheres. The package was 
developed by a group of Australian scientists and was 
initially used to assess the invasive potential of different 
species. In 1996, a new version of this software package 
was presented, with the number of bioclimatic parameters 
increased to 19 (Booth 2018). Their list is given in Table 1. 
The names of these parameters begin with the prefix BIO, 
followed by a number from 1 to 19 (BIO1-BIO19).
	 As shown in Table 1, the first 11 parameters (BIO1-
BIO11) are related to temperature, while the remaining 8 
(BIO12-BIO19) reflect a precipitation regime. There is no 
specific mention of a particular month or season. Instead, 
periods of the year with the highest or lowest temperatures, 
or the highest or lowest precipitation, are used. This makes 
it easy to move models between regions with different 
annual climatic variation, like hemispheres. In addition, 
four parameters (BIO8, BIO9, BIO18, and BIO19) are “mixed”, 
reflecting the values of climatic factors of one type over 
a period determined by factors of another type. Such 
an arrangement can be useful for modeling the ranges 
of certain species, but it can also cause some problems 
in certain cases. For instance, they can have a very high 
gradient of spatial variability in some regions, particularly 
in equatorial and tropical areas. Some researchers 
recommend avoiding the use of these parameters or using 
them with extreme caution (Booth 2022).
	 The design of the BIOCLIM parameters has been so 
successful that they are widely used in SDM and other areas 
of ecological modeling. This set was further popularized 
with the release of the WorldClim database in 2005 and its 
second version in 20171. This database contains values for 

six continents and is interpolated onto a spatial grid with 
a step of up to 30" (Hijmans et al. 2005; Fick and Hijmans 
2017). According to the study (Bradie and Leunig 2017), 
the BIOCLIM parameters have been used significantly 
more often than other climate variables in the modeling of 
nearly 1900 species in about 2000 publications.
	 However, using a large number of potential predictors 
has several disadvantages. First, it introduces a challenge 
known as the “curse of dimensionality” in machine learning. 
As the number of independent variables increases, so does 
the distance between samples in feature space. That can 
result in inaccuracies in the classification of virtual space 
(Hastie et al. 2009) and lead to overfitting of models, when 
a model that fits too well to the training data classifies new 
data with a high error rate. Additionally, a large number of 
variables can significantly increase the computational load, 
especially when analyzing large amounts of data.
	 In addition to the above-mentioned problems, 
climate variables have a fairly strong correlation between 
each other, which can also influence the performance of 
several algorithms (for instance, in the case of MaxEnt). 
Furthermore, when it is necessary to assess the predictor 
significance for classification, which in SDM may be linked 
to their biological significance for a particular species, the 
presence of strongly correlated variables may lead to an 
inaccurate assessment of their significance, especially 
when using ensemble techniques based on decision trees 
such as “random forest” or gradient boosting.
	 One possible approach to reducing the number of 
predictors is to create new variables based on linear or 
non-linear combinations of the original variables. These 
new variables should retain as much information as 
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Table 1. Bioclimatic parameters

BIO1 annual mean temperature

BIO2 mean diurnal range (mean of monthly (max temp - min temp))

BIO3 isothermality (BIO2/BIO7) (×100)

BIO4 temperature seasonality (standard deviation ×100)

BIO5 max temperature of warmest month

BIO6 min temperature of coldest month

BIO7 temperature annual range (BIO5-BIO6)

BIO8 mean temperature of wettest quarter

BIO9 mean temperature of driest quarter

BIO10 mean temperature of warmest quarter

BIO11 mean temperature of coldest quarter

BIO12 annual precipitation

BIO13 precipitation of wettest month

BIO14 precipitation of driest month

BIO15 precipitation seasonality (coefficient of variation)

BIO16 precipitation of wettest quarter

BIO17 precipitation of driest quarter

BIO18 precipitation of warmest quarter

BIO19 precipitation of coldest quarter
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possible while being significantly smaller in number. 
Common methods for such reduction include various 
versions of Principal Component Analysis (PCA), Locally-
Linear Embedding (LLE) and Multidimensional Scaling 
(MDS), among others (Roweis and Saul 2000). In particular, 
the study (Dinnage 2023) used a neural network Variable 
Autoencoder (VAE) to reduce the set of WorldClim variables 
to 5 synthetic variables without significant information 
loss. These synthetic variables are nonlinear combinations 
of the original 19 parameters. However, the disadvantage 
of this approach is that the obtained variables are artificial. 
It complicates a biological interpretation of the results.
	 An alternative approach is to identify correlation groups 
of the actual variables, i.e., groups with a higher correlation 
within than between them. From these groups, we can 
select variables that either have the lowest correlation with 
the other groups or are particularly significant for a specific 
study. Typically, this approach eliminates variables that 
demonstrate a high level of correlation with each other; for 
example, if the value of a correlation coefficient is above a 
certain threshold (Bellard et al. 2013; Petrosyan et al. 2023; 
Zhang et al. 2023). However, such simultaneous pairwise 
reduction may result in the loss of several important 
variables since a variable that is highly correlated with one 
or more variables may also be weakly correlated with other 
variables. In addition, the choice of a selection threshold is 
not always clear.
	 As an alternative to the strategies described, we propose 
using statistical methods to identify correlation groups. 
This approach involves using algorithms that allow for the 
identification of fine structures and groups in data based 
on various types of relationships between its elements. 
For this purpose, we used a modern, highly effective 
clustering algorithm called HDBSCAN. Two methods of 
factor analysis, varimax and quartimax, were also used as 
an alternative approach to verifying the clustering results. 
These three algorithms were used for the first time to solve 
this problem.
	 After identifying the correlation groups, our approach 
involves selecting one parameter from each group with the 
least mean correlation to parameters from other groups. The 
identification of correlation groups allows us to determine 
the optimal number of selected parameters. This number 
balances the minimization of the correlation between 
parameters with their minimum sufficient quantity.
	 The aim of this study was to evaluate the effectiveness 
of the proposed approach to reducing the number of SDM 
predictors using 19 bioclimatic parameters calculated for 
the entire globe as an example.

MATERIALS AND METHODS

Climate data

	 The climate data source used in this study was the CRU TS 
4.05 database (Harris et al. 2020), which contains the results 
of meteorological observations with a monthly resolution, 
interpolated onto a regular spatial grid with a step of 0.5°. 
This database is widely used in SDM. In particular, it forms the 
basis for the popular bioclimatic database WorldClim, which 
was discussed in the introduction. The fact that CRU is based 
on meteorological observations affords it several advantages 
over reanalysis, such as ERA5. Many studies have found that 
reanalysis often produces erroneous results, especially with 
respect to precipitation data, which is of special importance 
for SDM (Purnadurga et al. 2019; Bodjrènou et al. 2025; 
Fatolahzadeh et al. 2024).

	 In total, this grid contains 67,420 nodes with values, as 
the nodes over the seas, oceans, and Antarctica do not have 
climate variables’ values. Nineteen bioclimatic parameters 
were calculated according to their description in Table 1 for 
the entire globe, using temperature variables and monthly 
precipitation amounts. These values were averaged over 
the period 1991-2020 for each node in the spatial grid.
	 As a result of the calculations, each of the 67,420 spatial 
nodes was characterized by 19 bioclimatic parameters. 
Based on this data, linear correlation coefficients were 
calculated for each pair of parameters to form a correlation 
matrix with a size of 19×19.
	 All calculations in this work were performed using the 
Python 3 programming language. A Python 3 module 
for the calculation of bioclimatic parameters is available 
in the repository2. Jupyter notebooks containing the 
calculations and some additional materials are available in 
the repository3.

Cluster analysis

	 To identify correlation groups among bioclimatic 
parameters, cluster analysis was used. This method allows 
the identification of groups of objects (in this study, sets 
of bioclimatic parameter values) that are closer together 
than other objects. In other words, it helps to detect 
areas of increased density in the space of objects. Cluster 
analysis can use different metrics to measure the distance 
between objects. In this study we used metrics based on 
the linear correlation coefficient to measure the distance 
between the values of bioclimatic parameters. This allows 
us to determine groups of parameters that have a higher 
correlation with each other than with other parameters.
	 Currently, there are many methods of cluster analysis 
(Wierzchoń and Kłopotek 2018). In this work, we used the 
HDBSCAN (Hierarchical Density-Based Spatial Clustering of 
Applications with Noise) algorithm, which is an evolution 
of the DBSCAN and OPTICS methods (Campello et al. 2013; 
McInnes and Healy 2017). A special feature of this method 
is that it can independently determine the number of 
clusters and identify noise points – samples that do not 
belong to any cluster and can be considered as single-
sized clusters. Furthermore, it does not require access to 
the original data but only a matrix of distances between 
the analyzed samples.
	 In its modern form, the HDBSCAN algorithm includes 
several stages of data processing:
	 1. Transformation of the original sample space to 
better select areas of increased density, using the method 
described and justified in the paper (Eldridge et al. 2015).
	 2. Construction of a graph where the vertices are the 
samples, and the edge weights are equal to the distance 
between the samples. The graph is then transformed into 
a minimum spanning tree, which is a graph where each 
vertex has at least one connection to other vertices, and 
the total weight of all the edges is minimized.
	 3. Construction of a hierarchical cluster tree based on 
the obtained minimum connected tree.
	 4. Transformation of the hierarchical cluster tree into 
a flat cluster system. At this stage, both user-defined 
hyperparameters (minimum cluster size and ε – minimum 
allowable distance between clusters) and several 
parameters calculated directly from the data are used. 
This distinguishes the HDBSCAN method from DBSCAN, 
which only identifies clusters based on the specified 
hyperparameters.

2https://doi.org/10.5281/zenodo.13913422
3https://doi.org/10.5281/zenodo.13970876
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	 When analyzing a small number of samples, as in this 
study, it is recommended to set the minimum cluster size 
to 2. In this case, ε becomes the only hyperparameter 
that needs to be optimized to find the optimal value that 
provides the best quality of cluster selections. (Malzer and 
Baum 2020).
	 The distance between bioclimatic parameters was 
determined using two different metrics. These metrics 
differ in their assessment of negative correlations. Negative 
correlation, like positive correlation, implies the presence 
and duplication of information about one variable in 
another variable, albeit in a different sense. This type of 
correlation can also negatively affect the quality of the 
modeling. 
	 The first metric, d1, considers negative correlation 
values as an indicator of a greater distance between 
parameters. It is calculated using the Eq. 1:

	 where r is the linear correlation coefficient.
	 This metric ranges from 0 (for parameters with a perfect 
positive correlation) to 2 (for parameters with a perfect 
negative correlation).
	 The second metric, d

2
, considers negative correlation as 

equivalent to positive correlation. It is calculated using the 
absolute value of the correlation coefficient (Eq. 2):

	 This metric ranges from 0, where the parameters have 
correlation coefficients of 1 or -1, to 1, where there is a 
complete lack of correlation between the parameters.
	 To select the optimal value for the hyperparameter ε, 
the average value of the silhouette coefficients was used 
(Rousseeuw 1987). This is one of the most commonly 
used metrics for evaluating clustering quality. The 
implementation of the HDBSCAN algorithm from the scikit-
learn machine learning library4 was used in this study.

Factor analysis

	 Another alternative approach that we used to identify 
correlation groups is factor analysis. This method is used in 
conjunction with cluster analysis to increase the reliability 
and validity of the results.
	 Factor analysis is based on the assumption that there 
are a small number of latent variables (called factors) 
underlying the observed variables. Observed variables 
can be expressed as linear or non-linear combinations 
of factors (Mulaik 2009; Gorsuch 2014). The most 
common model currently used is the linear model for the 
relationship between factors and observed variables. It can 
be expressed mathematically as (Eq. 3):

	 where X is a matrix of observed values with m rows 
and n columns, corresponding to n observed variables 
and m samples. P is a matrix of factor scores. It has a size of 
k × m (k << n) and contains columns with the coordinates 
of the observed variables in the new space of k factors. U 
is a matrix of deviations from the mean of the observed 
values, and E is an error matrix. A is called a factor matrix 
of size n × k. Its elements are called factor loadings, which 
are the coordinates of the factor space basis and reflect 
the influence of the factors on the observed variables 
(Reyment and Jöreskog 1996).
	 Before conducting factor analysis, it is common to 
standardize the values of the observed variables. This 

process leads to the matrix U becoming a zero matrix. This 
simplifies further analysis.
	 The goal of further calculations is to determine a matrix 
A in which the factor loadings of each variable for different 
factors are as distinct as possible, while minimizing the 
number of factors and the values of the elements in the 
error matrix E. The most common approach to solving this 
problem is the so-called “rotation”. It involves rotating the 
initial basis or its subset in the space of observed variables 
by a certain angle. This operation is done to satisfy the 
criteria mentioned above. The resulting factors can be 
either orthogonal or non-orthogonal, depending on the 
specific rotation method used.
	 These methods are based on a specific criterion for 
optimally choosing the factor matrix. Historically, the first 
criterion was the quartimax method proposed in the 
work (Ferguson 1954). This criterion corresponds to the 
maximization of the criterion q

4
, which is the sum of the 

factor loadings aij in the fourth power (Eq. 4):

	 A feature of this method is that it tends to produce 
factors that are too general. The number of factors produced 
is too small, and each of these factors has too great an 
influence on several observed variables simultaneously. 
Nevertheless, this criterion is still in use today.
	 As a development of the quartimax method, the 
varimax method was proposed in the work (Kaiser 1958). 
According to it, the criterion to be maximized is

	 where a
ij
 are the elements of the factor matrix A and n is 

the number of observed variables.
	 There are several other rotation methods available, both 
orthogonal (such as oblimax, equimax, and parsimax) and 
non-orthogonal (including promax and quartimin). Each 
of these methods has its set of benefits and drawbacks. 
However, varimax and quartimin, which are both orthogonal, 
are currently the most commonly used in factor analysis.
	 As can be seen, the search for a factor matrix is reduced 
to solving an optimization problem of the corresponding 
criterion. Currently, several methods are used for this 
purpose, the most effective of which is recognized as 
the Gradient Projection Algorithm (GPA) (Jennrich 2001; 
Jennrich 2004).
	 In this study, two rotation methods were used to 
identify correlation groups among bioclimatic parameters: 
quartimax and varimax. Their implementation in the scikit-
learn package was used. Before the analysis, the values of 
the bioclimatic parameters were standardized.
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	 According to the accepted approach, it was considered 
that the identified factor could be defined as the main factor 
for a certain parameter (in other words, the parameter could 
be attributed to a certain correlation group) if its loading value 
was maximum (since loadings can have negative values, we 
will talk hereinafter about their absolute values) and exceeded 
the values of the loadings of other factors by at least 30%. If 
there were one or more factors with a lower loading value and 
the difference in loadings did not exceed 30% of the maximum 
value, then a conclusion was drawn about the influence of 
several main factors on the bioclimatic parameter (Mulaik 
2009).

RESULTS

Correlation matrix analysis

	 Fig. 1 shows a heatmap of the correlation matrix for 
all 19 bioclimatic parameters. This matrix contains Pearson 
linear correlation coefficients r. As can be seen, all bioclimatic 
parameters can be divided into several groups.
	 Firstly, two groups of parameters are distinguished, 
containing temperature (BIO1-BIO11, excluding BIO4 and BIO7) 
and humidity (BIO12-BIO19, excluding BIO15) factors. Within 
these groups, the correlations are significantly higher than 
those between parameters from different groups. Within the 
first group, the correlation coefficients ranged from 0.53 to 0.99, 
with an average of 0.829. In the second group, they ranged 
from 0.45 to 0.99, averaging 0.712. The correlation coefficients 

between the groups ranged from -0.05 to 0.63, with an average 
of 0.32.
	 Secondly, two factors stand out among the temperature 
parameters: BIO4 and BIO7. These factors characterize the 
annual temperature range and have a fairly strong negative 
correlation with most other parameters, except for BIO7 and 
BIO2. There is also a strong positive correlation between BIO4 
and BIO7 (r = 0.97).
	 The BIO2 parameter also stands out, having a fairly weak 
positive correlation with the temperature parameters (ranging 
from 0.08 to 0.29), and a weak negative correlation with the 
humidity parameters (ranging from -0.14 to -0.3), except for 
BIO15 (r = 0.38).
	 The parameter BIO15, in turn, also stands out among 
the other humidity parameters. It has a negative or very 
weak positive (with BIO13) correlation with other humidity 
parameters and a low positive correlation (from 0.17 to 0.38) 
with most temperature parameters, except for the above-
described BIO4 and BIO7, with which it has r values equal to 
-0.12 and -0.03, respectively.
	 Thus, five correlation groups can be distinguished already 
at the stage of simple analysis of the correlation matrix of 
bioclimatic parameters:
	 1. BIO1, BIO3, BIO5, BIO6, BIO8-BIO11
	 2. BIO12-BIO14, BIO16-BIO19
	 3. BIO4, BIO7
	 4. BIO2
	 5. BIO15.

Fig. 1. Heatmap of the correlation matrix of bioclimatic parameters
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Results of the cluster analysis

	 The optimal value of the hyperparameter ε for the 
HDBSCAN algorithm was found by simply enumerating its 
possible values in the range from 0.01 to 0.5, with a step 
size of 0.01. For the metric d

1
, the optimal ε value was found 

to be in the range of 0.19-0.36, giving an average silhouette 
coefficient of 0.6336. For the metric d

2
, the same range of 

values (0.19-0.36) was found to provide the optimal ε, with 
an average silhouette coefficient of 0.5531.
	 Table 2 shows the obtained distribution of bioclimatic 
parameters by clusters for the two distance metrics used. 
The noise points are marked with a value of -1. As can be 
seen, when using the d

1
 metric, the HDBSCAN algorithm 

identified three clusters and two noise points. In the case 
of the d

2
 metric, two clusters and two noise points were 

identified. In both cases, the BIO2 and BIO15 parameters 
were identified as noise points. Cluster 1 was completely 
the same for both metrics. Cluster 0, obtained for the d

2
 

metric, when using the d
1
 metric, was divided into two 

clusters: 0 and 2. In this case, cluster 2 contained the 
parameters BIO4 and BIO7.
	 As can be seen, the results of the cluster analysis 
coincide completely with the results of a simple analysis 
of the correlation matrix. The noise points (BIO2 and BIO15 
parameters) were previously assigned to groups 4 and 5, 
respectively. Cluster 1 corresponds to group 2, and cluster 
0 (d

2
 metric) includes groups 1 and 3. When the d

1
 metric 

is used, clusters 0 and 2 coincide completely with these 
groups.

Results of the factor analysis

	 Table 3 shows the results of the factor analysis (factor 
matrix and identified main factors) conducted using the 
varimax method. As can be seen, varimax identifies 5 
factors. Meanwhile, for most bioclimatic parameters, it can 
be concluded that there is only one main factor.
	 The temperature parameters BIO1 and BIO3-BIO11 are 
influenced by the main factor 1, which is consistent with the 
results of the correlation matrix analysis and cluster analysis.
	 The parameters BIO4 and BIO7 are also influenced by the 
main factor 3. This conclusion is consistent with the results 
of the cluster analysis, which allocated them to cluster 2 
when using the metric d

1
 and combined them with cluster 

0, corresponding to factor 1 when using the metric d
2
. In this 

case, the loadings of factor 1 for these parameters are positive, 
unlike the loadings of the other temperature parameters, for 
which they are negative. This means a different nature of the 
influence of factor 1 on these parameters, and corresponds 
to the negative correlation of the parameters BIO4 and BIO7 
with the other temperature parameters (except BIO2). These 
circumstances allow us to allocate the parameters BIO4 and 
BIO7 to a separate group, if we take into account the nature 
of their correlation with other temperature parameters, or 
to combine them if the sign of the correlation coefficient is 
considered to be unimportant.
	 The BIO2 parameter has one main factor, 5, which is not 
the main factor for any other parameter. This corresponds to 
the allocation of this factor to a separate group 4 and to a 
separate noise point.

Table 2. Belonging of the studied bioclimatic parameters to the selected clusters according to two metrics

Bioclimatic
parameter

Cluster number

metric d
1

metric d
2

BIO1 0 0

BIO2 -1 -1

BIO3 0 0

BIO4 2 0

BIO5 0 0

BIO6 0 0

BIO7 2 0

BIO8 0 0

BIO9 0 0

BIO10 0 0

BIO11 0 0

BIO12 1 1

BIO13 1 1

BIO14 1 1

BIO15 -1 -1

BIO16 1 1

BIO17 1 1

BIO18 1 1

BIO19 1 1
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	 The humidity parameters BIO12, BIO13, BIO16, BIO18, 
and BIO19 have one main factor, 2, which corresponds to 
their assignment to cluster 1 and correlation group 2.
	 The parameters BIO14, BIO15, and BIO17 are influenced 
by one main factor, 4, which distinguishes them from the 
other parameters. At first glance, they could be combined 
into one group on this basis. However, the values of the 
loadings of factor 4 for these parameters have a peculiarity: 
the loading of the parameter BIO15 is negative, and that 
of BIO14 and BIO17 is positive. This distinction means that 
this factor determines these parameters in different senses: 
it has a negative relationship with BIO15 and a positive 
relationship with BIO14 and BIO17. This difference can also 
be seen in the correlation matrix: BIO14 and BIO17 have 
a strong positive correlation with each other (r = 0.98) 
and a moderate negative correlation with BIO15 (r = -0.47 
for both parameters). In addition, BIO14 and BIO17 have 
quite large positive loadings for factor 2. The loadings of 
the other humidity bioclimatic parameters, for which this 
factor is the main one, are also positive. At the same time, 
the loading of factor 2 for BIO15 is very low. These results 
allow us to single out the parameter BIO15 as a separate 
group, as well as the parameters BIO14 and BIO17, but this 
group has a relative proximity to the parameters that are 
influenced by factor 2, as by the main one.
Table 4 shows the factor matrix obtained as a result of 
applying the quartimax method. 
	 All temperature parameters, except BIO2, are influenced 
by factor 1. Simultaneously, the parameters BIO4 and BIO7 

have loadings of the main factor with signs opposite to the 
signs of loadings for the other parameters. This finding is 
consistent with the negative correlation between these 
groups of parameters. A similar situation was observed 
when using the varimax method, as well as cluster 
analysis, which, when using the d

1
 metric, singled out 

these parameters into a separate group, and when using 
the d

2
 metric, combined them with other temperature 

parameters.
	 The parameter BIO2 is influenced by one main factor, 
4, for which it is the only parameter with a significant load 
value.
	 All the humidity parameters are influenced by the 
main factor 2. At the same time, the parameters BIO14 
and BIO17 do not differ from other parameters, as was the 
case with the varimax method. But the parameter BIO15 is 
determined not only by the factor 2 but also by the main 
factor 3, which does not influence any other parameter. 
The loading value of factor 2 for BIO15 also has a different 
sign from the sign of the loadings of this factor for other 
humidity parameters. These results obtained on the 
basis of the quartimax method allow us to single out the 
parameter BIO15 into a separate group and to combine the 
other humidity parameters. This data is consistent with the 
results of the correlation matrix analysis, cluster analysis, 
and partly with the results of using the varimax method.
	 In general, it is possible to note the consistency of the 
results obtained from all applied methods for identifying 
correlation groups. At the same time, factor analysis is 

Table 3. Factor matrix of the bioclimatic parameters obtained using the varimax method 
(loadings of the main factors are highlighted)

Parameter
Factor loadings Main

factor1 2 3 4 5

BIO1 -0.9393 0.2066 -0.2091 0.0183 -0.0338 1

BIO2 -0.2896 -0.2246 -0.0365 -0.2483 -0.5180 5

BIO3 -0.6146 0.4194 -0.4777 0.0983 -0.1950 1

BIO4 0.6481 -0.3408 0.6066 -0.1174 0.0304 1.3

BIO5 -0.9362 0.0151 0.1118 -0.0779 -0.0902 1

BIO6 -0.8679 0.2764 -0.3608 0.0902 0.0142 1

BIO7 0.5878 -0.3902 0.6036 -0.1867 -0.0852 1.3

BIO8 -0.8371 0.2314 0.1058 -0.0916 0.0079 1

BIO9 -0.8548 0.1491 -0.3749 0.0748 -0.0605 1

BIO10 -0.9579 0.0986 0.0285 -0.0312 -0.0168 1

BIO11 -0.8915 0.2533 -0.3324 0.0422 -0.0432 1

BIO12 -0.2235 0.8269 -0.1694 0.4163 0.0242 2

BIO13 -0.3051 0.8701 -0.1482 0.1011 0.0163 2

BIO14 -0.0141 0.4509 -0.0585 0.7711 0.0280 4

BIO15 -0.3547 -0.0657 0.0470 -0.5679 -0.1909 4

BIO16 -0.2923 0.8753 -0.1525 0.1422 0.0178 2

BIO17 -0.0488 0.5216 -0.1043 0.7473 0.0183 4

BIO18 -0.1147 0.7889 -0.0327 0.2531 0.0673 2

BIO19 -0.1780 0.5949 -0.2218 0.4326 -0.0451 2
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distinguished by greater complexity in interpreting the 
results, although it allows the detection of some subtle 
properties of the data not revealed by other methods.

Selection of parameters from the identified correlation 
groups

	 On the basis of the above results, it is possible to 
identify five groups of bioclimatic parameters, the 
correlation within which is higher than the correlation with 
parameters from other groups. The composition of these 
groups is presented in Table 5.
	 In case it is assumed that the negative correlation has 
the same value as the positive one, it is possible to combine 
groups 5 and 1. Also, from the results of the factor analysis 
using the varimax method, it follows that the parameters 
BIO14 and BIO17 can be separated, if necessary, from 

group 2 into a separate group 6 (for example, if it is known 
that they are of particular importance for modeling the 
distribution of the species under study).
	 Next, a final selection of parameters was carried 
out, one from each identified group that demonstrated 
minimal correlation with parameters from other groups. 
For this purpose, the average values of the corresponding 
linear correlation coefficients and their absolute values 
were calculated (Table 6).
	 Based on the results presented in Tables 5 and 6, a list 
of selected bioclimatic parameters can be proposed as 
follows:
	 1. BIO2 (mean diurnal range (mean of monthly (max 
temp - min temp)))
	 2. BIO5 (max temperature of warmest month)
	 3. BIO7 (temperature annual range BIO5-BIO6)
	 4. BIO14 (precipitation of driest month)

Table 4. Factor matrix of bioclimatic parameters obtained using the quartimax method 
(loadings of the main factors are highlighted)

Parameter
Factor loadings Main

factor1 2 3 4

BIO1 -0.9782 0.0875 0.0013 0.0039 1

BIO2 -0.2851 -0.3667 -0.0766 -0.4936 4

BIO3 -0.7772 0.3583 -0.0554 -0.1790 1

BIO4 0.8274 -0.3108 -0.0107 0.0122 1

BIO5 -0.8659 -0.1456 0.0005 -0.0456 1

BIO6 -0.9579 0.2029 0.0282 0.0449 1

BIO7 0.7688 -0.3988 -0.0406 -0.0978 1

BIO8 -0.7973 0.0454 -0.1254 0.0440 1

BIO9 -0.9367 0.0872 0.0772 -0.0274 1

BIO10 -0.9161 -0.0458 0.0047 0.0257 1

BIO11 -0.9731 0.1523 -0.0006 -0.0096 1

BIO12 -0.3533 0.9003 -0.0335 0.0069 2

BIO13 -0.4409 0.7659 -0.3197 0.0093 2

BIO14 -0.0623 0.7781 0.4386 0.0009 2

BIO15 -0.3410 -0.3957 -0.4259 -0.1593 2, 3

BIO16 -0.4294 0.7930 -0.2879 0.0092 2

BIO17 -0.1186 0.8247 0.3872 -0.0083 2

BIO18 -0.2088 0.7885 -0.1648 0.0506 2

BIO19 -0.2984 0.7201 0.0901 -0.0608 2

Table 5. Identified correlation groups of bioclimatic parameters

Group Bioclimatic parameters

1 BIO1, BIO3, BIO5, BIO6, BIO8-BIO11

2 BIO12-BIO14, BIO16-BIO19

3 BIO2

4 BIO15

5 BIO4, BIO7
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Table 6. Average values of correlation coefficients r and average absolute values of correlation coefficients |r| between 
bioclimatic parameters and parameters from other groups (the minimum values in each group are highlighted)

Bioclimatic parameter
Average value

r | r |

Group 1

BIO1 0.121 0.409

BIO3 0.206 0.519

BIO5 0.064 0.242

BIO6 0.136 0.464

BIO8 0.117 0.303

BIO9 0.100 0.405

BIO10 0.087 0.296

BIO11 0.134 0.452

Group 1 (including BIO4 and BIO7)

BIO1 0.324 0.324

BIO3 0.443 0.443

BIO4 -0.396 0.396

BIO5 0.179 0.194

BIO6 0.367 0.367

BIO7 -0.404 0.422

BIO8 0.256 0.256

BIO9 0.308 0.308

BIO10 0.234 0.234

BIO11 0.358 0.358

Group 2

BIO12 0.127 0.409

BIO13 0.201 0.429

BIO14 -0.034 0.211

BIO16 0.190 0.427

BIO17 -0.008 0.253

BIO18 0.073 0.282

BIO19 0.100 0.342

Group 2 (without BIO14 and BIO17)

BIO12 0.219 0.462

BIO13 0.242 0.438

BIO16 0.239 0.442

BIO18 0.149 0.328

BIO19 0.179 0.386
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Group 5

BIO4 -0.544 0.554

BIO7 -0.563 0.563

Group 6

BIO14 0.145 0.389

BIO17 0.184 0.434

	 5. BIO15 (precipitation seasonality (coefficient of 
variation))
	 6. If it is necessary to separate group 6 from group 2, 
BIO18 (precipitation of the warmest quarter) can be added 
to this list, but this should be done with caution due to the 
mixed nature of this parameter and the possible negative 
effects associated with it when constructing species 
distribution models (see Introduction).
	 If the same meaning of positive and negative 
correlations is accepted, the parameter BIO7 can be 
removed from the list due to the merging of groups 2 
and 5. Scatter plots of the mutual dispersion of these six 
parameters and the values of their correlation coefficients r 
are presented in Fig. 2.

	 As can be seen in Fig. 2, the maximum value of the 
correlation coefficient between the selected parameters is 
0.389 (BIO5 and BIO15). In absolute value, it is -0.582 (BIO14 
and BIO18). Generally, the correlation between these 
selected parameters is quite low.
	 To compare the results obtained, we selected 
parameters using a method based on pairwise correlation 
threshold. Only those parameters were selected that had 
values of the linear correlation coefficient r below a certain 
value. As a result, only two parameters were selected at the 
threshold of 0.7 (BIO2 and BIO15), three parameters were 
selected at the threshold of 0.8 (BIO2, BIO15 and BIO19), 
five parameters at the threshold of 0.85 (BIO2, BIO3, BIO15, 
BIO18, and BIO19) and six parameters at the threshold of 
0.9 (BIO 2, BIO 3, BIO8, BIO15, BIO18 and BIO19). Different 

Fig. 2. Scatter plots, linear correlation coefficients r and histograms of distributions (on the diagonal) for six selected 
bioclimatic parameters
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threshold values lead to different numbers of selected 
parameters. What threshold must be used is unclear. At 
threshold 0.85 maximum value of the linear correlation 
coefficient is 0.575 (BIO3 and BIO8), which is significantly 
higher than the maximum value for the method we used 
(0.389). The number of parameters with low correlation 
coefficients with other selected parameters were lost. As 
can be seen, this comparative study indicates that the 
approach we used for the analyzed data is more effective 
than the commonly used method based on selection by 
correlation threshold.

DISCUSSION

	 As noted in the introduction, the problem of reducing 
the number of predictors in SDM, as in any classification 
problem, is an important step in reducing the overfitting 
of the constructed models. The resource for this reduction 
is the presence of redundant information in the initial set of 
predictors, expressed in a high level of correlation between 
them.
	 As can be seen in the results of this study, the statistical 
approach we proposed made it possible to reduce the 
pairwise correlation to a low level. At the same time, the 
number of selected predictors (5 or 6), as experience shows, 
is sufficient to build effective species distribution models. It 
can be noted that the number of main correlation groups 
of bioclimatic parameters identified in this study coincides 
with the number of synthetic variables obtained as a result 
of using a neural network of the Variable Autoencoder type 
in the paper (Dinnage 2023), which was mentioned in the 
introduction.
	 The use of the HDBSCAN cluster analysis algorithm 
to identify correlation groups in our study showed its 
effectiveness. With its help, a fairly large number of 
clusters with a good level of difference between them 
were identified. At the same time, the technology of 
its application and, importantly, the interpretation of 
the obtained results are easy to use and can be applied 
routinely.
	 The results of factor analysis, in general, with the 
exception of some nuances, corresponded to the results of 
the cluster analysis. This fact confirms the reliability of the 
results of the cluster analysis. The assignment of a number of 
parameters to several main factors is quite consistent with 
the presence of a high negative correlation between the 
parameters. When using factor analysis, it is important to 
pay attention to the sign of the loading. However, it should 
be noted that the sufficient complexity and ambiguity of 
the interpretation of the factor analysis results make it less 
preferable for routine use in SDM practice compared to 
cluster analysis.

	 Our proposed approach to the final selection of 
parameters from correlation groups is not the only possible 
one. Firstly, it is possible to select them based on the 
special significance of any parameter for the vital activity 
of the organism, known in advance from physiological 
or ecological studies. Secondly, it is possible to make a 
selection based on the results of a preliminary distribution 
modeling using an unreduced set of predictors, followed 
by analysis of their importance for model construction. 
Approaches based on the jackknife principle, with 
successive elimination of parameters or modeling using 
only one parameter, can be applied. Thirdly, the approach 
used in our work can also estimate the correlation in the 
final set of predictors in another way. For example, we 
can use multiple correlation metrics, such as the variance 
inflation factor (VIF).
	 In this study, the values of 19 bioclimatic parameters 
were analyzed across the globe for the period of 1991–2020. 
Obviously, even when analyzing this set of parameters for 
a narrower geographic area or for a different time period, 
different results can be obtained. The degree and nature 
of the correlation between these variables vary in time 
and space, and also depend on the spatial scale of their 
calculation (Dormann et al. 2012).
	 Reducing the number of predictors while preserving the 
information they contain as much as possible is a common 
problem in machine learning and predictive systems, as 
noted in the introduction. The approach proposed in this 
work can be applied to a wide variety of areas related to 
modeling and forecasting, including both classification 
and regression. First of all, it can be useful for climatological 
and meteorological studies, since meteorological and 
climatological parameters tend to strongly correlate with 
each other.

CONCLUSIONS

	 In the course of the conducted studies, using several 
methods, it was shown that, for the period 1991-2020, for 
the entire territory of the Earth, it is possible to identify 4-6 
correlation groups of bioclimatic parameters, depending 
on the interpretation of the negative correlation. From 
these groups, it is possible to select six bioclimatic 
parameters that demonstrate a minimum average 
correlation with parameters from other groups. The 
obtained results are an illustration of the proposed method 
for reducing bioclimatic parameters and focusing on the 
selected time period and geographical area. They are of 
a recommendatory nature. The developed approach to 
reduce the number of predictors can be used in various 
areas of statistical modeling and forecasting, both in 
classification and in regression analysis.
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