
126

WHICH CLIMATE MODEL EVALUATION METHODS CAN 
CONSISTENTLY SELECT SKILLFUL MODELS FROM THE 
CMIP6 ENSEMBLE?

RESEARCH PAPER

Natalia V. Gnatiuk1*, Iuliia V. Radchenko1, Richard Davy2, Jiechen Zhao3,4, Leonid P. Bobylev1

1Nansen International Environmental and Remote Sensing Centre, 14-Liniya V.O. 7, St. Petersburg, 199034, Russia
2Nansen Environmental and Remote Sensing Center, Jahnebakken 3, Bergen, 5006, Norway
3Qingdao Innovation and Development Base of Harbin Engineering University, Sansha Road 1777, Qingdao, 266000, 
China
4First Institute of Oceanography, MNR & Decade Collaborative Center on Ocean-Climate Nexus and Coordination, 
Xianxialing Road 6, Qingdao, 266000, China
*Corresponding author: gnatiuk.n@gmail.com
Received: October 29th 2024 / Accepted: May 15th 2025 / Published: June 30th 2025
https://doi.org/10.24057/2071-9388-2025-3694

ABSTRACT. When considering the possible use of climate model data, it is necessary to choose which model is most 
appropriate to use. There are many methods for evaluating and selecting climate models in the literature, but there is no 
established consensus on which method is the most robust for determining model skill. In this article, we tested seven widely 
used methods for evaluating climate models in the Arctic using CMIP6 surface air temperature data: a single statistical metric 
method (root mean square error, spatial trends), a single skill score method (Taylor skill score, probability density function), 
a combination of several statistical metric methods (Taylor diagram, interannual variability skill score, comprehensive rating 
metric, etc.), and a multiple statistical criteria method (percentile-based approach). To evaluate their consistency, each 
method was applied to two periods: 1951-1980 and 1981-2010. For each method, the models were ranked and classified into 
three quality groups (very good, satisfactory, unsatisfactory). The comparison of methods was performed by comparing the 
differences in the average values of the normalized statistical measures, the differences in the model ranks, and the definition 
of the model quality groups. For each method, an optimal set of models corresponding to the top 25% was selected. One 
of the main objectives of the study was to compare the ability of the methods to identify the best model for the selected 
ensemble, regardless of the time period (i.e., without sensitivity to natural variability). The results suggest a preference for 
methods using root mean square error and a percentile-based approach.
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INTRODUCTION

 At present, climate models are the most valuable tool 
in projecting future climate under different scenarios 
(Taylor et al. 2012; Stocker et al. 2014; Otero et al. 2018). 
Over the years, global climate models (GCMs) have been 
continuously developed by different modeling centers, 
incorporating diverse parameterizations. Consequently, 
future climate projections from these models can 
vary significantly, leading to substantial uncertainty 
in projected changes of climate variables (Knutti et al. 
2010; Stocker et al. 2014). In addition to this considerable 
projection uncertainty, individual models often have 
significant biases. Therefore, a multi-model ensemble of 
GCM simulations is commonly employed in research, as it 
has been shown that ensemble means tend to cancel out 

individual model biases - i.e., the ensemble mean of a large 
group of models generally outperforms any single model 
in most cases (Gleckler et al. 2008; Knutti et al. 2010; Raju 
and Kumar 2020).
 However, in the IPCC’s Sixth Assessment Report (AR6), 
climate models were assigned weightings when assessing 
future projections for the first time. This was due to the 
“hot model” problem: a subset of CMIP6 models exhibited 
climate sensitivities outside the range estimated from 
multiple lines of evidence (Sherwood et al. 2020). This issue 
has prompted efforts within the community to establish 
robust model selection criteria (Hausfather et al. 2022). 
Research indicates that selecting skillful GCMs can reduce 
uncertainty in ensemble projections compared to using 
the full set of dozens of models (Herger et al. 2018; Gnatiuk 
et al. 2020). As a result, various model selection criteria and 
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evaluation methods have been introduced in the literature. 
A categorization mind map of these methods is provided 
in Appendix A.2.
 One approach to reducing uncertainty is to select only 
those models that perform well in historical simulations 
when compared to observations. The primary assumption 
underpinning this approach is that model skill in historical 
simulations is a reliable predictor of model performance in 
future climate projections; that is, models that are skillful 
in historical simulations are also likely to be skillful in their 
response to forcing. Numerous studies have demonstrated 
that the response to forcing is sensitive to baseline 
climatology, which supports this assumption (Caballero 
and Huber 2013). However, if there is a substantial change 
in the relative importance of different processes shaping 
regional climate, then this assumption – that historical 
skill predicts future model performance – may not hold. 
Additionally, given the considerable internal variability 
within models, it is essential that the evaluation of model 
skill be conducted over a long period (several decades) to 
ensure a fair assessment of model performance (Jain et al. 
2023). Furthermore, it is crucial that the criteria for model 
selection are not overly sensitive to the phase of natural 
variability within the climate system.
 There is no consensus among researchers on best 
practice for climate model evaluation and selection (Knutti 
et al. 2010; Ahmadalipour et al. 2017; Herger et al. 2018; 
Calvin et al. 2023). This lack of agreement has resulted in 
a diverse range of approaches; for example, some studies 
employ only a single statistical metric for GCM evaluation 
(e.g., Walsh et al. 2008; Macadam et al. 2010; Sillmann et 
al. 2013; Agosta et al. 2015), while others utilize multiple 
statistical metrics (e.g., McMahon et al. 2015; Aghakhani 
Afshar et al. 2017; Ruan et al. 2019). For instance, the near-
surface air temperature simulations from 17 GCMs were 
analyzed using just one statistical metric – root mean 
square error (RMSE) – and models were ranked from the 
lowest to the highest RMSE values (Reifen and Toumi 2009; 
Macadam et al. 2010). Herger et al. (2018) selected an 
optimal subset of 38 GCMs for surface air temperature and 
precipitation based on RMSE. RMSE was also employed for 
inter-model comparison and evaluation by Sillmann et al. 
(2013) and Zhou et al. (2014). Other statistical metrics have 
been used to assess GCM accuracy as well – for example, 
Kumar et al. (2013) evaluated 19 GCMs based on trends in 
temperature and precipitation across continental areas. 
Maxino et al. (2008) and Perkins et al. (2007) proposed 
a skill score that measures the common area between 
the probability density functions (PDFs) of modeled and 
observed data.
 Many studies evaluating the accuracy of GCMs utilize 
the Taylor diagram, which combines three statistical 
criteria – standard deviation (STD), RMSE, and correlation 
coefficient (r) (Taylor 2001). This diagram is summarized 
into a single metric – the Taylor skill score (Taylor 2001; 
Inoue and Ueda 2011; Ogata et al. 2014; Sharmila et al. 
2015; Kadel et al. 2018; Yang et al. 2020). It should be noted 
that even when employing the same evaluation methods, 
researchers often apply different thresholds for sub-
ensemble selection, as there is frequently no clear criterion 
defining a model as “good” or “bad” within these evaluation 
frameworks. For example, the Taylor skill score has been 
utilized by Sharmila et al. (2015), Kadel et al. (2018), and 
Yang et al. (2020), but with varying thresholds.
 Some studies evaluating GCMs have employed 
multiple statistical metrics. For example, McMahon 
et al. (2015) assessed 23 GCMs using RMSE, the Nash-
Sutcliffe Efficiency coefficient (NSE), and the coefficient 

of determination (r2) for temperature and precipitation 
patterns. Kumar et al. (2015) considered bias, trend analysis, 
and Taylor diagrams to evaluate simulations of extreme 
winds from 15 GCMs across 22 regions. Aghakhani Afshar 
et al. (2017) evaluated 14 GCMs for precipitation using four 
statistical criteria: r2, NSE, percent of bias (PBIAS), and the 
ratio of root mean square error to the standard deviation of 
measured data (CPI). Furthermore, Aghakhani Afshar et al. 
(2017) categorized the statistical metrics into four groups – 
very good, good, satisfactory, and unsatisfactory – using a 
threshold criterion, ultimately selecting models with scores 
between 75% and 100%, which were ranked as the very 
good group. Jiang et al. (2015) evaluated 31 GCMs for total 
precipitation and three indices (the fraction of total rainfall 
from events exceeding the long-term 95th percentile, 
precipitation intensity, and maximum consecutive dry 
days) over China, employing a Taylor diagram and the 
Interannual Variability Skill Score (IVS; Chen et al. 2011). 
They further ranked the models using a Comprehensive 
Rating Metric. You et al. (2018) applied a similar analysis 
and model selection process as Jiang et al. (2015), but 
additionally analyzed trends and IVS for both the sub-
ensemble and full ensemble across 16 temperature indices. 
This comprehensive rating metric has been utilized in 
many studies for model ranking, including those by Jiang 
et al. (2015), You et al. (2018), Rao et al. (2019), Ahmed et al. 
(2019, 2020), and Cai et al. (2021).
 Other researchers have employed more complex 
methods involving multiple (up to seven) statistical criteria 
for evaluating the reliability of GCMs (e.g., Fu et al. 2013; 
Rupp et al. 2013; Ruan et al. 2019; Jia et al. 2019; Gnatiuk 
et al. 2020). These studies used different combinations of 
variables – such as air temperature, precipitation, wind 
speed, shortwave radiation, and nutrients – and a varying 
number of GCMs, ranging from 11 to 41. To compare the 
models, researchers ranked them based on their total 
scores and selected the relatively best GCMs: for example, 
8 out of 41 models – around 20% (Rupp et al. 2013), the 
top 25% of models (Ruan et al. 2019; Gnatiuk et al. 2020), 
or the top 30% (Jia et al. 2019). All of these authors suggest 
the use of a method that incorporates multiple statistical 
criteria rather than relying on a single metric.
 Furthermore, there is no universally accepted method 
for climate model evaluation and selection. A significant 
challenge is the trade-off associated with ensemble size: 
the stricter the filtering of non-skillful models, the smaller 
the ensemble becomes, which can increase the influence of 
individual model biases in the ensemble mean projections.
 Any model selection criterion should also be robust – that 
is, it should consistently identify similar models as skillful 
across different time periods used for model evaluation. 
This task presents particular difficulties given the large 
natural variability and internal variability within models. 
Consequently, there has been a shift toward evaluating 
models based on processes rather than states (Eyring et al. 
2019).
 In summary, various methods are employed to evaluate 
and select appropriate GCMs for specific research questions 
(Herger et al. 2018; Raju and Kumar 2020; Calvin et al. 2023). 
Chai and Draxler (2014) recommend using several statistical 
metrics, including RMSE and mean absolute error (MAE). 
Raju and Kumar (2020) suggest considering the statistical 
metrics in a category-wise manner – for example, one 
metric for error, one for correlation, and one for skill score 
– and then computing the overall weight of the metrics, 
for instance, using a rating method. Fu et al. (2013), Ruan et 
al. (2019), Jia et al. (2019), and Gnatiuk et al. (2020) propose 
the application of multiple criteria for model evaluation.
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 Currently, there is no comprehensive comparison of 
these different methods for evaluating climate models; 
therefore, this study aims to fill this gap. We tested several 
widely used approaches, ranging from a single statistical 
metric to multiple metrics: (i) RMSE, (ii) spatial trends, 
(iii) TSS, (iv) PDF, (v) Taylor diagram, IVS, MR, (vi) Taylor 
diagram, MAE, trend, and (vii) a percentile-based method 
for evaluating CMIP6 surface air temperature (SAT) in the 
Arctic. To compare these methods with each other, we 
ranked GCMs according to their performance for each 
approach and selected the top 25%. Additionally, we 
conducted the analysis over two different periods – 1951-
1980 and 1981-2010 – to assess the consistency of these 
methods.

MATERIALS AND METHODS

Study area and data

 In this paper, we compare model evaluation methods 
based on surface air temperature in the Arctic (60-90° N). 
Simulations of historical surface air temperatures from 25 
GCMs from the Coupled Model Intercomparison Project 
Phase 6 (CMIP6) were obtained from the Earth System 
Grid Federation portal1. Information about these models is 
provided in Table A.1. The list of model names is presented 
in Fig. 1. The model data were compared to observations 
from the Berkeley Earth database (Rohde et al. 2013; Rohde 
and Hausfather 2020). The Berkeley Earth database is a 
comprehensive global land-ocean temperature record that 
integrates monthly land temperature data from over 40,000 
weather stations with sea surface temperature data from 
HadSST3 (Hadley Centre Sea Surface Temperature dataset, 
version 3). Using kriging-based spatial interpolation, it 
provides extensive spatial coverage for the period spanning 
from 1850 to the present. It offers average temperatures in 
1° x 1° latitude-longitude grid cells for each month.
 We selected seven of the most frequently used 
methods. Table A.3 summarizes the published works 
employing these methods. Each method is described in 
detail below:
 i) Method of model comparison by root mean square 
error
 Root mean square error (RMSE) is a commonly used 
statistic to quantify differences between two fields of data 
(Eq. 1):

 where Tm
i
 is the temperature from the model and To

i
 

is the temperature from observations at time step, i, with 
n representing the number of measurements in the time 
series. The smaller the RMSE, the better the agreement 
between the two data fields.
 ii) Method of model comparison by trends
Analysis of spatial trends using statistics such as the 
correlation coefficient (r), standard deviation (STD), and 
mean value ( ) is proposed by Kumar et al. (2013). The 
correlation coefficient r is calculated as (Yang et al. 2020) 
(Eq. 2):

 where Tm
i
 is the temperature from a given model and To

i
 

is the temperature from observations at time step i, m is the 

average temperature of the model, while o is the average 
temperature of the observations, n represents the number of 
observations in the time series, STDm is the standard deviation 
of the model temperatures, and STDo is the standard deviation 
of the observed temperatures.
 STD is calculated as (Eq. 3):

 where T
i
 is the temperature at time step i,  is the mean 

temperature, and n is the number of data points in the 
time series.
 Trend (Tr) was calculated using the least squares 
method (Eq. 4):

 where T
i
 is the temperature at time step i,  is the 

average temperature, Y
i
 is the time step of the time series,  

is the mean of the time series, n is the number of data 
points in the series.
 Each model was ranked based on its ability to represent 
observations across three metrics: r, the difference between 
the mean values of models and observations, and the 
difference between the STD of models and observations. 
 iii) Method of model comparison by Taylor skill score
 The Taylor skill score (TSS) is calculated using r and STD 
statistical metrics (Taylor 2001) (Eq. 5):

 where r is the correlation coefficient and STDN is the 
ratio of the model’s and observations’ STD. The TSS is 
bounded between 0 and 1, with 1 indicating a perfect fit 
between the model and observations.
 iv) Method of model comparison by Sscore
 The skill score based on PDFs (S

score
) was proposed 

by Perkins et al. (2007) as a robust metric for evaluating 
and ranking climate models because it is less affected by 
observational errors than the mean value and standard 
deviation. The S

score
 measures the common area between 

the PDFs of observed and model data. The formula for S
score

 
is expressed as (Eq. 6):

 where n is the number of temperature bins, Z
m

 is the 
frequency of model data values within the corresponding 
bin, and Z

o
 is the frequency of observed data values 

within that bin. Therefore, the S
score

 ranges between 0 and 
1, with a score of 1 indicating a perfect match between 
the observed and model distributions and a score of 0 
indicating no overlap between them. When applying this 
skill score metric, we used bins that are 1°C wide.
 v) Comprehensive rating metric based on Taylor 
diagram and interannual variability skill score
 The Comprehensive Rating Metric (MR) was proposed 
by Jiang et al. (2015) (Eq. 7):

(1)

(2)

(3)

(4)

(5)

(6)

(7)
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 where n is the total number of parameters, m is the 
number of models, and rank is the position of a given 
model based on its performance (with 1 being the best 
model). The metric ranges between 0 and 1, with higher MR 
values indicating better model skill. The MR was calculated 
for each of the metrics used in the Taylor diagram (r, STDN, 
RMSE), and an average MR value was derived for each 
metric.
 Additionally, MR was calculated for the Interannual 
Variability Skill Score (IVS; Chen et al. 2011) (Eq. 8):

 where STDm is the standard deviation from the model 
and STDo is the standard deviation of the observations. 
Smaller IVS values indicate that the simulated variability 
more closely matches the observed variability.
 vi) Method of model comparison by Taylor Diagram, 
bias and trend
 Kumar et al. (2015) proposed to evaluate models 
using Taylor diagram, bias, and trend statistics. Bias (B) is 
calculated as the mean of the differences between the 
model and observations (Eq. 9):

 where n is the number of observations in the time 
series.
 vii) Percentile-based method
 A percentile score-based model ranking method 
introduced by Gnatiuk et al. (2020) includes the analysis 
of the mean spatially averaged climatology of the annual 
cycle, interannual variability of parameters using r, RMSE, 
STD, the Climate Prediction Index (CPI – ratio of RMSE to 
the STD of the observations) (Agosta et al. 2015), as well as 
the spatial trends and biases (at each grid point) between 
the model data and reanalysis/observations to illustrate 
how temperature varies across the study area. The range 
of the statistical indices for each model was divided into 
four categories: 0-25% – very good, 25-50% – good, 50-
75% – satisfactory, and 75-100% – unsatisfactory. Each 
category was assigned a score from 3 to 0, respectively. For 
correlation, the scoring was reversed. These scores were 
then summed for each model to obtain a total skill score. 
Based on this total skill score, the top 25% of GCMs were 
selected as an optimal ensemble.

Approach for comparing model evaluation methods

 SAT in the Arctic was analyzed for two periods, 1951-
1980 and 1981-2010, to evaluate the consistency of model 
evaluation methods. We assume that if the models selected 
by each individual method are consistent across these 
two periods, then the method can reliably identify skillful 
models regardless of potential inconsistencies arising 
from different phases of natural and internal variability. For 
each period, the statistical metrics were normalized to a 
scale from 0 to 1 (with 1 indicating perfect performance). 
The original statistical metrics prior to normalization are 
provided in the Appendices (Fig. A.10-A.13, Table A.14-A.17). 
Models were ranked based on their ability to simulate 
SAT; if multiple metrics were used, their mean value was 
employed for the final ranking. Following ranking, the top 
25% (in this case, six models) were selected as the optimal 
model ensemble for each period (Aghakhani Afshar et al. 
2017; Ruan et al. 2019; Gnatiuk et al. 2020). Additionally, 

three quality groups (QGs) of models were distinguished 
based on their rankings: the first 25% of the models were 
classified as very good (QG I), the last 25% as unsatisfactory 
(QG III), and the remaining 50% as satisfactory (QG II).
 The consistency of the model evaluation methods was 
analyzed using mean absolute differences of normalized 
statistical metrics and mean absolute differences of ranks 
between two time periods of all models. The consistency of 
a method is considered better when the specified absolute 
differences are closer to zero. Furthermore, the study 
examined whether a model belonged to the same quality 
group in both periods. If this was the case, the model’s 
ranking was defined as consistent. Finally, we summarized 
the percentage of models that were consistent according 
to each method. These values were then used to compare 
the evaluation methods.

RESULTS

Model evaluation according to each considered method

i) Method of model comparison by root mean square error 
(RMSE)

 The results of the normalized values of RMSE along 
with the assigned model ranks and quality groups for two 
periods are presented in Fig. 1. Based on the ranking results, 
the following models were selected for the sub-ensemble 
(the best models are highlighted in green and belong to 
the first quality group, QG I):
 . for the period 1951-1980: ACCESS-ESM1-5, AWI-CM-
1-1-MR, CESM2-WACCM, GFDL-ESM4, MPI-ESM1-2-LR and 
NorESM2-LM;
 . for the period 1981-2010: ACCESS-ESM1-5, CESM2-
WACCM, EC-Earth3-Veg, FIO-ESM-2-0, MPI-ESM1-2-HR, and 
MPI-ESM1-2-LR.
 In Fig. 1, the three far right columns display the 
evaluation of the method’s consistency. The intermodel 
mean difference in normalized RMSE between 1981-2010 
and 1951-1980 is 0.06; the mean difference in model ranks 
is 3.0; and the results of the consistency assessment based 
on the model classified into the same quality group in 
both periods are 60%. Additionally, during both periods, 3 
models out of 25 were classified as QG I, 8 as QG II, and 4 as 
QG III.
 It should be noted that in this case, RMSE normalization 
involved converting values so that 1 indicates perfect 
performance and 0 indicates poor performance, allowing 
for comparison across all methods using the mean of the 
statistic. For original RMSE values, see Fig. A.10.
 A similar ranking of models and assignment of each 
model to a quality group was performed for the other six 
model evaluation methods. Figures analogous to Fig. 1 
for these additional evaluation methods are presented in 
Figs. A.4-A.9. The results of the comparison of the model 
evaluation methods are summarized in Table 1. 

Intercomparison of the model evaluation methods

 The summarized results of the consistency assessment 
for all methods are presented in Table 1 and Fig. 2. The first 
column in Table 1 indicates the number of models that were 
included in the selected sub-ensemble across both periods. 
The value in parentheses represents the percentage of the 
possible six sub-ensemble models, corresponding to the 
top 25% of the full ensemble. For example, for method iii, 
no models were included in the selected sub-ensemble 
in either period. The highest consistency was observed 
for methods i and vii, where three and four models, 
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respectively, appeared in the selected sub-ensembles 
across both periods. The difference in mean normalized 
statistical metrics between the two periods (where 0 
indicates perfect agreement) ranges from 0.06 (method i) to 
0.36 (method iii). The most effective methods are (i) RMSE, 
(vi) Taylor diagram, bias and trend, and (vii) the percentile-
based method. The difference in rank values between the 
two periods (where 0 indicates perfect agreement) varies 
from 3.0 (method i) to 8.9 (method ii). The best-performing 
methods are (i) RMSE, (vii) the percentile-based approach, 
and (iv) the S

score
 method. The last column in Table 1 and 

Fig. 2 (left) shows the percentage of models classified into 
the same quality group across both periods. The lowest 
consistency based on quality groups was observed for 
method iii at 40%, while the highest was for method vii 
at 72%. Thus, among the seven evaluated methods, the 
most effective model evaluation techniques are (vii) the 
percentile-based method and (i) RMSE.
 Fig. 3 illustrates how many times each model was 
identified as the best model and included in the sub-
ensemble (top 25%), as well as how many times it was 
defined as unsatisfactory (worst 25%) across 14 ranking 
cases (7 methods × 2 periods). The most frequently selected 
models for the sub-ensemble are ACCESS-ESM1-5, AWI-
CM-1-1-MR, EC-Earth3-Veg, GFDL-ESM4, and MPI-ESM1-
2-LR. Conversely, the GCMs most commonly identified as 
unsatisfactory are CAMS-CSM1-0, CIESM, FGOALS-g3, INM-
CM4-8, and NESM3. Climate models such as AWI-CM-1-1-

MR, BCC-CSM2-MR, INM-CM5-0, and MPI-ESM1-2-LR were 
never classified among the worst 25%. Similarly, models 
like CAMS-CSM1-0 and MIROC6 were never ranked in the 
top 25%.
 Interannual variability of SAT over the Arctic for 
the periods 1951-1980 (left) and 1981-2010 (right), for 
observations, the full ensemble, and sub-ensembles using 
the seven model assessment methods, are presented 
in Figs. 4 and 5. In general, all sub-ensembles exhibit an 
interannual variability distribution pattern similar to that of 
the observations but with some errors (larger or smaller). 
The averaging of the full ensemble significantly smooths 
the interannual temperature amplitude. Overall, the SAT of 
the full ensemble and sub-ensembles based on methods 
iii and iv underestimate observations during the period 
1951-1980; sub-ensembles based on methods i, ii, v, and 
vii better reproduce the SAT. During the period 1981-2010, 
models selected based on methods iii and ii underestimate 
SAT compared to observations; however, methods i, v, vi, 
and vii better reproduce the interannual variability of SAT.
 Boxplots of the annual SAT over the Arctic for the 
periods 1951-1980 and 1981-2010 are shown in Fig. 5. 
The dashed line indicates the mean value of observations. 
In the first period, only the mean values for the sub-
ensemble selected by method vii are close to the mean 
of observations. For other methods, deviations from the 
observational mean generally range from 0.5 to 1 degree 
Celsius. In the second period, the shape of the distribution 

Fig. 1. Results of normalized RMSE, model ranks, quality groups and consistency assessment for 25 models 
for the periods 1951-1980 and 1981-2010 for SAT over the Arctic
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Table 1. Results of selected sub-ensembles using seven methods and an assessment of their consistency

Method
Same selected 

models
Mean Diff. in 

value
Mean Diff. in rank

Models belong to each QG in two period 
simultaneously

Consistency (QG)

i 3 (50%) 0.06 3.0 I (3) II (8) III (4) / got into different groups (10) 60%

ii 2 (33%) 0.18 8.9 I (2) II (10) III (1) / got into different groups (12) 52%

iii 0 0.36 8.3 I (0) II (7) III (3) / got into different groups (15) 40%

iv 2 (33%) 0.31 5.7 I (2) II (7) III (3) / got into different groups (13) 48%

v 1 (17%) 0.32 8.5 I (1) II (8) III (2) / got into different groups (14) 44%

vi 2 (33%) 0.12 6.7 I (2) II (7) III (3) / got into different groups (13) 52%

vii 4 (67%) 0.15 4.4 I (4) II (10) III (4) / got into different groups (7) 72%

Fig. 2. Results of the consistency assessment of the model evaluation methods

Fig. 3. Number of cases where a model entered a sub-ensemble (top 25% of models – in green) and where a model was 
defined as unsatisfactory (bottom 25% of models – in red) for two periods. The maximum number 

of cases is 14 (7 methods × 2 periods)

Fig. 4. Results of the annual SAT over the Arctic for observations, the full ensemble, and selected sub-ensembles using 
seven model assessment methods for 1951-1980 and 1981-2010
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for all methods is closer to that of observations, except for 
methods ii and iii, which significantly underestimate them.
 Regarding the annual cycle (Fig. 6), greater agreement 
is watched during the warm period and less during 
the cold period between the different sub-ensembles 
and observations. The exception is method iii, which 
underestimates SAT in all months. However, for some 
methods (e.g., iv and vii), the agreement is better in winter 
than in summer and autumn.
 Fig. 7 shows the results of GCMs ranking by seven 
methods for the two periods. Such a comparison allows 
us to evaluate the consistency of the methods. We observe 
considerable disagreement in the results, with some 
methods ranking certain models as among the best, while 
others classify them as among the worst – for example, 
ACCESS-CM2, CIESM, EC-Earth3, EC-Earth3-Veg, and KACE-
1-0-G. However, some models are consistently classified as 
either “good” or “bad” by most methods – for instance, AWI-
CM-1-1-MR, CASM-CSM1-0, and MPI-ESM1-2-LR. From Fig. 
7, we can clearly see the consistency of each method; for 
example, method (i) identifies the ACCESS-CM2 model as 
unsatisfactory in both periods – showing high consistency. 
Conversely, method (ii) classifies the same model as very 
good across both periods. However, when analyzing 
these two methods (i and ii) across all models, it becomes 
evident that the consistency of method (ii) is significantly 
lower and it more frequently assigns incorrect categories 
to models.

DISCUSSION AND CONCLUSIONS

 Seven different model evaluation methods for the 
selection of a sub-ensemble were tested for CMIP6 SAT over 
the Arctic. All model evaluation methods were analyzed 
for two periods, 1951-1980 and 1981-2010, to assess their 
consistency. Specifically, differences in mean values, model 

rankings, and the matching of assigned quality groups 
were examined. The ability of a model evaluation method 
to identify the climate model as superior, regardless of the 
time (e.g., warming or cooling), confirms its robustness. For 
each evaluation method, a sub-ensemble comprising the 
top 25% of models was selected based on ranking, which 
was 6 out of 25 GCMs.
 The intercomparison results indicate superior 
performance for the methods (i) root mean square error 
and (vii) the percentile-based approach. The models 
selected for the sub-ensemble under the (i) root mean 
square error method for both periods are ACCESS-ESM1-5, 
CESM2-WACCM, and MPI-ESM1-2-LR. Similarly, under the 
(vii) the percentile-based approach, the models selected 
for both periods are ACCESS-ESM1-5, AWI-CM-1-1-MR, 
GFDL-ESM4, and MPI-ESM1-2-LR. The most frequently 
included models - appearing more than 4 times out of 14 - 
under the tested evaluation methods across both periods 
(1951-1980 and 1981-2010) are ACCESS-ESM1-5, AWI-CM-
1-1-MR, EC-Earth3-Veg, GFDL-ESM4, and MPI-ESM1-2-LR. 
The GCMs most commonly identified as unsatisfactory 
include CAMS-CSM1-0, CIESM, FGOALS-g3, INM-CM4-8, 
and NESM3.
 Considering that the simulated distribution of interannual 
variability is comparable to observations, albeit with some 
systematic errors (Fig. 2), we recommend applying bias 
correction to the CMIP6 temperature data. 
 In general, comparing the results obtained here with those 
from other studies is challenging due to the use of different 
sets of model input data (e.g., 22, 25, 30, 35 models, etc.), 
various study regions, and differing meteorological parameters. 
Furthermore, most studies employ only one method of model 
evaluation and selection without comparing it to alternative 
approaches. Given the wide range of such methods, 
comparing their effectiveness for evaluation, ranking, and 
selecting climate models remains an important task.

Fig. 5. Boxplots of the annual SAT over the Arctic for observations, the full ensemble, and selected sub-ensembles using 
the seven model assessment methods for 1951-1980 and 1981-2010

Fig. 6. Difference between the multi-year monthly SAT of observations, the full ensemble, and selected sub-ensembles 
using the seven methods for the periods 1951-1980 and 1981-2010 (closer to the dashed line indicates closer agreement 

with observations)
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 Among all the methods for estimating model skill 
examined in this article, we recommend using the 
following for temperature data: (i) root mean square error 
and (vii) a percentile-based method, as they produce the 
most consistent results. It should be noted that we did not 
assess the sensitivity of the choice of evaluation method 
to different variables; therefore, our findings should be 

applied with caution to other meteorological parameters. 
For example, methods based solely on RMSE may not be 
suitable for precipitation. When selecting climate models 
for other meteorological variables, more comprehensive 
approaches are likely to be more robust than those relying 
on a single statistical parameter.

Fig. 7. Ranking of the models based on the seven model evaluation methods for the periods 1951-1980 and 1981-2010
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Table A.1. CMIP6 models used for the evaluation of surface air temperature in the Arctic

APPENDICES

ID Model acronym
Modeling center

(acronym, full name, city and country)
Resolution

(° lon × ° lat)

1 ACCESS-CM2 
ARCCSS (Australian Research Council Centre of Excellence for Climate System 

Science), CSIRO (Commonwealth Scientific and Industrial Research Organization, 
Aspendale, Victoria, Australia)

1.875×1.25

2 ACCESS-ESM1-5 
Commonwealth Scientific and Industrial Research Organization, Aspendale, 

Victoria, Australia
1.875×1.25

3 AWI-CM-1-1-MR 
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 

Bremerhaven, Germany
0.938

4 BCC-CSM2-MR Beijing Climate Center, Beijing, China 1.125

5 CAMS-CSM1-0 Chinese Academy of Meteorological Sciences, Beijing, China 1.125

6 CanESM5 
Canadian Centre for Climate Modelling and Analysis, Environment and Climate 

Change Canada, Victoria, Canada
2.8125

7 CESM2-WACCM
National Center for Atmospheric Research, Climate and Global Dynamics 

Laboratory, Boulder, USA
1.25×0.94

8 CIESM Department of Earth System Science, Tsinghua University, Beijing, China 1.25

9 EC-Earth3 European Union, Mailing address: EC-Earth consortium, Rossby Center, Swedish 
Meteorological and Hydrological Institute/SMHI, SE-601 76 Norrkoping, Sweden

0.703
10 EC-Earth3-Veg 

11 FGOALS-f3-L
Chinese Academy of Sciences, Beijing, China

1.25×1

12 FGOALS-g3 2

13 FIO-ESM-2-0
FIO (First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 

China), QNLM (Qingdao National Laboratory for Marine Science and Technology, 
Qingdao, China)

1.25×0.94

14 GFDL-ESM4
National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics 

Laboratory, Princeton, USA
1.25

15 INM-CM4-8 Institute for Numerical Mathematics, Russian Academy of Science, Moscow, 
Russia

2×1.5

16 INM-CM5-0 

17 IPSL-CM6A-LR Institut Pierre Simon Laplace, Paris, France 2×1.268

18 KACE-1-0-G
National Institute of Meteorological Sciences/Korea Meteorological 

Administration, Climate Research Division, Seogwipo-si, Jejudo, Republic of 
Korea

1.875×1.25

19 MIROC6 

JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanagawa, 
Japan), AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, 
Chiba, Japan), NIES (National Institute for Environmental Studies, Ibaraki, Japan), 

and R-CCS (RIKEN Center for Computational Science, Hyogo, Japan)

1.406

20 MPI-ESM1-2-HR 
Max Planck Institute for Meteorology, Hamburg Deutscher Wetterdienst, 

Offenbach am Main Deutsches Klimarechenzentrum, Hamburg, Germany
0.938

21 MPI-ESM1-2-LR 
Max Planck Institute for Meteorology, Hamburg 20146, Germany; Alfred Wegener 

Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 
Germany

1.875

22 MRI-ESM2-0 Meteorological Research Institute, Tsukuba, Ibaraki Japan 1.125

23 NESM3 Nanjing University of Information Science and Technology, Nanjing, China 1.875

24 NorESM2-LM
NorESM Climate modeling Consortium consisting of CICERO (Center for 
International Climate and Environmental Research, Oslo), MET-Norway 

(Norwegian Meteorological Institute, Oslo), NERSC (Nansen Environmental and 
Remote Sensing Center, Bergen), NILU (Norwegian Institute for Air Research, 

Kjeller), UiB (University of Bergen, Bergen), UiO (University of Oslo, Oslo) and UNI 
(Uni Research, Bergen), Norway. 

2.5×1.89

25 NorESM2-MM 1.25×0.94
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Fig. A.2. Mind map of methods for GCMs’ evaluation found in the literature
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Table A.3. Climate models selection methods in the literature
(SLP – sea level pressure, H500 – geopotential height at 500 hPa, T500 – the temperature at 500 hPa, SST – sea surface 

temperature, SAT – surface air temperature, P – precipitation, SIC – sea-ice concentration, WS – wind speed, pCO
2
 – 

dissolved CO
2
 partial pressure, S – salinity, OCS – ocean surface current speed, SDSR – surface downwelling shortwave 

radiation)

# Statistical metric Reference
GCMs considered /

selected
Variable considered Ranking method

1
Root mean 
square error 

(RMSE)

1) (Walsh et al. 2008) 15/4 SLP, SAT, P
Based on the sum of 
ranks for all variables

2) (Reifen and Toumi 2009) 17/ - SAT Ranking

3) Macadam et al. 2010) 17/ - SAT Ranking

4) (Sillmann et al. 2013) 18-31/- 
Temp. and Precip. Indices 

(in total 27)
Ranking

5) (Zhou et al. 2014) 24/total ensemble
Temp. and Precip. Indices 

(in total 20)
Ranking

6) (Herger et al. 2018) 38/8 for SAT, 12 for P SAT, P Gurobi Optimization

2 Trends 

1) (Kumar et al. 2013) (mean, 
spatial standard deviation, 

spatial correlation)

79 model runs from 19 
GCMs/ -

SAT, P

2) (Saha et al. 2014) (temporal 
trends)

42/ -
Indian Summer 

Monsoon Rainfall

3

Probability 
density function 

(PDF) – Skill score 
(SS)

1) (Perkins et al. 2007) 10/6; 13/10; 14/3
Maximum and minimum 

SAT, P
Ranked SS for each 
variable, select >0.8

2) (Maxino et al. 2008) 9/3
Maximum and minimum 

SAT, P
Ranked averaged SS, 

select >0.8

3) (Anandhi and Nanjundiah 
2015)

19/5 P
Average rank of GCMs 

using SS

4) (Sun et al. 2015) 14/ -
SAT (maximum, mean, 

minimum), P
SS

5) (Bannister et al. 2017) 47/5
SAT (maximum, mean, 

minimum)
Ranking based on 

aggregated SS

6) (Anandhi et al. 2019) 20/5
SAT (mean, max, min) 

P, WS
Ranking based on 

averaged SS

4
Taylor Diagram 
or Taylor Skill 
Score (TSS)

1) (Inoue and Ueda 2011) 
(Taylor’s Skill Score)

19/total ensemble
300 hPa temp,    850 hPa 

zonal wind

2) (Ogata et al. 2014)  (Taylor’s 
Skill Score)

20 (cmip3)/20
24 (cmip5)/24

850 hPa zonal wind, P 
SST

3) (Sharmila et al. 2015) 20/4
Indian summer 

monsoon, precip.

threshold criteria 
(correlation ≥ 0.5 and 
normalized SD 0.8-1.2)

4) (Kadel et al. 2018) 38/6
Summer Monsoon 

Season, precip.
threshold criteria (r≥ 0.6, 
std 0.5-1.5, rmse ≤ 1.0)

5) (Ahmed et al. 2020) 36/18
SAT (maximum, 

minimum), P

based on TSS, 
Comprehensive Rating 

Metric (MR)

6) (Yang et al. 2020)
25/9 for precip.,
25/11 for temp.

SAT, P
based on threshold – 

0.49

7) (Wang et al. 2016) 28/7 SAT based on TSS
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5

Taylor Diagrams, 
Interannual 
Variability 
Skill Score, 

Comprehensive 
Rating Metric

1)(Jiang et al. 2015)
2)(Cai et al. 2021)

31/5
22/6

P, P intensity, Max consec. 
dry days

SAT

Total complex rating 
metric

Total complex rating 
metric

3)(Rao et al. 2019) 32/5
total extreme P, max 

consecutive five days of 
P and wet days >10 mm

Total complex rating 
metric

4)(You et al. 2018) 17/4
16 temperature extreme 

indices
Total complex rating 

metric

6
Combinations of 
several metrics

1)(Kumar et al. 2015): bias, 
trend analysis, and Taylor 

Diagrams
15/ - Maxima WS Four groups

2)(Aghakhani Afshar et al. 
2017): R2, NSE, PBIAS, RSR

14/4 P
Ranking based on the 
total sum of the ranks 

by NSE

3)(McMahon et al. 2015): 
RMSE, NSE, R2

23/5 SAT, P
Ranking based on 

metrics

4)(Ongoma et al. 2019): r, STD, 
bias, PBIAS, RMSE, trend

22/8 P

Ranking based on the 
overall score calculated 

using an individual score 
for each GCM, error and 

variable

7

Score-based 
methods 

using multiple 
statistical metrics

1) (Fu et al. 2013): r, STD, NRME, 
mean, trends (Z, Sen’s slope), 
PDF (Brier Score, Significance 
Score), empirical orthogonal 

functions

25/ - SAT, P, mean SLP

Ranking based on the 
overall score calculated 

using an individual score 
for each GCM and error

2) (Jia et al. 2019): mean, 
temporal r, STD, r spatial, RMSE, 

PDF, trends (Z and Slope)
33/top-30% (10) P

Ranking based on the 
overall score calculated 

using an individual score 
for each GCM and error

3) (Ruan et al. 2019): mean, 
STD, RMSE, r spatial, PDF 

(Significance Score), trends (Z 
and Sen’s slope)

34/top-25% (9) SAT

Ranking based on 
the overall score for 

each variable and sea 
individually

4) (Gnatiuk et al. 2020): r, RMSE, 
STD, CPI spatial trends, spatial 

bias

11-30/individual sub-set 
(top-25%) varies from 3 

to 11

pCO2, pH, NO3, PO4, SI, 
SST, S, OCS, 10m WS, 

SDSR 
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Fig. A.4. Results of normalized spatial trends analysis, model rank and consistency assessment for 25 models over the Arctic 
for the period 1951-1980 and for the period 1981-2010 for method (ii) of model comparison by trends (see 2.2 Methods for 

model evaluation compared in the study)

Fig. A.5. Results of normalized TSS, model rank and consistency assessment for 25 models over the Arctic for the period 
1951-1980 and for the period 1981-2010 for method (iii) of model comparison by Taylor skill score (see 2.2 Methods for 

model evaluation compared in the study)
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Fig. A.6. Results of normalized Sscore, model rank and consistency assessment for 25 models over the Arctic for the period 
1951-1980 and for the period 1981-2010 for method (iv) of model comparison by Sscore (see 2.2 Methods for model 

evaluation compared in the study)

Fig. A.7. Results of normalized MR for Taylor and IVS metrics for 25 models over the Arctic for the period 1951-1980 and for 
the period 1981-2010 for method (v) based on Taylor diagram and interannual variability skill score (see 2.2 Methods for 

model evaluation compared in the study)
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Fig. A.8. Results of normalized Taylor Diagram statistics, bias and trend differences for 25 models over the Arctic for the 
period 1951-1980 and for the period 1981-2010 for method (vi) of model comparison by Taylor Diagram, bias and trend 

(see 2.2 Methods for model evaluation compared in the study)

Fig. A.9. Results of normalized values of total scores for 25 models over the Arctic for the period 1951-1980 and for the 
period 1981-2010 for method (vii) – Percentile-based method 
(see 2.2 Methods for model evaluation compared in the study)
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Fig. A.10. Results of RMSE (method i), TSS (method iii) and S
score

 (method iv) for 25 models over the Arctic for the period 
1951-1980 and for the period 1981-2010

Fig. A.11. Results of spatial trends statistics (r, Mean difference, STD difference) for 25 models over the Arctic for the period 
1951-1980 and for the period 1981-2010 - method ii
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Fig. A.12. Results of MR for Taylor and IVS metrics for 25 models over the Arctic for the period 1951-1980 and for the period 
1981-2010 - method v

Fig. A.13. Results of Taylor Diagram statistics, bias and trend differences for 25 models over the Arctic for the period 1951-
1980 and for the period 1981-2010 - method vi
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Table A.14. Results of the CMIP6 model performance for SAT in the Arctic over the period 1951-1980 using the percentile-
based method - method vii (RMSE - root-mean-square error, 0C; r – correlation coefficient between models and reanalysis; 
CPI – climate prediction index; |dif_std| – modulus of standard deviation difference (model minus observations), 0C; |Trm| 
- modulus of spatial trend mean difference (model minus observations), 0C yr-1; |Tra| - modulus of spatial trend amplitude 

difference (model minus observations), 0C yr-1; |Bm| - modulus of spatial bias mean difference (model minus observations), 
0C; |Ba| – modulus of spatial biases amplitude difference (model minus observations), 0C)

ID Model acronym

Seasonal variability
(averaged over the territory)

Interannual variability
(averaged over the territory)

Spatial variability

rmsd r CPI |dif_std| rmsd r CPI |dif_std| |Trm| |Tra| |Brm| |Bra|

1 ACCESS-CM2 2.49 1.00 0.23 0.70 2.26 0.33 6.30 0.06 0.02 0.25 2.13 21.69

2 ACCESS-ESM1-5 0.99 1.00 0.09 0.20 0.69 -0.28 1.93 0.08 0.06 0.05 0.18 28.78

3 AWI-CM-1-1-MR 0.97 1.00 0.09 0.36 0.76 0.02 2.13 0.04 0.03 0.17 0.94 22.00

4 BCC-CSM2-MR 1.74 0.99 0.16 0.48 1.36 0.17 3.79 0.16 0.03 0.06 0.67 30.32

5 CAMS-CSM1-0 3.07 0.99 0.28 1.11 2.24 -0.29 6.24 0.11 0.05 0.06 1.73 25.97

6 CanESM5 1.30 1.00 0.12 0.35 0.96 0.16 2.68 0.14 0.03 0.16 0.86 28.05

7 CESM2-WACCM 1.17 1.00 0.11 0.92 0.69 -0.08 1.93 0.17 0.02 0.26 0.72 20.88

8 CIESM 2.98 0.99 0.27 0.27 2.69 0.29 7.49 0.04 0.01 0.28 3.65 19.95

9 EC-Earth3 2.72 1.00 0.25 0.13 2.60 0.32 7.24 0.05 0.02 0.23 2.26 26.14

10 EC-Earth3-Veg 1.58 1.00 0.14 0.28 1.64 -0.13 4.57 0.44 0.11 0.04 1.08 25.89

11 FGOALS-f3-L 3.32 1.00 0.30 1.45 3.00 0.16 8.36 0.15 0.05 0.26 2.67 25.17

12 FGOALS-g3 5.54 1.00 0.50 2.01 5.14 0.17 14.33 0.07 0.01 0.04 6.62 34.33

13 FIO-ESM-2-0 1.03 1.00 0.09 0.60 0.94 -0.02 2.62 0.20 0.05 0.11 0.39 21.31

14 GFDL-ESM4 0.77 1.00 0.07 0.18 0.58 0.25 1.63 0.19 0.02 0.10 0.11 21.85

15 INM-CM4-8 2.08 0.99 0.19 0.86 1.56 0.30 4.35 0.05 0.03 0.22 1.82 27.31

16 INM-CM5-0 1.35 1.00 0.12 0.37 0.96 -0.08 2.67 0.04 0.04 0.24 0.81 27.01

17 IPSL-CM6A-LR 1.13 1.00 0.10 0.54 1.01 0.00 2.82 0.15 0.04 0.21 1.23 23.00

18 KACE-1-0-G 2.64 1.00 0.24 1.07 2.32 0.19 6.47 0.08 0.01 0.08 1.88 23.25

19 MIROC6 1.42 1.00 0.13 0.23 1.40 -0.36 3.90 0.09 0.04 0.22 1.05 24.03

20 MPI-ESM1-2-HR 1.06 1.00 0.10 0.53 0.86 -0.30 2.41 0.04 0.05 0.23 1.15 20.04

21 MPI-ESM1-2-LR 0.67 1.00 0.06 0.36 0.48 0.31 1.35 0.09 0.01 0.20 0.46 23.88

22 MRI-ESM2-0 1.48 1.00 0.13 0.55 1.45 0.11 4.04 0.17 0.02 0.11 1.63 22.89

23 NESM3 2.36 1.00 0.21 0.95 2.03 0.37 5.67 0.44 0.07 0.01 1.51 25.80

24 NorESM2-LM 1.40 1.00 0.13 1.14 0.78 0.11 2.18 0.20 0.00 0.22 1.03 22.82

25 NorESM2-MM 1.72 1.00 0.16 0.00 1.72 0.37 4.80 0.26 0.00 0.11 1.47 21.40

 
 
 
 
 

maximum 5.54 1.00 0.50 2.01 5.14 1.00 14.33 0.44 0.11 0.28 6.62 34.33

75% 3.65 0.75 0.33 1.50 3.49 0.75 9.74 0.31 0.08 0.21 4.88 30.73

50% 2.44 0.50 0.22 1.00 2.33 0.50 6.49 0.20 0.05 0.14 3.25 27.14

25% 1.22 0.25 0.11 0.50 1.16 0.25 3.25 0.10 0.03 0.07 1.63 23.54

minimum 0.67 0.00 0.06 0.00 0.48 0.00 1.35 0.04 0.00 0.01 0.11 19.95
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Table A.15. Results of the CMIP6 model performance for SAT in the Arctic over the period 1981-2010 using the percentile-
based method - method vii (RMSE - root-mean-square error, 0C; r – correlation coefficient between models and reanalysis; 
CPI – climate prediction index; |dif_std| – modulus of standard deviation difference (model minus observations), 0C; |Trm| 
- modulus of spatial trend mean difference (model minus observations), 0C yr-1; |Tra| - modulus of spatial trend amplitude 

difference (model minus observations), 0C yr-1; |Bm| - modulus of spatial bias mean difference (model minus observations), 
0C; |Ba| – modulus of spatial biases amplitude difference (model minus observations), 0C) 

ID Model acronym

Seasonal variability
(averaged over the territory)

Interannual variability
(averaged over the territory)

Spatial variability

rmsd r CPI |dif_std| rmsd r CPI |dif_std| |Trm| |Tra| |Brm| |Bra|

1 ACCESS-CM2 2.86 1.00 0.27 0.94 2.66 0.59 3.90 0.08 0.02 0.05 2.51 58.06

2 ACCESS-ESM1-5 0.94 1.00 0.09 0.28 0.63 0.77 0.93 0.29 0.04 0.09 0.12 55.90

3 AWI-CM-1-1-MR 1.36 1.00 0.13 0.56 1.09 0.76 1.60 0.00 0.00 0.06 1.39 60.97

4 BCC-CSM2-MR 1.74 1.00 0.16 0.50 1.43 0.73 2.10 0.12 0.00 0.02 0.77 60.91

5 CAMS-CSM1-0 3.31 1.00 0.31 1.23 2.58 0.31 3.79 0.30 0.05 0.00 2.02 59.10

6 CanESM5 0.73 1.00 0.07 0.24 0.70 0.72 1.03 0.01 0.01 0.02 0.39 67.82

7 CESM2-WACCM 1.18 1.00 0.11 0.83 0.69 0.49 1.00 0.21 0.01 0.02 0.80 61.63

8 CIESM 2.77 0.99 0.26 0.31 2.46 0.60 3.61 0.17 0.05 0.05 3.59 62.73

9 EC-Earth3 1.43 1.00 0.13 0.14 1.55 0.81 2.27 0.64 0.07 0.30 1.00 59.23

10 EC-Earth3-Veg 0.69 1.00 0.06 0.39 0.60 0.67 0.88 0.07 0.00 0.03 0.24 51.53

11 FGOALS-f3-L 2.65 1.00 0.25 1.20 2.37 0.63 3.48 0.04 0.00 0.05 2.00 71.32

12 FGOALS-g3 5.55 1.00 0.51 2.00 5.16 0.76 7.57 0.20 0.01 0.11 6.68 68.98

13 FIO-ESM-2-0 0.56 1.00 0.05 0.48 0.54 0.63 0.80 0.14 0.02 0.08 0.49 65.64

14 GFDL-ESM4 0.88 1.00 0.08 0.31 0.82 0.49 1.20 0.02 0.02 0.03 0.48 57.97

15 INM-CM4-8 2.27 1.00 0.21 0.97 1.91 0.28 2.80 0.16 0.04 0.06 2.14 70.04

16 INM-CM5-0 1.39 1.00 0.13 0.45 1.09 0.64 1.60 0.06 0.02 0.06 0.96 66.01

17 IPSL-CM6A-LR 1.35 1.00 0.13 0.49 1.17 0.69 1.72 0.01 0.01 0.04 1.72 65.80

18 KACE-1-0-G 2.15 1.00 0.20 0.96 1.89 0.81 2.77 0.06 0.01 0.01 1.41 62.17

19 MIROC6 1.41 1.00 0.13 0.22 1.36 0.47 2.00 0.15 0.03 0.04 1.03 57.84

20 MPI-ESM1-2-HR 0.82 1.00 0.08 0.36 0.69 0.57 1.01 0.08 0.03 0.03 0.79 60.29

21 MPI-ESM1-2-LR 0.77 1.00 0.07 0.51 0.58 0.67 0.85 0.12 0.01 0.04 0.80 55.22

22 MRI-ESM2-0 1.53 1.00 0.14 0.58 1.54 0.63 2.26 0.21 0.01 0.05 1.79 60.60

23 NESM3 2.57 0.99 0.24 1.00 2.18 0.80 3.19 0.44 0.06 0.09 1.64 62.79

24 NorESM2-LM 1.53 1.00 0.14 1.19 0.89 0.60 1.31 0.01 0.02 0.04 1.32 59.30

25 NorESM2-MM 1.77 1.00 0.16 0.13 1.78 0.62 2.61 0.09 0.03 0.03 1.60 60.45

maximum 5.55 1.00 0.51 2.00 5.16 1.00 7.57 0.64 0.07 0.30 6.68 71.32

75% 3.74 0.75 0.35 1.40 3.46 0.75 5.08 0.48 0.05 0.23 4.92 66.37

50% 2.50 0.50 0.23 0.93 2.31 0.50 3.39 0.32 0.04 0.15 3.28 61.43

25% 1.25 0.25 0.12 0.47 1.15 0.25 1.69 0.16 0.02 0.08 1.64 56.48

minimum 0.56 0.00 0.05 0.13 0.54 0.00 0.80 0.00 0.00 0.00 0.12 51.53
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Fig. A.16. Results of the percentile-based method with the final model score over the period 1951-1980 - method vii (Green 
color denotes a very good group, yellow – good, orange – satisfactory, and red – unsatisfactory group)
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Fig. A.17. Results of the percentile-based method with the final model score over the period 1981-2010 - method vii (Green 
color denotes a very good group, yellow – good, orange – satisfactory, and red – unsatisfactory group)
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