
102

MODELING FUTURE CARBON STOCK PREDICTIONS 
BASED ON LAND USE

RESEARCH PAPER

Westi Utami1,2*,  Catur Sugiyanto3, Noorhadi Rahardjo4, Nurhadi5

1Doctoral Program of Environmental Science Universitas Gadjah Mada,  Jl.  Teknika Utara, Yogyakarta, 55284, Indonesia
2Department of Land Management Sekolah Tinggi Pertanahan Nasional, Jl. Tata Bumi No. 5, Yogyakarta, 55293, Indonesia
3Faculty of Economics and Bussiness Universitas Gadjah Mada, Jl. Sosio Humaniora, Yogyakarta, 55281, Indonesia
4Faculty Geography Universitas Gadjah Mada, Jl. Kaliurang, Yogyakarta, 55281, Indonesia 
5Faculty of Social Science and Political Science, Universitas Gadjah Mada,  Jl. Sosio Yusticia No.1, Yogyakarta, 55281, 
Indonesia
*Corresponding author: westiutami@mail.ugm.ac.id
Received: October 18th 2024 / Accepted: April 25th 2025 / Published: June 30th 2025
https://doi.org/10.24057/2071-9388-2025-3684

ABSTRACT. The considerable influence of extensive land use change on the increasing levels of carbon emissions has 
significant implications for the occurrence of a multitude of disasters. The objective of this research is to develop a predictive 
model of future carbon stocks based on land use type. The data set includes land use maps from 2014, 2018,  and 2022, obtained 
through visual interpretation of Pleiades data and associated driving variables, including socio-economic, locational, physical, 
land, and spatial planning factors. To predict land use in relation to future carbon stock values, the Multilayer Perceptron Neural 
Network Markov Chain (MLPNN-MC) algorithm was employed. Research related to this modeling is capable of producing an 
accuracy rate of 98%. The results of the prediction demonstrate that by 2034, there will be a reduction in the area of land used 
with high to low carbon stock, with a decrease of 153.2 ha, which equates to a reduction in carbon stock of 9,050 tonnes C/ha. 
To reduce carbon emissions, it is essential to implement policies that regulate land use change, optimize forest management, 
and conserve mangrove ecosystems. The monitoring and prediction of future carbon stocks plays a pivotal role in climate 
change mitigation, enabling more targeted and measurable actions to be taken.
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INTRODUCTION

 The occurrence of climate change disasters on a 
massive scale in various countries represents a significant 
threat to the sustainability of human life and the realization 
of sustainable development (Gao et al. 2024; Lin et al. 
2024). The impact of global warming, exemplified by 
the occurrence of extreme temperatures from 2023 to 
2024 in Southeast Asia and South Asia, has implications 
for the cessation and disruption of various community 
activities. The occurrence of temperatures reaching 
44°C in India and up to 37°C in parts of Indonesia is a 
detrimental impact of global warming (Meteorological 
Climatological and Geophysical Agency/MCGA 2024). The 
World Meteorological Organization (WMO) and the MCGA 
have identified Asia, including Indonesia, as a region that is 
likely to experience a significant increase in the frequency 
and intensity of disasters associated with global warming 
(Dong et al. 2021). In addition to the effects of extreme 
temperatures, the consequences of climate change 
include the loss of land, the disappearance of small islands, 

an increase in the frequency of hydrometeorological 
disasters, the decline of biodiversity, an expansion of the 
range of diseases, the disruption of social, economic, 
cultural activities, and an intensification of ecosystem 
damage (Sutrisno et al. 2021; Abbass et al. 2022; Laino and 
Iglesias 2023; Kim et al. 2024). 
 A number of previous studies have demonstrated that 
massively occurring climate change disasters in various 
countries are significantly influenced by alterations in the 
value of terrestrial carbon (Liu et al., 2023; Zhang et al., 2024) 
and the combustion of energy and fuel derived from fossils  
(Hu et al., 2024; Zhang et al., 2024). The study conducted 
by Achmad et al. (2024); Nakakaawa et al. (2011) explained 
that forest ecosystems/vegetation in various countries 
have an important role in maintaining the global carbon 
(C) balance, which is estimated at 80% of aboveground C 
stocks and 20% of belowground C stocks. In this context, it 
is crucial to assess and monitor the availability of terrestrial 
carbon stock through land use data, as well as to assess and 
analyze the relationship between land use patterns and 
carbon stock (Liu et al., 2023; Wu et al., 2024). In addition, 
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further research is required on the modeling of future 
carbon stock predictions, as a basis for estimating the 
amount of carbon stock lost. A measured approach to the 
amount of carbon stocks in the future is an important part 
of formulating various targeted and appropriate mitigation 
policies to reduce the adverse effects of climate change 
disasters.
 The high rate of land use change, particularly the 
reduction of vegetation cover, the decline of forest areas 
and mangroves, has significant implications for the increase 
in carbon emissions released into the atmosphere (Zhang 
et al., 2023; Chinembiri et al., 2023; Halim et al., 2023). The 
increasing demand for land for development and to fulfil 
socio-economic needs has implications for declining levels of 
carbon stock (Raqeeb et al., 2024). Furthermore, government 
initiatives to stimulate economic expansion through the 
expansion of mining, industrial, trade, and service areas, as 
well as accelerated infrastructure development, have also 
precipitated increased land use change, decreased vegetation 
cover, and resulted in reduced forest and mangrove areas in 
various countries (Cortés Arbués et al., 2024; Wu et al., 2024; 
Yusuf, 2021). Such alterations in land use have a direct impact 
on the carbon storage capacity of vegetation and plants, 
resulting in shifts in ecosystem functionality and alterations 
in soil carbon storage (Aneva et al., 2020; Segura et al., 2024).
 Land use is not only related to economic conditions, 
but also plays an important role in social and environmental 
sustainability (Luo et al., 2024). Monitoring of land use 
change and land use prediction modeling are very important 
for determining global carbon stocks, providing land use 
restrictions and guidance for land use planning to maintain 
carbon stock balance (Dong, 2024; Huang et al., 2024; Zhang 
et al., 2024). However, based on previous literature review, 
studies on predicting future carbon stocks are still limited. 
So far, prediction analysis has been reviewed by Alam et 
al. (2021); Dey et al. (2021); Girma et al. (2022), who discuss 
predictions of built-up and non-built-up land use in relation 
to urban sprawl. While several studies analyzing carbon stock 
predictions based on land use, such as Dong (2024), were 
conducted without the use of driving force variables, the 
study by Wu et al. (2024) was limited to the use of economic 
and geographic variables, and the study by Shao et al. (2023) 
was limited to the use of physical and socio-economic factors. 
In addition to the limited use of drivers, several previous 
studies, namely Xu et al. (2024); Shao et al. (2023), still used 
medium resolution (Landsat) and low resolution (NOAA) 
satellite imagery as data sources. The use of limited driving 
forces, data sources from low-resolution satellite imagery, and 
the use of inappropriate algorithms may have implications 
for the inaccuracy of carbon stock prediction (Almubaidin 
et al., 2024; Bao et al., 2021; Jakariya et al., 2020; Ma et al., 
2024; Meliho et al., 2023).  The limitations and inaccuracies 
of predictive data are feared to lead to inaccurate policy-
making in climate change mitigation. This research aims to 
address the existing gap in modeling future carbon stock 
predictions using more accurate and detailed data sources, 
comprehensive driving factors, and compatible algorithms 
through the implementation of the Multilayer Perceptron 
Neural Network Markov Chain (MLPNN-MC) algorithm. The 
MLPNN-MC algorithm represents the latest hybrid model/
model development that is capable of generalizing each 
simulation and modeling multiple transitions simultaneously 
due to its three-layer structure comprising the input, output, 
and hidden layers (Mishra et al., 2014). The utilization of this 
algorithm has been demonstrated to yield highly accurate 
results, with accuracies ranging from 85% to 93%, as 
evidenced in several studies conducted Girma et al. (2022); 
Mishra and Rai (2016); Soni et al. (2022).

 This carbon stock prediction modeling was conducted 
in a rural area affected by the national strategic project of 
constructing Yogyakarta International Airport (YIA). Initially, 
the area exhibited a high degree of dense vegetation 
cover, resulting in substantial carbon stock accumulation. 
However, substantial infrastructure development has led 
to significant alterations in land use and carbon storage. To 
date, there has been a paucity of research examining the 
relationship between infrastructure development, land use 
changes, carbon stock storage, and the modeling of future 
carbon stock predictions. The present study aims to address 
this research gap by employing advanced data analysis 
techniques, namely remote sensing satellite imagery 
and machine learning algorithms, to develop a more 
sophisticated and precise prediction model. The objective 
of this study is to formulate a prediction model for future 
land use in relation to carbon stocks in areas affected by 
the construction of YIA. To this end, the study will utilize 
more detailed data sources, more comprehensive driving 
variables, and the apply the MLPNN-MC algorithm to 
produce more accurate land use predictions to carbon 
stocks.

MATERIALS AND METHODS

Study Area

 The research was conducted in the area affected by the 
construction of the YIA. The research methods employed 
included the modeling of predicted changes in carbon 
stock in 2026, 2030, and 2034. The construction of this 
infrastructure development project, which encompasses an 
area of approximately ±587 ha, has the potential to result in 
increased land use change. The research site encompasses 
26 villages situated within Kulon Progo Regency, 
Yogyakarta, Indonesia. The study area encompasses Temon 
subdistrict (15 villages), Wates subdistrict (8 villages), and 
parts of Panjatan subdistrict (which includes 3 villages). The 
spatial distribution of the study area is illustrated in Fig. 1.
 
Data and data sources

 The data presented in this study encompasses both 
dependent data, which pertains to multitemporal land 
use, and independent data, which encompasses driving 
forces. Multitemporal land use maps were obtained from 
Pleiades, a 0.5 m very high resolution satellite (Melis et 
al., 2021) in 2014, 2018 and 2022. The selection of images 
was based on the development process of the YIA, with 
2014 being the initial state before the airport was built, 
2018 being the land clearing/initial development stage, 
and 2022 being the post-development stage when the 
airport was operational. In addition to the consideration 
of the airport development process, the selection of 
satellite imagery with a 4-year/short period is capable of 
representing changing conditions with greater detail and 
of reflecting very dynamic driving forces. This will have a 
significant effect on the quality and accuracy of carbon 
stock prediction modelling. Image interpretation was 
carried out visually, as this method can provide a higher 
level of accuracy compared to maximum likelihood, 
random forest or other methods (Schepaschenko et al., 
2019). The land use classification is divided into 2 (two), 
namely 1) high carbon stock reserve land consisting of 
mangroves, plantation, green belts, mixed gardens and 
dry land/rice fields; 2) low carbon stock land consisting 
of water bodies, infrastructure, rice fields, open land and 
built-up land. In order to determine the level of accuracy of 
land use, a sampling test was conducted where the number 
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of samples was determined using the Slovin formula 
with stratified random sampling. The number of land use 
samples in this study was 441 points, and from the results 
of the accuracy test in the field, there were 33 sample points 
that were less appropriate. Therefore, the accuracy test for 
land use can be formulated as follows (Eq. 1):

 Based on these calculations, the results of land use 
interpretation through Pleiades are able to produce a very 
high accuracy of 92%, so this data is eligible for further 
analysis. To determine the level of carbon stock by land 
use type, this study refers to the International Council for 
Local Environmental Initiative (ICLEI 2022) guidelines as 
described in Table 1. Based on Table 1, mangroves have the 
highest carbon sequestration capacity of 120, while the 
lowest are water bodies and infrastructure with a carbon 
sequestration value of 0.
 This study formulates independent data in the form of 
driving forces, drawing from previous literature reviews and 

pre-field studies. These studies analyze the physical aspects, 
policies, land conditions, and socio-economic aspects of 
the community to derive more comprehensive driving 
forces. The driving forces used include socio-economic 
aspects, including population, type of work, original village 
income, and tax/levy sharing. Furthermore, the analysis 
encompasses physical aspects such as relative relief, flood 
vulnerability, landslides, drought, and tsunami vulnerability. 
Location-specific variables include city centers, airports, 
roads, industry, educational facilities, and health centers. This 
study also uses land and spatial planning aspects, including 
land value zones, land rights status, protected areas, and 
agricultural cultivation areas. Driving forces factors and data 
sources can be described in Table 2.

Methods

Driving Forces Analysis Through Spatial Regression

 The driving forces variables utilized in this study 
encompass 21 variables, with the objective of ascertaining 

Table 1. Land use reclassification based on Greenhouse Gas (GHG) Coefficient

Sources:  International Council for Local Environmental Initiatives/ICLEI 2022

Land Use GHG Class Land Use GHG Class

Infrastructure, water body 0

Low

Dryland farming/fields 10

High
Rice fields 2 Green space/shrub 30

Open fields 2.5
Plantation/Mixed garden 63

Mangrove 120

(1)

Fig. 1. Study area
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the driving forces that exert a substantial influence. These 
variables are subjected to spatial regression analysis, a 
method that has been selected on the basis of its capacity 
to accommodate spatial weight, thereby ensuring a more 
accurate representation of the prevailing conditions of 
dependent and independent data in the field (Caraka 
and Yasin 2017; Hasbi, et al. 2014). The determination of 
significant driving forces at the initial stage is of paramount 
importance to ensure the modeling results attain optimal 
accuracy. The Eq. 2 for determining spatial regression is 
outlined below. 

 where x
i 

(i= 1,2,3,…, n) - driving forces, β
i (i= 1,2,3,…, n) 

-  
regression coefficient, n -  amount of data, Y -  dependent 
variable, x

1...,...,n
 -  independent variable.

Scenario Carbon Stock Prediction 

 The modeling of carbon stock prediction is based on 
land use type and utilizes the MLPNN-MC algorithm. The 
MLPNN-MC algorithm was selected due to its capacity to 
analyze very complex data sets (Soni et al., 2022). A key 
element of this modeling is change analysis, which involves 
the identification of areas that undergo change and remain 
constant over a specified time period. In the subsequent 
stage, the driving forces factors are processed through 
the Land Change Modeler (LCM) multilayer perceptron 
to generate a potential transition map and to identify 
the relevant driving forces. In the subsequent stage, the 
Markov chain is utilized to predict future changes based 
on previous changes. The Markov chain process according 
to Memarian et al. (2012) can be explained in the Eq. 3.

 where X(t) signifies with the marcov chain process 
at time (t), t

n
 is the current time period, (t

n-1
) defines the 

previous time periode, and (t
n+1

)  represent the future 
periode. The transition probability from one state (i) to 
another (j) by Memarian et al. (2012)  can be explained the 
Eq. 4.

 where X[k]  denotes the states {x1,x2,x3,....} between i and 
j. With these conditions, the probability matrix according to 
Memarian et al. (2012) is formulated as follows (Eq. 5):

 In this study, the independent variable of the carbon 
stock level is based on the type of land use over a 4-year 
period (2014, 2018, and 2022) with the consideration that 
the resulting change matrix is more detailed. The accuracy 
and validation tests in this study were carried out by 
creating a simulation of carbon stock predictions in 2022 
based on the 2014 and 2018 maps and key drivers. The 
predicted carbon stock based on land use type in 2022 
was then compared and analyzed with the carbon stock 
based on land use type in 2022. The Eq. 6 for determining 
the accuracy test is as follows:

 This modeling prediction accuracy test is very important 
to ensure that the data, algorithms, and processes carried 
out meet accuracy standards. The prototype model that 
has passed the accuracy test is utilized as a foundation for 
the compilation of predictions concerning carbon stock 
levels in 2026, employing the 2018 and 2022 maps and 
driving forces factors. Furthermore, to produce predictions 
for 2030, data from 2022 and 2026 are utilized, and the 
same process is repeated to produce predictions for 2034, 
2026 and 2030. Additionally, the study considers relevant 
driving forces. For a more detailed understanding of the 
research stages, refer to the research flow chart illustrated 
in Fig. 2.
  
RESULTS AND DISCUSSION

Multitemporal Land Use Map Database

 Pleiades image interpretation results show that the 
most dominant land use type in 2018 and 2022 in the 
study area is in the form of: rice fields and built-up land, 
where both types of land use have very low carbon stock 
content (Singh et al., 2024). Conversely, land use in the form 
of mixed gardens and mangrove forests, which possess a 
high carbon stock capability, is only found in a very small 
area. The spatial distribution of land use data in 2018 can 
be explained in Fig. 3a, while in 2022 in Fig. 3b. 
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(2)

6)

(3)

(4)

Table 2. Data and Data Sources of Driving Forces

Sources: Data Analysis 2024

Variables Data Sources Variables Data Sources

Population, type of work, original 
village income, and tax/levy 

sharing

Secondary data from 26 villages/
sub-districts

Land value zones, land rights 
status,

Land Office data

Flood vulnerability, landslides, 
drought, and tsunami 

vulnerability

Data the Regional Disaster 
Management Agency in 2022

City centers, roads, airports, 
industry, educational facilities, 

and health centers

Pleiades imagery & Local 
Government 

Relative Relief National Digital Elevation Model
Protected areas, and agricultural 

cultivation areas
Detailed Spatial Planning Map

(5)
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 Based on Fig. 3, it shows that the development of YIA is 
one of the triggers for the increase in land use change. Airport 
development not only changes the land used for airports 
but also has implications for changing land for infrastructure 
development to support airports, land for settlements, and 
economic activities.  Data on changes in land use areas from 
2018 to 2022 can be explained in Fig. 4.
 As illustrated in Fig. 4, there has been a notable decline in 
land use from areas with high carbon stock. This is evidenced 
by a reduction in plantations by 28 ha and dryland farming by 
23 ha. During this period, there was also an increase in land use 
with low carbon stock value, namely 272 ha of infrastructure 

and 43 ha of built-up area. The decrease in land with high 
carbon stock and the increase in land use with low carbon stock 
will undoubtedly further contribute to the emission of carbon. 
This research reinforces the findings of Verma et al. (2020) that 
development tends to convert land from high carbon stock to 
low carbon stock land, a condition that certainly contributes to 
increasing carbon emissions.

Driving Forces Variables

 The process of carbon stock alteration in response to 
land use in a given area is influenced by a multitude of 

Fig. 2. Research flowchart

Fig. 3. (a) Land Use Map 2018; (b) Land Use Map 2022

Fig. 4. Land Use Area in 2018 and 2022 (Source: data analysis 2024)
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complex and dynamic variables. It is imperative to ascertain 
the most significant driving forces to ensure the accuracy 
of the resulting prediction model. To this end, spatial 
regression is employed to verify the impact of these driving 
factors on land use changes. The outcomes of the spatial 
regression accuracy test, which delineate the relationship 
between driving forces and carbon stock changes based 
on land use types, are delineated in Table 3.
 The findings of the spatial regression analysis in Table 3 
demonstrate that the driving forces factor employed exerts 
a profound influence on alterations in land utilization in 
relation to carbon values, as evidenced by the R-square value 
of 0.83 or 83%. Moreover, the analysis reveals that the most 
suitable model, as indicated by the highest R-square value 
and the lowest Akaike Information Criterion (AIC) value, is 
the spatial lag model. The distribution of significance values 
between variables is elucidated in Table 4. 
 The findings of the analysis demonstrate that the 
presence of driving factors with a probability value of 
less than 0.05 is indicated, including city centers, airports, 
roads, industries, and relative relief. These driving factors are 
associated with a decrease in carbon stocks. The resultant 
increase in land conversion is from mixed gardens/
plantations and dry land agriculture to built-up land and 
infrastructure. The closer an area is to these factors (airport, 
city centers, roads and industries), the higher the carbon 
stock decline. Conversely, the relative relief factor is one of 
the factors that can suppress the reduction of carbon stocks.  

Areas with high relative relief tend not to have massive land 
use change, which correlates with the high level of carbon 
stock in the area. And vice versa: the flatter the relative relief, 
the greater the tendency for the carbon stock to decrease. 
The findings of this study support previous research that 
the variables influencing land use change are complex 
and highly dynamic (Long and Yan, 2012; Mekonnen et al., 
2022). This study also supports research by Rani et al. (2023); 
Xu et al. (2024) that the use of comprehensive variables 
that have a large influence on the rate of land use change 
is very important in developing land use forecasts. The 
limitations of the driving forces variables used and their lack 
of influence have implications for the inaccuracy of carbon 
stock predictions. The spatial distribution of driving force 
variables in this study is illustrated in Fig. 5.

Transition Potential Modelling

 The training of the machine learning (MLP) network 
model was conducted using the Land Change Modeler, 
with the land use change triggers consisting of five variables 
and land use maps from 2014 and 2018. The results of the 
model sensitivity analysis are presented in Table 5. During 
the specified period, the model demonstrated a high level 
of accuracy with all variables, reaching an accuracy of 
87.9%. The results of the sensitivity analysis, as elucidated in 
Table 5, demonstrate that the predominant driving forces 
are airports, while relative relief is the least significant.

Table 3. Spatial Regression Accuracy Test of Carbon Stock Reserve Variables in 2018

Table 4. Spatial Regression Analysis of Carbon Stock Reserve Variables in 2022

Source: Data Analysis, 2024

Source: Data Analysis, 2024

Model R-square AIC Moran Lagrange Lag Lag error Lag
Heteroke 
dasticity

Spatial 
Dependency

Classic 0.760553 311.175 0.00854 0.04880 0.29756 SARMA

Spatial Error 0.827054  307.582 0.03642 0.02661 0.05802

Spatial Lag 0.834779  306.889 0.21018 0.01216

Variable Coefficient Std.Error  z-value  Probability

W_KRB. 0.622324 0.148483 4.19123 0.00003

CONSTANT -542.544 148.27 -3.65915 0.00025

Protected                            0.214102 1.4342 0.149283 0.88133

Agriculture         -0.737243 0.952464 -0.774038 0.43891

Road access                     -0.00590488 0.00406924 -1.4511 0.14675

Flood                            -0.294431 0.294713 -0.999045 0.31777

Land title                          -9.38065 9.31859 -1.00666 0.31410

Relief                              0.593635 0.273385 2.17143 0.02990

Land val_                    2.32608e-05 6.50807e-05 0.357415 0.72078

City                                  36.9229 11.2262 3.28899 0.00101

Industry                                104.1 71.4647 1.45667 0.05021

Airport.                             31.4277 16.3897 1.91752 0.05017

Employment                           5.29773 2.14639 2.46821 0.0135

Population                        0.0193318 0.0168305 1.14861 0.25072
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Fig. 5. Maps of drivers of carbon stock change based on land use: (a) distance to airport, (b) distance to industry, 
(c) distance to city center, (d) distance to road, (e) relative relief

Table 5. Transition sub model: Sensitivity of the model to forcing independent variables to be constant

a. Forcing a single independent variable to be constant

Model Accuracy (%) Skill Measure Influence Order

With all variables 87.94 0.7588

Var 1 constant/city center 87.48 0.7496 4

Var 2 constant/airport 68.07 0.3613 1 (most influential)

Var 3 constant/industry 84.96 0.6992 2

Var 4  constant/road access 86.83 0.7366 3

Var 5  constant/relief 88.23 0.7646 5 (least influential)

b. Backwards stepwise constant forcing

With all variables 87.94 0.7588

Step 1: var.[5] constant 88.23 0.7646

Step 2: var.[5,1] constant 88.02 0.7604

Step 3: var.[5,1,4] constant 87.10 0.7420

Step 4: var.[5,1,4,3] constant 76.48 0.5296

c. Model skill breakdown by transition and persistence

Class Skill Measure

Transition: High carbon to low carbon 0.7066

Persistence: High Carbon 0.8109

Source: data analysis through land change modeler
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Prediction of carbon stock based on land use change 
and model validation

 The validation of the carbon stock level change 
prediction model was conducted through a comparison of 
the results of the 2022 carbon stock level prediction with the 
classified carbon stock map, which underwent a rigorous 
testing process for accuracy in 2022. The 2022 carbon stock 
prediction map was derived from the 2014 and 2018 maps, 
along with the driving forces. The results of the analysis 
are illustrated in Fig. 6, which presents the findings on the 
suitability of patterns, spatial distribution, and visualization 
between the 2022 carbon stock prediction map (Fig. 6a) and 
the 2022 classified carbon stock map (Fig. 6b).
 As demonstrated in Fig. 6, the predicted carbon stock 
map in 2022 exhibits a comparable pattern, shape, and 
area to the existing carbon stock map in 2022. The area 
with high carbon stock predicted was 2,752 ha, which is 
consistent with the existing carbon stock value of 2,689 ha. 
Subsequent to this, an accuracy test was conducted utilizing 
the confusion matrix, yielding an accuracy test result of 98%, 
signifying very high accuracy. The findings of this accuracy 
test demonstrate the viability of the algorithm, method, and 
variables employed in the development of carbon stock 
predictions in 2022 for application in the prediction of carbon 
stock based on land use types in 2026, 2030, and 2034. The 
land use prediction modeling approach utilizing a MLPNN-
MC algorithm demonstrated an exceptional degree of 
accuracy, with an accuracy test reaching 98%. This condition 
is influenced by the supervised backpropagation, which is 
capable of more accurately generalizing the transition of land 
use change. Furthermore, this algorithm has the additional 
benefit of being able to perform supervised learning 
transitions in a more directed manner through the artificial 
neural network in MLPNN. This research corroborates the 
findings of previous studies on the advantages of MLPNN-
MC in analyzing land use prediction modeling (Mirsanjari et 
al., 2021; Ren et al., 2019; Tariq et al., 2022). The high level 
of accuracy of land use prediction is also influenced by the 
data source for preparing detailed land use maps, as well 
as the use of complex driving forces variables. This research 
lends support to the assertion that the utilization of precise 
data sources is a fundamental element in the generation of 
accurate forecasts (James et al., 2020; Utami et al., 2024a). 
The Pleiades satellite images, which are capable of very high 
resolution, are able to produce highly detailed land use data, 
which in turn enables the generation of accurate predictions 
(Pu et al. 2018).

Modeling Carbon Stock Prediction Based on Land Use 

 The uncertainty of future land use represents a 
significant challenge for land management policy, with the 
potential for inappropriate policies to result in considerable 
environmental damage. The environmental damage 
caused by inappropriate land use is extensive and includes 
land degradation, water pollution, loss of biodiversity, 
damage to various ecosystems, and an increase in the 
frequency of natural disasters such as floods, landslides, 
droughts, and fires (Karamesouti et al., 2015; Peng et al., 
2023). Furthermore, the uncertainty of land use in relation 
to the condition of carbon stock in the future also has 
implications for increasing carbon emissions, which have 
an impact on increasing climate change disasters (Mason 
et al., 2023; Hayes et al., 2023; Xu et al., 2024; Yan et al., 2024). 
The analysis of land use predictions in relation to carbon 
stock is a crucial aspect to consider, given the high level of 
disaster vulnerability in the study area, as evidenced by the 
prevalence of floods, landslides, droughts, abrasion, and 
tidal waves (Kulon Progo Regency, 2023). 
 A model was constructed to predict land use in relation 
to carbon stock value in 2026, based on land use maps 
from 2018 and 2022, as well as variables that trigger land 
use change. The results of the modeling exercise for the 
year 2026 are presented in Fig. 7a. The multitemporal land 
use data from the preceding period and the driving forces 
variables were then employed to construct a prediction 
map of land use in relation to carbon stocks for the years 
2030 and 2034, as illustrated in Figs. 7b and 7c. In addition, 
the outcomes of the multitemporal land use prediction 
modeling can be presented in Fig. 7d.
 The carbon stock prediction modeling as shown 
in Fig.7a, b, c provides an overview of the carbon stock 
condition in 2026, 2030, and 2034, which tends to decrease. 
The decline in carbon stocks is attributable to alterations 
in land use, with a transition from high carbon stock land 
in plantation areas and mixed gardens to low carbon 
stock (built-up land/settlement) in the northern part of 
the study area. In the southern part of the study area, the 
shift from dryland farming to ponds led to a reduction in 
carbon stocks. The findings of the predictive modeling 
calculation through MLPNN-MC demonstrate that in 2026, 
the land utilization exhibiting high carbon stock potential 
(i.e. plantations, dryland farming, green space) amounts to 
2,637 ha, representing a decline from 2,689 ha in 2022. The 
analysis indicates that, by 2026, there will be a decrease in 
land from high to low carbon stock of 52 Ha, equivalent to 

Fig. 6. Comparison of map : (a) Prediction map of carbon stock; (b) Maps of carbon stock level
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Fig. 7. Map of predicted carbon stock reserve levels by land use year (a) 2026; (b) 2030; (c) 2034; (d) multitemporal

3,050 tonnes C/ha. The reduction of carbon stocks has been 
demonstrated to result in an increase in carbon emissions, 
which in turn has been shown to lead to an escalation in 
climate change disasters. The increase in development and 
demand for land is undeniable, especially in developing 
countries, including Indonesia (Li et al., 2023; Liu et al., 
2021). Data on the multitemporal decline in the area of 
high carbon stock land use in the study area are described 
in Fig. 8.
 The findings of this study indicate that the decline in land 
area with high carbon stock within the study area between 
2022 and 2034 is projected to amount to 153.4 Ha. The 
decline in carbon stock value from 2022 to 2034 is projected 
to amount to 9,665 tonnes C/ha, in accordance with the 
greenhouse gas coefficient established by ICLEI (2022). 
This transformation is primarily driven by the demand for 
land for airport development and the provision of land to 
support economic activities (trade and services). Following 
the development of the airport, a further decline in carbon 
stocks was observed in the study area. This accumulation 
of carbon stock decline, if mitigation measures are not 
implemented, will undoubtedly exacerbate the impact of 
global warming. The implementation of policies to protect 

forest areas, mangrove areas, and reforestation policies in 
green open space areas are crucial elements in maintaining 
the balance of carbon stocks (van Bijsterveldt et al., 2020; 
Dajam and Eid, 2024; Raqeeb et al., 2024; Alexandri et al., 
2024). 
 The empirical evidence presented in this study indicates 
that by the year 2034, there will be a notable expansion 
in built-up land (settlements, trade and services) and a 
significant increase in the number of ponds in green belt 
areas, fields, dryland agriculture, plantations, and mixed 
gardens, with an estimated total area of 153 ha. In this case, 
efforts to control land use change in order to maintain the 
balance of carbon stock are required (Dachary-Bernard et 
al., 2018; Koroso, 2023; O’Driscoll et al., 2023). The empirical 
evidence presented in this study indicates that by the year 
2034, there will be an increase in built-up land, specifically 
settlements, trade and service areas. 
 The research demonstrates that the factors influencing 
land use change are intricate and multifaceted. The 
utilization of a comprehensive range of variables, and 
multitemporal land use maps enables the investigation 
of dynamic land use patterns. The spatial modeling 
approach utilizing the MLPNN-MC algorithm enables a 

Fig. 8. (a) Area of land use with high carbon stock; (b) Carbon stock levels in 2022, 2026, 2030, and 2034

(a) (b)
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more comprehensive analysis of the transformation of land 
use change from one state to another, taking into account 
the influence of driving variables. The backpropagation 
technique employed in the MLPNN-MC algorithm enables 
the minimization of errors in spatial modeling of land use 
prediction, thereby facilitating the generation of accurate 
data with a success rate of 98%. 
 The findings of this study corroborate the previous 
studies, which indicate that land use has a significant 
influence on carbon stock changes (Wei et al., 2024; 
Achmad et al., 2024; Raqeeb et al., 2024). The role of land 
use in the form of mangroves and forests in absorbing 
carbon emissions is of great significance. In contrast, the 
construction of infrastructure, including roads, airports, 
and harbors, has been identified as a significant contributor 
to the increase in carbon emissions. The expansion of 
infrastructure is often accompanied by transportation 
activities, economic activities, and urbanization, which 
have implications for increasing energy demand and, 
consequently, high carbon emissions. Furthermore, these 
activities have an impact on current and future ecological 
conditions. 
 In light of these findings, it is imperative to implement 
measures to regulate land use in order to maintain 
equilibrium in carbon stock. This study reinforces the 
findings of previous research on the significance of land 
use planning policies based on carbon stock balance 
(Weindl et al., 2017). Such efforts may be made, for instance, 
through the optimization of mangrove ecosystems 
and forest areas through conservation, restoration, or 
reforestation (Dajam and Eid, 2024; Feller et al., 2017; Utami 
et al., 2024b). Furthermore, the allocation of land for green 
open spaces is imperative, given that reduced carbon 
stocks resulting in increased carbon emissions are a major 
driver of global warming. Land use predictions pertaining 
to prospective carbon stock levels furnish spatial data 
regarding the locations, patterns, and consequences of 
anticipated land transformations. The prediction carbon 
stocks represents a crucial aspect in the context of rising 
carbon emissions (Amadou et al., 2018; Araza et al., 
2023). The database and findings presented in this study 
should serve as the foundation for stakeholders in the 
formulation of sustainable land management policies, the 
development of spatial utilization planning and control 
strategies, and the creation of planning, management, and 
control frameworks for human activities (social, cultural, 
and economic) with the aim of mitigating the impact of 
climate change disasters (Hamad et al., 2018; Ismaili et al., 

2023; Xu et al., 2024). The integration of climate change 
mitigation with land use regulation and control represents 
a highly effective strategy for maintaining the balance of 
carbon stock (Xu et al., 2024). This study aims to address the 
limitations of previous research in carbon stock prediction 
modeling by enhancing the accuracy of predictions. 
However, the modeling is constrained to changes in 
land use types, without conducting a comprehensive 
assessment of vegetation types or vegetation density 
levels that may influence carbon values. The study employs 
a carbon stock scenario in 2034, utilizing driving factors 
such as social, economic, physical aspects and policies that 
are currently in effect. It is acknowledged that extreme 
changes in these factors are possible in the future, and 
that this has the potential to impact the predicted value 
of carbon stock. The development of predictive modeling 
research in the future is expected to further explore the 
carbon stock prediction modeling approach, with the aim 
of making it more comprehensive and accurate.

CONCLUSIONS

 The impact of land use dynamics on the decline in 
terrestrial carbon stock levels is significant. Uncertainty in 
future land use and carbon stock levels can be overcome 
through modeling to predict land use based on carbon 
stock levels using the MLPNN-MC Algorithm. This study 
was able to produce a prediction accuracy rate of 98% 
for carbon stock levels, thus filling the gaps in previous 
modeling studies. The high level of accuracy can be 
attributed to the use of detailed sources for land use 
map data, comprehensive driving forces factors, and a 
compatible MLPNN-MC algorithm. The significant driving 
factors resulting from the spatial regression analysis 
and land change modeler include airports, city centers, 
industries, roads, and relative relief. The research findings 
predict that in 2034, there will be a decrease in land use 
area from high to low carbon stock of 153 ha, or a decrease 
in carbon stock levels of 9,665 tonnes C/ha. The modeling 
provides information on the spatial distribution of land 
use and carbon stock values that are subject to change. 
The carbon stock prediction database is an important 
component in the formulation of land use control 
policies and climate change mitigation efforts. Although 
this study was able to produce a high level of accuracy, 
further research is required to consider vegetation types 
and calculate all components of carbon stock values more 
comprehensively.
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