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ABSTRACT. Fine particulate matter (PM2.5), classified as airborne, adversely affects human health and the environment. 
This study examined the concentration and variability of PM2.5 and its correlation with meteorological variables in Brazil. 
The annual average highest concentration of PM2.5 (kg-m-3) 5.65×10-9 was found in the western part of the country. A low 
concentration of PM2.5 (kg-m-3), 0.21×10-9 was reported in North, East, and South Brazil. Mann-Kendall and Sen’s slope statistics 
were applied to find the trend and magnitude in the time series. Mann-Kendall (MAK)-Tau shows a positive significant trend 
(1 to 0.41) detected in the south, midwest, and southeastern Brazil. The Mann-Kendall (MAK)-Tau trend test was applied. The 
Sen’s Slope rate ranged from 6.98 to 4.54 in the midwest, south, and southeast regions of Brazil, respectively. In 24 years, an 
overall negative PM2.5 trend of -3.17 and -5.18 is shown in the north and northeast, respectively. This study evaluated PM2.5 
correlation with prevailing meteorological variables using various statistical techniques computed in R-Studio. Cross-wavelet 
Transform (CWT) analysis was used to examine the time and magnitude of PM2.5 with prevailing meteorological variables. The 
CWT analysis is statistically significant. The application of CWT analysis has revealed high leading and lagging in-phase and 
anti-phase correlations with prevailing meteorological variables, e.g., relative humidity, precipitation, temperature, and wind 
speed variables that have influenced the temporal concentration of PM2.5.
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INTRODUCTION

 PM2.5 is classified as airborne fine particulate matter. Its 
diameter is 2.5 microns or less (≤ 2.5 μm). PM2.5 is generated 
from combustion sources and is documented as an 
important contributor to air quality (Chen et al. 2020; Wu et 
al. 2023). PM2.5 mass concentration standard value is diverse 
for each country. In 2006, the safety limits for particulate 
matter (PM) in the atmosphere were established by the 
World Health Organization (WHO). The value range for PM2.5 
was determined to be 10 μg/m3(per annum) and 25 μg/m3 
(24-hour average). In 2021, WHO issued the updated values 
of PM2.5 and PM10 concentration. The maximum annual 
value should be correspondingly 5 µg/m3 and 15 μg/m3, for 
PM2.5 and PM10 (WHO 2021). PM2.5 poses a significant adverse 
effect not only on climate, ecosystems, and visibility but 
also on human health (Faridi et al. 2019; Fatima et al. 2023; 
Wang et al. 2023).

 Biomass burning and energy use are the main 
contributors to the emission and concentration of 
particulate matter in the atmosphere. Other anthropogenic 
activities, e.g., brick kilns, agricultural activities, industrial 
and vehicle emissions, and waste incineration, are key 
factors of atmospheric particulate matter (Guttikunda et al. 
2019; Amnuaylojaroen et al. 2020; Amit et al. 2021; Nasar-
u-Minallah et al., 2024a; Nasar-u-Minallah et al., 2024b; 
Nasar-u-Minallah et al., 2025). These variables largely affect 
changing air circulation conditions, particle proliferation, 
and distribution. Furthermore, the metrological parameters 
can be used as a gauge to improve the projected values 
of PM2.5 concentration at ground level (Liu et al. 2009). 
Climatic variability also affects the concentration of 
PM2.5. The meteorological parameters (e.g., humidity, 
precipitation, temperature, and wind speed) can affect 
the mass concentration of PM2.5 its dispersion, dilution, 
and accumulation in the air on a large scale (Tai et al. 
2010; Westervelt et al. 2016). PM2.5 is correlated with 
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precipitation and wind speed. The high wind velocity 
will lead to turbulence and advection that increase the 
dispersion of pollutants. On the other hand, precipitation 
reduces the concentration of PM2.5 through wet deposition 
and wet removal (Westervelt et al. 2016; Nguyen et al. 
2017; Zhang et al. 2018). Several studies reported that 
meteorological factors are critical in the circulation and 
removal of particulate matter from the lower atmosphere 
(Sharma et al. 2017; Das et al. 2021; Singh et al. 2021; Nasar-
u-Minallah 2024c). Saraswati et al. (2019) reported that 
the air pollutant’s dispersion was primarily affected by the 
diurnal variation in boundary layer conditions and other 
meteorological factors. Precipitation, relative humidity, 
ambient temperature, wind velocity, and direction affect 
the concentration of particulate matter in ambient air and 
scatter them from areas of high to lower concentration 
(Begum et al. 2008; Saha et al. 2019; P. Sharma et al. 2022) 
A negative correlation is found between meteorological 
factors (such as dew point, wind gust, and ambient 
temperature) and PM2.5 concentration at any given location 
(altitude and latitude) whereas, positively correlated with 
relative humidity (Das et al. 2021; Singh et al. 2021)
 The carbon content in PM2.5 scatters and absorbs the 
light and impacts atmospheric visibility (Shen et al. 2019). 
Approximately 50 percent variation in the concentration of 
PM2.5 is reported due to diurnal variation in meteorological 
parameters (Tai et al. 2012). Wang & Ogawa (2015), they 
studied PM2.5 and meteorological conditions in Nagasaki 
(Japan). The result indicated that PM2.5 has a strong 
correlation with precipitation and a weak correlation 
with temperature. Several studies have carried out the 
correlation between PM2.5 and meteorological parameters. 
In China (Wuhan) a study was led using Generalized 
Additive Models (GAM) on the correlation between PM2.5 
and meteorological parameters. The result indicated a 
37% decrease in PM2.5 concentration observed during 
precipitation (Zhang et al. 2018). Some studies have also 
reported seasonal variations of PM2.5 with meteorological 
variables. For instance, Yang et al. (2017) stated that 
seasonal variation of PM2.5 with temperature in different 
cities in China. In the winter, PM2.5 has a strong correlation 
with temperature and a weak correlation in the autumn.
 The disparity between PM2.5 and temperature in 
different seasons was reported. Temperature showed 
a weak correlation with PM2.5 in summer and autumn; 
however, there was a strong correlation in the spring and 
winter seasons (Chen et al. 2017). Conversely, an increase in 
temperature can cause variation in the formation of PM2.5. 
The higher temperature increases the photochemical 
reaction involving PM2.5. Additionally, a study conducted 
in Hong Kong from January – December 2013 reported 
a negative relationship between PM2.5 and temperature 
(Zhao et al. 2019). Brazil is experiencing several socio-
environmental challenges linked to air quality and climate 
variability. Brazil, being a continental country, is home to a 
diverse type of biomes. Apart from anthropogenic activities, 
diverse biomes are also a source of natural air pollution and 
spatio-temporal weather changes. Numerous studies have 
been carried out in Brazil focused on the concentration 
of primary pollutants, biomass burning (Squizzato et al. 
2021; Castelhano et al. 2022) effect of particulate matter 
on health (Leão et al. 2023) PM2.5 and PM10 concentrations 
(Braga et al. 2005) in major urban centers of Brazil. However, 
there is a dire need to conduct studies to evaluate the PM2.5 
concentration in Brazil (Pacheco et al., 2017). Finally, the 
literature on the correlation of particulate matter PM2.5 with 

meteorological variables in Brazil is scarce, and to the best 
of our knowledge, no study has been carried out using 
cross-wavelet over the whole of Brazil.
 This study aims to identify the gaps in previous studies 
and evaluate the variability of PM2.5 and its correlation 
with meteorological parameters in Brazil over 24 years 
(2000-2024). For that purpose, the average maps of PM2.5 
and prevailing meteorological variables were prepared; 
in addition to that, we also used wavelet coherence to 
identify the relationship of PM2.5 with other meteorological 
parameters. The Mann-Kendall test and Sen’s slope methods 
were also used. The PM2.5 concentration study is critical 
to getting a clear picture of the impact of anthropogenic 
activities on the environment. It is essential to develop 
effective planning and strategies to reduce air pollution. The 
effect of meteorological factors on PM2.5 concentration is 
well-recognized and understood (Chen et al. 2020). There is 
a dire need for correct and precise daily PM2.5 concentration 
assessment and projection to discourse environmental 
issues (Wang et al. 2022). Precise and accurate estimation 
of PM2.5 could benefit the policymakers and enable them to 
initiate the measures that can help the public manage the 
means of transportation and travelling, thus decreasing the 
effect of PM2.5 on their daily lives (Huang et al. 2021; Dong et 
al. 2022). 

METHODS AND MATERIALS

Study Area

 Brazil (geographic coordinates 10.00 S, 55.00 W) is the 
5th largest country in the world and the largest in South 
America by geographical area (8,514,877 sq. km.) while 7th 
in terms of population size (217,663,781 souls). The climatic 
setup of the country is dominated by the equatorial and 
subtropical type of climate with high temperatures 
and erratic rainfall throughout the country, apart from 
the northeast of Brazil, which receives less rainfall and is 
virtually a semi-arid region (less than 700 mm of rain per 
annum).

Data sets

 PM2.5 (kg-m−3) with spatial resolution 0.5°×0.625° was 
retrieved from the MERRA-2 reanalysis model. The surface 
radiative temperature (K) monthly product was taken at a 
spatial resolution of 1°×1° from the FLDAS model. Relative 
humidity (RH) (%) 700 hpa monthly product with a spatial 
resolution of 1°×1° was collected from Aqua Satellite 
through the AIRS instrument from 1-9-2002 to 01-01-2024. 
The wind speed (m s-1) product was acquired at 0.5°×0.625° 
spatial resolution monthly through the MERRA-2 reanalysis 
model. Precipitation (kg m-2s-1) product with 0.5°× 0.625° 
spatial resolution and temporal resolution (monthly) was 
obtained from MERRA-2 reanalysis. The data sets were 
retrieved from NASA’s Giovanni online web source1. Table 
1 displays the data set used for this study.
 ArcGIS 10.5 and R Studio were used to prepare the 
averaged maps of PM2.5 and meteorological variables, such 
as humidity, precipitation, temperature, and wind speed, 
and calculate the Sen’s slope and Mak Tau.

Mann-Kendal & Sen’s Slope

 The non-parametric Mann- Kendall (MK) test is adopted 
to evaluate the trend of PM2.5. It is a robust method for 
analyzing the monotonic trend in time series, helping to 
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identify increasing and decreasing trends in time series. It is 
calculated by following the equation (Eq. 1).

 From Eq. 1, S represents the MK-trend statistics, also known 
as Kendall’s Tau (MAK-Tau). Whereas X

m
 and X

l
 are time series 

observations (Eq. 2).

 In the above equation (Eq. 2), R
j
 and R

i
 symbolize the rank of 

X
m

 and X
l
 time series values. The number of values tends to be 

normally distributed, and significance at 95% was determined 
using a p-value < 0.05. MAK-Tau is primarily used to test the 
correlation and strength between two variables. The values 
range from −1 to +1. Sen’s slope is also a non-parametric test 
primarily used to identify the slope in time series data (Agarwal 
et al. 2021; Ray et al. 2021). Sen’s slope is computed in Eq. 3.

 From Eq. 3, Q
m

 represents the estimated slope for each 
pair of observations. The subscripts k and m are the time 
steps, where K > m. The Mann-Kendall’s and Sen’s slopes were 
calculated in R Studio.

Wavelet analysis

 Several researchers have extensively used wavelet 
transformations for time series data. Firstly, wavelet analysis was 
used for seismic signal analysis (Chen et al. 2020). Nowadays, 
wavelet analysis has been extensively used in all fields (e.g., 
mathematics, science, engineering, and geophysics) (Zhang 
et al. 2017). Discrete wavelet (DWT) and continuous wavelet 
(CWT) are the two main types of wavelet transform analysis 
(Cholianawati et al. 2024a). Several studies used a cross-wavelet 
to analyze and find out the correlation between PM2.5 and 
meteorological variables (Barik et al. 2020; Meng & Sun 2021; 

Fattah et al. 2023; Jang & Jung 2023; Cholianawati et al. 2024b). 
The Morlet wavelet function (ψ) and cross-wavelet power are 
used to understand the correlation between PM2.5 and other 
meteorological variables (Eq. 4). 

 In Eq. 4, xt denotes the time domain. Whereas Wave(τ,s) 
indicates time series in continuous wavelets, (xt, T =1,2,3…N) 
concerning wavelet ψ is defined. where s represents the 
wavelet scale, τ stands as the position of the wavelet window in 
time or the translated time index, and Ψ is the mother wavelet 
function with * representing/indicating its complex conjugate 
solution. The wavelet analysis of the time series of PM2.5 and 
meteorological variables was computed in R-Studio using 
the wavelet comp package.

RESULTS AND DISCUSSION

Spatio-temporal distribution of PM2.5 and meteorological 
variables

 Fig. 1 shows the spatiotemporal correlation of PM2.5 with 
meteorological variables from 2000-2024 in Brazil. Fig. 1a illustrates 
Brazil’s spatiotemporal PM2.5 (kg-m-3) patterns from 2000-2024. The 
map indicates that the maximum PM2.5 (kg-m-3) concentration of 
5.65×10-9 was found in the western part of the country. A low 
concentration of PM2.5 (kg-m-3), 0.21×10-9 was reported in eastern 
Brazil. The descriptive statistics of all study variables are provided 
in Table 2. The mega-cities of Brazil are home to millions of people 
residing there and vehicles as well, and they face numerous 
problems related to air pollution and particulate matter, which 
is one of them. Vehicles are considered the primary reason for 
pollutants’ emission into the atmosphere in major urban centers 
of Brazil (de Fatima Andrade et al. 2012; Requia & Azevedo de 
Melo 2024). Numerous studies documented the other sources of 
particulate matter PM2.5, e.g., biomass burning, aerosols from sea 
salt, and industrial waste and traffic congestion (Gioia et al. 2010; 
de Fatima Andrade et al. 2012; Souza et al. 2014). The central areas 
of Brazil receive a large number of gases and particulate matter 
emitted into the atmosphere due to the burning of biomass from 
July to October (dry season) (Butt et al. 2020).

Table 1. Satellite and model data used for the analysis

Data sets Source Spatial Temporal Duration

PM2.5 (kg-m-3)           MERRA-2 0.05°×0.625° Monthly 2000-2024

Relative Humidity (%) AIRS 1°×1°. Monthly 2002-2024

Wind Speed (m s-1) MERRA-2 0.05°×0.625° Monthly 2000-2024

Temperature (K) FLDAS 1°×1°. Monthly 2000-2024

Precipitation (kg m-2 s1) MERRA-2 0.05°×0.625° Monthly 2000-2024

Table 2. Descriptive statistics

PM2.5 (kg-m-3) Humidity (%) Wind Speed (m s-1) Temperature (K) Precipitation (kg m-2 s-1)

Mean 1.81×10-9 46.71 3.55 298.41 4.96 ×10-5

Median 5.82×10-11 46.92 3.45 298.25 1.41×10-6

Standard Deviation 1.61×10-9 1.97 0.38 1.40 2.40×10-5 

Minimum 1.97×10-9 41.34 2.83 295.54 1.24×10-5

Maximum 5.78×10-9 51.00 4.53 302.92 1.09×10-4

(1)

(4)

(3)

(2)
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 PM2.5 concentration induced by wildfire has been reported 
as high in the central-western part of Brazil, affecting the 
health of human beings (Butt et al. 2020; Ye et al. 2022; Jang 
& Jung 2023). A study found, that approximately 80% of PM2.5 
concentration in Brazil (Amazon region) was associated with 
deforestation (Urrutia-Pereira et al. 2021). It has been reported 
that wildfires from the north and west sides and transportation 
of wildfires from suburbs also influence the concentration 
of PM2.5 in the country (Jang & Jung 2023). Fig.1b highlights 
the relative humidity in (%). The maximum relative humidity 
was observed in the north and midwest. The minimum RH 
was observed in the northeast, southeast, and south. Fig. 
1c illustrates the spatio-temporal variability of precipitation 
over 24 years in the study area. The map depicts the highest 
precipitation, 9.88 (kg m-2s-1×10-5), in the east and north of 
Brazil. The precipitation of 1.37 (kg m-2s-1×10-5) is observed in 
the western and central parts of the country. Fig. 1d shows 
the temperature (K) in Brazil. The maximum temperature is 
303K, found in the northeast and midwest of Brazil. In the 
north, the temperature range is approximately 296K-299K. 
The lowest temperature is found from southeast to south. 
The temperature range lies between 285K and 288K from 
southeast to south. Our findings are aligned with previous 
literature. Several studies have revealed that an increase in 
temperature and a substantial decrease in precipitation are 
observed in northeast Brazil ( Marengo et al. 2017; Da Silva 
et al. 2019; Costa et al. 2020). Intensified extreme dry spells or 
events due to the El Niño Southern Oscillation were reported 
in northeast Brazil (Marengo et al. 2017) 
 Fig. 1e illustrates the wind speed (m s-1) in the study area. 
The highest wind velocity, 5.62 (m s-1) was found in the north 
and west of Brazil. The wind velocity between 4.56 (m s-1) to 
3.51 (m s-1) is observed in the west of Brazil. The wind speed, 
ranging from 1.41 (m s-1) to 0.35 (m s-1) is seen from the east 
and central parts of the study area. Chen et al. (2017), reported 
that stronger wind speeds lead to faster parallel diffusion of 
pollutants, which eventually drops the PM2.5 concentration. 
Wind speed conditions are considered the critical factor in the 
evaporation process of PM2.5. The high wind velocity increased 
the dispersion of pollutants horizontally, eventually decreasing 
the PM2.5 concentration (Chen et al. 2018). The acceleration of 
wind speed intensifies the PM2.5 evaporation rate, leading to 
a significant decrease in the concentration of meteorological 
parameters such as temperature, wind velocity, temperature 
inversion, relative humidity, and atmospheric pressure, which 
significantly influence the dispersal and accretion of PM2.5 
(Ocak & Sezer Turalioglu 2008; Wang et al. 2023). Relevant 
studies have shown that the effect of PM2.5 varies with different 
weather conditions. A study in China from 2015 to 2017 found 
that there was a weak link between particulate matter and 
both rain and humidity (Han et al. 2018).
 Fig. 2a exhibits the variability in the spatial trends and 
magnitude of PM2.5 using the Mann-Kendall trend test (Sen’s 
slope) over Brazil during the study period 2000-2024. The 
trend rate ranges from 6.98 to 4.54 in the midwest, south, and 
southeast regions of Brazil, respectively. A negative trend of 
PM2.5 ranging from -3.17 to -5.18 is observed in the north and 
northeast respectively. Fig. 2b spatial trend’s magnitude (Mak-
Tau) shows a positive trend (1 to 0.41) detected in the south, 
midwest, and southeastern Brazil, but this trend seems highly 
significant.

Cross Wavelet Analysis PM2.5 and meteorological 
parameters

 The Cross Wavelet Transform (CWT) is a tool used to 
study the relationship of time and magnitude in two-time 
series. Coherency explains a constant pattern and identifies 

the correlation between two variables. The wavelet uses 
the arrows to describe the pattern; the right arrows show 
an in-phase relationship. On the other hand, the left arrows 
depict the anti-phase, or inverse, correlation. In addition, 
the leading relationship is indicated by upward arrows. The 
downward arrow shows the lagging correlation between 
the two variables (Aguiar-Conraria et al. 2008).
 In Fig. 3, the red color indicates the highest value, while 
the blue color indicates the lowest value. The coherency 
between PM2.5 and relative humidity (Fig. 3a) mostly shows 
the leading and lagging situations. It illustrates a periodic 
cycle of 8 to 16 days, with cross wavelet power of ~1.2 to 
1.5. The in-phase (direct) relationship is found between 
two variables. The value range indicates a strong positive 
relationship. The cross-wavelet transfer between PM2.5 and 
precipitation is shown in Fig. 3b a positive covariance/
coherence in the dataset. A leading and lagging sequence 
phase is detected between two variables. The lagging 
variables, from 2000 to 2024, are dominated by an anti-
phase relationship. Cross wavelet power of ~1.3 to 1.6 is 
found. The wavelet displays an 8- to 16-day periodic cycle. 
 There is a strong connection between PM2.5 and 
temperature (Fig. 3c), which displays an anti-phase (inverse) 
relationship, along with leading and lagging states. A 
strong Cross wavelet power of ~1.3- 1.6 is seen in datasets. 
Substantial periodic cycles of 8–16 days are observed. 
The relationship between PM2.5 and wind speed (Fig. 3d) 
exhibits in-phase (direct) situations in datasets, whereas 
leading and lagging phases. It displays a significant 
periodic cycle of 8–16 days, having cross wavelet power 
of ~1.5 to 1.8, and with several days are 150-200. Wavelet 
transformation helps in comprehending the aerosol nature 
in Brazil’s regions. For instance, the long-term significant 
periodicities in the cross wavelet between precipitation 
and PM2.5 indicate the presence of fine-mode aerosols 
in the atmosphere, which maintain the air pressure in 
the upper atmosphere. Similarly, the results of PM2.5 with 
relative humidity indicate aerosol plumes exposed to 
sufficient atmospheric moisture, resulting in scattering and 
diffusion of PM particles. Moreover, PM2.5 has an inverse 
relationship with temperature (Vaishali et al. 2023) as 
can be seen through the out-of-phase relationships seen 
from the wavelet figure. Overall, the links between PM2.5 
and all the meteorological variables help to understand 
these variables in Brazil. The dataset used in this study is 
a monthly dataset rather than a daily one, which is one 
reason why the periodic cycles mostly appear between 
8-16. Moreover, the frequency shown in the period has 
prolific short-term periodicities between 2 and 4 periodic 
cycles, but high wavelet powers seem to be between 
8-16 throughout the days. The periodic cycle shows the 
relationship of PM particles with meteorological variables 
in the upper atmosphere, which is highly significant in the 
medium-run range (8-16).

CONCLUSION

 The harmful impact of PM2.5 on visibility, climate change, 
and human health has recently attracted the attention of 
scientists worldwide. The findings of this study uncover 
the spatio-temporal variations of PM2.5 concentration 
across Brazil. The highest concentration was observed in 
northern and western Brazil. The current study evaluates 
the correlation of PM2.5 on meteorological variables using 
cross-wavelet analysis over Brazil. The averaged maps of 
PM2.5 and meteorological parameters have been prepared. 
The cross-wavelet transformation was calculated in RStudio 
to determine the correlation of PM2.5 with all meteorological 
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Fig. 1. Averaged maps of (a) PM
2.5

, (b) humidity, (c) precipitation, (d) temperature, 
and (e) wind speed over the 2000-2024 period
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parameters, e.g. humidity, precipitation, temperature, and 
wind speed. All meteorological parameters exhibit/show 
remarkable periodicities of 8-16 days. PM2.5 correlation 
was detected as an anti-phase (inverse) relationship with 
temperature and precipitation. In contrast, humidity and 
wind speed depicted the in-phase (synchronous/positive) 
relationship with PM2.5. A leading and lagging phase is 
observed in all covariates. PM2.5 results are slightly higher 
than the WHO standards in northern and western Brazil. 
There is a dire need to take measures to reduce the PM2.5 
concentration in the study area. The outcomes of this 
study would provide valuable insights for future research 

in Brazil. This study will help stakeholders create policies 
and strategies to reduce PM2.5 in the atmosphere, which is 
more harmful to human health than any other particulate 
matter. This study has certain limitations due to the non-
availability of the data set, and we used model data. The 
results and observations can be compared with ground 
data to validate the results to get a clear picture and help 
make robust decisions. Therefore, higher levels of PM2.5 
disagree with Sustainable Development Goal (SDG) 11.6.2. 
The main objective of SDG is to lessen the adverse effects of 
air pollutants on human health, including fine particulate 
pollution.

Fig. 2. (a) Sen’s Slope and (b) Mann-Kendall (MAK)-Tau over the 2000-2024 period

Fig. 3. PM
2.5

 and meteorological variable cross wavelet spectra: (a) PM
2.5

 and humidity, (b) PM
2.5

 and precipitation, 
(c) PM

2.5
 and temperature, and (d) PM

2.5
 and wind speed
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