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ABSTRACT. Sinkholes have frequently occurred over the past 20 years in the Khlong I Pan sub-watershed (KIPs) in Surat Thani 
and Krabi Province, Thailand. It was found that the earth collapsed more than 34 times. The objective of this research is to 
evaluate the sinkhole susceptibility using Logistic Regression (LR) analysis at the sub-watershed scale. This methodology used 
14 variables affecting sinkhole occurrence to analyze the area, and create a sinkhole susceptibility map using LR. The results 
found that the variables that affect sinkhole formation include Well Density (WD), geology, Land Use (LU), Total Hardness (TH), 
Total Dissolved Solids (TDS), slope, Chlorine (Cl), distance to stream, elevation, Topographic Wetness Index (TWI), distance 
to village, soil, distance to active fault, and distance to well, respectively. All such variables are expressed by the exp β value 
coefficient. When prepared as a Karst sinkholes (KS) susceptibility map, it was found that a very high sinkhole susceptibility 
level covers an area of up to 399.86 km2 (19.16% of the total area). They appear mainly in the eastern region of the KIPs, 
especially at the confluence of the Khlong I Pan stream and the Khlong Trom stream. The other area is the central mountain 
range and the western mountain range, where geological structures with a casque topography are found. The results of this 
research suggest using the KS Susceptibility Map as a guideline for planning and monitoring potential future sinkholes.
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INTRODUCTION

 A sinkhole is a type of natural disasters that often occurs 
in limestone or karst topography (Cvijić 1925; Trofimova 
2018; De Waele and Gutierrez 2022). Most of these 
topographical features are composed of carbonate bedrock 
such as limestone (CaCO3) and dolomite (CaMg(CO3)2) (Zeng 
and Zhou 2019). When carbonate rocks contact with acidic 
rainfall and groundwater, the carbonate rocks are dissolved 
to form tall limestone pinnacles and subsurface caves, called 
karst topography, with large caverns containing stalactites 
and stalagmites and groundwater streams (La Rosa et al. 
2018; De Castro et al. 2024). Accordingly, sinkholes generally 
form when the surface layer above the holes or caves is 
collapsed by the groundwater level dropping, landslides and 
subsidence of the upper surface, underground excavation, 
groundwater extraction, or earthquakes. Sinkholes cause 
substantial damage to life and property.  

 Researchers in the United States created karst 
topographic maps by collecting geological data and 
documenting the occurrence of valleys with historical 
evidence of sinkholes. However, a lack of data, including 
geological data, soil series, hydrogeology, and data on 
urban expansion in each region, has left the situation 
unclear (Veni 2002). Continuous improvements have been 
made to try to predict sinkhole formation, and it has been 
concluded that hydrogeological conditions are the main 
variable that makes sinkholes more likely to collapse (Nam 
et al. 2020; Wood et al. 2023). There are many reports of 
sinkholes around the world, such as in Tangshan, China (Hu 
et al. 2001), the Ebro Valley, Zaragoza, Spain (Galve et al. 
2009a), Sango, Tennessee, USA (Siska et al. 2016) and major 
urban areas of Brazil (Galvão et al. 2015; de Queiroz Salles 
et al. 2018). All of these areas have subsidence phenomena 
due to their unique geological and geomorphological 
characterization (Stefanov et al. 2023). Geo-information 
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technology is widely used in research studies to find sinkhole 
susceptibility because it is possible to define algorithms 
and conditions to evaluate and predict areas at risk of 
sinkhole formation. The researchers used spatial analysis 
to determine sinkhole susceptibility by using variables that 
affect sinkhole formation in multivariate analysis (Wu et al. 
2018; Jia et al. 2019). There are many approached models 
of multivariate analysis, including spatial overlay analysis, 
probabilistic modeling, conditional probability, analytic 
hierarchy process (AHP), LR modeling, and machine 
learning. Research by Zhou et al. (2016) analyzed sinkholes 
that occur in Jili Village in Guangxi, China, using an LR 
model. The results show that the highest susceptibility 
area for sinkholes is in the foothills and Datou Hill. This 
information was beneficial for developing a mitigation plan 
for the communities living near the sinkhole area. Kim et al. 
(2018) applied an LR model to assess sinkhole susceptibility 
in urban areas caused by underground wastewater 
drainage. The model addresses key variables such as slope 
and pipe material that are sensitive to sinkholes in the 
area. Jia et al. (2019) used machine learning and a cloud 
model to analyze areas sensitive to sinkhole formation 
using topography and geology characteristics variables. 
This technique shows the sensitivity of the geological 
structure. Hu et al. (2021) used analytical hierarchy process 
and LR models to test the accuracy of the techniques to 
assess the susceptibility to sinkholes in the Wuhan city 
area of China. The results show that LR models have better 
performance than analytical hierarchy process models. In 
conditions of climate change, rainfall amounts change, 
causing rainfall patterns to become more variable. Xu et al. 
(2023) emphasized the significance of rainfall variables in 
causing soil erosion on karst terrain in Southwestern China, 
suggesting future terrain subsidence and erosion trends. 
Amin et al. (2023) utilized machine learning to analyze 
subsidence in Central Iran, identifying geological structure 
and underground pores as crucial factors in predicting 
sinkhole-prone areas. Maleki et al. (2023) investigated 
sinkhole susceptibility in Iran’s Bistoon-Parav karst region, 
considering 10 variables including precipitation, lithology, 
and vegetation. Their findings highlighted lithology as the 
most influential factor, accounting for 31.52% of sinkhole 
occurrences. Ramírez-Serrato et al. (2024) tried to find 
sinkholes in Mexico City by using linear regression models 
to import data on 13 variables that affect the occurrence 
of sinkholes, including population density, WD, distance 
to faults, fractures, roads, streams, elevation, slope, clay 
thickness, lithology, subsidence rate, geotechnical zones, 
and soil texture. The findings demonstrate the efficacy of 
regression models in predicting susceptibility to sinkhole 
occurrences. Utilizing advancements in geoinformatics 
technology enables the comprehensive analysis of diverse 
databases, facilitating the effective assessment of areas 
prone to sinkhole formation. Such analyses can generate 
risk maps, offering guidelines for managing vulnerable 
areas and implementing preventative measures to 
mitigate potential loss of life and property resulting from 
these disasters.
 In Thailand, sinkholes are prevalent in karst landscapes, 
particularly in limestone formations dating back to the 
Permian period, around 286-245 million years ago. Notable 
rock groups susceptible to sinkholes include the Rachaburi, 
Saraburi, and Ngao groups. The Rachaburi group, 
originating from the Middle to Upper Permian period, 
spans the lower western and southern regions of Thailand 
(Sone et al. 2012). The Saraburi group extends across the 
lower Chao Phraya plains and western edge of the Korat 
plateau, formed during the Upper Carboniferous to Lower 

Permian period (Udchachon et al. 2022). Sinkholes are 
primarily found in the northern region of Thailand, where 
the Ngao group, formed during the Upper Permian period, 
is prevalent (Pondthai et al. 2023).
 Human activities such as groundwater extraction, 
saltwater pumping, traffic vibrations, and construction 
exacerbate sinkhole formation, particularly in areas 
with limestone, dolomite, and marble bedrock prone 
to dissolution. The Department of Mineral Resources 
documented sinkhole occurrences from 1995 to 2005, 
with 66 areas experiencing large sinkholes, notably 25 
following the 2004 earthquakes and tsunamis along the 
Andaman Sea coast in southern Thailand (Frost-Killian 2008; 
Szczuciński 2020). Urbanization and increased groundwater 
usage in southern cities contribute to heightened sinkhole 
risks due to land surface changes and associated land use 
alterations.
 Today, climate change is a major challenge that 
greatly affects human life, the environment, and economic 
development. In particular, changes in seasonal rainfall 
patterns can make sinkholes more severe. This is particularly 
true for sinkholes that arise from fluctuations in the average 
annual rainfall and groundwater storage levels.To achieve 
preventive measures to reduce the loss of life and property 
caused by such disasters, and consistent with the principles 
of the United Nations Sustainable Development Goals 
(SDGs), Goal 13 addresses taking urgent action to combat 
climate change and its impacts. Arora and Mishra (2023) 
suggest that current climate change is the primary cause 
of increased frequency and severity of natural disasters, 
resulting in widespread damage to people and the 
economic system. However, the impact of climate change 
on sinkhole hazard has been barely explored. This issue is 
due to the lack of continuous recording of hydrological, 
hydrogeological, and meteorological data. The processes 
need to be studied and recorded for future research to 
more effectively assess sinkhole hazard areas. In Thailand, 
there is a policy for disaster risk reduction, which is the 
Disaster Prevention and Mitigation Act 2007 (Fakhruddin 
and Chivakidakarn 2014). Additionally, the Sendai 
Framework for Disaster Risk Reduction (2015-2030) also 
utilized in Thailand for creating the substantial reduction of 
disaster risk in local areas with national strategies (Kelman 
2015). 
 Sinkholes are increasingly common in Krabi and 
Surat Thani Provinces, particularly in Plai Phraya and Khao 
Phanom Districts, as well as Phanom, Phrasaeng, and Chai 
Buri Districts. The upcoming Land Bridge project, part of 
the Southern Economic Corridor, poses additional risks 
due to planned infrastructure development. Despite this, 
the area has not conducted any sinkhole susceptibility 
studies. This research aims to assess sinkhole susceptibility 
in the Krabi and Surat Thani Provinces’ KIPs using GIS-based 
LR analysis, considering geological, geomorphological, 
and socio-economic factors. The findings will assist in 
managing vulnerable areas, offering insights for planning 
and monitoring potential hazards in regions lacking 
sinkhole risk maps at the local level.

MATERIALS AND METHODS

Study area

 The KIPs lies within the Ta Pi watershed, a significant 
river basin in southern Thailand, spanning latitudes 8°10’ N 
to 8°50’ N and longitudes 98°40’ E to 99°20’ E, covering 
approximately 2,087.039 km². Situated between Krabi and 
Surat Thani provinces, it includes Plai Phraya, Khao Phanom, 
and Ao Luek Districts in Krabi, and Khian Sa, Phrasaeng, 
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and Chai Buri Districts in Surat Thani. The area’s topography 
ranges from 7 to 1,346 meters above mean sea level, with 
the southern part being mountainous, including Khao 
Phanom peak within Khao Phanom Bencha National Park. 
The western side features scattered limestone mountains 
with karst topography.
 The drainage pattern exhibits two key characteristics: 
the western upstream area displays a dendritic pattern 
with streams like Klong Ya and Khlong Bang Liao flowing 
into Khlong I Pan southwest to east. In the south, rivers like 
Khlong Sai Khao and Khlong Chang Tai flow south to north, 
forming a dendritic pattern upstream and a parallel pattern 

in the central basin, merging into Khlong Trom, which joins 
Khlong I Pan in the north.
 Geologically, sedimentary rock predominates, including 
Quaternary alluvium along riverbanks, colluvium farther 
away, and old river terraces (Dheeradilok 1995; Leknettip 
et al. 2023). Tertiary sediments, notably the Krabi group, 
appear in the northeast, featuring shale, slate, calcareous 
shale, sandstone, siltstone, and minerals like limestone and 
lignite (Benammi et al. 2001). Limestone rocks are scattered 
throughout the upstream area, covering approximately 
30-40% of the study area, from the Carboniferous-Permian-
Triassic periods.

Fig. 1. Location map (a) and geological map (b) for the study area



35

Data Preparation

 This research utilized secondary data from various sources 
to evaluate sinkhole susceptibility in the KIPs area. The data 
comprised sinkhole occurrences between 2002-2022 and 
spatial data analyzing factors influencing their formation. 
Physical factors such as elevation, slope, soil type, geology, 
distance to streams, active faults, terrain wetness index, Total 
Hardness (TH), Total Dissolved Solids (TDS), and Chlorine (Cl) 
were collected, alongside socio-economic factors including 
land use, well density, and distances to wells and villages. These 
spatial datasets are crucial variables for assessing sinkhole risk 
areas, organized in a raster database format with a grid cell size 
of 30×30 m.

Method

 The research process consists of the following steps: (1) 
sinkhole area analysis, (2) spatial database analysis of driving 
factors, and (3) statistical approach. The details of each step are 
briefly explained below (Fig. 2).
 
Sinkholes area analysis

 To identify sinkhole occurrences in the research area 
from past to present, secondary data spanning 2002 to 2022 
were sourced from the Department of Mineral Resources. 
Additionally, primary data obtained from interpreting sinkhole 
areas in 1:50,000 scale topographic maps from the Royal Thai 
Survey Department were utilized. Upon acquiring data from 
both sources, a conversion from analog to digital format was 
performed using ArcMap 10.4 software. Subsequently, the 
data underwent LR statistical analysis in the next stage of the 
process.

Spatial database analysis of driving factors

 The selection of factors affecting sinkhole formation is 
important for susceptibility analysis (Wei et al. 2021; Hu et al. 
2021). This research has selected the factors that directly affect 
and are related to the occurrence of sinkholes in this study area. 
The first important spatial data is elevation (digital elevation 
model-DEM) obtained from the Royal Thai Survey Department 
(RTSD) in shapefile format, including elevation point, contour 
line, and water source and water route information. Such data 
will be analyzed by spatial analysis using the Topo to Raster 
technique in ArcGIS 10.4 software. The result is DEM data with 
a 30×30 m grid cell size (Fig. 3a). This data can be analyzed for 
other variables such as slope (Fig. 3b) and TWI (Fig. 3g). TWI 
is an index indicating water accumulation and flow tendency 
to lower basin areas due to the Earth’s gravity (Chen and Yu 
2011). High TWI values indicate prone areas, which may be the 
swamp areas, low slopes, or basins. This variable will be applied 
to search for areas where sinkholes occur in the study area. TWI 
analysis can be calculated from Eq. 1 (Hamid et al. 2020):

 where, A
s
 indicates the definite catchment area and 

denotes the slope gradient. 
 Other physical factors that were applied in this research 
include soil (Fig. 3c), geology (Fig. 3d), distance to active 
fault (Fig. 3e), and distance to stream (Fig. 3f ). The variables 
soil and geology are nominal data that are converted to 
raster data format. Data on variables distance to active fault 
and distance to stream were analyzed using the Euclidean 
distance technique in spatial analysis tools.
 Furthermore, socio-economic factors are related to 
sinkhole formation, including LU (Fig. 4a), WD (Fig. 4b), 
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Table 1. Spatial data layers used in this research

Driving Factor Variable (Theme) Year Source

Sinkholes area 2002-2022
Derived from Department of Mineral Resources

Royal Thai Survey Department (RTSD)

Physical factor

Elevation (digital elevation 
model-DEM)

2020 Derived from Royal Thai Survey Department (RTSD)

Slope 2020 Derived from the DEM

Soil 2017 Derived from Land Development Department (LDD)

Geology 2017 Derived from Department of Mineral Resources

Distance to active fault 2017 Derived from Department of Mineral Resources

Distance to stream 2021 Derived from Department of Water Resource, Thailand

TWI 2021 Derived from the DEM

Total Hardness (TH) 2021 Derived from Department of Groundwater Resources

Total Dissolved Solids (TDS) 2021 Derived from Department of Groundwater Resources

Chlorine (Cl) 2021 Derived from Department of Groundwater Resources

Socio-economic 
factor

Land use 2021 Derived from Land Development Department (LDD)

Well Density 2021 Derived from Department of Groundwater Resources

Distance to well 2021 Derived from Department of Groundwater Resources

Distance to village 2021 Derived from Royal Thai Survey Department (RTSD)

(1)
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distance to well (Fig. 4c), and distance to village 
(Fig. 4d). The LU data is nominal data received from 
the Land Development Department (LDD). The data 
was converted to raster data format. Data on variables 
distance to village and distance to well were analyzed 
using the Euclidean distance technique in spatial 
analysis tools. The WD variable can be analyzed using a 
mathematical function in ArcMap 10.2 with the Kernel 
Density (Eq. 2). The results will indicate the density of the 
artesian well. This variable is one of the variables that will 
be used for LR statistical analysis next. The Kernel Density 
(Nistor and Nicula 2021) calculated from the following 
equation (Eq. 2):

 where ƒ is density ƒ; K is the kernel — a non-negative 
function; h > 0 is a smoothing parameter called the 
bandwidth; x1, x2, ..., xn is a univariate independent and 
identically distributed sample.
 The chemical property variables were Total Hardness 
(TH) (Fig. 4e), Total Dissolved Solids (TDS) (Fig. 4f ), and 
Chlorine (Cl) (Fig. 4g). The data of all three variables were 
derived from the Department of Groundwater Resources. In 
this research, the data of all three variables were subjected to 

Fig. 2. Flow chart of methodology

(2)
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spatial interpolation using the Inverse Distance Weighting 
(IDW) method in ArcMap 10.2.

Statistical approach

 From the sequence of steps to find sinkhole area 
analysis and spatial database analysis of driving factors, it is 
necessary to search for variables that affect the formation of 
sinkholes in order to know the context of the collapse that 
occurred in the KIPs. There were 14 variables used in the 
analysis, including elevation, slope, soil, geology, distance 
to stream, distance to active fault, TWI, Total Hardness (TH), 
Total Dissolved Solids (TDS), Chlorine (Cl), LU, WD, distance 
to well, and distance to village. Such variables will be 
analyzed using LR analysis.
 LR is a technique for discovering the empirical relationships 

between a binary dependent and several independent 
categorical and continuous variables (Ozdemir 2016; Kim et 
al. 2020; Cao et al. 2020). LR analysis is calculated using the 
following Eq. 3:

 where P is the flood-prone area, x
i
 are independent 

variables, and β is the coefficient value. The LR method was 
used to provide the variables that were used to analyze which 
variables influenced subsidence by considering the initial and 
dependent variables of every grid cell in the study area. The 
results from the LR analysis can be used to produce sinkhole 
susceptibility maps, which are classified into 5 classes: very 
high, high, moderate, low, and very low. 

Fig. 3. Spatial database analysis of physical factors: Elevation (a), Slope (b), Soil (c), Geology (d), 
Distance to active fault (e), Distance to stream (f), and TWI(g)

(3)
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RESULTS

Sinkholes in KIPs area

 The KIPs boast a unique karst geography characterized 
by sedimentary rocks interspersed with limestone 
formations, particularly evident in the northern, central, and 
western regions, where a north-south-oriented limestone 
mountain range prevails. Over the past two decades (2002-
2022), 34 sinkholes collapsed in the area, covering a total of 
3.52 km². Most sinkholes are concentrated in the northern 
and central-southern regions of the KIPs, with a notable 
cluster in Khao Phanom District, totaling 9 sinkholes. 

The largest sinkhole, spanning 2.049 km², appeared near 
Bankhoasamyot School in Khian Sa District, Surat Thani 
province, characterized by undulating plain topography 
and rubber plantations. This sinkhole formed on September 
26, 2016, during heavy rain brought by a monsoon trough, 
resulting in a chasm nearly 100 meters deep. Another 
significant sinkhole, covering 0.47 km², occurred in the 
east of the Phanom Bencha mountain range in Khlong Noi 
Sub-district, Chai Buri District, Surat Thani, within a forested 
area. In Khao Phanom District, Krabi Province, the largest 
concentration of sinkholes (12) was found, primarily in 
community and agricultural areas, including rubber and 
palm oil plantations. Details are outlined in Table 2.

Fig. 4. Spatial database analysis of socio-economic factors: LU (a), WD (b), Distance to well (c), 
Distance to village (d), TH (e), TDS (f), and Cl (g)
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Fig. 5. Sinkhole disasters map in KIPs area
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Table 2. Sinkhole disasters in KIPs during 2002-2022

No.
Location

Province District Sub-district
Area 
(km2)Latitude Longitude Sinkhole Event

1 8° 16' 19.60" 99° 3' 3.92" Khao Phanom Temple Krabi Khao Phanom Khao Phanom 0.004

2 8° 19' 49.06" 99° 1' 5.73" Yuan Sao Village Surat Thani Khiri Rat Nikhom  Tha Khanon 0.020

3 8° 20' 30.25" 99° 3' 23.47" Yuan Sao Village Surat Thani Khiri Rat Nikhom  Tha Khanon 0.022

4 8° 18' 19.69" 98° 53' 10.16" Ban Chong Mai Dam Mosque Krabi Ao Luek Khlong Hin 0.013

5 8° 17' 59.07" 98° 57' 33.67" Ban Thumkob Village Krabi Khao Phanom Na Khao 0.008

6 8° 19' 13.60" 98° 56' 47.91" Ton Han Village Krabi Khao Phanom Na Khao 0.001

7 8° 18' 8.61" 98° 58' 13.01" Ton Han Village Krabi Khao Phanom Na Khao 0.032

8 8° 19' 48.44° 98° 59' 11.89" Ton Phong Village Krabi Khao Phanom Na Khao 0.017

9 8° 21' 10.81" 98° 56' 31.13" Khao Phanom Bencha Rangland Krabi Khao Phanom Na Khao 0.022

10 8° 21' 17.78" 98° 59' 34.02" Ban Khao Din School Krabi Khao Phanom Na Khao 0.012

11-12 8° 23' 8.19" 98° 55' 59.52" Khao Mae Mu Krabi Khao Phanom Na Khao 0.303

13 8° 27' 14.74" 98° 56' 36.77" Khuan Sai Village Surat Thani Chai buri Chai buri 0.037

14 8° 27' 22.59" 98° 56' 48.83" Khuan Sai Village Surat Thani Chai buri Chai buri 0.071

15 8° 27' 20.31" 98° 57' 1.72" Khuan Sai Village Surat Thani Chai buri Chai buri 0.016

16 8° 27' 58.18" 98° 56' 50.65" Khuan Sai Village Surat Thani Chai buri Chai buri 0.016

17 8° 27' 57.96" 98° 56' 26.11" Khuan Khlong Ya Krabi Plai Phraya Plai Phraya 0.032

18 8° 26' 51.01" 98° 50' 28.32" Wat Bang Liao School Krabi Plai Phraya Plai Phraya 0.010

19 8° 27' 7.55" 98° 50' 7.02" Bang Liao Village Krabi Plai Phraya Khiriwong 0.012

20-21 8° 30' 2.30" 98° 58' 3.79" Khao Phanom Bencha Rangland Krabi Khao Phanom Na Khao 0.470

22 8° 33' 20.95" 98° 48' 29.24" Khao Khen Village Krabi Plai Phraya Khao Khen 0.010

23 8° 35' 3.55" 98° 56' 24.34" Bang Sawan Surat Thani Phrasaeng Bang Sawan 0.117

24 8° 35' 2.81" 98° 57' 57.75" Bon Khuan Village Surat Thani Phrasaeng Sai Sopha 0.028

25 8° 37' 28.56" 98° 56' 6.42" Ban Mak Village Surat Thani Phrasaeng Bang Sawan 0.023

26 8° 39' 0.41" 98° 59' 24.16" Si Nakhon Village Surat Thani Phrasaeng Bang Sawan 0.013

27 8° 32' 31.67" 99° 6' 45.11" Kuan Sian Village Surat Thani Phrasaeng Sai Khueng 0.010

28 8° 46' 46.48" 99° 1' 33.10" Khao Sam Yot Surat Thani Khian Sa Ban Sadet 0.151

29 8° 45' 1.25" 99° 1' 27.94" Mongkhon Phithak Thammaram Temple Surat Thani Khian Sa Ban Sadet 0.003

30-34 8° 46' 59.80" 99° 0' 52.30" Khao Sam Yot Village Surat Thani Khian Sa Ban Sadet 2.049
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Affecting Variables in sinkhole formation in KIPs

 The analysis focused on 14 variables crucial for 
investigating sinkhole formation in the KIPs, employing 
the LR statistical process. Table 3 illustrates the variables 
affecting sinkhole formation, with their impact expressed 
through β values. A positive β value signifies increased 
sinkhole susceptibility with higher variable values, while 
a negative value suggests the opposite. The relative 
operating characteristic (ROC) demonstrates the regression 
equation’s ability to predict sinkhole risk areas based on 
probability. The ROC value obtained for sinkhole area 
probability was 0.947 (Fig. 6), indicating high effectiveness, 
as values closer to 1.00 signify comprehensive analysis of 
sinkhole risk areas using all 14 variables.
 All variables were significant at the p < 0.01 entry and 
p > 0.02 removal levels. ROC relative operating
 The study identified 8 variables with negative β values 
influencing sinkhole occurrence: geology, distance to well, 
distance to active fault, soil, terrain wetness index (TWI), 

distance to village, elevation, and distance to stream. 
Conversely, 3 variables exhibited positive β values: well 
density (WD), land use (LU), and slope. The Exp β values 
indicate the variables’ impact on sinkhole formation, with 
higher values indicating greater influence. WD emerged as 
the most influential variable, followed by geology, LU, TH, 
TDS, slope, Cl, distance to stream, elevation, TWI, distance 
to village, soil, distance to active fault, and distance to well, 
respectively, with Exp β values of 2.385, 1.880, 1.195, 1.119, 
1.048, 1.007, 1.000, 0.998, 0.991, 0.957, 0.950, 0.687, 0.333, 
and 0.159 (Table 3).
 Well density (WD) displayed the highest Exp β value, 
indicating its significant influence on sinkhole formation, 
particularly in areas with high artesian well density 
levels, ranging from 0.4-1.0 unit/km² in the eastern and 
central study areas. These regions, situated downstream 
in the KIPs, boast numerous artesian wells due to the 
natural groundwater flow from high to low areas. This 
phenomenon is prominent in densely populated districts 
like Chai Buri, Phrasaeng, and Khian Sa.

Table 3. LR analysis of the sinkholes area and affecting variable in KIPs area

Variable
KS area

Coefficient β value Coefficient Exp β value

Elevation (digital elevation model-DEM) -0.009 0.991

Slope 0.007 1.007

Soil -0.376 0.687

Geology -5.219 1.880

Distance to active fault -0.665 0.333

Distance to stream -0.002 0.998

TWI -0.065 0.957

TH 0.121 1.119

TDS 0.050 1.048

Cl 0.001 1.000

LU 1.633 1.195

Well Density 10.750 2.385

Distance to well -1.761 0.159

Distance to village -0.045 0.950

Constant 7.077

The relative operating characteristic (ROC) 0.947

Fig. 6. The relative operating characteristic (ROC) value: sinkhole area
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 Geological variables are one of the important variables 
affecting sinkhole hazard and show strong negative β 
values. Since the geological variables are on a nominal 
scale, it is necessary to convert them to an ordinal scale and 
start from sedimentary rocks to igneous and metamorphic 
rocks. The study area is mostly covered by sedimentary 
rocks, including sedimentary rocks of the Carboniferous, 
Permian, Triassic, Tertiary, and Quaternary periods, with 
sedimentary rocks covering most of the area, and igneous 
rocks, including igneous rocks of the Cretaceous and 
Quaternary periods. From the LR analysis, the results of the 
geological variables show that the ancient sedimentary 
rocks affect the formation of sinkholes, especially the rocks 
in the limestone group that are in the Carboniferous and 
Permian periods.
 Geological variables exhibit a notable Exp β value, 
albeit to a lesser extent, and a negative β value. The study 
revealed that grid cells with lower values in the study area 
predominantly consist of sedimentary rocks dating back to 
the Carboniferous, Permian, Triassic, and Tertiary periods. 
These rocks commonly contain limestone, dolomite 
limestone, dolomite, and gypsum formations, which are 
particularly prevalent in Permian-era formations (Pr). The 
study area features the Ratchaburi group (Pr), characterized 
by these rock types. Additionally, Carboniferous-Permian 
(CP) rocks include the Kaeng Krachan group (CPk), 
supporting the Pr series rocks. Some CP and CPk rock layers 
contain argillaceous limestone interspersed with other 
sedimentary rocks like siltstone and tuffaceous sandstone. 
Triassic-period sedimentary rocks include the Lampang 
group (Trl), featuring gray-black limestone. Tertiary 
sedimentary rocks, found in the Krabi group (Tkb), also 
comprise limestone, dolomite limestone, dolomite, and 
gypsum. Limestone predominantly covers the geological 
features in the study area, resulting in karst topography 
spanning from CPk, CP, and Pr formations continuously 
to the southern Phanom Bencha mountain range. The Trl 
and Pr sections cover the western mountain range with 
a northeast-southwest orientation, featuring scattered 
tower karst formations like Khao Lom Fang. The Tkb rock 
group encompasses low hills on the eastern side of the 
study area.
 The LU variable ranks third in Exp β value after 
geology. It exhibits a positive β value, with higher values 
indicating urban, built-up, and agricultural areas. In the 
KIPs, agricultural land predominates, covering 1,805 km², 
accounting for 86.51% of the area. Much of this agricultural 
land is dedicated to oil palm and rubber plantations, 
covering 898.37 km² and 834.97 km², respectively. These 
agricultural practices involve land stripping and leveling, 
with some areas featuring drainage trenches. Such 
activities can render the soil surface fragile, and prone 
to subsidence, particularly in areas with underground 
burrows or karst terrain. Urban areas and buildings have a 
comparatively lesser impact on land subsidence, given the 
limited presence of buildings and infrastructure, affecting 
only specific areas.
 After LU variables, the subsequent influential variables 
affecting sinkhole occurrence include slope, distance to 
stream, elevation, terrain wetness index (TWI), distance 
to village, soil, distance to active fault, and distance to 
well, respectively. Slope variable: Areas with moderate to 
high slopes, approximately 10-40 degrees, are prone to 
land collapse. Distance to stream variable: Proximity to 
waterways increases susceptibility to sinkhole formation. 
Elevation variable: Sinkholes are likely to occur at elevations 
ranging from approximately 10-100 meters above mean 
sea level. TWI variable: Low TWI values signify low terrain 

moisture levels, contributing to sinkhole formation. 
Distance from village variable: Areas not far from villages are 
particularly sensitive to collapse. Soil variable: Shallow soil-
covered areas are at risk of subsidence. Distance from well 
variable: Proximity to artesian wells increases susceptibility 
to collapse.
 Additionally, the distance to the active fault variable 
indicates the presence of the Khlong Ma Rui Active Fault in 
the northwest of the KIPs. Oriented northeast-southwest, 
this fault poses earthquake and tsunami risks, with potential 
tremors affecting karst topographic areas, which are also 
prone to sinkhole disasters.
 The TH, TDS, and Cl variables showed positive β 
values. The results showed that higher concentrations of 
the chemical status of groundwater would result in an 
increased sinkhole probability.

Sinkhole susceptibility map in KIPs

 According to the sinkhole susceptibility analysis in 
KIPs using the LR method by using the β value to create 
a database, it has been prepared as a map for disaster 
management at the sub-watershed level to represent the 
sinkhole susceptibility map (Fig. 7). The results of this study 
were to analyze spatial data in GIS as shown in Eq. 4.

 The results of the β value of various variables make the 
findings a highlight of this research. That can express the 
level of risk as appropriate spatial data according to related 
variables and affecting the occurrence of sinkholes in the 
KIPs area in particular. Results of the study of KS susceptibility 
show that sinkhole susceptibility areas in the watershed can 
be classified into five levels: very high risk areas, high risk areas, 
moderate risk areas, low risk areas, and areas at very low risk of 
sinkhole, respectively (Table 4).
 In the KIPs area, regions with a very high sinkhole 
susceptibility level cover approximately 399.86 km², 
constituting 19.16% of the total area. These high-risk zones are 
predominantly situated in the eastern part of KIPs, particularly 
near the convergence of Khlong I Pan and Khlong Trom 
streams. Additionally, mountainous areas, such as the central 
and western ranges, exhibit elevated sinkhole risk due to 
their karst geological formations. Surrounding the very high 
susceptibility zones, both high- and moderate-risk areas span 
over 421.73 km² (20.21%) and 422.18 km² (20.23%), respectively. 
Conversely, low- and very low-risk zones are primarily located 
in the southern region, notably in the upstream areas of KIPs 
along streams like Khlong Ya, Khlong Pho Thak, Khlong Chang 
Tai, and Khlong Sai Khao. These areas cover 430.41 km² (20.62%) 
and 412.85 km² (19.78%), respectively, with minimal sinkhole 
risk attributed to fewer artesian wells and the prevalence of 
modern sedimentary rocks, distant from active fault lines.

(4)
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Table 4. KS susceptibility area in KIPs area (km2)

Sinkholes susceptibility level
Area

km2 %

Very high 399.86 19.16

High 421.73 20.21

Medium 422.18 20.23

Low 430.41 20.62

Very Low 412.85 19.78

Total 2087.03 100.00

Fig. 7. Sinkholes susceptibility map in KIPs
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DISCUSSION

 Sinkholes, influenced by complex factors, pose prediction 
challenges. Mitigation is aided by gathering diverse variables 
and using consistent analysis. Sinkhole susceptibility maps 
provide crucial spatial data for community readiness. This 
study selected 14 factors, integrated them into a GIS database 
for statistical analysis, and produced a map for effective local 
risk management.
 Over the past two decades (2002-2022), sinkhole areas 
were studied using secondary data from sinkhole events, 
the Department of Mineral Resources of Thailand, and visual 
image interpretation. The study identified 34 sinkholes 
covering 3.52 km2, concentrated along the Phanom Bencha 
mountain range. That area is an important upstream area of 
the Khlong I Pan tributary stream. Notably, a large subduction 
basin was discovered near Bankhoasamyot School in Surat 
Thani province. The area has an undulating plain topography. 
 As a result of this research, it can be seen that the 
technique for finding sinkhole areas using visual image 
interpretation is still a suitable method for finding actual 
sinkholes efficiently. Consistent with the research of Orhan 
et al. (2020) that used the principle of finding sinkhole areas 
with visual analysis of the aerial photographs of the district 
and on-site fieldwork. As a result, accurate sinkhole data 
was obtained and used to create a sinkhole susceptibility 
map using remote sensing and GIS processes in the Konya 
sub-watershed area, Türkiye. Even in regions with a tropical 
climate, such as the Metropolitan Region of Belo Horizonte, 
Minas Gerais, Brazil, sinkhole landforms can be searched using 
this technique by analyzing hydrograph control, topography, 
cross-section elevation profiles, and high-resolution satellite 
imagery (de Castro Tayer and Rodrigues 2021). As for 
the geologically sensitive region, the Zagros Mountains, 
Kermanshah Province, Iran, the area is the largest active fault 
in the Zagros overthrust. Techniques for finding sinkholes and 
subsidence areas using visual image interpretation of World 
Imagery and Google Earth can accurately display the actual 
sinkhole (Maleki et al. 2023). There are some weaknesses 
that must be noted with this analysis technique, especially 
human-assisted image processing which requires the 
individual’s experience (Dou et al. 2015). Certain regions may 
require reliance on visual analysis of remote sensing imagery 
and on-site research, despite the drawbacks of subjectivity, 
time intensiveness, limited reproducibility, and inadequacy 
for examining extensive territories. (Chen et al. 2018). Future 
research processes may require technology that can process 
data quickly and with high efficiency, using machine learning 
to create models that can discover and detect actual KS for 
collapse areas. Artificial intelligence should be trained to 
learn from the processing of visual image interpretation 
from experienced people frequently to obtain data on the 
collapse of the terrain caused by sinkholes.
 Sinkhole occurrence factors in the KIPs area were analyzed 
using LR statistical methods. The study results found that 
socio-economic factors are sensitive to landscape collapse. 
In particular, prominent variables such as WD and LU show 
strong Exp β values at levels of 2.385 and 1.195, respectively. 
As for the physical factor variables that are sensitive to the 
collapse of the terrain, it was found that the geology and 
slope variables showed strong Exp β values at the levels of 
1.880 and 1.007, respectively. It can be seen that the study 
area has a high level of artesian WD ranging from 0.4-1.0 
unit/km2 that is distributed in the eastern area continuing 
into the central part of the study area. Most of these areas 
have LU conditions where the area has been opened for 
agriculture to grow crops such as rubber, palm oil, and rice 
fields, further accelerating the collapse of the land more 

easily. It can be seen from the KS susceptibility map that the 
area is classified as the area with the highest risk of collapse. 
It covers most of the eastern area, continuing into the central 
part of the study area. This is different from the findings of 
Cahalan and Milewski (2018) which indicated high aquifer 
fluctuations and shallow overburden thickness. This is caused 
by activities on the topographic surface that are the primary 
variable affecting the subsidence of the land. In addition, 
the original geological landform with karst topography 
covers the central and western mountain ranges in the study 
area. It creates greater susceptibility to the collapse of the 
terrain in areas with very steep slopes. There are different 
variables that affect the occurrence of sinkholes in each area. 
These findings can be seen from the research of Wood et al. 
(2023) that sought to find sinkhole vulnerability in karst and 
pseudokarst regions of the contiguous United States, both 
present and anticipated. They identified important variables 
such as the thickness of the soil layer, soil type, and humidity 
that are the main variables that affect collapse until a sinkhole 
occurs, which is different from the results of this research. 
 The geochemical variables used in the study area were 
TH, TDS, and Cl. It was found that if the concentration level 
of these variables is high, it easily affects the formation of 
sinkholes. This is different from the results of the study by 
Ozdemir (2016) who stated that if the concentration level of 
Calcium (Ca) and Magnesium (Mg) increases, the probability 
of sinkholes decreases. However, the results of this study 
have shown that the TH variable is an important variable that 
affects the formation of sinkholes. The concentration levels of 
Ca and Mg were found in these variables. This conclusion is 
consistent with the study approach of Amin et al. (2023) who 
stated that Ca and Mg are likely to be dissolving carbonate 
rocks from limestone and dolomite. In the study area, the 
amount of this element was found to be quite high. It is 
possible that high levels of TH found in groundwater indicate 
that the underground caves have been severely eroded, 
resulting in high levels of Ca and Mg in the groundwater. The 
variables TDS and Cl were found to have little influence on 
sinkhole formation.
 However, LR analysis has the capability to manage both 
continuous and categorical variables concurrently, which is 
not required in standard distributions. Additionally, the LR 
analysis technique can accurately identify regions prone to 
various geological hazards like KS (Zhou et al. 2016; Ozdemir 
2016; Subedi et al. 2019; Kim et al. 2019). In summary, the 
overall picture from the discussion of the results reveals 
the differences in variables that affect the occurrence of 
sinkholes that occur in different contexts in each area. 
However, with the variables used in the LR analysis process, 
the results of the β value coefficient of the variables used in 
the study will vary according to the physical characteristics 
of the area. Therefore, if studying KS susceptibility in other 
areas, one should be aware of the factors that will be studied 
first in areas at risk of sinkhole formation.
 KS susceptibility mapping is vital for disaster planning, yet 
the 2005 sinkhole risk map from the Department of Mineral 
Resources of Thailand lacks transparency and updates, 
making it ineffective for local disaster management. This 
study aimed to improve data resolution, revealing that nearly 
half of the study area has high susceptibility to sinkholes. 
Contrary to the outdated map’s three risk levels, this research 
identified five levels, reflecting nuanced susceptibility. 
Discrepancies between actual sinkhole occurrences and 
the department’s map highlight its inaccuracy. Local-level 
mapping provides crucial risk insight for communities and 
authorities, particularly in high-risk areas, aiding disaster 
preparedness and mitigating potential losses.
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CONCLUSIONS 

 Sinkholes are unpredictable phenomena, often 
occurring in karst landscapes. This study aims to mitigate 
their impact by analyzing various factors contributing to 
sinkhole formation in the local area. Statistical methods, 
including LR analysis combined with GIS, were employed 
to create susceptibility maps for sinkholes. The research 
identified several key variables affecting sinkhole formation, 
such as well density, geology, land use, slope, distance to 
streams, elevation, terrain wetness index, proximity to 
villages, soil type, distance to active faults, and distance 
to wells. These variables were quantified using coefficient 
values and incorporated into the susceptibility mapping 

process. The findings revealed that over half of the study 
area exhibited a very high or high susceptibility to sinkholes. 
This research provides empirical evidence supporting the 
effectiveness of detailed, community-level sinkhole risk 
assessment, potentially replacing existing sinkhole risk 
maps maintained by the Department of Mineral Resources 
in Thailand. Future studies should expedite the exploration 
of sinkhole susceptibility across Thailand, considering 
the unique variables influencing sinkhole formation 
in different regions. Government agencies involved in 
disaster management should prioritize comprehensive 
research efforts to prepare for and mitigate sinkhole risks 
nationwide, ensuring the safety and sustainability of local 
communities in the future.

Fig. 8. Comparison between the old set of well risk maps of the Department of Mineral Resources of Thailand (a) and the 
current set of KS susceptibility mapping (b) obtained from this research
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