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ABSTRACT. The optimization of environmental soil monitoring based on representative selection of a training subset for an 
artificial neural network is an unresolved problem in the tasks of interpolation of the distribution of metals in the topsoil. 
The soil survey data, often used as input for artificial neural network modeling, are datasets at irregular points. Usually, the 
division of the input data into training and test subsets is carried out randomly in a ratio of 70% to 30% points, respectively. 
The question of the individual and collective representativeness of local sampling points on the element content in the soil 
in a given area for a training subset remains beyond the scope of interpolation problems. In this work, the representativeness 
of the sampling points plays a crucial role in reducing the ANN error and enhancing the correlation between the results 
of model calculations on the test subset and natural measurements when the points are part of the training subset. When 
evaluating the pairwise representativeness, we found two types of effects: synergy and anti-synergy. The synergy was 
achieved with an increase in model accuracy when the pair entered the training subset. The anti-synergy manifested in 
a decrease informativeness of the point pair for modeling. The various sampling locations have different information and 
unequal meaning for feature interpolation. The scale-free network structures were found to have pairwise representativeness 
by RMSE.
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INTRODUCTION

 The environmental soil monitoring methods often 
require preliminary data to be sufficient to represent soil–
environment relationships throughout the study area (Zhu 
2015). A limited quantity of soil sample data to represent 
the study area is still an issue to predict soil properties 
and estimate prediction uncertainty. A large number of 
publications are devoted to the issues of representative 
sampling of the components of the environment (Malof 
2018; Liu 2022). The task of assessing representativeness and 
constructing a representative set arises when organizing 
sampling to assess the quality of environmental components, 
when statistically processing environmental monitoring 
data, and when choosing a training subset for artificial 
neural networks (ANNs) that model the spatial distribution 
of a feature (Nath 2018; Demyanov 2020; Mello 2022). The 
existing rules for choosing a training subset do not reflect the 
picture of pollution (Baglaeva 2020; Malof 2018). The formal 
structure of the training subset must be determined by the 
rules governing the origin and maintenance of ecological 
topologies in order to correctly interpret ecological patterns 
(Prager 2009).
 Insufficient attention is paid to the interpretation of 
the results of a modeling. Often behind the scenes is the 

connection between the features of environmental data 
and landscapes (Boussange 2022). The key challenge is 
understanding how the connectivity and heterogeneity of 
the model results relate to environmental characteristics. 
To characterize environmental connectivity, these tasks are 
proposed to be solved by spatial graph theory methods 
(O’Brien 2006, Urban 2009). We are interested in how graph 
topology is combined with the spatial distribution of 
element contents in topsoil. The graph topology properties 
demonstrate landscape complexity and allow us to determine 
a finite size of local basic landscape diversity. Using graph 
topology, we evaluate a representativeness training subset 
to build the element content distribution in the topsoil. Our 
study suggests a formalization of assessment of individual and 
collective representativeness for sampling points to explain 
the connected landscape pattern. If there are individual 
sampling points that are important at some scale but not at 
another one, then there can be doublets, triplets, or n-lets of 
the sample that are important for modeling at some scale but 
not at another one (Dale 2010; Shu 2015).
 Monitoring of environmental parameters in the 
conditions of urban development is not able to provide 
complete spatial and temporal characteristics of pollution 
(O’Hare 2020; Pesch 2008; Zhong 2021). For a comprehensive 
assessment of the levels of environmental pollution in cities 
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(Wang 2020; Xu 2023), monitoring is often combined with 
other methods of obtaining data, including models based on 
ANN. In the scientific literature, works have been published 
when the selection of points in the training subset occurs 
using information about the distribution of the feature 
under study, but the gain in the accuracy of the model 
turns out to be small (Kramm 2020; Fernandez Jaramillo 
2018; Gutierrez-Velez 2020). The prediction accuracy of ANN 
models is greatly influenced by the choice of points used 
to train the ANN. Random sampling points should only be 
used on a homogeneous experimental site (Legendre 2004; 
Prager 2009). As demonstrated by (Wang 2021; Ziggah 2019; 
Baglaeva 2021), various sampling points make contribute 
differently to the ANN forecast error, i.e., have different - 
representativeness for the purposes of the forecast.
 Previously, some authors presented a definition of 
representativeness. Zhu (2018) uses the representativeness 
of a single sampling point and a sampling point set to other 
points as the similarity of these points to the sampling point 
set. The representativeness is a similarity in geographic 
configuration between sample point k and prediction point 
i, which is then used as the weight in the prediction of the 
value of the target variable at prediction point i, together 
with the other involved sample points whose weights 
are determined similarly. And this similarity is also used to 
measure the uncertainty associated with the prediction (Levin 
2002; Zhu 2018). By representativeness, we understand the 
characteristics of points of the studied statistical population 
to adequately reflect the characteristics of the trait under 
study. Representative sampling or a representative selection 
of points in the training subset provides, within a given 
accuracy, reliable data on the content of a pollutant in an 
environmental component (air, water, soil etc.) in a selected 
area at a given point in time. 
 We assume that not only points distinguish in different 
representativeness for the evaluation of a feature, but also 
sets of points (doublet, triplets, ..., n-lets) have different 

representativeness. In the present work, it is proposed 
to consider the comparison of individual and collective 
representativeness when points are included in the training 
subset. Under the individual representativeness of the 
sampling point, we mean the frequency of its hits in the 
training subset, training on which provides the smallest 
model error. Collective representativeness is the frequency 
of hits of a collection of points (pairs, triples, quadruples, 
etc.) in the training subset, training on which provides the 
smallest model error. To build a representative training 
subset, it is necessary to 1) determine which n-lets are the 
most representative (n-lets size and representativeness level); 
2) reveal the relationship between individual and collective 
representativeness. Determination of the volume of all 
representative n-lets requires large computing power of the 
computer, so the collective representativeness in this work 
was evaluated by pair.

MATERIALS AND METHODS

Sampling location

 200 soil samples were collected in the residential part of 
Noyabrsk city (N 63.2°, E 75.5°), Russia. The industry of the city 
is hydrocarbon energy. The climatic zone is subarctic, or Dfc, 
by Köppen climate classification. The predominant soil type is 
gley taiga (Gd 23-1ab) on the FAO-UNESCO soil map1. 
 The sampling point map was designed so that a given 
number of samples (200 in the residential area of Noyabrsk) 
on average evenly filled the study area. The average distance 
between sampling points was about 300 m. This distance 
varied depending on the density of buildings, the location of 
roads, etc. in order to ensure sampling in undisturbed areas of 
the open soil surface. The sampling depth was 0.05 m, since 
we were interested in the top layer of soil. The sampling was 
carried out with a cylindrical sampler with a diameter of 0.05 m. 
The soil sampling procedure schema was shown in Fig. 1.
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Fig. 1. The soil sampling procedure schema
1HWSD (Harmonized World Soil Database), 2009. Soil Units in the Revised Legend of the Soil Map of the World. https://www.fao.org/
soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed 15 May 2023).
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The raw data preparation 

 The soil sampling procedure was previously described in 
detail for Noyabrsk (Baglaeva 2020). Fig. 1 shows the schema 
of this procedure. The raw data preparation consisted of 
sampling 200 specimens from undisturbed soil sites, sample 
preparation, and chemical analysis using inductively coupled 
plasma-mass spectrometry. 
 Preparation of soil samples and chemical analysis were 
conducted in compliance with actual standard requirements. 
For quality control, standard reference samples were used, 
certified for the content of determined elements, similar in 
composition to the samples under study.
 The same total element contents were determined in the 
topsoil. Further modeling involved the total content of Cuprum 
and Niccolum in topsoil.

Multilayer perceptron 

 The input data are the geographic coordinates for the 
simulation. The output data are the element’s contents.
 The multilayer perceptron (MLP) with Levenberg-
Marquardt learning algorithm was used to demonstrate the 
possibilities of the method as the easy-to-understand model 
ANN for modeling the spatial distribution of the element 
contents in the topsoil. The construction of the MLP model 
based on the number of neurons inside the hidden layer was 
chosen after several training cycles and error estimation for 
the test subset. We used the tangential activation function, 
which is best suited for predicting the features of the spatial 
distribution of element content in the topsoil (Baglaeva 2021). 
The MLP structure had one input layer consisting of two 
neurons (spatial coordinates x and y), one hidden layer with 
9 neurons, and one output layer with one neuron (element 
content).

Representativeness assessment 

 Let the representativeness of the sampling point be 
an ability of this point to provide: 1) a small root-mean-
square error RMSE (Eq. 1) for estimating accuracy; 2) a high 
correlation coefficient Corr (Eq. 2) to check the synchronism 
of changes between predicted and observed values with 
the participation of this point in training.

 where p(i) is predicted data; o(i) is observed data; n is 
the number of subset points. RMSE (1) tests the accuracy 
between predicted and observed data.

 where p is predicted average; o is observed average. 
The correlation coefficient Corr shows the linear statistical 
relationship between the predicted values and the 
observed ones, how much the changes in the predicted 
values repeat the systematic changes in the observed 
ones.
 The individual representativeness for each point considers 
the set of the best (small RMSE (Eq. 1) and high Corr (Eq. 2)) 
networks in which the point participated in training. Collective 
representativeness is the representativeness of the sampling 

points, which support connections with the neighbors, which 
makes it possible to provide a small RMSE and a high Corr 
when participating in the training of a group of sampling 
points. Collective representativeness considers the various 
combinations of training sampling points, such as doublets, 
triplets, and so on.

Individual representativeness 

 A four-step (4-step) algorithm was used for individual 
representativeness assessment of the sampling points involved 
in the training subset (Fig. 2). The raw data were repeatedly 
divided randomly into training and test subsets in the ratio of 
75%/25%, respectively. 200 points were randomly divided into 
150 training and 50 test points. The number of divisions was 
100,000.
 1. The total raw data set was randomly divided 100,000 times 
into two non-overlapping sets, training and test subsets, in the 
ratio of 75%/25%, respectively. Thus, we got 100,000 training and 
100,000 test subsets.
 2. For each random division, 5 MLP networks were built 
additionally (500,000 MLP networks in total). For each trained 
network, the root-mean-square errors (RMSE) of the forecast of 
the training and test subsets were determined. The network with 
the minimum RMSE was chosen. 
 3. RMSE and Corr for the training, test, and general subsets 
were calculated for 100,000 better networks.
 4. Each sample point was assigned a set of the best networks 
in which it participated in training. For each sample point, we 
calculated the basic statistics of RMSE and Corr for the training, 
test, and general subsets for the networks in which the point 
participated in training.
 Individual representativeness was assessed by comparing 
mean RMSE and Corr values. The best representative point is 
the one whose inclusion in the training subset provides a lower 
mean RMSE and a higher mean correlation coefficient with the 
observed values.
 
Collective representativeness 

 To assess the collective representativeness of the sampling 
points of the training subset, a four-step (4-step) algorithm 
was also used (Fig. 2). We divided the training and test subsets 
into 75% and 25%, respectively, used the training results as 
a set of the best networks for each point, and calculated 
the corresponding distributions of RMSE and correlation 
coefficients for the training, test, and general subsets.
 Collective (paired) representativeness was assessed using 
samples of two points out of two hundred. For each pair of 
sampling points, the basic statistics of RMSE for the training, 
test, and total subsets were calculated for networks in which 
both points participated in training. 1000 pairs from these pairs 
were selected with the lowest mean RMSE for the pair that fell 
into the training set, which corresponded to the 0.051 quantile. 
The collective representativeness of the sampling points was 
assessed by the number of its connections with other points 
within the 0.051 quantile (1000 point pairs) according to the 
average RMSE or within the 1 - 0.051 = 0.949 quantile (1000 
point pairs) according to the average correlation coefficient. 
We built graphs for a cutoff threshold of 10 connections with 
other sampling points.
 In this work, due to computational difficulties, we limited 
ourselves to pairs of sampling points. The hypothesis that 
the synergy effect exists was tested by comparing individual 
and paired representativeness to predict element content. 
For verification, we used the conditional distribution of the 
correlation coefficients and RMSE means (provided that a pair of 
sampling points fell into the best training subset).

(1)

(2)
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RESULTS

 Table 1 presents the characteristics of Cuprum and 
Niccolum distributions in the study area. The total Cuprum 
content is in the range from 5.89 to 69.59 mg/kg, Niccolum 
from 3.58 to 41.94 mg/kg, which does not exceed Clarke in 
the urban soil (Shichkin 2018).

 For each data split, MLP models were built, and 
representativeness characteristics were calculated: RMSE 
and correlation coefficients. Table 2 presents the statistical 
characteristics of the representativeness assessment. Fig. 3 
shows the RMSE means and correlation coefficients obtained 
for 19,900 models.

Table 1. Element statistics in Noyabrsk topsoil

Table 2. Representativeness characteristic statistics

Element
Element Content, mg/kg

CV, % Skewness
Excess 

KurtosisMinimum Maximum Mean SD*) Median

Cu 5.89 69.59 16.12 7.64 14.67 47 2.69 13

Ni 3.58 41.94 11.67 4.50 11.15 39 2.16 11

Element Characteristic Mean Median Minimum Maximum SD CV, % Skewness Excess Kurtosis

Cu
RMSE, mg/kg 3.325 3.336 2.771 3.395 0.059 2 -5.5 39

Corr 0.256 0.256 0.236 0.271 0.003 1 -0.3 2

Ni
RMSE, mg/kg 4.312 4.322 3.720 4.340 0.049 1 -7.2 58

Corr 0.285 0.285 0.271 0.302 0.004 1 0.2 1

*) SD – standard deviation; **) CV – coefficient of variation.

Fig. 2. The representativeness assessment algorithm
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 As can be seen from Fig. 3, the RMSE distribution is 
split into two clusters: Cuprum and Niccolum. The lower 
RMSE cluster is associated with the inclusion in the training 
subset of a single point 129 for Niccolum (the point with 
the highest Niccolum content) and 134 for Cuprum (the 
point with the highest Cuprum content). 
 Pair representativeness was visualized as RMSE and 
correlation coefficient graphs for Niccolum and Cuprum 
contents (Fig. 4). The sampling points are graph vertices. 
The graph edges were the best links between pairs of 
sampling the points named by doublet.
 Pair representativeness graphs were built by the least 
RMSE doublets and the largest Corr doublets for Ni and Cu 
(Fig. 4). When constructing the graphs, we were limited to 
about 20 doublets. That is, the correlation graphs included 
the doublets with correlation coefficients greater than 
0.2667 for Cu and 0.2983 for Ni. The RMSE graphs consisted 
of the doublets with RMSEs less than 2.83 for Cu and 3.868 
for Ni. Both Niccolum and Cuprum RMSE graphs seem 
to have a scale-free network structure. The edges of the 

correlation coefficient graphs are stitching through the area 
for each element. RMSE as the representativeness indicator 
define the most “polluted” points, and the correlation 
coefficient adds “important” points for description of the 
element distributions in the topsoil. Individual and pairwise 
representativeness comparisons were shown for Niccolum 
and Cuprum contents in Table 3.

DISCUSSION

 Individual representativeness is not enough to 
determine the best training subset. A point with low 
individual representativeness in pairs may be “good” for 
learning. By analogy with individual characteristics, there 
can be “good” pairs for training (these are all 199 pairs with 
129 points for Niccolum, and 134 points for Cuprum), there 
can be “bad” ones, which increase the model error when 
included in pairs in the training subset. The results are 
shown in Table 3. 9 points were selected: 8, 12, 14, 63, 67, 
116, 165, 168, 199 for Cuprum and 49, 52, 84, 102, 103, 104, 

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 2025

Fig. 3. RMSE mean and correlation coefficients mean

Table 3. Individual and pairwise representativeness comparison

Characteristic «Best» RMSE doublet «Bad» RMSE doublet «Best» Corr doublet «Bad» Corr doublet

Element Ni (Niccolum)

n {94;129} {94} {129} {19;56} {19} {56} {13;25} {13} {25} {88;145} {88} {145}

RMSE, mg/kg 3.720 4.167 3.880 4.340 4.325 4.326 4.234 4.266 4.281 4.155 4.166 4.304

Corr 0.281 0.278 0.287 0.284 0.284 0.284 0.302 0.294 0.293 0.271 0.278 0.278

Element Cu (Cuprum)

n {134;135} {134} {135} {139;165} {139} {165} {22;135} {22} {135} {126;127} {126} {127}

RMSE, mg/kg 2.771 2.859 3.319 3.395 3.354 3.358 3.226 3.253 3.319 3.152 3.284 3.148

Corr 0.27 0.259 0.264 0.254 0.258 0.253 0.271 0.263 0.264 0.236 0.248 0.246
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Fig. 4. RMSE and correlation coefficient graphs of the pair representativeness
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118, 146, 192 for Niccolum. The elemental content at these 
points is below or close to the average.
 Pair representativeness is not always limited to 
individual. There is a synergy effect, i.e., taking into 
account the collective (n-let) representativeness makes 
it possible to reduce the model error. Paired (collective) 
representativeness characterizes the interaction of pairs 
of points, i.e., the ability of pairs of points, when included 
in the training subset, to provide RMSE and correlation 
coefficient characteristics that exceed the best individual 
characteristics. The value added by the pair {94; 129} for 
Niccolum and a pair of {134; 135} for Cuprum is higher than 
the value contributed by individual points {94} and {129} 
for Niccolum and {134} and {135} for Cuprum. This synergy 
effect is created through the mutual influence between 
the points. Table 3 shows the best pairs with the lowest 
RMSE and the highest correlation coefficient and the worst 
pairs with the highest RMSE and the lowest correlation 
coefficient for Cu and Ni. Along with the synergy effect, 
there are relationships that reduce the value of the model. 
In this case, pairs of points provide less information to 
describe the element content distribution than individual 
points included in a pair as the effect of antisynergy. This 
may be due to the redundant use of points to describe the 
distribution of the feature.
 As can be seen from Table 3, for example, this is {19; 56} 
for Ni and {139; 165} for Cu. RMSE pair {19; 56} for Niccolum 
and {139; 165} for Cuprum is greater than the RMSE of 
individual points {19} and {56} for Niccolum and {139} and 
{165} for Cuprum. Conversely, the correlation coefficients of 
a pair {88; 145} for Ni and {126; 127} for Cu are smaller than 
the correlation coefficients of individual points {88} and 
{145} for Ni and {126} and {127} for Cu.
 The effects found here (synergy and anti-synergy) 
seem to be useful for predicting spatial variability and 
predicting the content of elements in the topsoil in areas 
with complex geographical conditions. This benefit may be 
expressed as a reduction in the uncertainty of the results of 
future field studies when they are planned.
 The scale-free network structures RMSE graphs of the 
pair’s representativeness are the same for both Niccolum 

and Cuprum (Fig. 4), and the central points of these graphs 
are territorial characteristics. For each pair of the points, 
the best graph topology characteristic of the territory is 
identified. This topology can be explained by man-made 
activity.
 The obtained results do not contradict the hypothesis 
that different locations (geolocations) carry different 
information and an unequal value for the interpolation of the 
feature distribution. Evaluation of the representativeness of 
the points will allow you to choose the most representative 
points for the areas.

CONCLUSIONS 

 Comparison of individual and pair (collective) 
representativeness when points were included in the 
training subset showed their unequal value for interpolating 
the distribution of heavy metals in the topsoil. The most 
representative in terms of individual representativeness 
were the points with the maximum element content 
in the selected area. Including these points in the ANN 
training subset reduces the error and increases the 
correlation between the results of model calculations 
and field measurements on the test subset. The graph 
topology of the best collective representativeness (it looks 
like a constellation) can be used as territory characteristics 
associated with man-made activity. The volume of the 
n-let can be analogous to the dimension of the phase 
space. Although it is impossible to predict every detail of 
the evolution of such a system, it is possible to develop 
statistical mechanics with heterogeneous ensembles of 
interacting agents (Levin 2002), similar to the description 
of statistical ensembles in gas dynamics.
 In this work, we have limited ourselves to pair 
representativeness; determining the volume of all 
representative n-s requires huge computational costs 
and remains a task for future research. Complex adaptive 
systems are limited in their predictability because 
multiscale interactions and evolutionary processes are 
linked through non-linear interactions.
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