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ABSTRACT. Contemporary distributed hydrological models are detailed and mathematically rigorous, but their calibration 
and testing can be still an issue. Often it is based on the quadratic measure of the calculated and observed hydrographs 
proximity at one outlet gauge station, typically on the Nash-Sutcliffe model efficiency coefficient (NSE). This approach seems 
insufficient to calibrate a model with hundreds of spatial elements. This paper presents using a multi-dimensional estimator 
of modeling quality, being a natural generalization of the traditional NSE but which would aggregate data from several 
hydrological stations using Principal Component Analysis (PCA). The method was tested on the ECOMAG model developed 
for a sub-basin (24,400 km2, with 15 gauges) of the Ussuri River in Russia. The results show that the presented version of the 
multi-dimensional NSE with PCA in calibration of spatially-distributed hydrological models has a number of advantages 
compared to other methods: the reduced dimensionality without loss of important information, straightforward data analysis 
and the automated calibration procedure; objective separation of the deterministic signal from the noise, calibration using 
the “informational kernel” of data, leading to more accurate parameters’ estimates. Additionally, the introduced notion of the 
“compact” dataset allow to interpret physical-geographical homogeneity of the basins in mathematic manner, which can be 
valuable for hydrological zoning of the basins, hydrological fields analysis, and structuring the models of large basins. There 
is no doubt that further development and testing of the proposed methodology is advisable in solving spatial hydrological 
problems based on distributed models, such as managing a cascade of reservoirs, creating hydrological reanalyses, etc.
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INTRODUCTION

 Hydrological modeling is currently characterized by 
the prevalence of spatially distributed models. These 
models are able to adequately reproduce the runoff 
generation processes within a river basin, and are more 
reliable for the assessments going beyond the existing 
observation ranges. The models are also required to solve 
many problems of spatial water management that are 
not limited to local tasks like assessing the parameters of 
bridge dimensions, water intake characteristics or reservoir 
volume. Contemporary models may be characterized by 
the detailed representation of watershed characteristics, 
rigorous mathematical description of processes, and strong 
hydrometeorological information support, but the issue of 

adequate diagnostic and verification of these models is still 
on the agendas of many researchers. 
 Calibration and verification techniques are primarily 
based on the use of objective functions in the form of a 
few quadratic measures of the calculated and observed 
hydrographs proximity, the most popular of which are 
the root squared mean error and the Nash-Sutcliffe model 
efficiency coefficient (NSE) (Nash and Sutcliffe 1970). 
Sometimes, the NSE is also combined with more measures, 
as it is done e.g. in the Kling-Gupta-Efficiency (KGE) 
(Gupta et al. 2009), which combines bias, variability and 
correlation components to improve the estimation of the 
performance error. To analyze the temporal variability of 
model performance and related parameter sensitivity, their 
interactions, and other aspects of model identifiability, 
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one may use the DYNamic Identifiability Analysis (DYNIA) 
method developed by Wagener et al. (2003), and by 
Reusser et al. (2011).
 A more “physically-based” approach is to consider 
signature measures which are directly related to catchment 
functions with the aim to consider the relevance of a 
certain hydrological component individually (e.g. (Yilmaz 
et al. 2008; Pokhrel et al. 2012; Mohammed et. al. 2021; 
Huynh et al. 2023)). For example, signature measures based 
on flow duration curves (FDC) show a model performance 
for different discharge levels (Yilmaz et al. 2008; Cheng 
at al. 2012; Pfannerstill et al. 2014). It is worth noting 
that a calibration problem can be posed as the single-
objective optimization problem, typically using algorithms 
of randomized search in the space of parameters (e.g., 
(Solomatine et al. 1999)), but also as a multi-objective 
optimization problem (Pokhrel et al. 2012; Efstratiadis and 
Koutsoyiannis 2010) with the use of several performance 
measures. However, we are leaving consideration of the 
associated possibilities for further studies, concentrating 
on single-objective calibration.
 NSE has a number of advantages, and is still the most 
widely used performance measure when a model is 
estimated by a single variable, e.g. by discharge measured 
at the outlet gauge station. This approach is seen to be 
justified for simple models, but it seems to be insufficient 
to calibrate a model with hundreds of spatial design 
elements and a developed description of a complex set of 
interrelated processes in each of them.
 Hydrological models spatial organization is an 
important aspect of their calibration and testing. Realization 
of this fact has led to the interest to the so-called “multi-
site calibration” approaches (Wang et al. 2012; Ashu and 
Lee, 2023; Serur and Adi 2022; Malik et al. 2022; Xu et al. 
2022; Ruiz-Pérez et al. 2017), which include comparison 
of the model outputs to discharge measurements at 
multiple locations. As presented in the mentioned papers, 
multi-site calibration allows for developing more reliable 
models. However, to the best of our knowledge, these 
approaches can be mostly seen as realizations of “trial and 
error” strategy, when the model parameters are adjusted 
in a attempt to iteratively reduce the model error at all the 
considered locations. For example, Serur and Adi (2022) 
describe their approach as follows: “the parameter values 
were changed repeatedly within the allowed ranges until 
acceptable agreements between observed and simulated 
streamflow were obtained for each gauged station”. Ahu 
and Lee (2023) describe this procedure as “trial and error 
were used to acquire the fitted value until the simulated 
and observed values were consistent”. Advantage of this 
approach is explicit inclusion of an expert in the process, 
which has certain advantages. However, there are also 
deficiencies of this method, and we find it important to 
introduce more rigor to this procedure. This prompts for 
developing mathematically strict procedures for multi-site 
calibration, leading to potentially more accurate models. It 
is done in the presented paper. 
 It is important to stress the importance of an accurate 
account of the spatial aspects in calibration. There is a 
need for comparison of the distributed models outputs 
not only to the point-wise measurements, but also to the 
Earth remote sensing data (ERS), where the data is (evenly) 
distributed over the measurement and calculated grids, 
and is not necessarily coinciding with the measurement 
grid. For example, Ruiz-Pérez et al. (2017) calibrate the 
Eco-hydrological distributed model TETIS-VEG using 
Normalized Difference Vegetation Index (NVDI) data 
obtained from the MODIS satellite. They use the method 

of empirical orthogonal functions (EOF), which is similar 
to the Principal Component Analysis (PCA) used in this 
article. Koch et al. (2015) assess the quality of the models 
by comparing soil temperature maps (LST, land surface 
temperature) obtained from the model with those 
obtained from the MODIS satellite, and also using the EOF 
at one of the stages. Assessment of the model accuracy 
based on the calculation of soil moisture by comparing the 
calculated fields with those ones obtained from satellites 
data and using the EOF apparatus is also considered in the 
work (Mascaro et al. 2015).
 To the best of our knowledge, the problem of spatial 
calibration of distributed hydrological models based on 
direct runoff measurements of several stations using the 
PCA aggregation and analyzing the catchment specifics on 
the basis of the calculated principal components has not 
been solved. We see this as a significant gap requiring the 
novelty in approach. 
 Hence the main objective of this paper is to develop 
mathematically strict procedures for multi-site calibration 
of distributed models. 
 The approach we propose seems to contributes several 
innovative aspects in considering the problem of interest.
Firstly, the proposed multi-dimensional estimator of 
modeling quality is a natural generalization of the traditional 
NSE to the case of modeling runoff simultaneously across 
a group of hydrological stations within the basin using a 
single spatially-distributed model. At the same time, all 
conceptual advantages of the NSE-based assessment are 
preserved, but the information content used for the model 
assessment increases substantially.
 Secondly, using the PCA method as applied to a group 
of the daily discharge series improves the adequacy of 
the model calibration procedure. This becomes possible 
due to the fairly effective separation of random noise, 
which is inevitably present in any observational data, and 
calibrating the model in accordance to an array of the 
“cleaned” information, which should lead to more accurate 
parameter estimates. 
 Thirdly, this approach opens a possibility of obtaining 
meaningful interpretation of the PCA method results 
applied to the group of stations data, which is expressed 
by the proposed concept of a “compact” basin.
 Thus, the framework of  study presented includes the 
following stages: assessing the adequacy of NSE under 
impact of noise; correct calculation of NSE based on the 
data from multiple gauges; using the PSA as an “integrator” 
of data from multiple gauges for noise-free calibration; 
analysis of the case application of the method on a 
medium-sized basin. The last section pays attention to the 
formulation of the concept of a “compact” data system and 
its relationship with the concept of homogeneity of a river 
basin.
 One of the currently popular points of view, 
consistently presented by K. Beven (2012), insists on the 
impossibility of determining the “truth” of multiple models 
(i.e., calibrated on the same data set, but which parameters 
still differ slightly). It is suggested to consider a wide range 
of estimates provided by models solely on the basis of 
rational decision principles under uncertainty. Without 
delving into further analysis of this approach, we can note 
that its prevalence is largely related to the dissonance 
noted above, when calibration tools appear to be limited 
to deal with the complexity of the models to be compared. 
Thus, there is a need to develop model calibration and 
verification tools matching the complexity of the models 
employed.
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METHODOLOGY

 Before presenting the essence of the methodology 
it is important to consider one aspect of application of 
NSE, which in absolute majority of practical applications is 
completely overlooked.

Adequacy of NSE for Model Calibration under
Assumption of Noise 

 Let us consider the NSE score in one of the usual 
formulations, proposed in (Nash and Sutcliffe 1970) and 
analyzed in detail by Murphy (1998):

 where Qf
1
 and Qo

i
 are the simulated and observed 

discharges for the i th day, Qa is the mean observed 
discharge for the simulated period of time, and n is the 
number of days in this period. The second term in Eq. (1) 
is the ratio of the discrepancy quadratic measure between 
the simulated discharges and the observed ones to the 
similar measure of the discrepancy between the observed 
discharges and its “worst” approximation, obtained on the 
base of available data only (without any model).
 According to Eq. (1) for , the mean value of the 
measured discharges for the period is taken as the “worst” 
approximation. This assessment is the simplest one, but 
also the “weakest” and not always an adequate one. The 
issue of applying various approximations as the “worst” 
is considered in detail in (Murphy 1998). For example, for 
the rivers with a predominant snowmelt water supply 
and a stable seasonal distribution of runoff, it would be 
reasonable to replace the value of Qa in Eq. (1) by Qnorm

1
, 

the average annual flow rate for the day i. Such an approach 
is employed in meteorology, where all estimates are based 
on anomalies, i.e. the deviations from climatic values at 
a given moment of the year, which is mathematically 
equivalent to using “climate” as the “worst” approximation. 
Yet another, widely used assessment of hydrological 
forecasts quality (Moreido et al. 2021) S/σΔ is of similar 
nature, where S is a root mean squared error of the forecast, 
and σΔ is the standard deviation of the observed values 
during the forecasting period Δ.
 In addition, the problem of perfect modeling 
accuracy estimation deserves special consideration. Many 
publications indicate that,  reaches a value of 1, as 
provided by Eq. (1), when the simulated and observed 
discharges are completely equal. This result is thought 
to be an ideal one, and all efforts are focused on its 
achievement when calibrating the models, although the 
actual values are typically less than unity. However, each 
model experiment has a significant random noise, which 
should not be reproduced by a deterministic model.
 Noise is generated by several sources. Firstly, although 
the model itself is supposed to be strictly deterministic, the 
results of its operation are strongly influenced by the quality 
of the input meteorological information. It is appropriate 
to present the model output Qf

i
 as the sum of the “true” 

simulation result Qm
i
 which could be obtained by feeding 

accurate and complete meteorological data of the highest 
spatio-temporal resolution, and a random error ξf resulting 
from inaccurate and unrepresentative meteorological data. 
It is impossible to evaluate directly these two components 

of the simulated signal due to the fundamental lack of 
“ideal” meteorological data. 
 Similarly, the measured hydrograph can be represented 
as the sum of the real discharges Qr

i
 and the random 

observation error ξ
o
. It is important to bear in mind, that 

the Qr
i
 value still contains some internal uncertainty, 

which, in fact, can also be considered as random. This 
uncertainty results from the fact that in the real basin there 
are processes, often random or chaotic, which are beyond 
the scope of our knowledge, or, at least, beyond the base 
concepts of the model in use. Model designers often 
interpret them as “subgrid” processes.
 With the above considerations in mind, the formula 
for  can be complemented with the independent 
random variables ξf and ξo with zero mean values, and can 
be rewritten as follows:

 Opening the brackets, we perform the term-wise 
summation in the numerator and the denominator, 
assuming n is sufficiently large. Taking into account 
independence and zero means of ξf and ξo, we can carry 
out the following derivations:

 With the ideally accurate simulation (Qm
i
=Qr

i
), by 

dividing the numerator and the denominator by n, we 
obtain the following estimate of the extreme value of :

 where Dx is the variable x variance. This expression 
could also be derived directly based on the general 
principles of the random variables algebra. 
 This result is valid only for the assumptions presented 
earlier. However if, for example, the considered errors are 
systematic with a non-zero mean value, or variables are not 
independent, then the final expression will be much more 
complicated. We assume here that during the calibration 
process, the systematic part of the analyzed errors is 
minimized together with the systematic errors inherent in 
the model itself, which is developed due to the conceptual 
schematization of real processes.
 In real modelling practice one can inevitably expect 
certain (often significant) random “noise” in the data and 
simulations. One can see, that in this case the maximum 
value of NSE for an “ideal” model is below 1. For example, 
if the variances of errors in input ξf and output ξo are 4% 
each, then lim

QmQr
 will be 0.923. An attempt of a 

modeler to exceed (and even achieve) this value cannot 
be justified, and if this happens, it points at an excessive 
flexibility of the model. If the number n is not high enough, 
then the final formula of lim

QmQr
 will also become 

more complicated, and the estimate will increase slightly, 

(1)

(2)

(3)

(4)
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reflecting the well-known effect of obtaining a fictitiously 
“better” result of estimates on shorter data samples. We find 
it important that these considerations must be taken into 
account for the correct application of the  measure 
in rigorous testing of complex models that claim a high 
degree of proximity to natural processes. Surprisingly, in 
the majority of papers on (hydrological) modelling the 
considerations presented above, and their impact on 
the use of NSE, are not seen as an important part of the 
calibration and verification process.

Spatial/Dimensional Aspect of Calibration

 We will be now considering a more complicated 
aspect of calibration and testing of the distributed models 
of extensive basins. Calibration of such models typically 
uses the data of several gauges damming sub-basins of 
various sizes and physiographic conditions. The use of all 
available data for calibration is advisable for the following 
reasons. Firstly, for the maximum information utilization. 
Secondly, simulation of a hydrologic event spatial structure 
is important for solving various tasks, such as operational 
event planning during floods or reservoir cascade 
management, when a model should guarantee acceptable 
accuracy both in the main stream and other stations of 
the basin. It is also worth mentioning that it would be 
methodologically attractive to have a unified procedure 
for such calibration.
 In many applications  estimates are used for 
distributed models calibration with the data at the outlet 
gauge station. Along with this,  is usually evaluated 
for other gauging stations by experts, so the choice of the 
most preferred combination of estimates is quite arbitrary. 
Averaging (simple or weighted) of  estimates over 
several gauges can be also employed. It is worth noting 
that that several stations data in one basin belonging to 
nested sub-basins are highly correlated and therefore use 
of simple averaging would be incorrect. 
 The following question can be posed: is it possible to 
solve a problem of a multivariate calibration by using the 
approach similar to the one utilized for the Nash-Sutcliffe 
model efficiency coefficient proposition? The following 
consideration answers this question positively. For that, 
it is possible to use Eq. (1) for multivariate calibration by 
changing the value of a single gauge discharge to a vector 
value, that is an ordered set of discharges from multiple 
gauges: 

 The asterisk on  indicates that this is a multi-
dimensional estimate combining all series of the data 
system considered. The calculation algorithm and the 
properties of the estimator remain almost unchanged 
– as a result, one obtains a scalar quantity that reaches 1 
in case of perfect modeling without noise, or 0 with the 
absence of a relationship between the simulated values 
and the observed ones, and becomes less than zero when 
their relationship is inverse. In particular, considering Eq. (5) 
for the simplest case of a two-dimensional vector (i.e., two 
gauges), in accordance with the rules of vector operations, 
and after recombination, we obtain:

 where  Qfl
i
, Qf2

i
, Qol

i
, Qo2

i
, Qa1 and Qa2 are the modeled, 

measured and mean discharges in the 1st and 2nd gauges 
respectively, and  и   are the regular one-dimensional Nash-
Sutcliffe efficiency coefficients for every gauge. The result is 
that the multi-dimensional  is equal to a weighted average 
of the , and the weights are the corresponding discharge 
variances. The considered case of two dimensions can be 
easily extended to deal with higher dimensions (i.e., more 
than two gauges).

PCA as an “integrator” of data from multiple gauges for 
noise-free calibration

 To analyse and possibly reduce dimension of multi-
dimensional sets of highly correlated data the Principal 
Components Analysis (PCA) method is often used. The 
principle of the method is the linear transformation of the 
original coordinate system, in which the initial matrix of 
correlated data is given, into a new one, which is typically 
called U-space. The first U-space axis is oriented along the 
highest scatter of the initial data, the second one – along 
the maximum remaining scatter and is orthogonal to the 
first axis, and further in a sequence. As a result, the initial 
set of variables is projected to a new set of variables in the 
U-space that is named principal components (PCs). The 
number of PCs is equal to the initial number of variables, 
and PCs are non-correlated and orthogonal to each other. 
Besides, due to the U-space conversion method, PCs 
variance λ is gradually decreasing from the first one to the 
last one, and thus amounting in the sum the total variance 
of the initial dataset.
 Those properties often make it possible to limit the 
analysis to only few first PCs representing an expertly 
defined proportion of the initial dataset variance, of 
0.9 or 0.95, for example. Those PCs are considered to be 
significant, representing the substantial content of the 
dataset, whereas the rest of the PCs are random noise. 
Therefore, when applied properly, the PCA makes it 
possible to decrease the dimensions of the dataset under 
study and to separate the content-rich data from the 
noise. Besides, the PCA enables to identify the latent data 
structures, making it effective in solving classification and 
zoning tasks.
 Apart from using multi-dimensional NSE, using PCA 
is forms yet another important part of the methodology 
proposed. PCA serves as an “integrator” of the observed 
data from multiple (N) gauges and the simulated data for 
these gauge locations. The information integrated in the 
major K PCs, is considered to represent the deterministic 
component of the system, and minor (N – K) components 
are considered to be representing the noise. The dataset 
based on the major K PCs can be transformed back into 
multiple N-gauges series, and this transformed data is used 
for the “noise-free” calibration.

(5)

(6)
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 A detailed presentation of the PCA and it practical use 
is provided in a number of publications (e.g., (Pomerantsev 
2014; Harris 2001)). The algorithm is implemented in many 
software packages; we used Minitab Release 14. The PCA 
transformation is possible both by using the correlation 
matrix with preliminary standardization of the initial data, 
and by using the covariance matrix involving initial data 
processing. The first option scales all variables and equalizes 
their “weights”. Considering that in our investigation the 
large rivers are more “weighty” compared to small ones, the 
second option with covariance matrix is adopted.
 This section presents the main components of the 
methodology for calibration of distributed models 
proposed in this paper, which is based on using a limited 
number of PCA components, thus concentrating on the 
main properties of the basin, and reducing noise. 

RESULTS: APPLICATION OF THE METHODOLOGY TO A 
MEDIUM SIZE BASIN

 The Ussuri River basin model is considered. It was 
developed by using the ECOMAG (Ecological Model for 
Applied Geophysics), developed in the 1990s by Yu.G. 
Motovilov in the Water Problems Institute of the Russian 
Academy of Sciences. ECOMAG is a spatially-distributed 
hydrological model, based on HRU (Hydrological Response 
Unit) concept. Its complete details are presented in a 
number of publications (Motovilov et al. 1999; Danilov-
Danilyan et al. 2014; Bugaets et al. 2023).  The spatial 
structure of the ECOMAG model splits watershed into sub-
basins based on topography, river network structure, soil 
and vegetation type, land use, and variability of climate 
characteristics. The main ECOMAG model equations were 
adopted from the full spatially distributed model by spatial 
aggregation at subbasin scale, neglecting secondary terms. 
Daily resolution time series of precipitation, air temperature 
and air relative humidity are used as inputs. Computation 
of river basin hydrological response described by the two 
main phases: calculation of the effective precipitation 
for each sub-basin, and then routing it through the river 
network. Runoff from sub-basin is calculated as sum of 
the three components: Horton overland (surface) flow, 
soil flow and groundwater outflow. During warm periods 
precipitation is partially infiltrated and moves along the 
hillslopes as interflow. Excess water produces surface flow 

and moves downslope towards the drainage network. The 
rest of the water that has not been drained to rivers as lateral 
or surface flow can be evaporated or percolated into deep 
aquifers. Within cold and mid-season periods the model 
describes snowpack evolution and soil freezing-thawing 
cycle. Spatial aggregation made it possible to reduce 
model calibration to a small number of parameters (Table 
1), most of which are correction factors for hydrophysical 
characteristics.
 The basin of Ussuri River near Kirovskiy is 24,400 km2 

(Fig. 1). Its major part is middle altitude taiga with, about 
1/3 part is sub-mountain plain-like territory, partially 
reforested and considerably plowed up. This is a typical 
Far Eastern river characterized by frequent pluvial floods 
(Moreido et al. 2021). There were 15 gauges operating 
in the basin during various time periods, with the highly 
correlated data.
 The data of simultaneous observations of nine gauges 
for the period beginning 1978 through 1990 (Table 2) were 
selected for analysis, because the number of synchronously 
operating gauges is maximal and the quality of network 
observations is the best during these years. The gauges 
with watershed areas less than 1,000 km2 were not included 
into the data set. Besides, in case of several gauges along 
one river, they were selected by the watershed area on the 
condition that the discharges at the neighboring gauges 
would differ by at least of factor of two. Equal distribution 
of gauges within the river basin is of course preferred. 
Discharge data series for the period beginning 1978 
through 1990 were simulated with the ECOMAG model. 
Both observed and simulated datasets were used after 
every model run for calibration and final estimations of 
modeling quality by different versions of NSE. 
 It is important to mention the following. In this paper 
we are presenting a method able to deal with multi-site 
calibration and verification of distributed models. However, 
we are presenting only the results of model calibration on 
a single data set, but not its testing (on an unseen data set). 
This is a certain limitation of this study (partly due to the 
limited resources allocated for this work), but still allows to 
fully demonstrate the feasibility of the presented approach 
to calibration well. The comprehensive modelling 
framework to be developed should include all stages 
required by modelling theory.

Table 1.	ECOMAG	calibrated	parameters

Parameter Short Name

Coef. of vertical saturated hydraulic conductivity GFB

Coef. of horizontal saturated hydraulic conductivity GFA

Soil evaporation coefficient EK

Baseflow constant, mm day−1 GROUND

Coef. of snowmelt intensity, mm day−1 °C ALF

Critical air temperature snow/rain, °C TCR

Snowmelt air temperature, °C TSN

Air temperature gradient, °C 100 m−1 TGR

Precipitation gradient, mm 100 m−1 PGR

Coef. of vertical saturated hydraulic conductivity GFB

Coef. of horizontal saturated hydraulic conductivity GFA
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Fig. 1.	Hydrological	observation	network	of	Ussuri	Basin.	The	runoff	gauge	stations	analysed:	1	–	Ussuri–Kirovskiy;	
2	–	Ussuri–Koksharovka;	3	–	Arsenievka–Yakovlevka;	4	–Ussuri–Novomikhalovka;	5	–	Pavlovka–Uborka;	
6	–	Arsenievka–Anuchino;	7	–Ussuri–Verkhniaya	Breevka;	8	–	Izvilinka–Izvilinka;	9	–	Krylovka–Krylovka

Table	2.	Model	quality	estimation	by	both	one-	and	multi-dimensional	NSE	
on	the	base	of	9	gauges	data	in	Ussuri	River	basin	for	1978	–	1990	years

River – gauge station
Ussuri – 
Kirovskiy

Ussuri – 
Koksharovka

Arsenievka – 
Yakovlevka

Ussuri – 
Novomikhalovka

Pavlovka 
– Uborka

Arsenievka 
–Anuchino

Ussuri – 
Verkhniaya  

Breevka

Izvilinka –
Izvilinka

Krylovka– 
Krylovka

Watershed area, km2 24,400 9,340 5,180 5,170 3,350 2,480 1,800 1,160 1,070

Discharges in initial coordinate system

Observed 
discharge 

series, 
m3/sec

Mean 186.0 72.6 36.5 38.5 27.3 20.3 15.6 11.6 8.0

Standard 
deviation

268.8 127.4 71.1 62.3 43.4 41.5 27.0 18.3 16.2

Total 
variance 

percentage
70.6% 15.9% 4.9% 3.8% 1.8% 1.7% 0.7% 0.3% 0.3%

Simulated 
discharge 

series, 
m3/sec

Mean 212.9 90.8 42.5 53.3 31.6 21.8 19.5 14.1 7.6

Standard 
deviation

253.1 122.0 57.4 73.9 48.7 34.4 32.3 23.1 13.5

Total 
variance 

percentage
68.9% 16.0% 3.5% 5.9% 2.5% 1.3% 1.1% 0.6% 0.2%

0.783 0.722 0.625 0.640 0.579 0.650 0.494 0.409 0.229
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 The observed data matrix Qo (I×J) presents the sets of 
daily measured discharges during the calibrating period 
at 9 gauges, where I is the series length (number of days), J 
is the number of variables (gauges). Based on the result of 
the model simulation performed in an ordinary way (i.e. by 
calibrating by the outlet gauge data with the expert analysis of 
other gauges), the simulated daily discharge matrix Qf (I×J) is 
composed. The PCA conversion of Qo (I×J) into the U-space is 
carried out, obtaining the eigenvectors P (J×J) matrix and the 
PCs matrix of observations Uo (I×J). Subsequently, the Qf (I×J) 
matrix is converted similarly into the same U-space through 
the P (J×J) matrix, that resulted in the PCs matrix of simulations 
Uf(I×J). The individual values  (k=1, 2, …, 9) are evaluated by 
the series of both observed and simulated discharges at every 
gauge, and hereafter the multi-dimensional evaluation  is 
done by them. The same procedure is applied for the observed 
and simulated PCs series from 1 through 9, and the multi-
dimensional evaluation is carried out as well. Table 2 presents 
the summary of the evaluation results.
 As presented in Table 2, the variances of PCs decrease very 
quickly − the sum of the variances of PCo1 and PCo2 amounts 
for 97% of the total variance, exceeding the threshold estimate 
at 95%, while the other PCs variances are negligible. So, it is 
possible to consider the first two PCs as the deterministic part 
of the system, and the remaining seven ones as the random 
noise. The individual values of , which show the simulation 
quality of each PC, confirm this hypothesis - for the first PCo1 
the estimate is 0.819 (good), for the second PCo2 it is 0.358 
(satisfactory), then the estimate decrease, even reaching large 
negative values. 
 Note, that observation variables are also graded in the initial 
matrix Qo(I×J) by variance. Sum of variances of two largest 
gauges is 86.5% of the total variance, that is so close to the sum of 
variances of PCo1 and PCo2 of observations. However, the values  
for all gauge series are still high with the slight downward trend 
at watershed area reduction. Fig. 2 distinctly shows the difference 
between the gauge hydrographs and the charts of PCs values at 
the same positions in the matrixes. The hydrographs’ values are 
essentially positive, and the charts have a specific shape similar 
to each other, whereas the PCs numbered 3 and higher look like 
random signals with zero mean.
 In other words, the content-rich information from the 
hydrographs of various gauges is evenly distributed, and 

is duplicated, which is confirmed by high cross-correlation 
coefficients. The noises are similarly distributed across all 
gauges. It is obvious that the PCA transformation brings the 
initial correlated dataset to the system of uncorrelated PCs 
collecting independent content-rich data into two first ones, 
whereas the noise is distributed between the rest. It is known 
that the random variables’ total variance being equal to the 
sum of variances is true for the independent random variables 
only. Table 2 really shows that this rule is true for PCs, however 
the total variance of the initial variables is more than three 
times higher than the sum of their individual variances. This 
proportion gives a rough indicator of the data “duplication” in 
the initial data matrix.
 It should be emphasized that it is impossible to strictly 
separate a signal into a content-rich part and the noise by 
statistical methods (and, note, the 5% threshold level of noise 
is set arbitrarily). Therefore, it would be more correct to say that 
the noise content prevails in the removed seven components, 
and the content-rich data considerably prevails in the first two 
components compared to the initial dataset.
 The Nash-Sutcliffe multi-dimensional coefficient estimation 
for a traditionally calibrated model does not depend on the 
coordinate space – it is calculated according to Eq. (6) and is 
equal to 0.750. The characteristics of the PCs, including their 
independent status and the distribution between a content-
rich signal and noise, make it possible to perform calibration 
by only PC1 and PC2 when calculating the multi-dimensional 
values  with this two PCs, that is marked by two asterisks. 
The  is equal to 0.778 by the result of a traditional calibration 
using standard NSE. By further calibration this value can be 
risen up to 0.804 for a new PCs matrix of simulations Uf’(I×J). 
Thereby, the final  for all gauges reaches 0.780, so is rising by 
4%. Once additional calibration is performed for a content-
rich part of data, which can be seen as the “information kernel” 
of the dataset, it is reasonable to expect that the parameters 
estimates would be more reliable (however, this should be 
additionally verified).
 Supposedly, the PCs from 3 through 9 mainly contain 
noise, therefore, it is reasonable to discard them. It is done 
by zeroing all but the first two matrix columns in Uf’(I×J), and 
the subsequent reverse U-space transformation into the initial 
one. The resulting Qf”(I×J) will have the “noise free” modeled 
values. The resulting  values are equal to 0.789, and remain 

Multi-dimensional  on 9 series is 0.750

PCs in U-space

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

PCs of 
observanions

Mean 210.4 0.59 −5.72 2.81 1.88 0.77 0.08 −0.17 0.29

Standard 
deviation

300.9 93.4 38.6 31.6 16.5 12.0 10.3 8.2 3.4

Total 
variance 

percentage
88.5% 8.5% 1.5% 1.0% 0.3% 0.1% 0.1% 0.1% 0.0%

PCs of 
simulations

Mean 229.2 9.12 −7.67 2.85 6.34 −2.37 3.03 −1.26 −0.389

Standard 
deviation

293.0 73.4 21.5 22.7 14.0 17.8 12.4 9.17 4.08

Total 
variance 

percentage
92.3% 5.8% 0.5% 0.6% 0.2% 0.3% 0.2% 0.1% 0.0%

0.819 0.358 −0.020 0.170 −0.718 −1.7151 −1.301 −0.9678 −1.054

Multi-dimensional  on 9 PCs is 0.767, on the first two PCs − 0.778
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practically unchanged. However, it is worth mentioning that 
this procedure considerably effects the distribution of  across 
individual gauges.
 With the traditional calibration, there are typically some 
stations with the small catchment areas, for which the model 
performance is very low. The reasons for this phenomenon are 
not very clear. We observed this effect for the gauge station 
Krylovrka river near Krylovka, where  is only 0.229 (Table 2). 
To improve that, we have transformed the two-component 
simulated dataset (based on two PCs) back into nine-gauges 
series (that is the model was calibrated on the two first PCs thus 
excluding noise represented by the higher-order components). 
As a result, we obtained = 0.548 which is much better (albeit not 
ideal). Thereby,  and a watershed area are closely related (Fig. 
3). It would be reasonable to conclude that under traditional 

calibration, uncontrolled distribution of noise concentrates at 
the gauges at small sub-basins whose contribution to the overall 
flow is also small. This issue is to a large extent resolved when the 
noise components are discarded.
 Fig. 2b presents the two first PCs obtained as the result 
of the initial data transformation. Their physical meaning is 
revealed when zoomed at the X axis (Fig. 4a). The first principal 
component has typical appearance of a discharge hydrograph 
and, so to say, presents a “generalized hydrograph” of the basin. 
The second principal component has zero mean and a specific 
waveform nearby every peak of the “generalized hydrograph”. 
This component indicates obviously that hydrographs are non-
synchronous and systematically deviate from the “generalized” 
one. In other words, the second principal component reflects the 
space-time structure of the events within the basin.

Fig.	2.	The	series	of	Ussuri	Basin	dataset	analysed	(1978-1990):	a)	observed	daily	discharges	in	initial	coordinate	system	
(1	–	Ussuri–Kirovskiy;	2	–	Ussuri–Koksharovka;	3	–	Arsenievka–Yakovlevka;	4	–Ussuri–Novomikhalovka;	5	–	Pavlovka–
Uborka;	6	–	Arsenievka–Anuchino;	7	–Ussuri–Verkhniaya	Breevka;	8	–	Izvilinka–Izvilinka;	9	–	Krylovka–Krylovka);	

b)	PCs	in	U-space	from	1	till	9

Fig.	3.	The	one-dimensional	Nash-Sutcliffe	efficiency	coefficients,	resulting	from	different	calibration	methods,	for	
discharge	series:	1	–	Ussuri–Kirovskiy;	2	–	Ussuri–Koksharovka;	3	–	Arsenievka–Yakovlevka;	4	–Ussuri–Novomikhalovka;	
5	–	Pavlovka–Uborka;	6	–	Arsenievka–Anuchino;	7	–Ussuri–Verkhniaya	Breevka;	8	–	Izvilinka–Izvilinka;	9	–	Krylovka–

Krylovka.	Calibration	methods:	I	–	traditional,	mainly	by	discharge	measured	at	outlet	gauge	station	with	expert	control	
in	others	gages;	II	the	same	with	removing	the	random	noise;	III	–	using	the	multi-dimensional	NSE	by	all	discharge	series	

with	removing	the	random	noise
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FURTHER EXTENSION: COMPACT DATASETS

 It is worth stressing once again some advantages of the multi-
dimensional calibration provided in the example above. Firstly, 
application of a unified measure  for a group of gauges reduce 
the problem of multi-dimensional calibration to the one of one-
dimensional problem. Thereby, there is no need in expert evaluation 
of the relation between model accuracy at various gauges, which 
facilitates the application of automated procedures. Eq. (6) provides 
the theoretically justified way of weighting the individual components 
of NSE  by the variances of the corresponding time series, eliminating 
thus the subjectivity typical of other non-aggregated modeling 
performance metrices for a group of gauges, designed on the basis 
of various “practical” considerations.
 The example above shows that the PCA procedures allow for 
considerable reduction of the dimensionality of the datasets for 
medium-size basins, which are conditionally homogeneous by 
physiographic conditions and have highly correlated discharge 
hydrographs at various gauge stations: the useful information is 
stored in two PCs of varied physical interpretation and the most of 
the noise can be removed. This opens a possibility to identify the 
“informational core” of a data set, using which the model calibration 
would potentially lead to more reliable and stable parameters 
estimates. It is suggested to name such data sets, as well as their 

associated basins, the “compact” data sets.
 As it may be assumed on the basis of the provided analysis, a 
“compact” basin is a homogeneous one both by the underlying 
surface structure and the character of the meteorological forcing, 
as it is the case for the studied Ussuri River basin. The basin’s high 
homogeneity is expressed by similar response of sub-basins to 
meteorological forcing, or, in other words, the discharge hydrographs 
of all sub-basins are similar.
 For small basins homogeneity would typically be high. However, 
we may assume that a certain number of varying sub-basin 
hydrographs may be averaged without substantial information loss 
within a basin of few tens of thousands square kilometres (for daily 
data step), that just is the medium-size. In this case the variance 
between the hydrographs in different gauges within the basin is 
determined only by the characteristics of the basin’s concentration 
time and flow in the network. To demonstrate this approach, a simple 
model demonstrating the properties of a “compact” dataset can be 
built as follows.
 We may use the facts known from hydrological science, such as 
the linear dependency between discharge and watershed area, and 
the power dependency between the basin’s runoff concentration 
time and its area, with the exponent close to 0.5 (see, for example, 
Rodríguez-Iturbe and Rinaldo (1997)). Let us examine the observed 
hydrograph at the gauge of the Ussuri River near Novomikhaylovka, 

Fig.	4.	The	example	of	PC1	(blue	line)	and	PC2	(red	line)	for	the	actual	observed	(a)	and	the	constructed	“observed”	
datasets	(b)	for	9	gauging	stations	within	Ussuri	River	Basin	(year	1980)
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which corresponding sub-basin area is about 5 times higher than 
that that corresponding to its smallest streams, and 5 times lower 
than that corresponding to the outlet gauge. We calculate daily 
runoff specific discharges by the data from the mentioned gauge 
and transfer them to other gauges according to their watershed 
areas. As proposed above, the concentration time is proportional to 
the square root of the area, and we accordingly may shift in time the 
hydrographs at different gauges relative to one another. Thus, the 
constructed dataset is obtained from a single observed hydrograph 
using scaling and shifting transformations only.
 For constructing a more realistic dataset, random noise is 
added to the hydrographs with approximately 20% variance of 
the main signal. The noise simulates both observational errors and 
the consequences of other factors, and is modeled by a random 
number generator with the normal distribution. At each point of 
time the random noise value is in proportion to discharge and has a 
considerable inertia described by the coefficient of autocorrelation. 

The obtained set of hydrographs can be assumed to be the “observed” 
data. The “simulated” data is the same data, but without the added 
random noise. This way of constructing the datasets is of course a 
primitive one, however, it seems sufficient to show the relation 
between the homogeneity of basin surface and weather conditions, 
and the statistical “compactness” of observational dataset.
 These datasets are processed as described in the previous section 
regarding the observed and simulated Ussuri River basin data. Table 
3 provides the processed results. Tables 2 and 3 mapping confirms 
that constructed datasets for the period beginning 1978 through 
1990 have the properties similar to the actual ones. Thus, “simulated” 
data have lower variance than the “observed” one. Variance of the 
constructed series at the gauges is smaller for smaller areas, and the 
sum of variances for the two largest basins is equal to 88.8% of that 
for the “observed” data. Individual  at gauges vary from 0.872 to 0.316, 
where the lowest value is related to the smallest basin.  estimate is 
0.764. 

Table	2.	Imitation	of	model	quality	estimation	by	both	one-	and	multi-dimensional	NSE	on	the	base	of	constructed	data	
series	for	9	gauges	in	Ussuri	River	basin	for	1978	–	1990	years

River – gauge station
Ussuri – 
Kirovskiy

Ussuri – 
Koksharovka

Arsenievka 
– 

Yakovlevka

Ussuri – 
Novomikhalovka

Pavlovka 
– Uborka

Arsenievka 
–Anuchino

Ussuri – 
Verkhniaya  

Breevka

Izvilinka 
–Izvilinka

Krylovka– 
Krylovka

Watershed area, km2 24,400 9,340 5,180 5,170 3,350 2,480 1,800 1,160 1,070

Discharges in initial coordinate system

Observed 
discharge 

series, 
m3/sec

Mean 185 78.4 38.7  41.4 30.9 19.3 12.9 9.2 6.9

Standard 
deviation

306 129 72.5 73.6 68.8 34.1 25.6 21.4 10.9

Total 
variance 

percentage
75.4% 13.4% 4.2% 4.4% 3.8% 0.9% 0.5% 0.4% 0.1%

Simulated 
discharge 

series, 
m3/sec

Mean 192 73.7 40.9 40.8 26.4 19.6 14.2 9.1 8.4

Standard 
deviation

312 119 66.2 66.0 42.8 31.7 23.0 14.8 13.7

Total 
variance 

percentage
78.4% 11.5% 3.5% 3.5% 1.5% 0.8% 0.4% 0.2% 0.2%

0.754 0.818 0.759 0.836 0.777 0.872 0.714 0.769 0.316

Multi-dimensional  on 9 series of “observations” and “simulations” is 0.768

PCs in U-space

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

PCs of 
observanions

Mean −212 −15.4 2.3 −3.4 −3.0 −3.9 −1.0 1.9 1.9

Standard 
deviation

335 103 55.2 29.3 24.2 18.3 12.7 6.4 6.4

Total 
variance 

percentage
87.7% 8.3% 2.4% 0.7% 0.5% 0.3% 0.1% 0.0% 0.0%

PCs of 
simulations

Mean −217 −8.9 −1.4 −7.5 −5.2 −6.0 −2.2 3.2 3.2

Standard 
deviation

340 83.1 29.0 11.4 10.9 13.9 6.9 5.7 5.7

Total 
variance 

percentage
93.3% 5.6% 0.7% 0.1% 0.1% 0.2% 0.0% 0.0% 0.0%

0.818 0.561 0.231 −0.233 −0.254 0.410 −0.052 −0.102 −0.492

Multi-dimensional  on 9 PCs is 0.795, on two first PCs − 0.797
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 Being projected into the U-space, the constructed data 
is effectively convoluted, and summarized dispersion of the 
first two PCs is up to 96.0% for the “observed” hydrographs, 
and it is 98.9% for the “simulated” ones. Individual  for PCs 
are progressively reducing and exceed the 0.5 threshold for 
the two first PCs only with the  estimate equal to 0.796. The 
PCs following the first two ones look like random stochastic 
sequences, whereas the charts of the PCc1 and PCc2 are 
very close to the ones developed by the actual observed 
and simulated data (Fig. 4).
 It can be seen that the Ussuri River basin, being quite 
homogeneous in structure and dynamics, allows for 
demonstrating the main properties and usefulness of the 
proposed notion of a “compact” dataset. For sure, more 
studies are needed for the further development of this 
notion.

CONCLUSIONS AND OUTLOOK

 The conducted study demonstrates that the presented 
version of the multi-dimensional NSE with PCA in 
calibration of spatially-distributed hydrological models, if 
compared to other calibration methods, has a number of 
advantages:
 − the reduced dimensionality without loss of 
important information, straightforward data analysis, and 
the automated calibration procedure;
 − objective separation of the deterministic signal from 
the noise, calibration using the “information kernel” of data, 
leading to more accurate parameters’ estimates.
 Additionally, the introduced notion and the procedure 
of building the “compact” datasets allows for physical 
interpretation of “compact” or “noncompact” sub-basins, 
which is valuable for hydrological zoning of the basins, 
hydrological fields analysis, and structuring the models of 
large basins. It should be emphasized once again that the 
proposed methodology seem of most advantageous along 
the transition to solving those problems of hydrology that 

can be solved solely on the basis of spatially distributed 
models.
 The methods presented in this paper should be seen 
as only one of the possible ways of handling the multi-
dimensional time series in the context of space-distributed 
model diagnosis and calibration. The further research may 
be aimed at:
 (a) testing the hypothesis that the parameters 
estimated by multi-dimensional calibration are more 
reliable and adequate that those estimated by other 
calibration procedures; 
 (b) exploring variability of the simulation accuracy with 
time, and the spatially aggregated uncertainty;
 (c) testing other techniques for data aggregation and 
dimensionality reduction; 
 (d) explicit consideration of data series autocorrelation, 
which is closely related to the issues of their predictability 
and the overall simulation accuracy.
 The presented methodology (and the framework to 
be created on its basis) should be developed and tested 
further: verified on more case studies, include explicit 
testing of the calibrated models on unseen data sets, and 
perhaps even extended into multi-objective calibration 
version. 
 The presented approach opens yet another potential 
opportunity. Since the multi-dimensional Nash-Sutcliffe 
index is a single basin characteristic of the simulation 
accuracy, it is assumed that it can be evaluated according 
to data from different groups of stations for different 
time periods in compliance with the principles of sample 
evaluation, i.e., while respecting the representativeness of 
these groups of stations in some sense. This opens up the 
prospect of expanding the information base for calibration 
of distributed hydrological models, and this may allow using 
full multi-year archives of standard runoff observations for 
all gauges in the same basin, despite the existing gaps in 
the observations and changes in the observation network 
configuration.  
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