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ABSTRACT. Land cover changes and wildfires have had an increasing impact on the Ogan Komering Ilir Peatland ecosystems 
in South Sumatra, Indonesia. This study aims to understand the peatland land cover and burn severity dynamics from 2015 to 
2023. The random forest method was applied to classify land cover, while the differenced Normalized Burn Ratio (dNBR) was 
used for mapping fire severity. We combined various satellite data to classify land cover, consisting of Landsat-8, Sentinel-1, 
and Sentinel-2. Landsat-8 or Sentinel-2 images were also used for the dNBR calculation. We revealed complex climate, 
human, and restoration interactions in land cover and burn severity fluctuations over 273,799 hectares of the study area from 
2015 to 2023. The 2015 El Niño-induced drought led to 21,754 fire hotspots and 2.01% of the area in high-severity burns. In 
2016, it reduced tree cover by 10.18% and increased bare/sparse vegetation by 6.11%. The 2019 El Niño event led to 7,893 
fire hotspots, lessening unburned areas and worsening burns. Due to the extreme effects of the 2015 drought, restoration 
efforts between 2016 and 2020 significantly decreased fire hotspots in 2016. Tree cover stabilized, reaching 48.46% by 2020, 
whereas unburned areas rose to 69.46% in 2018, showing good recovery and lower fire severity. In 2021-2023, fire hotspots 
were modest relative to El Niño years but increased in 2023. After 2020, tree cover decreased, but other land cover classes 
fluctuated. Therefore, continual monitoring and adaptive management are critical for reducing negative consequences and 
increasing ecosystem resilience.
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INTRODUCTION

 Peat is an organic material created from incompletely 
decomposed plant residues that accumulate in wetlands 
and have a thickness of 50 cm or more (Osaki and Tsuji 2015; 
Osman 2018). Peat ecosystems play an essential ecological role 
in sustaining human life, living organisms, and maintaining 
natural balance. Using peatlands without regard for the 
environment has harmed the peat ecosystem, resulting in 
disasters. Due to the  ‘El Niño phenomenon’s prolonged dry 
seasons, peatland drainage increases fire risk (Khakim et al. 
2022; Khakim et al. 2020; Usup et al. 2004). In its natural state, 
peat is saturated with water.  When peat is damaged due to 
forest removal and drying, water from the peat flows easily, 
causing the peat area to dry out. As a result, the peat volume 
will decrease, decreasing the peat surface (Khakim et al. 2020).

 Peatland fires are a global concern that must be 
addressed seriously. Fires caused by  ‘El Niño 2015 had a 
significant influence on the hydrological and vegetative 
conditions (Khakim et al. 2022). The restoration target 
for the 2016-2020 period is 2.4 million hectares, with 
Pulang Pisau Regency in Central Kalimantan Province, 
Musi Banyuasin Regency in South Sumatra Province, 
Ogan Komering Ilir Regency in South Sumatra Province, 
and Meranti Islands Regency in Riau Province being 
prioritized (Dohong 2019). The government accelerated 
area recovery to mitigate the impact of the 2015 forest 
and land fires. It restored the hydrological function of 
peat due to forest and land fires in a systematic, targeted, 
integrated, and comprehensive manner by establishing 
BRG by Presidential Regulation Number 1 of 2016 (Peat 
Restoration Agency 2016).
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 In the specific case of South Sumatra, the restoration 
objective encompassed 30 peat hydrological units (PHUs), 
corresponding to an area of approximately 711,479.55 
hectares (Badan Restorasi Gambut 2017). This target 
represents a significant portion of the overall peat acreage in 
South Sumatra, estimated to be around 1.2 million hectares. 
Restoration is achieved by implementing water retention 
structures, filling open canals, and constructing drilled wells. 
In rehabilitation, revegetation involves deliberately planting 
native and adaptable seeds in open peatlands and enhancing 
plantings in areas of degraded peat forests (Peat Restoration 
Agency 2016). Nevertheless, El Niño in 2019 resulted in the 
combustion of the peatland in South Sumatra. In 2019, the 
Ogan Komering Ilir (OKI) regency in the South Sumatra 
province had the most significant area burned, which 
amounted to 194,824 hectares. Musi Banyu Asin and Banyu 
Asin regencies also had substantial amounts of burning, with 
63,091 and 27,705 hectares affected, respectively1. Therefore, 
monitoring restoration efforts to evaluate the impacts on 
peatlands and detect any resultant alterations is crucial. 
 Assessment and comprehension of land cover changes 
and fire intensity in the peatland of South Sumatra are 
critical for several reasons. First and foremost, this technology 
facilitates the evaluation of the influence of human 
activities on these vulnerable ecosystems, hence aiding 
in the formulation of environmentally conscious land-use 
strategies (Biancalani and Avagyan 2014; Goldstein et al. 2020; 
Hapsari et al. 2018; Miettinen and Liew 2010). Additionally, 
monitoring fire severity is essential in anticipating and 
preventing peatland wildfire’s ecological and public health 
consequences (Harrison et al. 2020; Picotte et al. 2021; Sirin 
and Medvedeva 2022). Finally, the observation of these 
parameters contributes to the conservation of environmental 
diversity and the preservation of a healthy environment 
within the region.
Satellite-based remote sensing data, such as radar and optical 
data, plays an important role in addressing these challenges. 
ENVISAT ASAR is less developed for C-band SAR data because 
of its low spatial and temporal coverage in tropical regions. 
However, on April 3, 2014, the Sentinel-1 C-band satellite 
was launched, becoming the first to guarantee open data 
access with a 12-day return acquisition period at the equator 
and systematic global coverage (Panetti et al. 2014). The 
JAXA ALOS-2 L-band mission launched on May 24, 2014, 
to continue the ALOS-1 global forest data-collecting policy 
(Kankaku et al. 2015). However, JAXA’s unacceptably high 
price strategy may prevent this data from being used as part 
of a worldwide tropical forest monitoring system.
 However, the concurrent accessibility of L- and C-band 
data presents promising prospects for monitoring and 
administrating tropical forests. The LiDAR technique is a 
remote sensing technology that offers the distinct advantage 
of providing high-resolution Fields (Pu 2021; Zhen et al. 
2016). Nevertheless, LiDAR technology incurs significant 
costs and entails extended processing times (Novero et al. 
2019). The European Space Agency’s Copernicus program 
offers a valuable chance to enhance monitoring by providing 
access to new optical and Synthetic Aperture Radar satellite 
data that exhibit excellent temporal and spatial resolution 
(Gomarasca et al. 2019; Shirvani et al. 2019).
 The readily available data provides notable benefits in 
facilitating monitoring endeavors. The  European Space 
Agency’s mission includes a diverse array of sensors 
designed specifically for ground monitoring. The satellites 
encompass Sentinel-1, equipped with a synthetic aperture 
radar operating in the C-band frequency, and Sentinel-2, an 

optical satellite. Landsat 8 can capture images exhibiting 
diverse levels of spatial resolution. Spatial resolution can 
vary between 15 and 100 meters, and these variations 
are accompanied by 11 channels with different spectral 
resolution levels (Loveland and Irons 2016). The primary 
benefit of Landsat 8 is its provision of unrestricted access to 
data.
 This study aims to assess the restoration of peatlands in 
the OKI regency, South Sumatra, Indonesia, by analyzing the 
alterations in land cover and fire severity from 2018 to 2023. 
Sentinel-1’s radar imaging capabilities guarantee all-weather 
monitoring, supplemented by high-resolution optical 
imagery from Sentinel-2 and Landsat-8. This integrated 
technique allows for a more complete analysis and in-
depth evaluation of both land cover changes and burn 
severity. This synergistic use of satellite data results in a more 
robust understanding of ecosystem dynamics, allowing 
for timely and informed decision-making for sustainable 
land management, fire prediction, and environmental 
conservation activities. 

MATERIALS AND METHODS

Study Area

 The OKI Regency experienced the most extensive peat 
fires in South Sumatra, Indonesia, in 2015 and 2019. The fire 
hotspots of 2015 and 2019 are presented in Figs. 1a and 1b, 
respectively. In this study, we selected four peat hydrology 
units (PHUs), namely PHU S. Burnai – S. Sibumbung, PHU 
S. Sibumbung – S. Talangrimba, PHU S. Talangrimba – S. 
Ulakedondong, and PHU S. Ulakedondong – S. Lumpur, 
within this regency, as seen in Fig. 1. The area encompasses 
a total area of 273,799 hectares. The peat ecosystem in 
this region covers a cultivation area of 123,800 hectares 
and a protected area spanning 149,201 hectares. The peat 
thickness reaches 500 cm over this region. 
 Consequently, it has been identified as a priority location 
for restoration efforts, particularly for the PHU S. Burnai – 
S. Sibumbung. Nevertheless, a notable alteration in land 
utilization occurred at this specific site, wherein an area 
designated for conservation purposes was instead utilized 
to cultivate oil palm plantations. Hence, mapping land cover 
becomes of significant importance.

Data

 The current study employed a combination of remote 
sensing data from several sources to classify land cover, 
incorporating both temporal and spectral variety to achieve 
precise and reliable results. The image collections consisted of 
Sentinel-1 (S1), Sentinel-2 (S2), and Landsat-8 (L8) from 2015 
through 2023. The Sentinel-1 mission is an operational radar 
satellite mission managed by the European Space Agency 
(ESA). Providing synthetic aperture radar (SAR) imagery with 
diverse polarization modes renders it highly helpful for land 
cover classification, primarily owing to its capacity to operate 
well in all weather conditions. The investigated area was 
provided with Sentinel-1 data from the Copernicus S1 GRD 
image collection. This framework is based on interferometric 
wide-swath (IW) GRD images. These images guarantee 
full information detail with a 10 m pixel spacing, a spatial 
resolution of 20-22 m, and a temporal resolution of 6-12 days 
(Wang et al. 2020). 
 In addition, the Sentinel-2 satellite project, developed 
by the European Space Agency (ESA), offers high-resolution 
optical imaging in different spectral bands. Using Sentinel-2 
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data’s multispectral characteristics enables the identification 
of significant insights related to land cover features. The 
Sentinel-2 image for our investigation was sourced from the 
Copernicus S2 level-1 image collection covering the study 
period. Moreover, the Landsat-8 satellite, jointly operated 
by the United States Geological Survey (USGS) and NASA, 
offers optical imagery with a moderate resolution. The use of 
Landsat-8 data is critical for ongoing land cover monitoring 
and long-term change detection. The Landsat-8 Surface 
Reflectance was used from the USGS Landsat 8, Collection 2, 
Tier 1 dataset image.

Methodology

Preprocessing

 The Ground Range Detected (GRD) scenes are a 
collection of images that have been processed using the 
Sentinel-1 Toolbox. This processing generates a calibrated 

and ortho-corrected product made available on the Google 
Earth Engine (GEE) platform. In our study, we opted for dual 
polarization modes, specifically VV (vertical-vertical) and 
VH (vertical-horizontal). In addition, we implemented an 
improved Lee speckle filter to effectively eliminate speckle 
noises. This step is crucial in preprocessing synthetic 
aperture radar (SAR) images. The collection of processed 
S1 images was converted to a linear power or decibel (dB) 
scale using the sigma naught (σ0) parameter. We derived 
two indices from S1, namely the radar vegetation index 
(RVI)(Kim et al. 2012) and the normalized ratio procedure 
between bands (NRPB) (Filgueiras et al. 2019) ), which we 
added to an input image composite.
 The Copernicus S2 level-1 image has been orthorectified 
and radiometrically corrected, which has produced top-
of-atmosphere reflectance values (Gatti et al. 2015). It was 
decided to use Bands 2 to 8, each with an initial spatial 
resolution of 10 meters. Band QA60 from the S2 1C product 
was used in an automated cloud masking technique to 

Fig. 1. (a), (b) Fire hotspots over the PHUs of South Sumatra in 2015 and 2019, respectively and (c) peat ecosystem 
functions of the study area (Peat Restoration Agency 2017) and peat thickness (BBSDLP 2019)
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ensure data quality (Carrasco et al. 2019). This procedure 
successfully masked both opaque and cirrus clouds. 
Clouds and shadows were also masked from Landsat 8 
imagery in GEE using the Quality Assessment (“QA_PIXEL”) 
band to mask out pixels with clouds and shadows (Zhen et 
al. 2023). To create a cloud-free composite image from S1 
and S2, we used the median to combine multiple cloud-
masked images into one representative image for a year. 
On the other hand, the mean was used to create an annual 
S1 image composite.
 We calculated the Normalized Difference Vegetation 
Index (NDVI), Normalized Difference Water Index (NDWI), 
and Normalized Difference Built-Up Index (NDBI) from 
the optical S2 and L8 data to increase the accuracy of 
land cover classification. Besides these auxiliary data, 
the Inverted Red-Edge Chlorophyll Index (IRECI) and 
Sentinel-2 Red-Edge Position (S2REP) were calculated 
from S2 imagery (Frampton et al. 2013). The S1 SAR and 
S2/L8 optical data, along with their calculated indices, 
were combined into a yearly composite dataset. 
 After creating the yearly composite, we applied 
Principal Component Analysis (PCA) based on the 
composite. It transformed the original bands into 
orthogonal or principal components, ranked by their 
variance. This statistical technique compresses data from 
many bands into fewer uncorrelated bands. The PCA is 
also advantageous in improving supervised classification 
results (Ali et al. 2019). Prior to sampling training points, 
we added the first three principal component bands to 
the original composite. We can capture various spectral 
and structural information about the land cover classes 
by incorporating 34 bands and indices from multiple 
sensors and 3 PCA components. The more bands can 
lead to a more discriminative dataset for classification.

Land Cover Classification 

 The eight major land cover classifications are tree 
cover, shrubland, grassland, farmland, built-up, bare/
sparse vegetation, water bodies, and herbaceous 
vegetation. Peat forests, oil palm plantations, rubber 
plantations, and mangroves were classified as tree cover. 
We classified shrubs as woody perennial plants with 
persistent, woody stems and no single, well-defined 
main stem that grow to a height of less than 5 meters. 
Grass is any geographical area dominated by natural 
plants (with no persistent branches or shoots above 
ground and no definite hard structure). Grasslands 
include grasslands, prairies, steppes, savannahs, and 
pastures. Cropland is cultivated land that can be 
harvested at least once within a year of the first sowing 
or planting. Buildings, roads, and other manufactured 
structures, such as railroads, inhabit built-up areas. 
Furthermore, water class is used to classify different 
aquatic settings, such as fishponds, rivers, and other 
bodies of water. Herbaceous wetlands are characterized 
by natural herbaceous vegetation (coverage of 10% or 
greater) that is permanently or frequently inundated by 
fresh or brackish water. 
 We created 282 feature collections with points 
representing pixels in those classes. These samples of 
feature collection have a property called landcover, with 
values from 1 to 8 representing tree cover, shrubland, 
grassland, farmland, built-up, bare/sparse vegetation, 
water bodies, and herbaceous vegetation, respectively. 
These samples were collected from the RGB composite of 
the optical imagery and field observation. Furthermore, 
the classification accuracy was quantitatively estimated 

by dividing the samples into two random fractions – 
70% for training the model and 30% for validation of 
the predictions.
 The Random Forest classification process for 
peatland analysis in South Sumatra commences with 
the assembly of a comprehensive input dataset, which 
encompasses 34 bands, spectral indices, and three PCA-
derived components (namely pc1, pc2, and pc3) from 
Sentinel-1, Sentinel-2, and Landsat-8 imagery. This rich 
dataset encapsulates a wide range of spectral and radar 
information for characterizing peatland vegetation 
and conditions. In the classification stage, a Random 
Forest method was employed, and notably, all available 
bands, indices, and PCA components were considered 
for each tree, totaling 36 features. This method ensures 
the model leverages all the input data, maximizing its 
inherent spectral and geographical variety.
 After performing the classification, a feature 
importance analysis was carried out to determine the 
significance of each feature in distinguishing land over 
classes. This stage plays a crucial role in identifying the 
bands, indices, or PCA components that have the most 
impact on the classification process. By quantifying 
feature importance scores, we gained valuable insights 
into the critical elements that contribute to the 
characterization of peatlands. This, in turn, facilitated 
the selection and interpretation of features based on 
data-driven approaches.
 The optimal model performance in the Random 
Forest classification process is dependent on the critical 
feature of hyperparameter adjustment. To get accurate 
and robust classification outcomes, it is crucial to 
precisely tune parameters such as the number of trees, 
variables per split, bagging fraction, minimum leaf 
population, maximum number of leaf nodes, and seeds. 
Exhaustive tuning efforts, often involving grid searches 
and cross-validation techniques, helped identify the 
parameter values that maximize classification accuracy 
while mitigating overfitting risks.
 Finally, post-processing techniques are applied to 
the classification results to refine and enhance their 
quality. These post-processing steps may encompass 
spatial smoothing, majority filtering, or object-based 
analysis tailored to the unique characteristics of 
peatland regions. The objective is to produce visually 
coherent and accurate peatland maps suitable for 
subsequent ecological and environmental assessments 
or management decisions in South Sumatra’s peatland 
areas.

Mapping Burn Severity

 Normalized Burn Ratio (NBR) is used to identify 
areas of burned vegetation. The NBR for the before and 
after fires was calculated utilizing optical images, either 
Landsat-8 or Sentinel-2, using Eq. (1) (Cocke et al. 2005). 
The NBR value is bounded between -1 and +1, with 
vegetation contributing the most and burned areas 
contributing the least. Burn severity can be estimated 
by calculating the differenced Normalized Burn Ratio 
(dNBR), as presented in Eq. (2). As shown in Table 1, the 
values of burn severity indices were categorized into 
seven distinct severity levels.

(1)

(2)
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RESULTS 

Optimum parameters and feature importance

 We optimized critical hyperparameters in the Random 
Forest classification context, including decision trees, 
variables, bagging fraction, leaf population, nodes, and 
seed value. This step identified the optimum values within 
defined ranges to assess their influence on classification 
results. The results were significant, revealing the specific 
parameter values that, through experimentation and 
analysis, were found to optimize the Random Forest 
classification model.
 An example of parameter selection for classifying 
the land cover in 2020 is illustrated in Fig. 2. The study 

determined that the ideal number of decision trees in 
the Random Forest ensemble is 270. For the number of 
variables considered at each split, 15 was identified as 
the optimal value. The bagging fraction, which controls 
the proportion of the training data used for building 
individual trees, performed optimally at 0.9. Regarding 
the minimum leaf population, the analysis revealed that a 
minimum of one sample must be present at a leaf node 
for optimal results. The minimum number of leaf nodes, 
which indicates the number of terminal nodes in a tree, 
was observed to be most effective at 100. Lastly, the seed 
value, which can impact the randomness in the Random 
Forest, was determined to yield the best results at a value 
of 301.

Fig. 2. Selected optimum parameter for the random forest classification

Table 1. Seven burned severity classes

No Severity Level Range

1. Enhanced Regrowth, High < -500

2. Enhanced Regrowth, Low -250 to -100

3. Low Severity -100 to 100

4. Unburned 100 to 270

5. Moderate-low Severity 270 to 440

6. Moderate-high Severity 440 to 660

7. High Severity > 660
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 In the context of Random Forest classification analysis, 
figuring out how discriminative a set of input features 
from different sources is requires figuring out how relevant 
each feature is. As shown in Fig. 3, the relative relevance 
scores reveal unique patterns among these characteristics, 
offering information on their contributions to land cover 
classification.
 The Sentinel-2 dataset encompasses a collection of 
spectral bands (B1 to B12) and associated indices (IRECI, 
S2REP, NDBI of S2, NDVI of S2, NDWI of S2) demonstrating 
varied significance levels. Bands B5 and B11 significantly 
have noteworthy relative significance ratings of 3.033 and 
3.24, respectively. These bands demonstrate exceptional 
proficiency in gathering crucial vegetation data, which is 
fundamental for distinguishing different land cover types. 
Indices such as the Normalized Difference Vegetation Index 
(NDVI) derived from Sentinel-2 satellite imagery, which has 
been assigned a relative relevance value of 2.85, are known 
to have a substantial impact on assessing the health of 
vegetation
 The Landsat-8 dataset exhibits a collection of significant 
attributes, notably the surface reflectance bands (SR_B1 to 
SR_B7) and indices (NDVI of L8, NDWI of L8, NDBI of L8). 
SR_B3 and SR_B1 are significantly influential, as indicated 
by their respective relative significance ratings of 3.522 
and 3.301. These bands are very important for accurately 
classifying different types of land cover and describing 
the land surface’s characteristics. An important indication 
of water-related land cover is the Normalized Difference 
Water Index (NDWI) produced from Landsat 8 satellite 
images, with a relative relevance score of 3.047.
 Using synthetic aperture radar (SAR) data obtained 
from Sentinel-1 provides distinctive characteristics with 
significant relative significance. The VH (Vertical Transmit 
and Horizontal Receive) method stands out significantly, 
as indicated by its relative relevance score of 3.205. The 
(VV – VH) attribute, which denotes the disparity between 
VV and VH, holds significant significance, as evidenced 
by its score of 3.115. The SAR features demonstrate 
exceptional capability in effectively penetrating cloud 
cover and offering valuable observations regarding surface 
parameters.
 PCA combines Sentinel-1, Sentinel-2, and Landsat-8 
data to produce three main components: pc1, pc2, and 
pc3. Each component contributes to the classification 
process, with pc1 having a relative importance value of 
2.71, pc2 having a score of 2.835, and pc3 having a score 
of 2.893. These PCA-derived components represent the 

combination of data from several sources, which jointly 
improves the classification process.

Land cover accuracy

 The high Overall Accuracy (OA) values recorded over 
several years represent the overall performance of the land 
cover classification model, as presented in Table 2. These 
OA values, which range from 76.47% to 91.03%, reflect 
the model’s broad ability to accurately categorize pixels 
across all land cover categories. It implies that the model 
adequately represents the landscape’s complexity and 
delivers trustworthy forecasts for diverse land cover types. 
The Kappa values, which range from 0.71 to 0.89, further 
emphasize the model’s dependability. These results indicate 
a moderate to significant agreement between observed 
and anticipated classifications, validating the model’s 
consistency and accuracy in land cover classification. 
 Across multiple land cover types, the classification 
model displays remarkable accuracy concerning Producer’s 
Accuracy (PA) and User’s Accuracy (UA). The model 
consistently yields high PA and UA values for tree cover, 
demonstrating a strong capacity to accurately identify and 
categorize pixels in this category. This accuracy shows the 
model’s consistency in delivering correct findings and the 
high likelihood that pixels identified as tree cover represent 
such vegetation.
 The model’s accuracy in recognizing shrublands varies 
with moderate to high PA and UA values, suggesting 
that environmental conditions or land cover changes 
may affect its precision. It has reasonable accuracy in 
categorizing grassland and consistently obtains high PA 
and UA values, demonstrating its ability to distinguish 
agriculture from other land cover categories. The model 
also reliably and accurately identifies built-up regions, 
demonstrating its dependability in detecting urban or 
developed areas. However, the accuracy of categorizing 
bare or sparse vegetation varies, potentially influenced 
by environmental variables or changes in land cover. The 
model also reliably classifies water bodies with high PA and 
UA values, demonstrating its ability to differentiate aquatic 
characteristics from other land cover categories. For 
herbaceous wetlands, the model consistently shows high 
PA and UA values, demonstrating its consistent recognition 
of these regions over time.
 The high OA and Kappa values show that the land 
cover classification model is accurate and consistent. Over 
numerous years, the model’s consistently high PA and 

Fig. 3. Relative importance of features as inputs for random forest classification
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UA values across land cover categories demonstrate its 
accuracy in identifying and classifying various landscape 
elements. This result shows that the model captures the 
dynamics of land cover patterns and provides reliable 
insights for numerous applications.

Spatiotemporal land cover dynamics

 The land cover from 2015 to 2023 is presented in Fig. 4, 
as determined through the application of Random Forest 
classification. The spatial and temporal distribution of land 
cover categories exhibited variation. The tree covers in PHU S. 
Burnai – S. Sibumbung are primarily comprised of oil palm and 
rubber plantations, as observed from the field investigation. 
In contrast, the region of PHU S. Sibumbung - S. Talangrimba 
was mainly characterized by peatland forest, with a 
comparatively smaller portion dedicated to plantation 
activities in the southern part of this PHU.
 Peatland regions in four PHUs have exhibited notable 
changes in land cover. In 2015, an extensive expanse 
of trees was observed in PHU S. Burnai – S. Sibumbung, 
amounting to about 16,050 hectares consisting of most 
oil palm plantations, rubber plantations, and small peat 
forests. However, throughout the years, a significant 
reduction in tree coverage has been witnessed, which 
could be attributed to various factors such as land 
conversion for plantation purposes and natural events 
like the El Niño phenomenon, which can contribute to 
forest fires and deforestation. This decline in tree coverage 
coincides with an augmentation in shrubland, grassland, 
and built-up areas, indicating land conversion for 
plantations, settlements, and other land uses. Additionally, 
the presence of cloud cover in different years suggests 
the existence of climatic variations that could potentially 
impact the detection and analysis of land cover.
 In 2019, after the occurrence of the El Niño phenomenon 
in 2015, a decline in the extent of forested areas was 
observed in most locations, and this pattern persisted 
throughout the year 2020. The El Niño phenomenon 
frequently induces arid conditions, rendering the 
peatlands more vulnerable to fires, potentially impacting 
forested areas’ extent. However, there was an expansion 
in grassland, shrubland, and built-up areas, particularly 
in the regions of KHG Sungai Sibumbung – Sungai 
Talangrimba and KHG Sungai Ulakkedondong – Sungai 
Lumpur. These alterations may indicate changes in land 
utilization, such as the expansion of plantation activities, 

settlement development, or changes in vegetation types. 
The conversion of land for agricultural purposes might also 
contribute to the augmentation of cropland.
 The dynamics of land cover appear to be improving in 
2021. Several sites had an increase in tree covers, suggesting 
the possibility of afforestation or natural regeneration, 
which is encouraging for attempts to conserve peatlands. 
Other land cover types, such as grassland and shrubland, 
appear to be expanding, possibly due to continued land 
use changes and plantation preparation. Furthermore, 
there was an increase in tree cover in 2023, particularly in 
KHG Sungai Sibumbung - Sungai Talangrimba, which may 
result from natural regeneration of forests or plantation 
growth. It is critical to monitor these trends to ensure that 
conservation efforts involve the restoration of peat forests 
and are sustainable. 
 The relationship between land cover types is dynamic 
and impacted by various factors, including human activity, 
conservation initiatives, and climatic phenomena like El 
Niño. Tree cover can assist in preserving soil moisture and 
reduce the risk of fire, it is essential for peatland ecosystems, 
including oil palm and rubber plantations. Peatland 
conservation faces obstacles posed by expansion into 
alternative land cover types, specifically settlements and 
agricultural areas. Restoration programs, climate resilience 
plans, and sustainable land management techniques are 
crucial for preserving a healthy balance and safeguarding 
these essential ecosystems.
 The temporal analysis of land cover classes for 
the overall study area spanning from 2015 to 2023 is 
presented in Fig. 5. Several noteworthy tendencies can be 
found in a few of these classes. The tree cover displayed 
notable temporal fluctuations, with values ranging from 
a minimum of 40.02% in 2016 to a maximum of 53.12% 
in 2019. The increase in tree cover in 2019 is indicated as 
a massive expansion of the oil palm plantation in PHU S. 
Burnai – S. Sibumbung, which can be seen on the land 
cover map in Fig. 4. Nevertheless, the decline to 43.56% 
in 2023 prompts inquiries regarding potential influences 
such as deforestation or natural disruptions impacting the 
extent of tree coverage.
 In contrast, the shrubland class exhibited steady 
percentages, ranging from 5.89% to 14.79%, with no 
significant increasing or decreasing trend. It suggests 
that there is a stable and persistent land cover within 
this classification. The data reveals a progressive rise in 
grassland proportions, commencing at 12.08% in 2015 and 

Table 2. Accuracy measures of land cover classification

Year Kappa OA
Tree Cover Shrubland Grassland Cropland Built-up

Bare / sparse 
vegetation

Water 
bodies

Herbaceous 
Wetland

PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA

2015 0.74 0.78 0.89 0.71 0.62 0.81 0.54 0.72 0.82 0.93 0.70 0.88 0.40 0.38 1.00 1.00 0.92 0.92

2016 0.71 0.76 0.86 0.80 0.57 0.76 0.67 0.67 1.00 0.75 0.89 0.57 0.50 0.60 1.00 0.95 0.83 0.94

2017 0.76 0.81 0.83 0.78 0.63 0.79 0.53 0.40 1.00 0.92 1.00 0.83 0.48 0.64 1.00 1.00 0.90 1.00

2018 0.81 0.84 0.89 0.84 0.73 0.86 0.69 0.77 1.00 1.00 0.89 0.67 0.65 0.67 1.00 1.00 1.00 0.92

2019 0.81 0.84 0.92 0.79 0.84 0.89 0.82 0.67 0.61 1.00 0.88 0.88 0.58 0.82 1.00 1.00 1.00 1.00

2020 0.89 0.91 0.91 0.94 0.84 0.89 0.96 0.79 0.86 1.00 0.90 0.82 0.77 0.79 1.00 1.00 1.00 1.00

2021 0.87 0.89 0.92 0.87 0.84 0.84 0.96 0.77 0.95 0.95 1.00 0.92 0.60 0.95 0.97 1.00 1.00 0.94

2022 0.81 0.85 0.85 0.73 0.67 0.80 0.72 0.78 0.94 0.88 0.75 0.90 0.76 0.81 1.00 1.00 1.00 0.92

2023 0.84 0.87 0.94 0.89 0.80 0.80 0.89 0.61 0.47 1.00 0.77 0.77 0.72 0.81 1.00 0.98 0.91 1.00
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Fig. 4. (a) PHU areas and (b) – (j) classified land cover from random forest method for a period 2015 – 2023, respectively
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culminating at 24.07% in 2023. This observation implies a 
potential increase in the extent of grassland ecosystems, 
possibly driven by alterations in land use patterns, such 
as changes in forested or shrubland areas into grasslands. 
Over the observed period, the cropland percentages 
consistently fluctuated within the 2.04% to 6.23% range. 
The observed consistency is likely attributable to consistent 
agricultural techniques or land use policies. The percentage 
of built-up regions witnessed a marginal rise from  0.36% in 
2020 to 0.96% in 2023, indicating a continuing trend of land 
clearing, especially for plantations. The trend is significant 
in environmental planning and land use control. The water 
bodies exhibited notable stability, ranging from 0.34% to 
1.13%. This observation suggests that these hydrological 
features can endure and persist within the broader 
landscape. The proportions of herbaceous wetlands 
fluctuated, increasing from 0.36% in 2015 to 1.43% in 2016, 
followed by subsequent modest fluctuations. 

Spatiotemporal Burn Severity Levels

 The burnt severity maps for the four-peat hydrological 
units in the study region from 2015 to 2023 are presented 
in Fig. 6. PHUs with high fire severity occurred in small 
areas in S. Burnai-Sibumbung, S. Talangrimba, and S. 
Ulakkedondong – S. Lumpur, respectively, in 2015, 2019, 
and 2023. Meanwhile, the PHU with the most significant 
percentage of areas experiencing high severity is PHU S. 
Burnai–S. Sibumbung. This severity corresponded to years 
of El Niño, which caused a severe drought. 
 Furthermore, a moderate-high severity level had been 
in a slightly larger area than the high severity level. This 
severity occurred in the largest region in 2015, especially 
PHU S. Burnai–S. Sibumbung. Fires of high-moderate 
severity occurred over all PHUs almost yearly during the 
study period, even in a tiny percentage of the area. In 
addition, the trend of the percentages of regions with 
moderate-low severity was almost the same as that with 
moderate-high severity, but the percentages were slightly 
higher. Meanwhile, the low severity of fires had stayed 
stable over time. 
 On the contrary, in 2015, 2019, and 2023, as expected, 
the area did not burn less compared to other years. 
Unburned areas imply fire resistance and a stable, 
ecologically stable ecosystem. Meanwhile, low levels of 
regrowth grew in some PHUs but remained consistant 
in others. Enhanced regrowth low occurrences were 
highest in PHU S. Sibumbung–S. Talangrimba and S. 

Talang–S. Ulakkedondong, but enhanced regrowth high 
burns were rare and variable. Enhanced regrowth high, 
identical to enhanced regrowth low, was highest in PHU 
S. Sibumbung–S. Talangrimba and S. Ulakkedondong–S. 
Lumpur.
 The analysis of burn severity trends from 2015 to 2023 
reveals interesting patterns in the temporal distribution of 
burn severity classifications, as depicted in Fig. 7. Notably, 
the proportion of high-severity burn regions peaked in 
2015 at 2.01% of the landscape. Following that, there was 
a steady fall, reaching a low of 0.11% in 2017 and 2020. 
However, there was a modest increase in high-severity 
burn regions in 2023, recording at 0.95%. Unburned areas, 
which began at 49.10% in 2015, fluctuated but generally 
showed an increasing trend in succeeding years, indicating 
a continuous recovery process.
 The data also shows that the trend in moderate-high, 
moderate-low, and low-severity burn areas is dropping. 
This decrease indicates a transition from moderate to 
low burn severity, indicating that these areas are still 
recovering. Similarly, from 2015 to 2018, the categories of 
Enhanced Regrowth Low and Enhanced Regrowth High 
showed constant growth, indicating a period of regrowth 
and recovery in these areas, followed by minimal changes 
in succeeding years.
 A remarkable contrast arises when comparing 2015 
to 2023: whereas high-severity burns peaked at 2.01% in 
2015, unburned land accounted for the highest proportion 
at 69.46% in 2018, indicating significant progress in 
ecological restoration. This shift reflects a steady tendency 
toward recovery, as seen by a decrease in the proportions 
of high and moderate burn severity categories and an 
increase in unburned and regrowth areas.

DISCUSSION

 The relationship between land cover dynamics and 
fire severity levels exposes interrelated environmental 
processes and their long-term implications. This study’s 
land cover classification model consistently categorizes 
different landscape aspects with high OA and Kappa values, 
demonstrating its dependability in capturing landscape 
complexity. While the model succeeds at identifying 
different land cover types such as tree cover, shrubland, 
grassland, and built-up areas, the model’s varying accuracy 
in recognizing shrublands and sparse vegetation implies 
susceptibility to environmental shifts or changes in land 
cover of the study area.

Fig. 5. The variation of land cover percentages for each class from 2015 to 2023



15

Khakim M. Y. N., Poerwono P., Affandi A. K. et al. LAND COVER AND BURN SEVERITY DYNAMICS OF ...

Fig. 6. (a) Fire hotspots and (b) – (j) burned severity in the study area from 2015–2023
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 Temporal assessments of land cover transformations 
reveal subtle changes in tree cover, shrubland, grassland, 
and built-up areas, particularly in peatland areas. Declines 
in tree cover and increases in shrubland, grassland, and 
built-up areas suggest land conversions for plantations 
or settlements. The peatland conversion to oil-palm 
plantations also occurred in other sites, such as Riau Province, 
Indonesia (Numata et al. 2022), Kalimantan, Indonesia, and 
Peninsular Malaysia (Miettinen et al. 2016). Deforestation 
and land conversion in peatlands are causing significant 
loss of natural forest cover, greenhouse gas emissions, and 
habitat loss for variety of species. In addition, reduced tree 
cover during El Niño episodes suggests a vulnerability to 
fires and probable deforestation in peatlands. Peatlands 
have always had fire as an inherent component of their 
ecosystems. Agricultural techniques and land clearance are 
two examples of human activities that have contributed 
to the dramatic increase in the frequency and severity of 
flames in the last several centuries (Cole et al. 2019). The 
ability of peatlands to withstand fire is determined by 
variables such as the frequency and intensity, as well as 
the extent of human interference. Undisturbed peatlands 
demonstrate inherent resilience, but human activities 
diminish their ability to recuperate after fires. Nonetheless, 
observed increases in tree cover in some years suggest 
afforestation or regeneration initiatives are critical for 
peatland conservation. These variations highlight the 
dynamic character of landscapes influenced by human 
activity, conservation efforts, and climatic variations such 
as El Niño.
 The burn severity patterns reported in this study are 
consistent with the findings of prior research on fire 
dynamics in tropical peatlands (Page et al. 2009). El Niño 
events have a substantial impact on fires in Southeast 
Asian peatlands. These events increase both the frequency 
and intensity of fires in the region. The fires are more 
severe during El Niño because of prolonged drought 
and lower water tables. These conditions make the peat 
substrates more prone to burning. A significant correlation 
exists between drought conditions worsened by El Niño 
occurrences and the increased intensity and spread of fires 
in tropical peatland regions (Schmidt et al. 2024; Turetsky 
et al. 2015).
 High fire severity during El Niño-induced droughts 
corresponds to environmental stress, with PHU S. Burnai–S. 
Sibumbung having the most significant percentage of high-
severity burns. Moderate-high severity covers a broader 
area than high severity, with moderate-low severity having 

slightly higher proportions. Low-severity fires maintain 
steady levels over time. Severe fires frequently cause 
significant changes in the plant communities’ composition, 
promoting the growth of species that are more suited to 
intense disturbances. On the other hand, fires with minimal 
intensity typically maintain the plant community’s current 
structure, enabling faster vegetation restoration before 
the fire (Schmidt et al. 2024). Unburned regions that 
remain steady over time demonstrate ecological stability 
and fire tolerance in specific ecosystems. Low-regrowth 
regions show different tendencies throughout PHUs, 
with enhanced regrowth levels more prominent in some 
locales. From 2015 to 2023, the dynamics of burn severity 
showed a decline in high-severity burn zones, followed 
by a minor increase in 2023. Moderate-high, moderate-
low, and low-intensity burn zones exhibit falling patterns, 
indicating an ongoing recovery process. The difference 
between 2015 and 2023, with high-severity burns peaking 
in 2015 and unburned land reaching its highest share in 
2018, demonstrates a persistent trend toward recovery. 
It provides critical insights into wildfire consequences 
and ecosystem recovery, aiding in land management 
decisions and strategic decisions about the recovery and 
preservation of ecosystems.
 This study highlights the importance of understanding 
the relationship between land cover types and ecosystem 
dynamics in peatlands. It provides valuable information for 
local government, BRG, and other stakeholders involved in 
further restoration programs. Some of the programs must 
include rewetting drained peatlands, revegetating the 
landscape, and preparing peatlands without fire. To disable 
drainage systems, it needs to backfill and obstruct canals. 
The study underscores the importance of prioritizing 
restoration efforts in PHU S. Burnai–S. Sibumbung, an 
area with the highest proportion of burns classified as 
high severity. Targeted fire prevention and management 
methods, as well as reforestation and afforestation efforts, 
are crucial in this area. Planting native tree species that 
retain soil moisture and reduce fire danger is important. 
Sustainable land management methods that improve 
peatland resilience to climate fluctuations, particularly 
droughts, should be integrated into restoration initiatives. 
Hydrological restoration measures are also important in 
mitigating the impacts of climate change on peatlands. 
Implementing a monitoring system will allow stakeholders 
to track changes in land cover and fire severity, making 
timely adjustments to restoration programs. Additionally, 
engaging the community and educating them on peatland 

Fig. 7. The variation of area percentages of burn severity from 2015 to 2023



17

Khakim M. Y. N., Poerwono P., Affandi A. K. et al. LAND COVER AND BURN SEVERITY DYNAMICS OF ...

conservation will generate support for restoration and 
promote sustainable livelihoods that protect peatland 
integrity. Peatlands, especially those in the Middle Taiga 
zone of West Siberia, are important carbon sinks, as 
(Dyukarev et al. 2019) shown by studying the carbon 
dynamics of peatland ecosystems. This realization 
emphasizes the need to preserve intact peatland cover in 
tropical areas, such as OKI peatland, to lessen the negative 
impacts of fire occurrences and changes in land cover on 
carbon sequestration.

CONCLUSIONS

 We have successfully performed dynamics of the land 
cover and burn severity in OKI peatland over the period 
of 2015 to 2023. The random forest algorithm accurately 
classified land cover, and the differenced Normalized 
Burn Ratio (dNBR) robustly delineated burn severity. We 
summarize our findings from the results as follows:

 El Niño-induced drought in 2015 led to high 
temperatures and increased fire hotspots, causing 
significant tree cover loss and increased bare/sparse 
vegetation. In addition, the 2019 El Niño event caused 
another spike in fire hotspots, reducing unburned areas 
and increasing burn severity.
 Human activities, including oil-palm plantations and 
agricultural expansion, exacerbated the degradation of 
natural ecosystems and increased fire risk.
 Restoration activities from 2016 to 2020 mitigated the 
effects of the 2015 drought, resulting in fewer fire hotspots. 
Post-restoration, tree cover fluctuated, with minor 
fluctuations and a possible resurgence of fire activity.
 The need for sustainable land management practices 
and stricter regulations is underscored, emphasizing the 
need for continuous adaptive management to ensure 
the long-term sustainability of both natural and human-
modified landscapes.
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