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ABSTRACT. Forest fires are global phenomena that pose an accelerating threat to ecosystems, affect the population life quality 
and contribute to climate change. The mapping of fire susceptibility provides proper direction for mitigating measures for 
these events. However, predicting their occurrence and scope is complicated since many of their causes are related to human 
practices and climatological variations.  To predict fire occurrences, this study applies a fuzzy inference system methodology 
implemented in R software and using triangular and trapezoidal functions that comprise four input parameters (temperature, 
rainfall, distance from highways, and land use and occupation) obtained from remote sensing data and processed through 
GIS environment. The fuzzy system classified 63.27% of the study area as having high and very high fire susceptibility. The 
high density of fire occurrences in these classes shows the high precision of the proposed model, which was confirmed 
by the area under the curve (AUC) value of 0.879. The application of the fuzzy system using two extreme climate events 
(rainy summer and dry summer) showed that the model is highly responsive to temperature and rainfall variations, which 
was verified by the sensitivity analysis. The results obtained with the system can assist in decision-making for appropriate 
firefighting actions in the region.
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INTRODUCTION

 Forest fires cause immeasurable environmental impacts. 
On top of economic damage and public health-related 
problems, which are commonly observed immediately 
after fires, later events such as climatic and environmental 
changes caused by large amounts of CO

2
 emitted into the 

atmosphere lead to the increasing greenhouse effect, thus 
resulting in major ecological disturbances (Machado and 
Lopes 2014; Aragão et al. 2018; Venkatesh et al. 2020). 
 In the past, the occurrence of forest fires was naturally 
related to climatic fluctuations, such as changes in 
temperature and rainfall; however, in recent decades, 
anthropogenic activities have caused major alterations 
in the fire regime (Chuvieco et al. 2019) since changes in 
land use associated with climate change can increase the 
frequency and severity of these events (Aquilué et al. 2020). 
Thus, understanding their spatial and temporal distribution 
is not trivial (Machado and Lopes, 2014) since it includes a 
set of dynamic factors driven by the interaction of biotic 
and abiotic processes that depend on the geographic 

scale (Aragão et al. 2018; Mota et al. 2019; Pourghasemi et 
al. 2020; Ribeiro et al. 2020).
 Data from the Fire Information for Resource 
Management System (FIRMS) indicates that between 2000 
and 2018 there were about 7.27 million outbreaks of fire 
in South America (NASA, 2020). In Brazil, the occurrence 
fire outbreaks has significantly increased in recent years 
due to several factors, such as deforestation, agropastoral 
activities, and uncontrolled burning (Caúla et al. 2015; 
Barlow et al. 2019). Although the entire national territory 
suffers from these events, historical data shows that 80.66% 
of fires occur in the Amazon and Cerrado biomes, with an 
average of 170,000 fire outbreaks per year, predominantly 
between July and October (INPE, 2020).
 The effective management of these events requires 
centralized planning, which includes identifying the 
locations with the greatest fire susceptibility. This 
identification can enable the management of critical areas 
and serve as a basis for developing more accurate fire 
warning systems and a consistent institutional program 
(Adab et al. 2013; Eugenio, 2016; White et al. 2016; Barlow 
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Fig. 1. Study area in northern Rondônia

et al. 2019). The methods usually employed in planning 
include integrating remote-sensing techniques, statistical 
methods, and GIS (Jaiswal et al. 2002; Adab et al. 2013; 
Mota et al. 2019; Pourghasem et al. 2020; Gizatullin 
and Alekseenko, 2022), which are employed through 
probabilistic, stochastic models, or a mixture of both.
 Despite proving high effectiveness in studies at local 
scale, at regional scale the GIS and statistical methods have 
limitations due to multiple complex interactions related 
to the degree of subjectivity these events have, spatial 
distribution of the events, and uncertainties caused by 
spatial and temporal resolution of the ignition data. This 
makes it difficult to eliminate uncertainties regarding 
the inaccuracy of the data and, as a result, these models 
present difficulties when associating products with data 
inaccuracies in the GIS environment, thus resulting in 
errors in the final products (Bui et al. 2017; Moayedi et 
al. 2020; Sahiner et al. 2022). Therefore, it is necessary to 
develop new models that make it possible to deal with 
uncertainties and inaccuracies, while also improving the 
ability to predict these events.
 As an alternative methodology, the fuzzy theory 
introduced by Zadeh (1965) provides a logical approach 
that is capable of dealing with complex systems, such as 
those observed in forest fire events that have spatial and 
temporal variability, as well as subjectivity, and providing 
an adequate mathematical treatment (Zadeh 1965; Araya-
Muñoz et al. 2017; Bressane et al. 2020; Fernandes et al. 
2023). Recent environmental applications that use the fuzzy 
approach integrated with GIS have shown advantages over 
traditional techniques in evaluating several phenomena, 
such as susceptibility to flooding (Sahana and Patel, 2019), 
landslides (Nwazelibe et al. 2023), drought (Nikolova et al. 
2021), and soil erosion (Souza et al. 2019), and anthropic 
impact on watersheds (Lopes et al. 2021).

 Considering that the fuzzy theory is used to analyze 
the causality of uncertain events (Román-Flores et al. 2020; 
Sahiner et al. 2022), including the causes of forest fires 
(Pourghasemi et al. 2020; Ribeiro et al. 2020), and that the 
fuzzy method can work with uncertainties related to the 
spatial and temporal data resolution (Lopes et al. 2021; 
Sahiner et al. 2022), this study presents a fuzzy inference 
system that considers climatic and anthropic variables as 
input variables for mapping fire susceptibility, with the study 
area of the northern region of the Rondônia state, Brazil, due 
to the high number of fires registered there in recent years.

MATERIALS AND METHODS

Study Area

 The study was conducted in the north of the Rondônia 
state. It is an area of around 89,900 km² (Figure 1) that 
covers 14 municipalities and has a population density of 
8.0 inhabitants/km². This region is mostly occupied by 
agricultural and cattle-ranching lands due to administrative 
and financial support from governmental colonization 
programs in the Brazilian Amazon that have taken place 
from the 1970s onwards (Alves et al. 2021). These programs 
are characterized by the implementation of colonization 
settlements, which are preceded by high deforestation 
rates due to the expansion of agricultural lands and cattle-
ranching (Alves et al. 2021; Duarte et al. 2021), thus making 
the region a part of the “Arc of Deforestation” in the Brazilian 
Amazon.
 In this region, fire is commonly used for clearing the 
land after deforestation and for pasture renewal (Caúla et 
al. 2015; Barlow et al. 2019). Consequently, around 70% of 
the fire outbreaks in Rondônia have occurred in its northern 
part, with 90% of them being registered between August 
and October during the dry season (SEDAM, 2020).

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 2024
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 According to the Köppen classification (Alvares et al. 
2013), the region’s climate is of the Aw type (Rainy Tropical 
Climate), with average annual precipitation of 2,250 mm. 
It has a well-defined dry period from June to August, with 
monthly precipitation below 50 mm, and a rainy period 
from November to April, with monthly precipitation above 
220 mm. The average annual temperature in the region 
is 25.5 °C, with a maximum of 34.4 °C in August and a 
minimum of 19.2 °C in July (Silva et al. 2018).
 The indigenous vegetation presents diverse 
characteristics, comprising open ombrophylous 
forests, dense ombrophylous forests, savannas, pioneer 
formations, and contact or transition forests. Additionally, 
there are areas of anthropogenic activity that are primarily 
occupied by pastures and family farming (SEMA, 2012; 
Schlindwein et al. 2012). In this region, deforestation occurs 
predominantly in areas that consist of open ombrophylous 
forests and dense ombrophylous forests, predominantly 
due to livestock farming.

Fuzzy System Proposal

 Several previous studies propose the association of 
factors to indicate the spatial predisposition of forest fire 
occurrence (Jaiswal et al. 2002; Bonazountas et al. 2005; 
Parente and Pereira, 2016; Mota et al. 2019; Pourghasemi 
et al. 2020). However, methodological association of 
several factors is quite complicated, in addition to being 
impractical and possessing regional degrees of subjectivity 
(Carmo et al. 2011; Gralewicz et al. 2012). Furthermore, 
large-scale data are not always available, especially in 
remote areas like Brazilian Amazon. 
 This study gathered a set of factors mentioned in 
previous research that can be obtained from remote 
sensing data to compose a fuzzy inference model. This 
model is characterized by a Max-Min inference system 
proposed by Mamdani and Assilian (1975). This system 
is one of the most commonly used in geosciences since, 
besides being abstractly defined, it employs linguistic 
variables, which facilitates their application (Acaroglu et al. 
2008).
 The four main components of the fuzzy inference 
system are input fuzzification, fuzzy rule base, fuzzy 
inference method, and defuzzification. To “fuzzify” the 
input variables into a common range [0,1], each variable 
is transformed into linguistic variables (low, moderate, 
and high values) that can be calculated by Equations 
1, 2 and 3, and represented by a triangular (Equation 4) 
and a trapezoidal (Equation 5) membership functions, 
which overlap and form fuzzy regions, thus allowing data 
to belong to more than one set (Cocconello et al. 2014; 
Román-Flores et al. 2020).

 where the function f(x;a,b,c,d) is given by Equations 4 or 
5, x refers to the input variables, and the subscripts (xL, xM, 
xH) refer to the variables’ membership function parameters 
for the low, medium, and high classes.

 where μ corresponds to the membership function, and 
the variables a, b, c, and d correspond to the parameters 
that represent the shape of the triangular and trapezoidal 
function. In this study, we chose functions of mixed relevance, 
employing trapezoidal functions for exact extensions and 
triangular functions for abrupt transitions.
 The rule base comprises a set of IF … THEN rules that 
associate the inputs forming the fuzzy system outputs. These 
rules are based on the relationships between the variables, 
for instance: IF temperature is low AND precipitation is low AND 
distance from highways is low AND land use and occupation is 
low, THEN fire hazard is very low
 The output variable comprising fire susceptibility was 
characterized by the following language terms: very low, 
low, moderate, high, and very high. Triangular membership 
functions represented these variables. Finally, the centroid 
method was used to transform the fuzzy output variable into a 
crisp numerical value (defuzzification). This method calculates 
the average of the areas representing the degrees of the fuzzy 
subset pertinence (Román-Flores et al. 2020).

Determining the Input Variables

 The input variables selected for the fuzzy system referred to 
precipitation, temperature, distance from highways, and land 
use, and were obtained from open remote sensing products. 
 Land surface temperature for the study area (in Kelvin) 
was estimated from thermal images taken by the MODIS 
(Moderate Resolution Imaging Spectroradiometer) sensor, 
product MOD11 (Land Surface Temperature - LST) from Terra 
and Aqua satellites, at ~1 km spatial resolution. The data are 
available at the United States Geological Survey website (USGS, 
2020). Data from the USGS were chosen for the calculations as 
their estimates were observed in situ for the Amazon region 
by Gomis-Cebolla et al. (2018). Monthly data were obtained 
between August and October 2018 at 1 km spatial resolution in 
GeoTIFF format using the Google Earth Engine platform. Then, 
the conversion from Kelvin to Celsius degrees was performed 
through the GIS environment.
 Monthly precipitation (in mm) was obtained from the 
Global Precipitation Measurement (GPM), IMERG Version 6, 
with ~1 km spatial resolution, which was provided by the 
Japan Aerospace Exploration Agency (JAXA, 2020). These data 
are similar to the values observed by surface rainfall stations in 
the region (Santos et al. 2019). The monthly average data for 
August-October 2018 were obtained in GeoTIFF format using 
the Google Earth Engine platform and processed at a 1 km 
spatial scale.
 Data on highways and minor roads in the region were 
obtained by joining the database of the National Department 
of Transport Infrastructure (DNIT, 2020) and crowdsource 
mapping data from OpenStreetMap (OSM Foundation, 2020). 
These data were pieced together, and the Euclidean distance 
of the vicinities was calculated, being spatialized with a spatial 
resolution of 1 km.
 Land use data for the region were obtained from the 
database of the Annual Mapping of Land Cover and Land Use in 
Brazil (MapBiomas) project for 2018. These data were produced 
from the pixel-by-pixel classification of images from the Landsat 
satellite sensor series using machine-learning algorithms via 
the Google Earth Engine platform. They are available in GeoTIFF 
format for the entire country (MapBiomas, 2020). These data 
were processed with GIS with a spatial resolution of 1 km.

(1)

(2)

(3)

(4)

(5)
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 All data were treated and manipulated using ArcGIS 
10.5 software (ESRI, 2016), adopting the Universal Transverse 
Mercator-UTM coordinate projection system, SIRGAS 2000 
Datum, zone 20 south.

Fuzzy System

 The variables were categorized according to the intervals 
defined in previous research. Thus, the temperature was 
categorized according to Melo et al. (2012), Mohammadi et al. 
(2014), and Assis et al. (2014). For precipitation, the studies by 
Oliveira et al. (2017), Silva and Pontes Jr. (2011), and Assis et al. 
(2014) were used. Land use was categorized following Venturi 
and Antunes (2007), Ribeiro et al. (2012), and Assis et al. (2013), 
while distance from minor roads was categorized according to 
intervals defined by Adab et al. (2013), White et al. (2016), and 
Gholamnia et al. (2020).
 However, there is no consensus on the class interval 
definition for the assessed variables. As an example of 
subjectivity in class intervals, for temperature, Melo et al. (2012) 
defined the low class as <13 °C, moderate as between 13 °C 
and 24 °C, and high as >24 °C. Meanwhile, Mohammadi et al. 
(2014) defined them as <16 °C, between 16 °C and 30 °C, and 
>30 °C, respectively, whereas Assis et al. (2014) defined them 
as <23.4 °C, between 23.40 °C and 24.15 °C and >24.54 °C. 
Considering this subjectivity of the classes, fuzzy sets were built 
for each variable, and Table 1 presents the parameters compiled 
based on expert knowledge of the model’s fuzzy association 
(μ(x;a,b,c,d)). It should be noted that this system’s application 
in other climatic regions requires rule set adaptation since the 
model’s response is intrinsically related to the variation of local 
environmental conditions.
 According to the association functions presented in Table 
1, each attribute has specific contributions that can imply 
increased or reduced susceptibility to fire. Temperature, for 
example, is important because, apart from influencing soil 
moisture, it is directly linked to the combustion of vegetation, so 
the higher the temperature, the greater the susceptibility to fire 
(Pourghasemi et al. 2020). On the other hand, high precipitation 
rates increase soil moisture content, decrease water stress, 
and hence reduce susceptibility to fire (Vadrevu et al. 2006; 
Venkatesh et al. 2020).
 Highways and minor roads also contribute to fires since they 

help to clear up new areas for agriculture, cattle-ranching, and 
logging, thus facilitating fire outbreaks. The greater the proximity 
of highways and minor roads, the greater the susceptibility 
to fire (Ribeiro et al. 2012). The landscape’s structure and the 
way land use patterns are organized strongly influence the fire 
occurrence because these dynamics are associated with the 
spatial distribution of the fuel load constituted by the type of 
vegetation and available biomass (Aquilué et al. 2020).

Model Sensitivity Analysis

 Model validation is a crucial step as it tests the effectiveness 
and accuracy of the methodology used. In this case, we 
evaluated the ability of the model to map the areas with fire 
susceptibility. For this purpose, the data on fire outbreaks were 
obtained from the Fire Database of the National Institute for 
Space Research (INPE, 2010), and classified according to the 
number of observations per km². Fire occurrence was classified 
as very low (0 to 0.3), low (0.3 to 0.7), moderate (0.7 to 1), high 
(1 to 1.3), and very high (>1.3), as proposed by Nascimento et al. 
(2017).
 Then, partitioning was performed through joint training 
(80%) and testing (20%) for the implementation of the fuzzy 
system, and the analysis of the ROC (receiver operating 
characteristic) and AUC (area under the curve) was performed 
to determine the accuracy of the proposed model. The ROC 
curve plots the true positive rate on the Y-axis and the false 
positive rate on the X-axis, with area under the curve (AUC) 
values ranging from 0.5 to 1.0, whereby the forecast accuracy 
can be classified as excellent (0.9-1.0), very good (0.8-0.9), good 
(0.7-0.8), average (0.6-0.7), or poor (0.5-0.6), as described by 
Chen et al. (2018).
 To evaluate the efficiency of the fuzzy system, the model 
was tested considering the mapped fire susceptibility classes 
and the inventory of fire outbreaks in the region. This evaluation 
was carried out for the base year (2018) and two extreme climatic 
events, with a rainy summer period of 2001 and a dry summer 
period of 2007, according to the classification of extreme events 
described by Tejas et al. (2012) and França (2015). 
 Since fire susceptibility is highly dependent on the 
association of the input variables, evaluating the impact of the 
input association functions on the final result was of the utmost 
importance and was performed by Monte Carlo simulations 

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 2024

Susceptibility Classes Temperature (°C) Precipitation (mm) Distance from highways (m) Land use Classes

Low

a 0 80 6,000 0

b 0 80 6,000 0

c 13 22 3,000 8

d 24 10 2,000 12

Moderate

a 13 22 3,000 8

b 24 10 2,000 12

c 24 20 2,000 12

d 30 2 1,000 20

High

a 24 10 2,000 12

b 30 2 1,000 20

c 50 0 0 30

d 50 0 0 30

Table 1. Fuzzy membership function parameters compiled from specialized literature

*Land-use classes defined by recategorization based on the number of «CAPTION CODES - COLLECTION 5» from the MapBiomas project.
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(1,000 simulations). For comparison purposes, the input 
parameters were individually perturbed in an interval from -10% 
to +10%, considering their original value. The ±10% variation 
was adopted since it was compatible with the projections 
presented by the Intergovernmental Panel on Climate Change 
(IPCC), which indicated an increase in temperature of 1.5 °C and 
the intensification of extreme precipitation events (positive and 
negative anomalies) by 2050, and which could increase forest 
fires in the region (Hoegh-Guldberg et al. 2018). The individual 
sensitivity of the parameters was analyzed by considering the 
average percentual change in the fuzzy system’s output.
 The interaction of the four inputs of the proposed fuzzy 
system enabled the generation of 81 association rules. 

Figure 2 presents the schematic diagram of the fuzzy model 
implemented from the R software (R Core Team, 2020).

RESULTS

Model Input Data

 Figure 3 presents the maps of the spatial distribution of 
the average observed temperature (a) and precipitation (b) 
between August and October 2018, as well as the distance 
from highways (c) and land use (d) for the respective period 
evaluated. 
 

Fig. 2. Schematic diagram of the developed fuzzy inference system

Fig. 3. Input data of the fuzzy system regarding monthly average temperature between August and October 2018 (a) 
retrieved via the MODIS satellite, monthly average precipitation between August and October 2018 (b) retrieved via 

the GPM satellite, distance from highways (c) obtained based on DNIT and OpenStreetMap data, and land use and 
occupation (d) obtained from MapBiomas
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 The surface temperature map obtained via the MODIS 
sensor (Figure 3 a) between August and October 2018 
shows that the average values ranged from 25 °C to 40 °C, 
with the highest temperatures occurring in anthropized 
areas, mainly in urban and agricultural areas. Meanwhile, 
the lowest temperatures occurred in areas occupied by 
forests and natural grasslands. Regarding the average 
precipitation accumulated from August to October 
registered by the GPM sensor (Figure 3 b), it is evident that 
most of the study area had precipitation of 15-20 mm, 
with small areas in the central and extreme northern parts 
receiving 20-25 mm, and precipitation of 0-15 mm found 
in the outer eastern and southern parts.
 Regarding the distance from highways and minor roads 
(Figure 3 c), the study area primarily presented high density 
of road network (dark red), especially in the south, where 
the majority of rural settlements are concentrated. This high 
density can also be observed on the land-use map (Figure 
3 d), which illustrates the characteristic “herringbone” areas 
that correspond to deforestation advance around the 
minor roads. 
 The land-use map for 2018 shows the predominance 
of areas occupied by native forests (58.30%), followed by 
pasture areas (38.72%), rivers and lakes (1.88%), annual and 
perennial agriculture (0.46%), natural fields (0.41%) urban 
areas (0.21%), and mining areas (0.01%) during the studied 
period. Out of all areas occupied by forests, around 40% 
corresponded to areas protected by conservation units, 
and the other 10% protected by indigenous lands. In other 
words, 50% of the areas occupied by forests in the region 
were within protected areas, and the rest consisted of small 

forest fragments out of legal reserves and environmental 
protection areas. The predominance of anthropogenic 
pastures shows that the region was a part of the agricultural 
frontier, concentrating 34.02% of the cattle in Rondônia 
(IDARON, 2018).

Mapping of Fire Susceptibility

 Figure 4 shows the fire susceptibility classification 
map generated by the fuzzy system for the north of 
Rondônia. 47% of the area were classified as having very 
high susceptibility, 16% as having high susceptibility, 18% 
as having moderate or low susceptibility, and just 0.17% as 
having very low susceptibility.
 The reliability of the fuzzy system was evaluated using 
the overlap between the mapped fire susceptibility classes 
with the density of fire outbreaks that were observed by 
satellites between August and October 2018, as shown in 
Table 2.
 It can be noted there is significant agreement between 
the fire susceptibility classes mapped by the fuzzy system 
and the density of fire outbreaks per km² observed 
between August and October 2018 in the region (Table 2). 
Notably, the very low and low susceptibility classes show 
a hotspot density of 0.01 and 0.09 per km². Meanwhile, 
the hotspots increase substantially in moderate, high, 
and very high susceptibility areas. The response of the 
model built by the fuzzy system was also evaluated by 
considering two extreme weather events (Figure 5). In the 
period corresponding to the rainy summer (Figure 5 a), 
the study area was predominantly classified as having low 

Susceptibility Classes Area (km²) Area (%) Number of outbreaks of fire Density of fires/km²

Very low 1,731.74 0.17 15.00 0.01

Low 15,861.60 18.28 1,437.00 0.09

Moderate 16,059.00 18.29 9,890.00 0.62

High 14,248.90 16.27 23,514.00 1.65

Very high 41,789.80 47.00 59,910.00 1.43

Table 2. Relationship between the classes of fire susceptibility and observed fire outbreaks in 2018

Fig. 4. Fire susceptibility map for the study area
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susceptibility to fire. In contrast, for the dry summer period 
(Figure 5 c), the fuzzy system model classified the area as 
having a predominance of very high susceptibility.
 Regarding the density of fire outbreaks per km², the 
rainy summer period showed low density (Figure 5 c), while 
the dry summer period showed high density (Figure 5 d). 
It is worth noting that the density of fire outbreaks aligns 
with the mapped susceptibility classes. The occurrence 
distribution is denser in areas classified with high and very 
high susceptibility and lower in areas classified with low 

and very low susceptibility, as shown in Figure 5 c and 
Figure 5 d.
 To assess the accuracy of the results, which was a 
crucial step in the modelling process (Pourghasemi et al. 
2020), the AUC and ROC were used. Figure 6 presents the 
AUC values for the ROC curve in 2018, as well as for 2001 
and 2007. The AUC values for the proposed fuzzy model 
range from 0.709 to 0.879, thus indicating that the model 
has a good predictive capacity.
 

Fig. 6. Prediction rate curve of the forest fire susceptibility map using the fuzzy model for 2018 (a), 2001 (b) and 2007 (c)

Fig. 5. Mapping of the fire susceptibility for a rainy (a) and dry (b) summer, and respective density 
of fire outbreaks per km² (c and d)
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 Figure 7 represents the sensitivity analysis of the fuzzy 
system performed using 1,000 Monte Carlo simulations. 
The graphs show the percentage contribution of each 
variable to the model output when individually disturbed 
between -10% and +10%.
 In random simulations of up to ±2.5% in temperature 
(Figure 7 a), fire susceptibility can be altered by an average 
of ±20%. In other words, a 2.5% increase in regional 
temperature can result in a 20% increase in fire susceptibility 
compared to what is normally observed. Meanwhile, 
precipitation showed considerably lower sensitivity when 
compared to temperature (Figure 7 b). Disturbances of up 
to ±2.5% of precipitation alter the average fire susceptibility 
by up to ±10%. Thus, a 2.5% reduction in precipitation can 
cause an average 10% increase in fire susceptibility to fire 
in the study area. Regarding the distance from highways 
and minor roads (Figure 7 c) and land use (Figure 7 d), the 
random simulations showed less significant variations in 
the proposed model.

DISCUSSION

 Proper mapping of forest fire susceptibility is an 
important task within its management. However, this is 
still a complicated challenge due to the complexity and 
non-linearity of these fires (Moayedi et al. 2020; Sahiner 
et al. 2022). This study used the fuzzy inference system 
composed of four input parameters (temperature, 
precipitation, distance from roads, and land use and 
occupation), with a map output showing the spatial 
distribution of fire susceptibility. The used method made it 
possible to incorporate expert knowledge into the model 
and, with the use of linguistic variables and degrees of 
pertinence, to smoothen the transition from one class to 
another (Zadeh, 1965; Cheng et al. 2022). This allowed the 
values of the influencing factors to belong simultaneously 
to several levels of susceptibility with different degrees of 
association, thus better reflecting the real characteristics of 
the events.
 The proposed fuzzy system applied in this study 
indicated the predominance of areas that were classified 
as having very high fire susceptibility in 2018. These areas 

were distributed mainly throughout the south of the study 
area, where most of the agricultural and cattle-ranching 
lands and the highest road network density could be 
found. When these factors were combined with low 
precipitation and high temperatures observed during the 
evaluated period, they contributed to the predominance 
of high and very high fire susceptibility, similar to Cardozo 
et al. (2014). On the other hand, the areas identified as 
having low and very low fire susceptibility corresponded 
to protected areas represented by conservation units and 
indigenous lands distributed throughout the north of 
the region. However, these areas have recently suffered 
from the advancement of anthropogenic activities due 
to the construction of unofficial minor roads and land 
grabbing, as also demonstrated by Fonseca et al. (2018). 
Although the study area had around 58.30% native forest 
coverage, 19.25% of them were classified as having high 
susceptibility to fire, and other 21% as having very high 
susceptibility. These areas corresponded to border zones 
with proximity to highways and unofficial minor roads. 
When road proximity is combined with the fuel stored in 
the forest litter, high temperatures, and low precipitation 
rates, it becomes a dominant component for the start of 
forest fires.
 Furthermore, forest fires have become increasingly 
frequent because during intense dry seasons the Amazon 
Forest has become more flammable, and thus more 
susceptible to fires, as already described by Aragão et al. 
(2018) and Staver et al. (2020), and shown by the model 
results for the dry summer period in 2007. There is a 
high alignment between mapping results based on the 
proposed methodology and the recorded fire instance 
data both for 2018 and for 2001 and 2007 with extreme 
weather conditions. These results show that the developed 
fuzzy model system can adjust to climatic variations 
(temperature and precipitation) that occur during extreme 
weather events. This emphasizes the high adequacy of the 
applied method, which was confirmed by the AUC values 
of 0.879 for the year 2018, 0.709 for the rainy summer 
period, and 0.846 for the dry summer period.
 The results achieved in this research are considered 
satisfactory when compared with the AUC values found in 
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Fig. 7. Sensitivity analysis of the fuzzy system output with a disturbance at -10% and +10% of precipitation (a), 
temperature (b), distance from highways, and land use and occupation (d)
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previous research. For example, Pourghasemi et al. (2020), 
when employing methods such as mixture discriminant 
analysis (MDA) and boosted regression tree (BRT), obtained 
AUC values ranging from 82.5% to 88.90%. By employing 
joint approaches, Eskandari et al. (2021) observed that 
the generalized additive model – multivariate adaptive 
regression spline – support vector machine (GAM-MARS-
SVM) method achieved an AUC of 83.00%, which surpassed 
the individual models used by the authors. These findings 
are consistent with those of Mohajane et al. (2021), who 
observed an AUC of 98.90% for the forest random frequency 
ratio (RF-FR) method. In both cases, the models were 
considered satisfactory and appropriate for the mapping 
of fire susceptibility in the respective analysed areas.
 Regarding the sensitivity of the input variables of the 
fuzzy inference system, the proposed model proved to be 
more sensitive to the factors that can alter the flammability 
of combustible materials, such as precipitation and 
temperature during seasonal changes. In variations of up 
to 2.5% in temperature, the model indicated an average 
20% increase in fire susceptibility in the region, which is a 
worrisome scenario. According to the Intergovernmental 
Panel on Climate Change (IPCC), for the Amazon, there is a 
projected 1.5 °C increase in temperature by 2050 (Hoegh-
Guldberg et al. 2018), which can result in an increase in fire 
susceptibility beyond what was calculated by the model. 
It is worth mentioning the influence of anthropogenic 
activity on fire susceptibility. In this study, anthropogenic 
areas had an average temperature that was 5 °C higher 
than in natural areas (Figure 3a and 3d), which resulted 
in greater fire susceptibility, as reported in other studies 
(Oliveira et al. 2021; Silva et al. 2023).
 Moreover, regional atmospheric conditions, such as 
strong anticyclones over the continent, for example, the 
South Atlantic Subtropical High, inhibit the formation of 
rain clouds north of the state of Rondônia. These conditions 
contribute to low precipitation between August and 
October in this region, which increases the flammability 
and burning potential of the combustible material (Tejas 
et al. 2012; França, 2015; Aragão et al. 2018; Ribeiro et al. 
2020).
 Thus, adopting an integrated command and control 
system that encompasses public policies and includes 
prevention techniques for fighting and controlling fires 
is essential for the region. As such, the methodology 
presented for fire susceptibility mapping, which integrates 
the fuzzy system with data obtained from remote sensing 
techniques and GIS, can provide the basis for local 
environmental planning.
 It is worth noting that, although the Brazilian Forest 
Code, Law No. 12,651, of May 25, 2012, provides for the 
creation of the National Integrated Fire Management 
Policy (PNMIF), this system has not been completed yet 
(Brasil, 2020). The reflection of the absence of the system 
that centralizes firefighting efforts in Brazil makes these 
events historically excessive, such as those observed in the 
study area between August and October 2018, with about 
94,766 registered fire outbreaks. 
 The absence of an effective fire control system, 
combined with the anthropogenic activity in the region, 
which includes deforestation for shifting agricultural 
practices and pastures and the practice of using fire to 
clear degraded pastures, and extreme droughts, are the 
main reasons for the high fire rates in this region (Cardozo 
et al. 2014; Aragão et al. 2018; Chuvieco et al. 2019; Barlow 
et al. 2019; Caúla et al. 2019; Staver et al. 2019; Ribeiro et al. 
2020).

Advantages and Limitations

 The ability of fuzzy inference systems to handle 
most inaccuracy sources in remote sensing data, such 
as uncertainties in sensor measurements, parameter 
variations due to limited sensor calibration, and class 
mixing due to limited spatial resolution, and other (Benz et 
al. 2004), gives the fuzzy system an advantage over other 
methods that are usually implemented for mapping forest 
fire susceptibility.
 In this study, the uncertainties related to the 
disagreement between the expert class intervals were 
considered using fuzzy sets, which were defined by 
membership functions and allowed the incorporation 
of a combination of subjective data into a fuzzy domain, 
thus making it possible to build inference systems based 
on expert experience and deal with inaccurate data 
(Zadeh, 1965). In addition, it allowed influencing factors 
to belong simultaneously to more than one susceptibility 
class, however, with different degrees of association 
(Zadeh, 1965; Cheng et al. 2022) to better reflect the real 
characteristics of fire susceptibility that are observed in the 
region.
 Nonetheless, it is worth mentioning that in a grid-
type partition fuzzy inference system the number of rules 
is given by the combination of linguistic values, in other 
words, the number of rules can increase exponentially 
as a function of the number of input variables (Bressane 
et al. 2020; Fernandes et al. 2023). In this study, only four 
inputs were selected to compose the model; however, for 
cases in which a greater number of explanatory factors are 
introduced, this would negatively affect the transparency 
and interpretability of the fuzzy inference system, and, 
consequently, its replication (Ojha et al. 2019). One of the 
solutions would be the optimization of input factors using 
metaheuristics (Moayed et al. 2022).

CONCLUSIONS

 The methodology presented for mapping fire 
susceptibility by integrating a fuzzy inference system 
with data obtained via remote sensing techniques and 
GIS tools proved to be highly effective, especially when 
implemented for precipitation, temperature, distance from 
highways, and land use as input variables. The findings 
indicate that the study area had a predominantly high fire 
susceptibility, especially when considering the climatic 
characteristics observed between August and October 
(during the dry season) and the land use patterns of the 
region.
 The areas classified with very high susceptibility by the 
fuzzy system were located predominantly in the south of 
the study area, where agricultural and livestock activity 
prevails. On the other hand, the areas that had low and 
very low susceptibility were concentrated primarily in 
conservation units and indigenous lands, which shows the 
importance of these protected areas. 
 The comparison between the mapped fire susceptibility 
classes and the density of registered fire outbreaks showed 
a strong spatial coincidence, which reinforces the credibility 
of the fire susceptibility mapping based on the proposed 
methodology, and these results were confirmed by the 
AUC values (mean of 0.81), thus indicating an impressive 
predictive capacity of the model. 
 Thus, the results obtained in this study can be used 
to inform the community, fire departments, and local 
authorities about areas that are most susceptible to fires. 
The findings can also be used to highlight areas that are 
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conducive to controlled burning, with the aim of reducing 
the accumulation of combustible material, contributing to 
the prevention of uncontrollable fires.
 Finally, the obtained results can significantly contribute 
to land management and planning policies, including the 

possibility of integrating similar data in other regions. They 
can also assist the decision-making process when fighting 
fires. However, for implementation in other regions, it is 
necessary to incorporate sufficient information regarding 
local factors that can influence forest fires.
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