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ABSTRACT. ERA5 reanalysis is one of the most trusted climate data sources for wind energy modeling. However, any reanalysis 
should be verified through comparison with observational data to detect biases before further use. For wind verification at 
heights close to typical wind turbine hub heights (i.e. about 100 m), it is preferable to use either in-situ measurements 
from meteorological towers or remote sensing data like acoustic and laser vertical profilers, which remain independent of 
reanalysis. In this study, we validated the wind speed data from ERA5 at a height of 100 m using data from four sodars (acoustic 
profilers) located in different climatic and natural vegetation zones across European Russia. The assessments revealed a 
systematic error at most stations; in general, ERA5 tends to overestimate wind speed over forests and underestimate it over 
grasslands and deserts. As anticipated, the largest errors were observed at a station on the mountain coast, where the relative 
wind speed error reached 45%. We performed the bias correction which reduced absolute errors and eliminated the error 
dependence on the  daily course, which was crucial for wind energy modeling. Without bias correction, the error in the wind 
power capacity factor ranged from 30 to 50%. Hence, it is strongly recommended to apply correction of ERA5 for energy 
calculations, at least in the areas under consideration.
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INTRODUCTION

 Nowadays, a rapid transformation in the energy 
sector implies making policy decisions for long-term 
energy planning under numerous uncertainties. Energy 
modeling is the key tool for providing evidence to support 
decision-making processes. A rapidly increasing share of 
the climate-governed renewable generation determines 
the demand for accurate climate data. At the same time, 
climate information is not only used for renewables 
but also for traditional energy sources. Energy models 
rely on climate data covering a wide spatial range, from 
point-wise observations for individual power plants to 
global energy system models that include all types of 
energy and require global-scale climate datasets. Among 
various energy problems that require climate information 
are the assessment of the renewable energy potential, 

the planning of new power plants and power grids, 
optimization cost evaluation of technology mix for energy 
systems, and the assessment of the climate change impact 
on existing power plants. Therefore, high-quality climate 
data for diverse energy applications is in great demand.
Modern reanalysis datasets belong to the most widely used 
sources of climate inputs for energy modeling. Reanalysis 
involves numerical simulations with atmospheric or Earth 
system models over a rather long period (>10 years, typically 
40-70 years), initialized from past data and updated with 
observational data interpolated onto the model grid every 
few hours or days.
 Reanalysis offers both advantages and disadvantages, 
and the latter primarily include inaccuracies in 
meteorological data compared to observed values, 
especially in areas with complex topography and surface 
types. These inaccuracies are associated with numerical 
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model imperfections, errors in assimilated observational 
data, and coarse horizontal and vertical resolution. 
Reanalysis errors are usually associated with incorrect 
reproduction of orography (Dörenkämper et al. 2020) 
and underlying surface types (Gualtieri 2021). However, 
currently, there is no real alternative to reanalysis in terms 
of both spatial and temporal coverage.
 In this study, we assessed the quality of climate 
information on wind, a critical climate input for various 
energy models. For correct work of energy models, climate 
information on wind should realistically reflect statistical wind 
characteristics, namely the probability distribution function 
of wind speed and seasonal and diurnal wind speed courses. 
The wind in the lower atmosphere is largely determined 
by the turbulent structure of the atmospheric boundary 
layer, which is tolerably reflected only in measurements 
with high vertical and temporal resolution (for example, in 
measurements on meteorological masts or using acoustic 
profilers), but is usually poorly reproduced by reanalysis. In 
this context, verification of wind data in reanalysis does not 
seem far-fetched, but a necessary task. However, utilization 
of the original (uncorrected) reanalysis data without 
verification and correction remains quite widespread in the 
energy modeling domain (Craig et al. 2022). Verification of 
reanalysis datasets is partly hampered by the rarity of the so-
called independent data, i.e. those that are not assimilated 
in reanalysis. Independent data on wind includes local 
and typically short-term measurements on meteorological 
masts, sodars, and other means of ground-based remote 
sensing, ground-based networks of local stations, and some 
others.
 Uncertainties associated with reanalysis data usage 
vary regionally, which means that the applicability of the 
reanalysis datasets should be assessed for specific regions 
of interest. Currently, research on reanalysis uncertainties is 
predominantly focused on Europe and the Americas (e.g., 
Molina et al. 2021; Thomas et al. 2021; Kubik et al. 2013; Santos 
et al. 2019; Staffell and Pfenninger 2016; Olauson 2018; 
Jourdier 2020; Dörenkämper et al. 2020). However, even 
for these regions, it is impossible to obtain unambiguous 
conclusions about the quality of wind data in particular 
reanalysis cases because quality evaluations depend on 
specific tasks, orographic complexity and land use of the site, 
and the verification method. At the same time, other areas 
of the world are much less studied at the time being. This 
knowledge gap is becoming crucial from the perspective 
of the global energy transition. The regions facing the most 
serious challenges in the implementation of renewable 
generation are least covered with the quality assessment of 
key climate inputs for energy planning studies.
 The primary objective of this study is to assess the 
viability of using wind speed data at the 100 m level from 
the modern ERA5 reanalysis for energy modeling across 
European Russia. We selected ERA5 because of its popularity 
within the energy community and its use in creating other 
products, including both global (GWA) and European (NEWA) 
wind atlases, which use ERA5 as input data for mesoscale 
and microscale models to produce high-resolution outputs 
(Dörenkämper et al. 2020). However, the error in the initial 
data usually propagates further along the chain and can 
be found in the output fields. Therefore, we decided to 
validate the original ERA5 reanalysis to get a quantification 
of its performance in the context of energy modeling. Most 
comparative studies ((Ramon et al. 2019; Santos et al. 2019; 
Olauson 2018; Thomas et al. 2021), however, not all of them, 
e.g. (Calisir et al. 2021)) have shown that ERA5 outperforms 
other reanalyses in terms of wind speed and calculated wind 
power generation.

 We compared ERA5 against measurements from 
acoustic locators (sodars) across central and southern 
parts of European Russia. Most sodar locations are situated 
in the southern regions, which are known for their high 
wind energy potential (Spravochnik 2007), where this 
industry is actively developing with new wind turbines 
being constructed. While ERA5 was previously verified 
against different sources of wind data in many regions 
across the world (Gualtieri 2021; Ramon et al. 2019; Santos 
et al. 2019; Olauson 2018; Molina et al. 2021; Calisir et al. 
2021), its performance depends heavily on individual 
site characteristics and averaging periods. For instance, 
correlation coefficients of ERA5 with observations vary 
from 0.2-0.3 for stations with complex terrain to almost 1 
for flat sites (Molina et al. 2021; Ramon et al. 2019; Santos 
et al. 2019; Jourdier 2020). Especially high correlation 
coefficients of 0.9-0.95 are obtained with increasing 
averaging time (Santos et al. 2019; Molina et al. 2021).
 The spread of wind speed bias is very large across 
estimates reported by different studies: from -5 m s-1 to 4 m 
s-1 (Dörenkämper et al. 2020; Ramon et al. 2019; Molina et 
al. 2021; Jourdier 2020). Generally, the reanalysis performs 
better over the sea, while its quality is often not suitable 
for energy problems on land. This is explained, firstly, by 
the fact that the roughness of the sea surface depends 
on wind speed in a rather straightforward way, while 
the assessment of the land surface roughness is quite 
ambiguous. Secondly, reanalyses assimilate satellite wind 
observations only available over the ocean.  Over the sea 
surface, ERA5 may slightly overestimate the wind speed 
(Ramon et al. 2019; Gualtieri 2021). Over the land, the wind 
speed, especially for strong winds, is underestimated and 
the frequency of weak winds is overestimated (Molina et 
al. 2021; Jourdier 2020; Santos et al. 2019; Gualtieri 2021). 
The only exception is forest areas, over which wind speed is 
overestimated (Gualtieri 2021), which is usually explained 
by the difficulty of determining the roughness length for a 
forest.
 The hourly resolution of the ERA5 data allows us to 
consider the daily course of wind speed. Still, there is no 
clear dependence of the reanalysis quality on the time of 
day – at some stations, the error is greater at night, and 
at others during the day (Jourdier 2020). All these errors 
naturally affect the accuracy of wind power generation 
calculations, and, due to the nonlinear dependence of wind 
generation on wind speed, even with a small error in wind 
speed, the error in wind generation estimates becomes 
significant (Andersen et al. 2015; Gualtieri 2021). Wind 
power generation calculated from ERA5 data is usually 
slightly overestimated over the sea (e.g., Gualtieri 2021) and 
underestimated on the land by 5-20% in flat areas (except 
in forested areas, where it is overestimated (Gualtieri 2021)) 
and by more than 30% in areas with complex terrain 
(Dörenkämper et al. 2020; Gualtieri 2021; Jourdier 2020). 
However, with monthly averaging and in areas such as 
Scandinavia, great agreement can be achieved between 
reanalysis-calculated and observed power generation 
(Olauson 2018). Generally, the more estimates of reanalysis 
quality for sites in various natural conditions are obtained, 
the more complete picture of the quality of the reanalysis 
can be acquired and the higher the probability of finding 
the dependence of the error on these conditions.
 Another aim of this study was to test the bias-
correction method to correct the reanalysis of wind speed 
using sodar observations. The correction was performed 
in two ways: with and without the daily course of wind 
speed errors. The original and corrected wind speed series 
from the reanalysis were used to assess the relevance of 
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the bias correction for quantifying the propagation of 
wind speed error into wind energy production, expressed 
as the capacity factor error. In general, the study is focused 
not on planning wind energy construction at specific 
locations, but on the development of the operation of 
universal methods that can be applied to any other area. 
The universality of the methods means that they can be 
applied to any region and reanalysis grid node. Although 
their application requires non-universal scaling factors that 
depend on local conditions, we assume that in the future it 
will be possible to obtain the dependence of these scaling 
factors on external conditions, which will make the bias 
correction method completely universal. This study also 
aims to supply energy modelers with a power-relevant 
estimation of uncertainty associated with errors of the 
modern reanalysis for natural conditions typical for various 
natural zones of Russia. Therefore, it is not of primary 
importance that not all sites we are considering are located 
in areas with high wind energy potential.
 The rest of the article is organized as follows. The section 
Materials and Methods describes the sodar observations 
and ERA5 wind data, methods of reanalysis verification 
and correction, and capacity factor calculation. The Results 
and Discussion section presents the results of reanalysis 
verification and correction and considers the propagation 
of the wind speed error into errors in energy modeling. In 
conclusion, the main findings and limitations of the study 
are presented.

MATERIALS AND METHODS

Sodar data

 Sodar (SOnic Detection And Ranging) is an acoustic 
locator providing vertical profiles of wind vector 
components within the lowest 500-m layer of the 

atmosphere. In this study, sodar observations from 
four locations were used (Table 1, Fig.1). Continuous 
measurements up to 300 m in height were carried out 
in the Zvenigorod area at the observation station of the 
Obukhov Institute of Atmospheric Physics (IAP) from 2009 
to 2021. The IAP station is predominantly surrounded by 
mixed forest and occasional low-rise buildings (Fig.1b). 
Sodar measurements for steppe, arid, and coastal regions 
were obtained in short-term expeditions organized by the 
IAP (for Tsimlyansk and Kalmykia) and Lomonosov Moscow 
State University (for the Gelendzhik area). Measurements 
up to 200 m were conducted on the northern edge of 
Tsimlyansk (in a flat steppe area) in July-August, with a 
vertical resolution of 10 m . Measurements in dunes near 
Narynkhuduk in Kalmykia, 80 km northwest of the Caspian 
Sea, were carried out in late July–early August. In the 
Gelendzhik area, the measurements were carried out on 
the base of the Institute of Oceanology, at the end of a 
long pier, essentially over the sea surface (Fig.1e).
 The Sodar LATAN-3, developed at IAP (Kuznetsov 2007), 
was employed in Zvenigorod, Kalmykia, and Tsimlyansk. 
The wind speed measurement accuracy was 0.3 m/s. In 
Gelendzhik, the measurements were carried out with 
a Scintec sodar (co-production of Germany, the USA, 
and some other countries), with a declared wind speed 
measurement accuracy of 0.1-0.3 m/s.
 Data processing was performed to eliminate erroneous 
measurements. At the IAP base in Zvenigorod, trees and 
individual buildings contributed to the “blind zone” of 
the sodar, resulting in a higher occurrence of erroneous 
registrations of the echo signal from fixed objects (“fixed 
echoes”). To ensure maximum data availability at all levels, 
the lower measurement level (“blind zone”) was set at 
40 meters for Zvenigorod site and 30 meters for arid 
and steppe sites. The presence of “fixed echoes” led to 

Fig. 1. Satellite image of the study area (a) and types of land cover (from Global Land Cover database, available at https://
lcviewer.vito.be) around sodar locations (white and black circles) in Zvenigorod (b), Tsimlyansk (c), Kalmykia (d) and 

Gelendzhik (e) 
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an increase in the number of near-zero wind speeds at 
altitudes up to 300 m, significantly distorting wind statistics 
at this station. To remove the influence of obstacles from 
the data, a two-stage filtering algorithm was applied. In the 
first stage, instantaneous sounding profiles were analyzed, 
and intervals with zero wind speed at heights exceeding 
40 meters and intervals with a significant excess of the 
echo signal level (> 3 dB) relative to adjacent intervals were 
excluded from averaging. Subsequently, in the second 
stage, the averaged data were filtered to eliminate sharp 
peaks in the vertical profiles. For this purpose, outliers in 
the vertical profiles of horizontal wind speed were filtered 
out if they exceeded 2 m/s compared to adjacent vertical 
levels.

Reanalysis and its processing

 In this study, we compared the wind speed from 
ERA5 reanalysis (Hersbach et al. 2020) with observations 
taken at a 100-m height. This height is commonly used 
in wind energy studies, as it corresponds to the typical 
hub height of wind turbines. In reanalysis, wind speed 
values at heights of 100 m above ground level (a.g.l.) and 
below are considered diagnostic, meaning they are not 
directly calculated in the atmospheric model but rather 
interpolated from the lowest model level to the desired 
height using a wind profile approximation (logarithmic 
or power law). However, this approximation is valid only 
for neutral temperature stratification and moderate to 
strong wind. Vertical interpolation also requires the surface 
roughness length (or power law exponent), which is set 
constant on land (depending on the type of land cover) 
and dependent on wind speed over water. Thus, the values 
of the diagnostic wind speed contain errors associated 
with the deviation of the real wind profile from the 
approximation and with the inaccuracy in determining the 
roughness length/power law exponent.
 The ERA5 reanalysis has 137 hybrid sigma levels from 10 
m to 80 km above the surface, with 14 levels located in the 
lowest 500-m layer. This high resolution, coupled with the 
low placement of the lowest level (on average at 10 meters 
above ground level), minimizes errors in interpolation at 
both 10 and 100 meters, making ERA5 advantageous for 
wind generation studies compared to other reanalyses.
To compare observations with ERA5 reanalysis, we 
employed two approaches. The first one involved the 
interpolation of the reanalysis of 100-m wind horizontally 
to sodar locations. The series of observations were 
averaged over an hourly interval based on the following 
assumptions. The value in a reanalysis cell was the average 

over the area occupied by that cell. Since one reanalysis 
cell occupied 0.25°x0.25°, i.e. about 25 x 18 km at middle 
latitudes, then at an average speed of 5 m/s (characteristic 
speed for all the studied points), the airflow passed the 
entire cell in 1-1.5 h. This means that the reanalysis value 
averaged over the area of the cell could be compared with 
the 1-h mean of observations at one point.
The interpolation was carried out by the two most 
popular methods: the bilinear interpolation method and 
the nearest neighbor method. The latter implies that the 
reanalysis values are not interpolated, but are taken from 
the grid node closest to the observation station. Hence 
the verification results should significantly depend on 
how close the underlying surface in the reanalysis area is 
classified in comparison to the reality. In Zvenigorod, the 
nearest reanalysis nodes were occupied by forests (80% 
forest cover). The roughness coefficient in the reanalysis 
was plausibly high (around 0.9 m). For the Tsimlyansk 
station, land cover at the nearest node corresponded 
to crops (see Fig.1c), with a roughness length of around 
0.3 m (which was quite high, since the roughness length 
for low grass is typically a few centimeters (Zilitinkevich 
1972)). Other nodes to the east were partially occupied by 
water (Tsimlyansk reservoir). In Kalmykia, the land cover 
of nearby nodes was indicated as grass. The surrounding 
nodes were also classified as crops and sediments. The 
roughness coefficient was around 0.15 m, which was quite 
high for a relatively smooth dune surface. In Gelendzhik, 
the closest reanalysis node to the station was in the sea, 
and the cell that corresponded to it was 70% occupied by 
water. The cell average roughness coefficient was around 
0.3 m. However, in reality, the land cover near the station 
was represented by a low pine forest, while the water 
roughness in the absence of waves is usually less than 1 
cm. In Gelendzhik, the dependence of the reanalysis error 
on the wind direction (from the sea or land) was quite 
possible. In general, the surface types in the reanalysis 
nodes corresponded to reality.
The second approach to comparing reanalysis and 
observations involved averaging the reanalysis data over 
the area around the cell where the station point was 
located (hereafter, “averaging method”). Averaging was 
carried out over the area of 3 x 3 cells (approximately 75 
x 55 km). An increase in the averaging area from 1 cell to 
3 cells also led to an increase in the averaging period of 
observations from 1 h to 3 h. From general considerations, 
the verification results should improve with this approach, 
although the value of the obtained information decreases 
due to smoothing. 

Coordinates, 
elevation

Land use; topography Sodar system Period

Vertical resolution; 
maximum height 
of measurements; 
averaging period

Zvenigorod
55.696ºN, 36.775ºE, 

180 m a.g.l.
Mixed forest with few buildings LATAN-3 2009-2021 20 m; 300 m; 30 min

Tsimlyansk
46.657ºN, 42.08ºE, 

86 m a.g.l.

Steppe (low grass) with low-
rise buildings to the south; flat 

topography
LATAN-3

2012, 2015-2021 (July-
August)

10 m; 200 m; 30 min

Kalmykia
45.423ºN, 46.53ºE, 

-20 m a.g.l.
Dunes (desert); flat topography LATAN-3

2016, 2020, 2021 (July-
August)

10 m; 200 m; 30 min

Gelendzhik
44.575ºN, 37.979ºE, 

4 m a.g.l.
Sea; mountains to the north Scintec

2012 (June-July), 2012-
2014 (January-February)

5 m; 300 m; 10-20 min

Table 1. Observation sites and characteristics of sodar measurements
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Verification methods

 An interesting issue that requires further investigation 
is the problem of the criteria for the quality of wind data, 
specifically for wind energy applications. Since wind 
energy performance is very sensitive to wind speed, it can 
be expected that the quality criteria should also be quite 
strict. However, in the absence of such tailored criteria, 
we used a set of standard ones: bias, normalized bias 
(NB), mean absolute error (MAE), the standard deviation 
(scatter) of errors (SDE), normalized root mean square error 
(NRMSE), normalized standard deviation of wind speed in 
reanalysis (NSD), and correlation coefficient (CC), which 
are commonly used in practical energy-related climate 
data quality assessments. We also considered the empirical 
probability distribution function of errors, wind speed, and 
direction, and the dependence of the error on the wind 
speed and direction.
 Typically, wind speed error is deemed acceptable if it 
does not exceed 10% of the value for speeds greater than 
5 m/s, or if the error is less than 0.5 m/s for wind speeds 
less than 5 m/s (WMO 2014). Although these criteria were 
developed for standard wind measurements at ground-
based weather stations, they can also be applied to assess 
the quality of wind in reanalysis when other strict criteria 
are lacking. We calculated the percentage of errors within 
acceptable accuracy (PEAA) based on these criteria, with 
a higher PEAA indicating better performance. Additionally, 
we used the ratio of the error value to the standard deviation 
of wind speed from observations (SDW) as a criterion 
for the reanalysis quality: if the error is comparable to or 
greater than SDW, which represents the natural variability 
of wind speed, then the quality of wind in the reanalysis is 
considered low.

Bias correction method

 When systematic errors are detected in reanalysis 
data or climate model outputs, they are usually corrected 
using various methods. One commonly used method for 
correcting wind speed data is the Quantile Mapping based 
on the Weibull Distribution bias correction method (Haas 
et al. 2014). The method involves calculating the corrected 
wind speed u

cor
 using the following formula, which 

transforms the reanalysis’s probability distribution function 
to match the observed distribution:

 Here, the subscripts 
o
 and 

r
 mean observations and 

reanalysis, and the shape parameter k and scale parameter 
c are calculated from the mean μ and standard deviation σ 
of wind speed:

 where Γ is the gamma function.
 In many studies (e.g., Li et al. 2019, Akperov et al. 2022, 
Akperov et al. 2023), the parameters k and c were calculated 
separately for each month. However, due to limited year-
round data at stations (except Zvenigorod), we initially 
calculated these parameters for the entire data series rather 
than for each month. Subsequently, we further calculated 
these coefficients for each hour of the day and each month 
for Zvenigorod owing to the abundance of observations 
there, and for each hour of the day in July-August for 
Tsimlyansk. This approach was adopted to account for the 
daily (and annual in Zvenigorod) variation of the reanalysis 
wind speed error when performing corrections.

Capacity factor calculation

 Wind speed dynamics affects wind generation 
performance most directly. This implies that uncertainties 
of the wind speed are being translated into uncertainties 
in wind power generation. A common method to convert 
wind speed into generated power is by using a so-called 
working curve of a wind turbine (Andresen et al. 2015). A 
wind turbine working curve is the relationship between the 
harnessed power and the wind speed. Typically, working 
curves are nonlinear, exhibiting higher sensitivity to speed 
variation at lower speed values. Working curves provided 
by manufacturers are derived from testing procedures 
conducted on a hub height under conditions reflective of 
wind generation unit operation.
 We calculated the propagation of the ERA5 
uncertainties on the operation of modern wind turbines 
using various approaches to bias correction. Calculations 
were performed based on the assumption of  a realistic 
working curve of modern wind turbines. An example of 
such a curve is provided in Fig. 2.
 The combination of a wind turbine power curve with 
actual wind speed values determines the wind power 

Fig. 2. A working curve for “Vestas V164” wind turbine

(1)

(2)

(3)
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generation achievable at any particular location. The 
economic feasibility of wind generation can be roughly 
assessed using a capacity factor which is defined as 
the ratio of the actual harnessed power to the nominal 
power of a turbine. Additionally, we assumed that turbine 
construction is viable if its annual average capacity factor 
matches with typical values reported for wind generation.
Relevance of the wind speed values for wind power 
generation was addressed for each considered location 
using a linear scaling approach for the wind speed time 
series, which involved increasing wind speed values using a 
constant multiplier. This artificial approach aimed to account 
for the fact that the available measurement locations were 
not selected to maximize wind power output. Capacity 
factor values based on the “original” reanalysis data served 
as a reference point to match with a situation when the 
reanalysis data are utilized directly in energy simulations 
omitting any correction procedures. Indeed, the applied 
linear scaling procedure is a simplification intended only 
for a robust estimation of the broad effects that reanalysis 
errors may have on energy modeling outcomes. The 
scaling factor values were determined through a fitting 
procedure to achieve multiannual average capacity factors 
consistent with typical values for modern onshore wind 
generation, assumed to range from 0.25 to 0.35 based on  
global statistics (Boretti and Castelletto 2020; Jung and 
Schindler 2022).
 The calculated capacity factors were averaged over the 
entire available observation period and compared against 
the assumed typical annual average values. To account for 
the nonlinear sensitivity of wind turbine performance to 
wind speed, the scaling factor was varied within the assumed 
typical capacity range. This scaling approach was applied to 
wind speed data for all considered stations except Gelendzhik. 
The ERA5-extracted wind speed values for Gerendzhik were 
high enough to yield capacity factors exceeding 0.35, the 
assumed upper boundary of the typical capacity factor range.
 The range of the fitted scaling factor values depended 
primarily on the annual average wind speed and was found to 
be 1.15 to 1.30 for Zvenigorod and Tsimlyansk, and 1.25 to 1.43 
for Kalmykia, with no scaling needed for Gelendzhik. These 
obtained scaling factor ranges were compared against wind 
speed values within approximately a 50 km radius around 
each station location, corresponding to the correlation length 
for wind speed aggregated with hourly time resolution and 
combined with a potential to vary the hub height between 
70 and 200 m, following current standards.

RESULTS AND DISCUSSION

Verification

 Statistical characteristics of the wind speed reanalysis error 
are shown in Table 2 and Figure 3. Notably, there is minimal 
difference between the verification results when using bilinear 
and the nearest neighbor interpolation methods. Previous 

studies (Ramon et al. 2019) also demonstrated the same 
independence of estimates from the interpolation method 
for ERA5, although the difference between methods arises 
for reanalyses with coarser spatial resolution. Therefore, we 
focus on the results obtained using the bilinear interpolation 
method.
 It should be kept in mind that the amount of data 
available in Zvenigorod is several orders of magnitude 
higher than for other sites (Table 2), making the statistical 
estimates for Zvenigorod the most reliable. Systematic errors 
are observed at most stations (except for Gelendzhik). The 
Mean Absolute Error (MAE) varies from 1.4 to 2.1 m/s, with 
errors consistently lower than the standard deviation of the 
wind speed at all locations (Table 2). On average, 59% of 
errors fall within acceptable accuracy criteria. The average 
correlation coefficient between reanalysis and observations 
is 0.7. Across all locations except Zvenigorod, the reanalysis 
underestimates the frequency of wind speeds over 8-10 m/s 
(Fig. 4). The frequency of wind directions in the reanalysis 
roughly corresponds to the observed values (Fig. 5).
 Variations in verification results among the stations 
can be attributed to the differences in the “complexity” of 
the areas where the stations are located. The highest errors 
are observed in Zvenigorod, despite its larger sample size, 
due to the presence of a high and heterogeneous forest 
which disrupts the logarithmic wind profile. At the same 
time, Tsimlyansk demonstrates the best results among all 
stations (i.e. the smallest MAE and SDE, the largest correlation 
coefficient), which is explained by the favorable location (the 
absence of significant obstacles nearby).
 In Zvenigorod, the largest errors occur during weak 
winds of any direction (Fig.4a, 5a). In general, the wind 
speed probability distribution is shifted towards higher 
wind speeds in the reanalysis compared to observations 
(Fig. 4). This systematic overestimation may stem from  the 
underestimation of roughness length and the deviation of 
the wind profile observed over the forest from the logarithmic 
profile, especially evident during weak winds.
 In Tsimlyansk, there is a slight systematic underestimation 
of wind speed, particularly noticeable during the night 
(Fig.6b), possibly due to the absence of night low-level jet 
streams or an inaccurate description of momentum transfer 
processes under stable boundary layer stratification in the 
reanalysis. The largest underestimations, up to 7 m/s, are 
observed when the wind speed exceeds 7 m/s , and with 
errors reaching 5 m/s during weak winds. There is no clear 
dependence of the error on wind direction (Fig.5b).
 In Kalmykia, the reanalysis similarly tends to underestimate 
wind speed, which can be explained with local effects, 
particularly the frequent sandstorms. During sandstorms, 
the roughness length becomes highly dependent on wind 
speed (Semenov 2020), similar to the sea surface, with values 
changing by four orders of magnitude. Additionally, flow 
acceleration may occur due to the influence of sand in the 
air, which disrupts the logarithmic wind profile (Semenov 

Bias, m/s MAE, m/s SDE, m/s SDW, 
m/s

CC PEAA, % Number 
of valuesBIM NNM BIM NNM BIM NNM BIM NNM BIM NNM

Zvenigorod 1.0 1.0 1.4 1.4 1.6 1.6 2.0 0.73 0.73 34 34 67352

Tsimlyansk -0.8 -0.8 1.5 1.5 1.7 1.7 2.8 0.79 0.79 71 71 1765

Kalmykia -1.1 -1.1 1.8 1.8 2.2 2.2 2.9 0.66 0.66 67 67 209

Gelendzhik 0.1 0.0 2.1 2.1 2.7 2.7 3 0.48 0.47 42 44 782

Table 2. Statistical characteristics of wind speed reanalysis errors following bilinear interpolation method (BIM) and 
nearest neighbor method (NNM)
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2000). The largest errors, up to 10 m/s, correspond to strong 
southeast winds (Fig. 6c). However, there are insufficient 
observational data for a reliable assessment of reanalysis 
errors for different wind directions.
 For the station in Gelendzhik, the largest spread of errors is 
observed due to the complexity of the surrounding orography 
and surface types (the combination of land and sea). This 
complexity leads to deviations of the wind profile from the 
logarithmic profile, which makes it impossible to accurately 
determine the roughness length in simplified parametrizations 
in the reanalysis. The largest errors, up to 11 m/s, occur at wind 
speeds exceeding 10 m/s with northeast, south, and southeast 
directions (Fig.5d). Strong northeastern winds in Gelendzhik 
are caused by the local Novorossiysk bora, a downslope 
windstorm (Shestakova et al. 2018). Strong southerly winds 
from the sea are also characteristic of the Gelendzhik area.
 When using the “averaging method”, the magnitude of 
MAE and SDE slightly decreases (by 0.2 m/s on average for 
all locations) compared to interpolation methods (Table 3). 
The error probability distribution becomes narrower for the 
“averaging method”, with an increased frequency of small errors 
(Fig. 3). That error will continue to decrease with an increase in 
the area and period of averaging (Molina et al. 2021; Thomas et 
al. 2021), but this leads to a loss of useful information about the 
temporal variability of the wind field.
 Our estimates of reanalysis’s wind speed error are generally 
consistent with other similar estimates made previously for 
ERA5 (Gualtieri 2021; Ramon et al. 2019; Molina et al. 2021; 
Santos et al. 2019; Thomas et al. 2021; Dörenkämper et al. 2020; 
Jourdier 2020). According to the listed studies, the spread of 
the NSD varies from 0.3 to 2, the correlation coefficient from 
0.2 to almost 1, and the bias from -5 to 3.8 m/s. Gualtieri (2021) 
examined the quality of the ERA5 reanalysis at several points on 
land, three of which can be compared  with our points by land 
use type. For the Australian point Wallaby Creek situated in the 
forest, as well as in Zvenigorod, the reanalysis overestimated 

wind speed; the average NB and NRMSE practically coincided 
in Wallaby Creek and Zvenigorod. A point Humansdrop in 
South Africa, located on a flat grassland, can be compared with 
Tsimlyansk. The estimates for these two points also practically 
coincide, with the wind systematically being overestimated by 
12-14% (Table 4). Conversely, the estimates for the point with 
desert land type in Iran (Ghoroghchi) do not coincide with our 
estimates for Kalmykia. The wind at the Iranian point, as well 
as in Kalymkia, is also underestimated by the reanalysis, but in 
higher proportions (the NB and NRMSE are 0.5 and 0.8 instead 
of 0.2 and 0.4 in Kalmykia, respectively).

Correction of reanalysis

 Once the reanalysis had been verified, the next step was to 
evaluate how the obtained errors in wind speed propagated 
into wind energy modeling. However, we first needed to 
obtain “perfect” wind data so that we could compare it to 
the “original” reanalysis. To achieve this, we applied the bias 
correction method described earlier to the reanalysis data 
series.
 Initially, we calculated the shape and scale parameters of 
the bias-correction method using formulas (2) and (3) for the 
entire data series due to its relatively small length. The wind 
speed probability distribution obtained after this correction 
is shown in Fig. 3 by a dotted line. Statistical analysis of the 
errors in the corrected wind speed (Table 4, 5) reveals that 
the correction not only eliminated the systematic error but 
also slightly decreased the MAE and NRMSE at most stations 
(Zvenigorod, Gelendzhik, and Tsimlyansk), with the standard 
deviation of wind speed in the corrected reanalysis being 
equal to the observed values. However, other statistical 
characteristics of the errors changed minimally, and the 
percentage of errors within acceptable accuracy for the 
corrected values even decreased.
 

Fig. 3. Probability distribution of wind speed reanalysis errors when using bilinear interpolation (green line), nearest 
neighbor interpolation (red line), and averaging method (blue line) speed in Zvenigorod (a), Tsimlyansk (b), Kalmykia (c), 

and Gelendzhik (d) 
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Fig. 4. Probability distribution of wind speed in Zvenigorod (a), Tsimlyansk (b), Kalmykia (c), and Gelendzhik (d) according 
to observations (black line), “original” reanalysis (red solid line) and corrected reanalysis (red dashed line)

Fig. 5. Probability of wind of various speed categories from different directions in Zvenigorod , Tsimlyansk , Kalmykia, and 
Gelendzhik  according to observations (left column) and reanalysis (right column)
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 Moreover, this correction method does not account for 
the features of the wind speed distribution associated with 
terrain features or intra-diurnal variability. For example, in 
Zvenigorod during summer, the reanalysis errors (namely, 
the overestimation of wind speed) are the smallest in 
the middle of the day and night. At this time of day, the 

regime of stratification and mixing of the boundary layer 
becomes more steady than in the transition hours. In the 
transition hours – in the morning and in the evening – the 
errors increase sharply (Fig 7.a), which is associated with 
the change from nighttime to daytime turbulence regime 
and vice versa (which may not occur simultaneously in 

Fig. 6. The dependency of wind speed error of “original” reanalysis on wind direction in Zvenigorod (a), Tsimlyansk (b), 
Kalmykia (c), and Gelendzhik (d). Whiskers indicate minimum and maximum errors

Bias, m/s MAE, m/s SDE, m/s SDW, m/s CC PEAA, % Number of values

Zvenigorod 0.9 1.3 1.4 1.8 0.77 35 55267

Tsimlyansk -0.8 1.4 1.6 2.7 0.82 72 1468

Kalmykia -0.8 1.4 2.0 2.5 0.59 70 122

Gelendzhik 0.0 1.9 2.4 2.5 0.45 43 649

Bias, m/s MAE, m/s SDE, m/s SDW, m/s CC PEAA, % Number of values

Zvenigorod 0.0 1.1 1.4 2.0 0.73 53 67352

Tsimlyansk 0.0 1.4 1.8 2.8 0.79 58 1765

Kalmykia 0.0 1.8 2.4 2.9 0.67 53 209

Gelendzhik 0.0 2.3 3.0 3 0.49 41 782

NB NRMSE NSD

original corrected original Corrected original corrected

Zvenigorod 0.21 0 0.38 0.29 1.1 1

Tsimlyansk -0.12 0 0.29 0.26 0.9 1

Kalmykia -0.18 0 0.39 0.39 0.7 1

Gelendzhik 0.02 0 0.59 0.54 0.7 1

Table 3. Statistical characteristics of wind speed reanalysis errors when using “averaging method”

Table 5. Statistical characteristics of wind speed reanalysis errors after bias correction

Table 4. Comparison of NB, NRMSE and NSD before and after bias correction
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reanalysis and observations). The transition from nocturnal 
to daytime boundary layers and vice versa is a rather 
subtle process, especially under conditions of a complex 
underlying forested surface, considering the low spatial 
resolution of the reanalysis and the complex nature of 
turbulence. Such features are typical for summer, when 
the differences between the daytime (convective) and 
nocturnal (stably stratified) boundary layers are highest, 
and hence the transitions between them are the sharpest. 
In addition, the change in the form of the daily course of 
wind speed in this region occurs at a height of about 100 
m (Lokoshchenko 2014): the maximum speed is observed 
during the day below 100 m and at night above 100 m. This 
happens due to thermal stratification and features of the 
vertical transfer of momentum between the layers. In the 
reanalysis, this boundary (reversal of the daily course) can 
be higher or lower than the observed one, which adds to 
the reanalysis inaccuracy. After the correction procedure, 
morning and evening errors decreased, but at the same 
time a rather strong negative bias appeared in the middle 
of the day and night (Fig 7a).
 The dependence of the reanalysis error on the time of 
day is not universal. There are small errors in the daytime in 
Tsimlyansk (Fig.7b), with the magnitude of errors significantly 
increasing at night, similar to the previously described 
underestimations. The correction procedure “spreads” the 
error evenly over the daily course, although the usefulness 
of such solution from the energy production point of view is 
questionable.
 To address this, we performed another correction 
procedure for Zvenigorod and Tsimlyansk (at other stations, 
the length of the data series was insufficient for the calculation 
of the mean and standard deviation), considering the 
daily variation of wind speed error. After this correction, we 
eliminated biases in the reanalysis for both the entire series 
and individual hours. At both locations, MAE decreased by 0.1 
m/s compared to the values in Table 5, and the correlation 
coefficient slightly increased, to 0.82 in Tsimlyansk and 0.76 in 
Zvenigorod. However, even with these corrections, the formal 
criteria of reanalysis quality outlined above were not fully met: 
the ratio of SDE to SDW was quite high, while PEAA was rather 
low. Such data are rarely “perfect”. However, as demonstrated 
in the next section, even with bias correction alone, acceptable 
results for wind energy applications can be achieved.

Manifestation in energy modeling

 Having evaluated the corrected reanalysis data, which we 
have assumed to be accurate, we could quantify the effects 
of the reanalysis uncertainties on the accuracy of the wind 
power modeling.

 We assessed two main mechanisms for the propagation 
of the reanalysis uncertainty into energy modeling:
 1. The difference in average capacity factors of 
the renewable generation on a long-term time scale 
associated with applying different approaches to the 
ERA5 bias correction. This uncertainty defines a difference 
between the wind power output values assumed by 
planning studies compared with values harnessed during 
the operation of real power systems.
 2. Discrepancies between the power system regime 
parameters corresponding to the reanalysis-extracted 
wind speed values compared to the use of the “perfect” 
climate data.
 Both climate-related energy modeling uncertainties 
were found to depend on the assumed wind speed 
scaling factor. Lower scaling values were linked to 
higher sensitivity of the energy modeling output to the 
underlying uncertainty of climate data. This effect should 
be expected and is explained by the nonlinear shape of 
the working curve mentioned earlier. It was shown that 
using the “original” ERA5 reanalysis data could lead to errors 
in the wind power capacity factor up to 0.10 to 0.15 on 
the “original” reanalysis data for all considered locations 
except Gelendzhik, where the errors could be up to 0.40.  
Keeping in mind that the typical capacity factor is about 
0.3, the uncertainties associated with the reanalysis biases 
may seriously compromise the results of the investment 
planning if not corrected. The error value drops to as low 
as 0.01...0.02 when the proposed hourly-resolved bias 
correction procedure is applied (Fig. 8).
 We considered several types of wind turbines (Vestas 
V80, Vestas V164, Siemens 82, Siemens 107, Repower 
82, and Nordex N90) to ensure the obtained results are 
robust against wind turbine design. Power curves of each 
turbine type were approximated with a Weibull cumulative 
distribution function model (Bokde et al. 2018). The resulting 
relationship was used to compare the capacity factors of 
wind turbines corresponding to different approaches to 
climate data processing. Vestas 164, a 10 MW nominal class 
that is widely used in Russian wind farms, was selected for 
further calculations presented in the paper.
 The obtained capacity factor errors (30-50%) when 
using the “original” ERA5 data as input are consistent 
with previously obtained estimates for different locations 
in Europe and the world (Staffell and Pfenninger 2016; 
Gualtieri 2021), although errors usually do not exceed 
±10% on flat land or over the sea (Jourdier 2020; Gualtieri 
2021). For some locations (for example, in regions with 
complex orography or forested areas), capacity factor 
errors calculated from ERA5 data can be even larger and 
reach 70-120% (Gualtieri 2021). 

Fig. 7. Daily course of wind speed and wind bias in “original” and corrected reanalysis data series in Zvenigorod (a) and 
Tsimlyansk (b)
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Fig. 8. The effect of ERA5 biases on the simulated multi-annual wind power capacity factor calculated using different 
approaches to the ERA5 biases correction with the average power capacity factor being 0.25 (a) and 0.35 (b) (Zvenigorod, 

turbine type «Vestas V164»)

Fig. 9. Typical daily course of the simulated wind power capacity factor in May calculated using different approaches to 
the ERA5 biases correction (average power capacity factor on the reanalysis data is 0.30, Zvenigorod, 

scaling factor = 1.5, turbine type «Vestas V164» )

Fig. 10. Normalised daily power demand profiles for the Center power system in May for each day of the week (calculated 
using the System Operator data (so-ups.ru, 2005) data for 2000 – 2020)
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 It is worth emphasizing that the overestimation of 
harnessed wind power (as observed in Zvenigorod and 
Gelendzhik) by ERA5 may not be quite obvious from 
reviewing the current state-of-the-art of climate-energy 
research. Most published works report the underestimation 
of real wind potential by reanalysis data and consider energy 
simulation results obtained on original reanalysis data as 
conservative estimates of wind generation performance. 
This bias is linked to the fact that intensive wind generation 
development and applicable regional wing-energy 
research are currently concentrated in a few geographical 
regions of the world. Such a situation obviously leads to 
some research biases if a priori knowledge.
 Diurnal patterns of reanalysis accuracy determine 
variations in climate-related uncertainties of simulated 
wind power throughout the day, particularly during peak 
demand hours when failing to provide the power needed 
to cover the actual electricity demand can lead to the most 
dramatic consequences for the power system. Inadequate 
modeling of the power system behavior during peak hours 
may lead to increasing risks for the power supply reliability. 
From this perspective, the local increase of reanalysis errors 
linked to the change of the boundary layer regime in the 
morning and evening hours poses a serious concern for 
energy modeling’s practical use.
 For example, in Zvenigorod during late spring (Fig. 8), 
the reanalysis error increases between 17:00 and 21:00 
due to the transition between the daytime and nighttime 
boundary layer regimes. This timeframe is overlaid with the 
peak hours of the Center power system where Zvenigorod 
is located (see Fig. 10), which are typically between 
19:00 and 21:00. If “original” reanalysis data are utilized to 
calculate the wind power available in the system, it can 
lead to an almost 50% overestimation of wind power for 
the evening load peak. Such discrepancy questions any 
conclusions which can be derived from energy models 
regarding power system reliability. Applying bias-corrected 
procedures significantly decreases this modeling error and 
is recommended for improving the reliability of energy 
models.

CONCLUSIONS 

 In this paper, we verified the wind speed and 
direction in the ERA5 reanalysis by comparing it with 
sodar measurements at 100 m above ground level. These 
measurements were carried out in various climatic zones 
and landscapes across European Russia. The presence of 
systematic errors in the reanalysis prompted us to correct 
the reanalysis data, considering the intradiurnal variation 
of wind speed error at each station. Since ERA5 reanalysis 
is often used as input climate data in energy modeling, we 
examined how wind speed bias translates into wind power 
capacity factor error and how this error can be eliminated 
with reanalysis bias correction.
 Here are the main conclusions from the verification:
 The systematic error of wind speed in ERA5 can be 
both positive and negative, ranging from -18% to 21% for 
the considered stations. The mean absolute wind speed 
error varies from 1.4 to 2.1 m/s, and the relative error ranges 
from 23% (on flat grassland in Tsimlyansk) to 45% (in the 
topographically complex area in Gelendzhik). The wind 
rose, representing the frequency and intensity of wind 
from different directions, is satisfactorily reproduced by 
ERA5.
 There is no clear universal dependence of wind speed 
quality in ERA5 on a particular type of landscape and 
topography, as previously mentioned by other researchers 

(e.g., Molina et al. 2021). However, when comparing our 
results with those from other studies (Gualtieri 2021), ERA5 
tends to overestimate wind speed over forest landscapes 
and underestimate it over steppe (grasslands) and desert 
landscapes.
 There is a dependence of reanalysis error on the time of 
day, but this dependence varies among different stations.
 In general, wind speed errors in ERA5 are significant, 
especially in Zvenigorod and Gelendzhik, where the 
percentage of errors within acceptable accuracy is less 
than 50%, and the absolute error approaches the standard 
deviation of wind speed. Therefore, reanalysis correction 
is necessary, especially if these data is used in energy 
modeling.
 Bias correction not only eliminates the systematic error 
in wind speed but also slightly decreases the absolute error 
at most locations. 
 Our simplified wind energy modeling approach 
allowed us to assess the propagation of reanalysis biases 
into energy modeling. The energy modeling assumptions 
are based on the usage of working curves of wind turbines, 
which implies neglecting possible wake effects or the 
influence of mesoscale topography features. The analysis 
demonstrated that using “original” reanalysis data as 
inputs can produce misleading results. The main concerns 
include:
 Reanalysis can both under and overestimate wind 
power capacity factors on a long-term time scale, 
depending on the area. Using “original” ERA5 data instead 
of observations can lead to capacity factor errors of 30-50%. 
This effect means that the wind energy modeling results 
can be misleading when used to support investment 
decisions. It should be recommended to assess the 
reanalysis uncertainty at least quantitatively, especially if 
an area is not well studied from the perspective of wind 
power development.
 An important mechanism for the propagation of the 
reanalysis uncertainty into the energy model was identified 
when analyzing diurnal patterns of the reanalysis errors. 
High reanalysis errors associated with transient regimes of 
the atmospheric boundary layer can coincide with peak 
load periods of regional power systems. Failing to account 
for this effect in energy modeling can compromise power 
system reliability.
 Utilizing the bias-correction approach is an effective 
measure to ensure meaningful energy modeling outputs. 
The capacity factor error is reduced by a factor of 10 
compared to using original reanalysis data, and is less than 
10% of its typical value. The developed bias-correcting 
approach accounting for the daily course of wind speed 
error was found to be an effective measure that allows 
to ensure a proper quality of climate inputs for energy 
modeling.
 The main limitations of our study include the absence 
of wind measurements at a height of 100 m in southern 
European Russia during the cold season, when wind 
speed is highest. This limits a full assessment of reanalysis 
error over steppes and deserts, suitable areas for wind 
power plants. Additionally, the used correction method 
depends strongly on natural conditions, which may be 
unknown in advance. Further assessments of reanalysis 
quality for various natural conditions will help to obtain 
such dependences and apply them globally, not only for 
individual regions. Such in-depth assessments are crucial 
for accurate energy planning studies accommodating an 
increasing share of wind generation in power systems 
cost-effectively.
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