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ABSTRACT. Seagrass meadow is one of the blue-carbon ecosystems capable of absorbing and storing carbon more 
effectively in the bodies and sediments than terrestrial ecosystems. However, nationwide data on its carbon stock remains 
elusive due to limitations and challenges in data collection and mapping. Seagrass percent cover and biomass, which were 
closely related with above-ground carbon stock, can be effectively mapped and monitored using remote sensing techniques. 
Therefore, this study aimed to compare the accuracy of 4 scenarios as well as assess the performance of random forest and 
stepwise regression methods, for mapping seagrass percent cover and biomass in Nusa Lembongan, Bali, Indonesia. The 
scenarios were experimented using only atmospherically corrected images, sunglint, water, as well as sunglint and water 
column corrected images. Furthermore, WorldView-3 images and in-situ seagrass data were used, with the image corrected 
by applying the scenarios. Random forest and stepwise regression methods were adopted for mapping and modelling. The 
optimum mapping scenario and method were chosen based on R2, RMSE, and seagrass spatial distribution. The results show 
that the atmospherically corrected image produced the best seagrass percent cover and biomass map. Range of R2 using 
random forest and stepwise regression model was 0.49–0.64 and 0.50–0.58, with RMSE ranging from 18.50% to 21.41% and 
19.36% to 20.72%, respectively. Based on R2, RMSE, and seagrass spatial distribution, it was concluded that the random forest 
model produced better mapping results, specifically for areas with high seagrass percent cover.
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INTRODUCTION

	 Seagrass	 is	 an	 ecosystem	 with	 numerous	 benefits,	
including protection services, serving as primary producers, 
providing habitats for marine biota, and carbon storage 
(Duarte and Tomas 2013; Macreadie et al. 2017; Sjafrie et al. 
2018; Macreadie et al. 2019; Duarte et al. 2020). Compared 
to terrestrial vegetation, it can store more CO

2
 in the bodies 

and	sediments	(Mcleod	et	al.	2011).	Despite	these	benefits,	
seagrass is experiencing a decline of 2-5% annually on a 
global scale (Duarte and Dennison, 2008). This ecosystem 
is vulnerable to damage and degradation due to increased 
coastal development and activities (Grech et al. 2012; 
Yaakub et al. 2014; Holon et al. 2015), as well as changes 
in environmental conditions that lead to the extinction of 
certain species (Strydom et al. 2017). According to study 
conducted by P2O-LIPI through the COREMAP-CTI project 
between 2015 – 2017, seagrass beds in Indonesia were 
in poor condition (Sjafrie et al. 2018). Given this situation, 
the	significance	of	the	mapping	and	obtaining	up-to-date	
information on the extent and condition of seagrass is 
increasing (UNEP, 2020).

	 Remote	sensing	technology	is	an	efficient	and	effective	
tool for monitoring seagrass beds due to its ability to 
provide both spatial and temporal information (Koedsin et 
al.	2016;	Fauzan	et	al.	2017;	Effrosynidis	et	al.	2018).	Various	
method can be used to analyze remote sensing data 
(Effrosynidis	 et	 al.	 2018;	 Pham	 et	 al.	 2019),	 enabling	 the	
provision of information on seagrass extent and changes, 
species distribution, percent cover (Roelfsema et al. 2014; 
Fauzan et al. 2021), and biomass (Lyons et al. 2015; Koedsin 
et al. 2016; Wicaksono et al. 2021). 
 Seagrass mapping using remote sensing comprises 
various processes, contributing to producing accurate 
maps, such as atmospheric, sunglint, and water column 
correction, as stated in previous studies (Bukata et al. 1995; 
Hedley et al. 2005). While some investigations suggested 
that correction can improve accuracy (Tamondong et al. 
2013; Anggoro et al. 2016), others indicated the opposite 
(Zhang et al. 2013). In addition to correction-related 
reports, data analysis is another critical process in remote 
sensing, facilitating data interpretation and visualization 
(Lillesand et al. 2015). The commonly used approach is 
stepwise regression method, as it enables the selection of 
an	independent	variable	based	on	a	significant	relationship	
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(Thompson 1995; Smith 2018). This approach accelerates 
the	 selection	 and	 analysis	 of	 the	 most	 influential	
independent variables (Wang and Jain 2003; Khogkhao et 
al. 2017; Wicaksono et al. 2021). The application of linear 
regression is challenging due to the complexity of seagrass 
with diverse habitats and varying density. Alternatively, 
random forest regression method is a machine learning 
approach that builds decision trees based on random 
vectors with independently sampled data. It can unveil 
more complex relationships and process data quickly and 
accurately (Salford Systems, 2014; Genuer and Poggi, 2020; 
Zhang	and	Xie,	2012;	Zhang	et	al.,	2013;	Effrosynidis	et	al.,	
2018; Maxwell et al., 2018; UNEP 2020). 
	 The	 study	 specifically	 focuses	 on	 percent	 cover	 and	
biomass mapping, with previous investigation presenting 
these parameters as crucial indicators for estimating carbon 
stocks in seagrass beds (Wahyudi et al., 2019). Remote 
sensing techniques have been adopted for the mapping 
process, as showed by Roelfsema et al. (2014), Koedsin et 
al. (2016), Fauzan et al. (2021), and Wicaksono et al. (2021). 
Given the importance of seagrass beds in mitigating 
climate change by sequestering carbon, there is a growing 
need for data and knowledge on these variables (Duarte 
and Tomas, 2013; Fourqurean et al., 2013). Therefore, using 
remote sensing technology to obtain information on 
percent cover and biomass is crucial. This study aimed to 
examine various correction methods and compare the 
effectiveness	of	the	random	forest	and	stepwise	regression	
methods for mapping percent cover and seagrass biomass 
in Nusa Lembongan Island.

MATERIALS AND METHODS

Study Area 

Nusa Lembongan, an island in the Klungkung Regency, 
Bali,	Indonesia	(Fig.	1),	is	geographically	located	at	08°	30΄	
40΄΄	-	08°	41΄	43΄΄	S,	and	115°	25΄	36΄΄	E	-	115°	28΄	20΄΄	E.	The	

island	has	a	flat	topography	with	northward	and	southward	
slopes of 0–3% and 3–8%, respectively. The study area 
had a coastline of 16.3 km and comprised of mud, rock, 
and mangrove (Kumara 2018). Nusa Lembongan has a 
semi-diurnal tide pattern, resulting in two high and two 
low tides in a day. The current patterns in its waters were 
influenced	by	the	movement	of	water	masses	from	the	Bali	
Strait, Lombok Strait, and the Indonesian sea, while tides 
have	a	more	significant	impact	on	current	types	in	shallow	
waters (Prasetia et al., 2017).
 According	to	field	observations	made	by	the	Coral	Triangle	
Center and Udayana University, the Nusa Penida Marine 
Protected Area has an area of 108 hectares covered by eight 
species of seagrass, namely Thalassia hemprichii, Halophila 
decipiens, Halophila ovalis, Enhalus acoroides, Cymodocea 
rotundata, Syringodium isoetifolium, Cymodocea serrulata, and 
Halodule uninervis (Kabupaten Klungkung, 2012). The seagrass 
ecosystem in the study area comprised of sand and muddy 
sand substrate types (Negara et al., 2020). However, Negara 
et al. (2020) stated that seagrass beds in the area were mainly 
used for tourism purposes, with the majority of the seagrass 
region serving as docking points for ships.

Field Data

	 The	field	data	used	in	this	study	was	sourced	from	Kumara	
(2018), who conducted a survey on benthic habitat and 
seagrass percent cover on Nusa Lembongan Island from June 
12 to 19, 2017. This dataset comprised information related to 
various benthic types, such as coral, seagrass, macroalgae, and 
bare substrate, with data points distribution of 155, 450, 17, and 
194, respectively.
 The photo-transect method, which adopted underwater 
cameras and quadrants, was applied to collect the seagrass 
percent cover data. The photos taken contained coordinate 
information as the camera time is synchronized with GNSS. 
Furthermore, the receiver tracking interval is one second, 
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Fig. 1. The study site on Nusa Lembongan Island, as captured by WorldView-3 image. The purple rectangles on the figure 
represent the various coastal typology zones, while the points indicate the locations of the sample sites
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ensuring precise geotagging. Quadrants measuring 0.5 × 0.5 
m were used, and photos were captured at 2 m intervals. These 
quadrants served as a tool for scaling objects in photos or 
determining	the	percentage	of	seagrass	cover.	The	classification	
of seagrass percent cover was established according to Fig. 2. 
For example, when the seagrass covers the entire area of the 
quadrat, it is labelled as 100%.
 Each transect, ranging from 100-150 m long, was divided 
according to the coastal typology zones, comprising Zone I 
to VI, namely deep rocky, deep sandy, sandy sloping, muddy 
sloping, strait sloping, and sandy zones with high currents, 
respectively.	 This	 partitioning	 facilitated	 the	 identification	 of	
areas	 where	 specific	 seagrass	 species	 were	 predominantly	
discovered in each zone. The percent cover on each zone is 
presented in Table 1. Each zone consisted of 4-6 transect lines, 
determined	by	the	level	of	species	diversity	observed.	The	field	
data was divided into two sets. One and one part was used to 
train	the	classification	and	regression	models,	while	the	other	
set was reserved for accuracy assessment.

WorldView-3 Image

 DigitalGlobe launched WorldView-3 in 2014 as a 
commercial high-resolution image. It captures 8 multispectral 
bands with a spatial resolution of 1.24 m and 8 short infrared 
bands at 3.7 m resolution, alongside 12 Cavis bands at 30 m 
resolution, as presented in Table 2. The panchromatic band has 
a resolution of 0.31 m, and according to Kovacs et al. (2018), 
high	 spatial	 resolution	 imagery	 offers	 increased	 detail	 and	
is commonly regarded as more representative for mapping 
purposes. This image can capture up to 680,000 km2 per day 
and has been corrected for sensor distortion. The received 
pixels were in radiometrically calibrated digital number 
(DigitalGlobe, 2014). The Worldview-3 image used in this 
study was captured on July 27, 2016, at 10:00:00 AM, when 
the waters in Nusa Lembongan Island were in low tide. As a 
result, several benthic objects were visible above the surface at 
the time of capture. This study used only the visible and near-
infrared bands. 

Fig. 2. Seagrass percent cover interpretation guide (seagrasswatch.org, accessed April 10, 2022)

Table 2. WorldView-3 specification

Table 1. Seagrass percent cover on each zone

Band Wavelength (nm) Band Wavelength (nm)

Coastal 400 - 450 Red 630 - 690

Blue 450 - 510 Red edge 705 - 745

Green 510 - 580 Near-IR1 770 - 895

Yellow 585 - 625 Near-IR2 860 - 1040

Spatial resolution 1.24 m

Radiometric resolution 11-bit

Temporal resolution Daily

Zone Total	number	of	field	data Average (%)

1 49 74.59

2 65 26.17

3 36 47.92

4 84 73.57

5 180 51.75

6 22 55.45
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Image Processing

 The initial phase of image processing comprises 
masking, followed by correction using Scenario 1 - 
atmospheric, Scenario 2 - sunglint, Scenario 3 - water 
column, as well as Scenario 4 - sunglint and water column 
corrections. The corrected image is then used to create 
maps of benthic habitat and percent cover. Furthermore, the 
benthic habitat was characterized based on random forest 
classification	 algorithm.	 Pixel	 values	 within	 the	 seagrass	
and substrate classes were analyzed using both random 
forest and stepwise regression methods to produce percent 
cover map. This percent cover was further transformed 
into biomass map through the application of equation 
developed	by	Wicaksono	(2015).	The	flowchart	showing	the	
methodology of this study is presented in Fig. 3.
 
Image Masking 

 The process of image masking was adopted to 
eliminate unnecessary pixels. This includes masking out 
land, optically deep water, and wave breaking pixels. To 
achieve land masking, the threshold value of the NIR band 
was	used,	 enabling	 the	differentiation	of	water	 and	 land	
pixels. Similarly, water column-corrected bands were used 
to identify threshold values for deep water pixels, thereby 
masking out optically deep waters (Wicaksono et al. 2021).

Atmospheric Correction 

 Atmospheric correction was conducted to obtain the 
surface	reflectance	values.	The	method	for	removing	path	
radiance in images is the dark object subtraction (DOS) 
technique developed by Chavez (1996), which is applied to 
the	TOA	reflectance	of	the	WorldView-3	image	(Equation	1).

where:
 ρ

BOA
:	surface	reflectance,	

 ρ
e
:	reflectance	of	dark	object,	

 ρ
TOA
:	reflectance	on	top	of	atmosphere

Sunglint Correction 

 In this study, the method developed by Hedley et al. 
(2005), was applied to reduce sunglint by leveraging the 
linear relationship between the NIR and visible bands in a 
training area with various sunglint levels. The required inputs 
for this correction include the visible band to be corrected, 
the slope of the linear regression, the NIR band, and the 
minimum	value	of	the	NIR	band	in	an	area	unaffected	by	
sunglint, as shown in Equation 2. The correction process 
engaged	968	samples	obtained	from	affected	deep-water	
areas. The slope of the linear regression was obtained 
from a training area of pixels in deep waters with varying 
sunglint intensities, as determined by Hochberg et al. 
(2003). The minimum value of the NIR band in the region 

Fig. 3. The study flowchart

(1)
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without sunglint was calculated by applying the following 
equation. 

where:
 ρ

i
	=	reflectance	of	visible	band	i

 b
i
 = slope between visible and NIR

 ρ
NIR
	=	reflectance	of	band	NIR

 ρMin
NIR
	=	minimum	reflectance	of	NIR	band

 ρ
i
’ =	reflectance	of	sunglint	corrected	band

Water Column Correction 

 This study used the water column correction method 
developed by Lyzenga (1978), as described in Green et 
al. (2000). The method adopted a pair of visible bands to 
generate	a	new	band	where	the	energy	attenuation	effect	
from the water column has been minimised. To perform 
the	necessary	corrections,	 reflectance	values	of	 the	same	
benthic	object	at	different	depths	were	required	(Equation	
3). Meanwhile, sand was chosen for this study, as it is easily 
visible	 and	 distinguishable	 at	 different	 depths,	 with	 the	
reflectance	value	decreasing	as	depth	increases.	A	total	of	
217 samples of sand were collected at various depths.

where:
 Y  = depth invariant index
 L

i
	=	reflectance	of	band	i

 L
j
	=	reflectance	of	band	j

 k
i
 / k

j
	=	ratio	of	coefficient	attenuation	for	band	i	dan	j

Mapping Methods

Random Forest 

 Random forest is a machine learning approach that 
builds decision trees based on random vectors with 
independently sampled data (Salford Systems, 2014; 
Genuer	and	Poggi,	 2020).	 Its	 classification	and	 regression	
was used for benthic habitat and seagrass percent cover 
mappings, respectively. In random forest regression, n

tree
 

(the number of trees) and m
try

 (the number of variables 
randomly selected at each node) parameters were also set. 
Furthermore, n

tree
 used factors of 100 and 500, while for m

try
, 

the total of input variables was divided by 3 (Genuer and 
Poggi, 2020) and the lowest error from out-of-bag (OOB). 
The	first	m

try
 was the initial m

try
 in R software, and second 

mtry OOB was chosen because OOB samples help evaluate 
misclassification	 as	 well	 as	 estimate	 the	 importance	 of	
variables (Eisavi et al., 2015). 

Stepwise Regression

 Stepwise regression is an analysis method used 
to determine the relationship between independent 
and dependent variables. This was achieved analysing 
the	 sequence	 of	 significant	 relationships	 among	 the	
independent variables (Thompson, 1995; Smith, 2018). 
In this study, stepwise regression was used to determine 
the	 relationship	 between	 reflectance	 value	 of	 the	 image	
and the in-situ data on the percent cover. The equation 
obtained from this analysis was then adopted to generate a 
spatial distribution of the percent cover on the WorldView-3 
image. 

Seagrass Biomass

 The seagrass biomass map was derived through the 
conversion of percent cover using the equation provided 
by Wicaksono (2015). A regression analysis was conducted 
on in-situ data, establishing a relationship between 
percent cover and biomass with an R2 value of 0.4399 and a 
standard error (SE) ranging from 30 to 40 g/m2, as shown in 
Equation	4.	Seagrass	PC	was	the	most	efficient	method	for	
estimating biomass due to its quick and non-destructive 
nature (Wicaksono, 2015). The following represent the 
equation adopted.

 With PCv is seagrass percent cover

Accuracy Assessment 

 Benthic habitat mapping accuracy assessment was 
performed using the confusion matrix method. This 
approach	adopted	a	table	that	evaluates	the	classification	
algorithm performance (Ting, 2017). The overall accuracy 
was determined by calculating the number of pixels 
accurately	 classified	 against	 the	 field	 data.	 In	 testing	
empirical modelling for percent cover and biomass, the 
coefficient	 of	 determination	 (R2) and root mean square 
error (RMSE) were used. The R2 measures the goodness-
of-fit	of	 the	model	 to	the	data	 (Ozer,	1985).	On	the	other	
hand, the RMSE is a statistical method that assesses the 
model accuracy (Chai and Draxler, 2014). The error value 
represented	the	difference	between	the	model	results	and	
the in-situ data. This assessment is essential in evaluating 
the accuracy of each scenario and the results obtained 
was compared using the random forest and stepwise 
regression methods.

RESULTS

Benthic habitat Mapping

 Benthic habitat maps were generated using random 
forest	 classification	 in	 atmospheric	 scenario,	 which	
showed the highest accuracy and spatial distribution 
in Nusa Lembongan Island (Ginting et al., 2023). The 
classification	outcomes	showed	the	ability	to	map	fringing	
reef	formations,	despite	the	misclassification	of	seagrass	as	
coral, as indicated by the red circle in Fig. 4.
 In atmospheric scenario, the accuracy was 73.00%, 
while for coral, seagrass, substrate, and macroalgae, the 
user’s accuracies were 83.33%, 71.94%, 69.84%, and 0%, 
respectively. The corresponding producer’s accuracies for 
the same classes were 56.45%, 87.36%, 57.14%, and 0%. 
When comparing the user’s and producer’s accuracies, 
the results suggest that the reef and substrate classes 
were underestimated, and the spatial distribution of this 
ecosystem exceeded estimation. However, due to a lack of 
field	data	and	the	absence	of	macroalgae	in	the	study	area,	
accurate mapping was not possible.

Seagrass Percent Cover Mapping

 The spatial distribution of percent cover in each scenario 
was	analyzed	based	on	 the	 levels	 specified	 in	 the	Decree	of	 the	
Minister of Environment No. 200 of 2004 (Kepmen LH, 2004), which 
include low (29.9%), medium (30.0–59.9%), and high (> 60%). The 
analysis was focused on 6 zones, as described in Fig. 1. Seagrass 
dominated in Zone I and IV, seagrass dominated, showing 
high percent cover, while Zone II had a low percent cover. 
Finally, the percent cover in III, V, and VI was moderate.

(2)

(4)

(3)
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Fig. 4. Benthic habitat map obtained from random forest classification based on atmospheric correction scenario

Table 3. R2 and RMSE based on random forest regression

Scenario

n
tree

100 500

R2 RMSE (%) R2 RMSE (%) R2 RMSE (%) R2 RMSE (%)

1 0.61 21.41 0.61 21.35 0.61 21.07 0.61 21.10

2 0.63 19.50 0.64 19.60 0.63 19.34 0.62 19.41

3 0.51 21.4 0.49 21.22 0.50 21.06 0.51 21.13

4 0.62 19.08 0.62 19.26 0.63 18.81 0.62 18.50

Initial OOB Initial OOB

m
try

 In random forest regression, parameter tuning is 
conducted	 to	 analyze	 the	 effect	 of	 each	 parameter	 (n

tree 
and m

try
) on the mapping of percent cover. The R2 did not 

show	a	 significant	difference	between	parameter	 tuning,	
as indicated by the small variation in its values (0-0.2), as 
presented	in	Table	3.	Based	on	RMSE,	the	error	difference	
between mtry ranged from 0.03-0.31%, while n

tree
 was 

spanned between 0.09-0.76%. The initial m
try

 showed the 
lowest RMSE among all m

try
 parameter tuning. This study 

concluded that the n
tree
	parameter	had	the	most	influence	

on the accuracy of the percent cover map, with the lowest 
RMSE observed at n

tree
 500. The range of R2 and RMSE in the 

4 scenarios are 0.49–0.64 and 18.50–21.41%, respectively. 
The ranking of R2 from highest to lowest include Scenario 
2, Scenario 4, Scenario 1, and Scenario 3. On the other 

hand, the best RMSE was indicated by the lowest value, 
observed in Scenario 4, followed by Scenario 2, Scenario 3, 
and Scenario 1.
 In Scenario 1, based on random forest regression, 
seagrass with medium-to-high percent cover can be 
mapped as apposed to those with low cover percent, 
as shown in Fig. 5. On the other hand, Scenario 2 is 
unable to map high percent cover in coastal areas near 
mangroves (Zone IV) due to the pixel value loss caused by 
the sunglint correction process (marked by white on the 
map). Analyzing the distribution in each zone showed that 
Scenario 2 adequately maps the percent cover of zones 
III,	V,	and	VI.	However,	misclassifications	occurs	 in	Zone	 II,	
where	low	percent	cover	is	classified	as	a	medium	cover.
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 Scenario 3 had the lowest R2 and higher error compared 
to	the	others,	indicating	a	higher	level	of	misclassification	
due to the correction process. Examining the spatial 
distribution in each zone show that this scenario is 
effective	at	mapping	the	percent	cover	in	Zones	I,	and	IV,	
which have a high percent cover. Scenario 4 had similar 
classification	with	2,	with	missing	pixel	values	denoted	by	
white markings resulting from sunglint correction. This 
scenario	was	effective	at	mapping	moderate	percent	cover	
but	is	less	effective	for	low	percent	cover.
 Each scenario was compared using 3 metrics, namely 
R2, RMSE, and spatial distribution, to determine the optimal 
scenario for mapping biomass. Analysis showed that 
Scenario 1 (Zones I, II, IV, and VI) and Scenario 3 (zones III 
and IV) had the best performance, with the highest R2 and 
lowest	 error,	 as	 detailed	 in	 Fig.	 6.	 Specifically,	 Scenario	 1	
proved	effective	for	mapping	seagrass	with	a	high	percent	
cover, while 2 was more suitable for objects that are often 
submerged in water and the ecosystem with a medium 
percent cover. Based on these results, Scenario 1 was the 
optimal choice for mapping purposes, considering R2, 
RMSE, and spatial distribution.

 Based on the stepwise regression in Table 4, Scenario 1, 
2, 3, and 4 had R2 and RMSE values of 0.53 and 20.65%, 0.58 
and 19.36%, 0.50 and 20.72%, as well as 0.56 and 20.61%, 
respectively. These values showed that Scenarios 2, 4, 1, 
and 3 were ranked from the best to the worst.
 Fig. 7 contains a map showing the percent cover 
obtained through stepwise regression. While Scenario 1 is 
proficient	in	mapping	from	low	to	high,	it	misclassifies	the	
percent cover of seagrass. The distribution in zones I, II, IV, 
V, and VI, was accurately mapped by this scenario, except 
for zone III dominated by high cover. On the other hand, 
Scenario 2 maps the percentage of cover in zones I, II, III, 
V, and VI accurately, except for zone IV due to the loss of 
seagrass pixel caused by the sunglint correction process. 
In the mapping process, Scenario 3 also shows the same 
pattern as Scenario 1. However, certain areas marked as 
having	high	percent	cover	in	the	Scenario	1	are	classified	
as medium in Scenario 3.

Fig. 5. Seagrass percent cover map based on random forest regression. Red boxes indicate coastal typology zones. 
The figures illustrate variations in seagrass percent cover based on the four scenarios
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Fig. 6. The accuracy assessment of seagrass percent cover map based on the random forest method for each scenario and 
zone. The R2 is represented by the coloured boxes, while the scenarios are distinguished by their respective colours. Boxes 

with a thick outline indicate the RMSE
Table 4. The R2 and the RMSE of each scenario

Scenario R2 RMSE (%)

1 0.53 20.65

2 0.58 19.36

3 0.50 20.72

4 0.56 20.61

Comparison of seagrass percent cover map using 
random forest and stepwise regression

 Based on the scenario analysis, the random forest 
regression outperformed the stepwise regression method 
in terms of the R2 (Fig. 8) and RMSE values. To compare 
the spatial distribution of the results obtained from both 
methods, the scenarios with the highest R2 and the lowest 
RMSE were selected. Scenario 1 was chosen for the random 
forest regression, while Scenario 2 was selected for the 
stepwise regression. The results showed that the random 
forest regression provided better spatial distribution of 
seagrass percent cover. This shows that the method was 
selected based on its accuracy and spatial distribution of 
seagrass percent cover.

Seagrass Biomass 

 In this study, biomass map was obtained by using an 
equation developed by Wicaksono (2015). This equation 
demonstrated that mapping seagrass aboveground 
biomass (g/m2) can be accomplished by applying 
information on percent cover. To generate the biomass 
map, the best value of R2, RMSE, and spatial distribution was 
selected. The accuracy assessment showed that random 
forest	method	was	most	effective	for	mapping.	The	results	
of the biomass map can be viewed in Fig. 9, where high 
aboveground biomass is located in zones I and IV.
	 The	 field	 data	 was	 converted	 to	 a	 percentage	 of	
cover for validation using the Wicaksono (2015) equation 
to assess the accuracy of the aboveground biomass. The 
atmospheric scenario biomass was compared with that 
of validation data. Finally, the comparison yielded R2 and 
RMSE of 0.38 and 24.33 g/m2, respectively.

DISCUSSION

 This study aims to examine various correction and 
compare	 the	 effectiveness	 of	 the	 random	 forest	 and	
stepwise regression methods for mapping percent cover 
and seagrass biomass in Nusa Lembongan Island. Initially, 
benthic	habitats	were	classified,	achieving	an	accuracy	of	
over 60%, which met the Indonesian National Standard 
7716:2011	 (BSN	 2011).	 The	 classification	 effectively	
mapped fringing reef formations and seagrass meadow 
ecosystems in the study area, as shown in the study by 
Prasetia et al. (2017) and Negara et al. (2020). However, 
macroalgae objects were not mapped due to the low 
cover, as presented in the report by Munir and Wicaksono 
(2019). 
 Seagrass and sand pixels from benthic habitat were 
selected to examine various correction and methods to 
extract seagrass percent cover. Based on the analysis of 
all data, both the random forest and stepwise regression 
methods indicate that Scenario 2 had the highest R2 

and the lowest RMSE. However, a closer examination of 
coastal typology zones shows that the random forest 
method performs better with Scenario 1, particularly in 
zones of high seagrass cover. This approach outperforms 
the stepwise regression method in terms of R2 and RMSE, 
both overall and per-zone. Furthermore, an analysis was 
conducted related to tuning parameters, such as n

tree
 

and m
try

. The random forest method parameter settings 
indicated that n

tree
	had	a	more	significant	effect	on	RMSE	

than m
try

 for mapping percent cover. The number of trees 
is directly proportional to the stability of the model (Dai et 
al. 2018; Genuer and Poggi 2020).
 Scenario 1 was chosen for several reasons. Firstly, the 
image was captured during low tide, eliminating the 
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Fig. 7. The map of seagrass percent cover obtained using stepwise regression. Purple boxes indicate the coastal typology 
zones. The figures display the variation of seagrass percent cover based on four mapping scenarios

Fig. 8. Comparison of seagrass percent cover map accuracy assessment in each zone for all scenarios, using both random 
forest and stepwise regression. The rectangles in the figure represent the R2, while triangles and circles represent RMSE 

values
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need for water column correction. This was in line with 
the	 study	of	Zoffoli	et	al.	 (2014),	where	 it	was	concluded	
that the Lyzenga method cannot be used for very shallow 
waters. Moreover, the images used were recorded at low 
tide	 and	dominated	by	 field	data	on	 reef	 flats.	 Secondly,	
despite sunglint scenario yielding the highest R2, it 
resulted in the loss of pixels above the water surface, 
particularly seagrasses, after correction. This suggested 
that atmospheric correction was the best input data for 
percent cover mapping. Finally, according to Wicaksono 
et al. (2019), atmospheric correction produced relatively 
stable values depending on atmospheric conditions.
 Compared to the previous investigation on mapping 
seagrass percent cover, this study indicates better 
performance than the R2 generated in Labuan Bajo using 
Planetscope data and the Support Vector Machine method 
(Munir et al. 2019). However, the model accuracy was lower 
than in the study of Ariasari et al. (2019), where Planetscope 
data and principal component analysis were used on the 
image to generate input data for random forest regression. 
Future study should consider the principal component 
analysis process to improve the accuracy of mapping the 
percent cover in the study area.
 Seagrass percent cover map was adopted to estimate 
above-ground biomass using the equation from Wicaksono 
(2015). The result showed that the equation can be used to 
map above-ground biomass up to 131 g/m2.	Based	on	field	
data collected in 2019 by Negara et al. (2020), the biomass 

at the study site ranged from 157.38 to 310.75 g/m2, 
covering	3	zones.	This	difference	 in	value	was	due	to	the	
equation by Wicaksono (2015) being developed in areas 
with lower biomass values compared to Nusa Lembongan 
Island. Despite this, the R2	 results	 are	 not	 significantly	
different	from	those	of	Wicaksono	(2015).
 The success of WorldView-3 imagery in producing 
a representative map is attributed to its high spatial and 
spectral resolution, making it particularly suitable for 
mapping seagrass ecosystems. These ecosystems are 
characterized by diverse species, benthic types, and present 
at varying density. However, WorldView-3 has limitations 
when applied to large areas or time series analysis. This is 
primarily due to a lack of scheduled and regular acquisition 
frequency, thereby making it expensive.

CONCLUSIONS 

 In conclusion, this study successfully documented the 
optimal data input for mapping seagrass percent cover 
based	 on	 image	 and	 site	 conditions.	 The	most	 effective	
input data for mapping seagrass percent cover using 
WorldView-3 imagery, recorded at low tide, in a small 
island	and	dominated	by	field	data	 in	 reef	flat	areas,	was	
the atmospheric scenario, yielding R2 and RMSE values of 
0.61 and 21.07%, respectively. The random forest algorithm 
showed superior accuracy compared to the stepwise 
regression method.

Fig. 9. Seagrass aboveground biomass map
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