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ABSTRACT. The aim of this article evaluate the long-term air quality in China based on the air quality index (AQI) and the 
air quality composite index (AQCI) though the multinomial logistic regression method. The two developed models employ 
different dependent variables, AQI and AQCI, while maintaining the same controlled variables gross domestic product (GDP), 
and a primary pollutant. Explicitly, the primary impurity is associated with one or more contaminants among six pollutant 
factors:  O

3
, PM

2.5
, PM

10
, NO

2
, SO

2
, and CO. Model quality verification is an integral part of our analysis. The results are illustrate  

d using real air quality data from China. The developed models were applied to predict AQI and ACQI for the 31 capital cities 
in China from 2013 to 2019 annually. All calculations and tests are conducted using R-studio. In summary, both models are 
able to predict China’s long-term air quality. A comparison of the AQI and AQCI models using the ROC curve reveals that the 
AQCI model exhibits greater significance than the AQI model.
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INTRODUCTION

 In China, with the continuous improvement in people’s 
quality of life, there is a growing awareness of their living 
environment (Fann N, et al.2013). In March 2012, the 
State Environmental Protection Administration of China 
established the National Ambient Air Quality Standard 
and introduced a new air quality evaluation standard for 
public health, known as the Air Quality Index (AQI). The AQI 
is derived from various pollutants, including particulate 
matter 2.5 (PM

2.5
), inhalable particulate matter (PM

10
), 

ozone (O
3
), carbon monoxide (CO), nitrogen oxides (NO

2
), 

sulfur dioxide (SO
2
), among others. Government agencies 

use the AQI to communicate current or forecasted 
pollution levels to the public (Wang K, et al. 2019). In 
2016, the State Environmental Protection Administration 
introduced another air quality evaluation method, the 
Comprehensive Air Quality Index (AQCI) (Wang S, et al. 
2012). Both indexes have become widely popular for 
quick air quality assessments in China. Higher AQI or AQCI 
values are associated with improved public health. The 
World Health Organization states that 9 out of 10 people 
worldwide breathe polluted air, which contributes to more 
than 4.2 million deaths per year, and overall negatively 
affects the population’s health, especially children and 
elderly (Schachter E N, Moshier E, Habre R, et al. 2016). 
Therefore, an accurate air pollution prediction system can 

help government agencies inform the public about air 
pollution levels (Zaib S, et al. 2022).
 To the best of the authors’ knowledge, the methods 
outlined in the referenced papers prove effective in air 
quality prediction problems, typically categorized into 
deterministic and uncertainty models. Deterministic 
models, are usually based on traditional statistic or 
economic models, such as multiple linear regression, 
multiple logistic regression, and time series model (Bure V. 
M. et al. 2007; 2013; 2019, Iakushev V. P. et al. 2020, 2021). 
Uncertainty models employ the state of the art machine 
learning techniques, and return the probability of different 
air quality levels. Data-driven methods, like deep learning, 
and ensemble learning, generally outperform, deterministic 
models, as reported by ( R. Stern, P. Builtjes, M. Schaap, R. 
Timmermans, R. Vautard, A. Hodzic, M. Memmesheimer, H. 
Feldmann, E. Renner, R. Wolke, et al. 2008). 
 Moreover, (Karimian H, Li Q, Wu C, et al. 2019) explore 
three models: multiple additive regression trees (MART), 
deep feed-forward neural network (DFNN), and a new 
hybrid model based on long-term memory (LSTM), with 
LSTM emerging as the highest-performing one. (Di Q, Amini 
H, Shi L, et al. 2019) incorporate the geographic factor as a 
controlled variable, combining PM

2.5
 to construct a neural 

network using random forest and gradient boosting. (Li X, 
Peng L, Hu Y, et al. 2016) employ LSTM, convolutional neural 
networks (CNN), and one-dimensional convolutional 
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neural network (ID-CNN), achieving 78% accuracy in 
air pollution predictions. Additionally, (Li X, Peng L, Hu 
Y, et al.2016), combine CNN and LSTM to create a CNN-
LSTM model for predicting PM

2.5
 concentrations in any 

capital city in China. (Tong W, Li L, Zhou X, et al. 2019) 
take a unique approach, transforming air quality data 
into sequences of images using the Conv-LSTM model 
to interpolate the predicted air quality data for the entire 
cities, demonstrated over Seoul City in Korea. (Nadeem I., 
Ilyas A.M., Uduman P.S) employ an ARMA/ARIMA modelling 
approach for forecasting Respirable Suspended Particular 
Matter (RSPM), Sulphur dioxide (SO

2
), and Nitrogen dioxide 

(NO
2
) concentrations in Chennai City, India. (Senarathna M, 

et al.) utilize intelligent sensor technology to detect PM
2.5

 
and NO

2
 in Kandy City, Sri Lanka.  

        Furthermore, it is intriguing to determine the model 
for predicting air quality, especially considering that most 
research focus on short-term prediction per day or per 
hour (Stojov V, Koteli N, Lameski P, et al.2018, Tao Q, et 
at al. 2019, Le V D, et at al. 2020). Therefore, proposing a 
new model for long-term air quality prediction in China 
becomes necessary (He Y, et al. 2023). Additionally, there is 
another significant question: do economic factors, such as 
GDP, affect air quality? In contrast to previous research, this 
study considers essential pollution items and combines 
them with financial aspects. In this paper, two new models 
based on the multinomial logistic regression algorithm 
are constructed, classifying 31 capital cities into different 
GDP states, (high, medium, and low), and combining 
polluting factors as controlled variables and AQI and AQCI 
as dependent variables. The dataset contains air quality 
information on 31 capital cities in China, including six air 
pollutants, (O

3
, PM

2.5
, PM

10
, NO

2
, SO

2
, and CO.) per year from 

2013-2019. In summary, both models provide essential 
outcomes that can be used for air quality prediction and 
assessment.
 This contribution is organized as follows: Section 2 
details AQI and AQCI calculation. Section 3 focuses on 
Date and economic model, while Section 4 and 5, present 
Experiment results and draw conclusions. 

AQI AND AQCI CALCULATION 

 The calculation of AQI in China follows these steps:

 Where AQI is the air quality index, IAQI
i
 is the individual 

air quality index for each of the pollutants (i from 1 to 6, 1 
for SO

2
, 2 for NO

2
, 3 for PM

10
, 4 for CO, 5 for O

3
, 6 for PM

2.5
). 

When one of these six pollutants reaches its maximum 
value, and resulting AQI is above 50, that specific pollutant 
becomes the primary contributor to pollution.

 The individual air quality index (IAQI) for each pollutant 

is calculated using the formula:
 Where IAQI

i
 is the Sub Air Quality Index for Pollutant 

Project i, i represents the pollutant item. C
i
 is the mass 

concentration value of the pollutant item i.
 BP

hi
 is the high value of the pollutant concentration 

limit close to C
i
 in the concentration limit table (Table 1) 

corresponding to the air quality sub-index. BP
l0
 is the low 

value of the pollution concentration limit close to C
i
 in the 

concentration limit table corresponding to the air quality 
sub-index. IAQI

hi
 is the air quality sub-index corresponding 

to BP
hi
 in the concentration limit table corresponding to 

the air quality sub-index. IAQI
lo
 is the air quality sub-index 

corresponding to BP
lo
 in the concentration limit table 

corresponding to the air quality sub-index.

China air quality composite index:

 The China Air Quality Composite Index encompasses 
the pollutants considered in the evaluation during 
the assessment period. The comprehensive index is 
determined by summing the individual quality indexes, 
and a higher value indicates a greater degree of urban air 
pollution. This index is calculated using the concentrations 
of six pollutants but with different weighing factors. The 
key pollutants involved in the air quality composite index 
assessment are O

3
, PM

2.5
, PM

10
, NO

2
, SO

2
, and CO.

 Individual China air quality Index:
 Where C

i
 is the concentration value of index i. S

i
 is the 

secondary standard value of Index i. The index i can be 
SO

2
, NO

2
, PM

10
, or PM

2.5
, each with its respective secondary 

standard limit for the annual average concentration; For 
O

3
, S

i
 represent the biggest 8 hours average secondary 

standard limit; For CO,  S
i
 signifies the level 2 standard for 

the quasi-limit of daily average concentration, as detailed 
in Table 2.

 Where I
sum

 is the China Air Quality Composite Index, 
and I

i
  is the individual index for indicator i, covering all 
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Table	1.	Pollution	item	concentration	limit	table

IAQI PM
2.5

PM
10

SO
2

NO
2

CO O
3

0 0 0 0 0 0 0

50 35 50 50 40 2 100

100 75 150 150 80 4 160

150 115 250 470 180 14 215

200 150 350 800 280 24 265

300 250 420 1600 565 36 800

400 350 500 2100 750 48 1000

500 500 600 2620 940 60 1200
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six pollutants (O
3
, PM

2.5
, PM

10
, NO

2
, SO

2
, and CO). When I

i
 

represents the maximum value among all six pollutants, i is 
termed the primary pollutant. 

DATA AND ECONOMIC MODEL
Data description

 All controlled variables were sourced from the National 
Bureau of Statistics of China (http:   //www.stats.gov.cn/
tjsj/ndsj/), while the dependent variables AQI and AQCI 
were calculated using the national air quality calculation 
platform. Figure 1 illustrates the AQI and the AQCI values 
for the 31 capital cities in China in 2019. The dataset spans 
from 2013 to 2019 and includes information on six air 
pollutants and the economic state. According to technical 
regulations, AQI values are categorized into six classes: 0–50 
(Excellent), 51–100 (Good), 101–150 (Lightly polluted), 
151–200 (Moderately Polluted), 201– 300 (Heavily Polluted), 
and more than 300 (Severely Polluted). AQCI values are 
classified into six classes as well: 0–2 (Excellent), 2–4 (Good), 
4–6 (Light Polluted), 6–10 (Moderately Polluted), 10–12 
(Heavily Polluted), and more than 12 (Severely Polluted). 
Capital cities have their own AQI or AQCI standards aligned 
with national air quality standards. In Fig.1, the air quality is 
depicted with a colour scale, where darker shades indicate 
higher pollution rates. As shown in Fig. 1, the majority of 
cities exhibit low AQI, i.e. having good or lightly polluted 
air. As for the AQCI, most cities fall in “Good” and “lightly 
Polluted” categories, except for those in Hebei, Shanxi and 
Shandong provinces, which show a significant variation 
between light and heavy polluted under both standards.

Economic model

 Multinomial logistic regression is employed for 
predicting categorical placement or the probability of 
category membership on a dependent variable based 
on multiple independent variables. The independent 
variables can be dichotomous (binary) or continuous 
(interval or ratio in scale). This method is an extension of 
binary logistic regression, accommodating more than 
two categories of the dependent or outcome variable. 
Similar to binary logistic regression, multinomial logistic 
regression uses maximum likelihood estimation to access 
the probability of specific membership. Variable selection 
or model specification methods are similar to those used 
in standard multiple regression, including sequential or 
nested logistic regression analysis. These methods are 
applied when one dependent variable serves as criteria for 
placement or choice on subsequent dependent variables. 
The multinomial logistic regression method is employed 
for predicting China’s air quality based on the AQI and 
AQCI criteria. The economic model is shown below:

 Here, Pr(Y
k
) is the probability of category k occurring, 

Y
k
 is the dependent variable (AQI or AQCI) representing 

one of the pollution categories observed in actual cases. 
k signifies the air quality level, including “Excellent”, 
“Good”, “Light polluted”, “Median polluted”, “Heavy” and 
“Serious polluted”. x

i
 denotes controlled variables, with, x

1
 

Table	2.	Limitation	of	the	secondary	standards	for	each	pollution	concentration

Pollution items Time
Concentration limit

Level one Level two

SO
2

Annual average 20 60

NO
2

Annual average 40 40

CO 24 hour average 4 4

O
3

8 hour average 100 160

PM
10

Annual average 40 70

PM
2.5

Annual average 35 75

Fig.	1.	AQI	(a)	and	AQCI	(b)	values	in	Chinese	capital	cities.	1--Beijing,	2--Tianjin,	3--Shijiazhuang,	4--Taiyuan,	5--Hohhot,	
6--Shenyang,	7--Changchun,	8--Harbin,	9--Shanghai,	10--Nanjing,	11--Hangzhou,	12--Hefei,	13--Fuzhou,	14--Nanchang,	

15--Jinan,	16--Zhengzhou,	17--Wuhan,	18--Changsha,	19--Guangzhou,	20--Nanning,	21--Haikou,	22--	Chongqing,	
23--Chengdu,	24--Guiyang,	25--Kunming,	26--Lhasa,	27--Xi’an,	28--Lanzhou,	29--Xining,	30--Yinchuan,	31--Urumqi

(b)(a)



167

 Yang. He, Dongfang. Qi and  V M. Bure 	 LONG-TERM	AIR	QUALITY	EVALUATION	SYSTEM	PREDICTION	...

representing the primary pollutant, x
2
 indicating low-level 

GDP status. x
3
 representing middle level GDP status, and 

x
4
 denoting high level GDP status. The β

k
 and β

j
 are the 

parameters in the model. 
 Figures 2 and 3 illustrate the primary pollutants 
influencing AQI and AQCI during the period 2013-2019, 
showcasing the proportion of the primary contaminant in 
the total annual pollution. PM

2.5
 and O

3
 were consistently 

identified as the primary pollutants for AQI and AQCI, 
respectively, comprising 71.4% and 73.3%. The second 
primary pollutants for AQI was O

3
, one-quarter. Conversely, 

PM
10

 and CO contributed insignificantly, representing only 
6.5% and 0.9%, over the years. As for AQCI, PM

10
 was the 

second primary pollutant, at 15.2%, followed by O
3
 and 

NO
2
 at 8.3% and 3.2%, respectively. The proportion of PM

2.5
 

as the primary pollutant in AQCI exhibited fluctuations and 
an overall decreasing trend. In contrast, the concentration 
of O

3
 as primary pollutant in AQI increased annually, 

reaching 100% in 2018-2019. The challenging nature 
of controlling ozone, among six air pollutants, warrants 
careful consideration.

MODEL RESULTS

 The multinomial logistic model, involves choosing 
one outcome as a “pivot” and deflecting other outcomes 
relative to the pivot outcome. Similarly, in the AQI model, 
we use “Heavily polluted” as the pivot. The process is as 
follows:

 if we exponentiate both sides, and solve for the 
probabilities, we get

Fig.	3.	AQCI	pollutant	Composition	(2013-2019).

Fig.	2.	AQI	Pollutant	Composition	(2013-2019).

(b)

(b)

(a)

(a)

Where
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 In AQI model, we choose the “Serious pollution” as the 
pivot. The process is as follows: 

 Two tailed tests.
H0: the parameter of coefficient x

l,l=a,b,c
 is significant.

H1: the parameter of coefficient x
l,l=a,b,c

 is not significant.
 Two-tailed tests were employed to assess the 
significance coefficient parameters. The null hypothesis 
stated that the coefficient was significant, while the 
alternative hypothesis suggested otherwise. The results, 
detailed in Tables 3 and 4, indicate that the most absolute 
z-value exceeded 1.96, corresponding to p-value less than 
0.05. Therefore, we could reject the alternative hypothesis, 
confirming the significance of the coefficients.
 The multiple logistic regression models were designed 
to predict the likelihood of China’s air quality categories, 
including predictions for good air or light, moderate, and 

heavy polluted. This confusion matrix results, shown cased 
in Tables 5 and 6 in Appendices, offer a detailed breakdown 
based on the classification of the four categorical variables.
  To assess the model’s performance, Receiver Operating 
Characteristic curve (ROC) combined with Area Under the 
Curve (AUC) and F-1 score are employed. An AUC value 
above 0.8 and an F1-score exceeding 0.8 generally indicate 
high model quality. The AQI model demonstrates an F1-
score greater than 0.8, while the AQCI model’s F1-score 
approaches 0.8, affirming their high-quality predictions. 
Additionally, AUC values exceeding 0.8 in Table 5 and Table 
6 further support the models’ efficacy. Figure 4 visually 
presents the ROC curve results for AQI and AQCI models.
        In Figure 5(a), the horizontal axis represents ozone 
concentration, with the maximum concentration value of 
211 μg/m3, and the minimum concentration value of 69 
μg/m3 adjusted to 65 μg/m3 and 215 μg/m3, respectively. 
The vertical axis represents the probability of each category, 
with the high GDP status shown in red. The low GDP status 
in green, the middle GDP status in blue. Notably, as ozone 
levels increase, the probabilities of various air quality levels 
fluctuate, revealing distinct opportunities for additional GDP 
and air quality levels in different regions. The application of 
multinomial logistic regression to predict the probability of 
each pollution level is considered, incorporating pollutant 
concentration (μg/m3) and GDP state (Dummy) as control 
variables. The results showed changes in air quality with 
increase of ozone concentration. 
 The AQCI model, focusing on PM

2.5
 demonstrated the 

results similar to the AQI model. The PM
2.5

 concentration 

Fig.	4.	The	AQI	model	(a)	and	AQCI	(b)	model	ROC	curve	results

(b)(a)

Where

Table	3.	Two-tailed	test	for	the	AQI	model

Table	4.	Two-tailed	test	for	the	AQCI	model

Intercept Ozone/High Low/High Middle/High

Z-value P-value Z-value P-value Z-value P-value Z-value P-value

Good/Heavy 3.57 3.5E-4 -2.89 4.0E-3 31.59 0 39.82 0

Light/Heavy 1.19 0.231 0.05 0.959 25.27 0 35.53 0

Moderate/Heavy 1.20 0.228 -1.10 0.271 34.94 0 36.49 0

Intercept Ozone/High Low/High Middle/High

Z-value P-value Z-value P-value Z-value P-value Z-value P-value

Good/Heavy 559.22 0 -4.96 7.2E-7 -3.08 2.1E-3 5.96 0

Light/Heavy 554.99 0 -4.77 1.8E-6 -14.33 0 51.41 0

Moderate/Heavy 57305 0 -2.39 1.7E-2 9.6E+6 0 7.1E+9 0
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range limits of 12 μg/m3 and 154 μg/m3 were adjusted 
to 5 μg/m3 and 165 μg/m3, respectively. This analysis 
suggests that, under similar pollution sources, higher GDP 
status correlates with increased probabilities of air quality 
pollution across different economic statuses.

CONCLUSIONS AND DISCUSSION

 The study’s conclusions emphasize the suitability of 
multinomial logistic regression for predicting air quality 
in China, especially when considering different evaluation 
systems. The economic status of a region emerges as 
a significant determinant of air quality, with regions 
exhibiting high GDP associated with a higher probability 
of experiencing light or heavy air pollution rather than 
excellent and good air quality. This finding highlights the 
importance of integrating economic factors into air quality 
assessments.

  Furthermore, the result reveals the variability in primary 
pollutants or influential factors across different air quality 
evaluation systems, warranting further exploration. 
 Consequently, this study advocates for the 
development of diverse criteria for air quality assessment, 
emphasizing the need for precise performance standards 
and the application of uncertainty models to evaluate 
long-term trends comprehensively. By addressing these 
aspects, more adequate measures are expected to be 
taken to tackle air pollution issues.
 In conclusion, these findings provide valuable insights 
to future research in air quality assessment. Further 
investigations should focus on the development of 
improved performance standards and the exploration of 
the complex interplay between economic factors, primary 
pollutants, and air quality evaluation systems.
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Fig.	5.	The	AQI	model	(a)	and	AQCI	model	(b)	results

(b)(a)
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Good Light Polluted Moderate Polluted Heavy polluted

F1 score 0.8858 0.8247 0 0

AUC 0.8894 0.8783 0.9560 0.9398

Good Light Polluted Moderate Polluted Heavy polluted

F1 score 0.7644 0.7688 1 1

AUC 0.8665 0.8508 1 1

Table	5.	AQI	model	confusion	matrix	results

Table	6.	AQCI	model	confusion	matrix	results
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