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ABSTRACT. Mitigating yield-scaled greenhouse gas emissions (YSE) is beneficial for enhancing crop yield, reducing greenhouse 
gas (GHG) emissions, and advancing climate-smart agronomic management practices. This study aims to evaluate the impact 
of different crop residue rates– 100% (R

100
), 50% (R

50
), and residue removal (R

0
) – on the YSE indicator within a maize-wheat 

cropping rotation under both conventional tillage (CT) and no-tillage (NT) systems in a semi-arid region. In the NT system, 
crop residues had a notable effect on the YSE indicator for wheat. Specifically, R

0
 exhibited a 39% and 20% decrease in YSE 

for wheat compared to R
100

 and R
50

, respectively. Interestingly, crop residue did not significantly influence YSE for maize 
under the NT system. On the other hand, in the CT system, YSE for maize in R

0
 was 33% and 25% lower than that in R

100
 and 

R
50

, respectively. Additionally, compared to R
0
, there were observed increases of 28% and 20% in YSE for wheat in R

100
 and 

R
50

 under the CT system, respectively. Our findings show that crop residue removal decreases YSE under both CT and NT 
systems. However, given that this practice degrades soil quality and results in lower yields, it is not considered a sustainable 
management practice compared to residue retention options. This research highlights the importance of evaluating GHG 
mitigation strategies by concurrently considering both emissions and crop production. Nevertheless, it is essential to conduct 
off-site assessments of GHG emissions from crop residue application and also engage in long-term studies to comprehend 
the full potential of crop residue management on YSE.
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INTRODUCTION

 Due to anthropogenic activities, global concentrations of 
greenhouse gases (GHG), such as carbon dioxide (CO

2
), nitrous 

oxide (N
2
O), and methane (CH

4
), have increased (O’Neill et 

al. 2021;IPCC, 2021). Enhancing agricultural productivity 
through strategic management techniques, such as reduced 
use of conventional agronomic practices, may mitigate GHG 
emissions (Ceschia et al. 2010; Radicetti et al. 2020; Mohammed 
et al. 2022; Mirzaei et al. 2022a, 2022b). Land management 
practices often determine whether cropland soils act as net 
sinks or sources of GHG emissions (Ceschia et al. 2010; Radicetti 
et al. 2019; Bossio et al. 2020).
 Mitigating GHG emissions and increasing soil organic 
carbon sequestration are achievable through improved 
management practices (Paustian et al. 2016; Minasny et al. 2017; 
Ogle et al. 2019; Lal et al. 2021). Agricultural practices, including 
crop residue management, significantly influence  soil C and 
GHG emissions, and crop productivity by impacting dynamic 
changes in carbon and nitrogen in soil, nutrient availability, 
and factors influencing GHG emissions such as soil moisture, 
temperature, and microbial activity (Yao et al. 2013; Jin et al. 
2014; Cherubin et al. 2018; Vasconcelos et al. 2018; Battaglia et 
al. 2021; Drury et al. 2021; Mirzaei et al. 2021; Tenelli et al. 2021; 
Liu et al. 2022; Mancinelli et al. 2023). Therefore, evaluating the 
effect of agricultural practices is crucial for developing more 
sustainable approaches with high crop yields, lower potential 
for GHG emissions, and reduced global warming impact 
(Pratibha et al. 2016; Mancinelli et al. 2020; Mirzaei et al. 2023).
 Metrics such as greenhouse gas intensity (GHGI) or 
yield-scaled metrics assess GHG emissions per unit of crop 
yield, considering both food production and climate change 
concerns (Mosier et al. 2006; Van Groenigen et al. 2010; Pratibha 
et al. 2016; Li et al. 2022). The yield-scaled emissions (YSE) 
approach is an effective integrated assessment method for 
evaluating changes in crop management operations destined 
to optimize cropping practices, achieve food security, and 
simultaneously reduce the impacts of climate change (Van 
Groenigen et al. 2010, Abalos et al. 2016).
 While previous studies have assessed the effect and 
mitigation potential of agronomic practices on GHG emissions 
(Six et al. 2004; Zhao et al. 2016; Xia et al. 2017), few studies have 
been linked to crop yield (Van Groenigen et al. 2010; Linquist 
et al. 2012; Feng et al. 2013; Van Kessel et al. 2013; Zhang et al. 
2015). Comprehensive assessments of cropping practices per 
unit yield (yield-scaled) are suggested to benefit food security 
and GHG mitigation goals (Van Groenigen et al. 2010; Linquist 
et al. 2012; IPCC, 2014). Therefore, the integrated evaluation of 

both crop yield and GHG emissions is crucial for optimizing 
cropping system practices.
 The maize-wheat rotation is one of the most common 
grain production cropping systems (Pooniya et al. 2022), 
producing a substantial amount of crop residues annually (Bao 
et al. 2022). However, a significant portion of these residues is 
removed for fodder, energy production, or other purposes, or 
burned (Mirzaei et al. 2021). To date, there is no information 
about the effects of crop residue management practices on 
GHG emissions, especially yield-scaled GHG emissions from 
agricultural soil in Iran. We hypothesized that total residue 
removal treatment would lead to large yield-scaled GHG 
emissions. The objective of this study is to assess the effects 
of different crop residue rates (100 %, 50 %, and total residue 
removal) on wheat and maize yield-scaled GHG emissions 
under conventional tillage (CT) and no-tillage (NT) systems in 
a semi-arid region in Iran.

Materials and methods
Site description and experimental layout

 The study took place at the Agriculture Research Station 
of the College of Agriculture and Natural Resources, University 
of Tehran, Karaj, Iran (35˚48' 32” N, 50˚ 58’ 06” E, 1308 m a.s.l.) 
in 2018 (Fig.1). This region has semi-arid climate conditions, 
with an annual precipitation of 245 mm and an annual 
mean temperature of 13.7 °C (Tabari and Talaee, 2011). For 
the experiment, two fields with a wheat (Triticum aestivum 
L.) - maize (Zea mays L.) cropping rotation background were 
chosen, managed under CT and NT practices. The soil in the 
CT field was classified as sandy loam with 57% sand, 24.4% 
silt, and 18.6% clay. In the NT field, soil was classified as clay 
loam with 52.5% sand, 28.1% silt, and 19.4% clay. Both fields 
had a soil pH of 7.7 and no salinity issues. Organic carbon 
content was 8.9 g kg-1   under CT and 11.3 g kg-1 under NT. 
Total nitrogen (TN), available phosphorus (AP), and available 
potassium (AK) under CT were 0.8 mg kg-1, 13.5 mg kg-1, 
and 150.6 mg kg-1 respectively. Under the NT system, these 
values were 1.0 mg kg-1, 15.2 mg kg-1, and 258.2 mg kg-1 for 
TN, AP, and AK respectively. The experiment was set up as a 
randomized complete block with three replicates. In total, 18 
plots (3×4 m) were designated for both fields. In this research, 
in order to facilitate the application of crop residue treatments 
and planting operations, the residue treatments were first 
applied to the designated plots, followed by the planting of 
crops. Finally, the plots were separated based on the specific 
dimensions.
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Fig. 1. Geographical location of the study area
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Treatment implementation and cultivation practices
Wheat residue rates and maize planting

 After harvesting wheat on July 6, 2018, three wheat 
residue rates – 100 % (R

100
), 50 % (R

50
), and no residue (R

0
) 

– were applied to both CT and NT fields on July 11, 2018. 
The residue rates were achieved by weighing post-harvest 
crop residue samples collected across the farm at several 
locations using a wooden quadrat (1m×1m). The average 
weight per square meter was then scaled up to a hectare. 
For the R

100
 and R

50
 treatments, the residue was distributed 

over the soil surface, while for the R
0
 treatment the residue 

was completely removed from the plots. Next, maize 
seeds were planted. In the NT field, sowing was carried out 
using a planter with a single colter. In the CT, before seed 
placement with a row crop planter, the soil was cultivated 
with a moldboard plow to a depth of 35 cm, followed by 
disking and leveling. Basal NPK fertilizers were applied: 23, 
36, and 68 kg ha-1 of N, K

2
O, and P

2
O

5
 respectively, with 

additional top-dressing of 37 and 125 kg ha-1 N at eight 
and ten leaves stages, post-cultivation. Plots were irrigated 
at 7-10 days intervals.

Maize residue rates and wheat planting

 In October 2018, Maize was harvested, and three maize 
residue rates (R

100
, R

50
, and R

0
) were applied to the same 

plots. The residue application process mirrored that of 
wheat residues. Winter wheat was planted in November 
2018 using a drilling machine, with basal fertilization of 23, 
80, and 90 kg ha-1 N, K

2
O, and P

2
O

5
. Additional fertilizers of 

50, 50, and 23 kg ha -1 N were applied during late tillering, 
stem elongation, and spiking, respectively.

Greenhouse gas sampling and analysis

 Flux measurements were performed every 7–10 days 
in summer, and every 14 days in winter using the static 
closed chamber method (De Klein and Harvey, 2013). 
This method is one of the most popular tools for flux 
measurements from agricultural soil (De Klein and Harvey., 
2013). A polyvinyl chloride (PVC) chamber measured 
carbon dioxide (CO

2
), methane (CH

4
), and nitrous oxide 

(N
2
O) efflux. Gas sampling was conducted at 9-10 am at 0, 

30, and 60 min time points. At each time point, a 20 ml gas 
sample was taken by inserting a needle attached to a 20 
ml syringe in the sampling port and transferred into 12-ml 
pre-vacuumed vials sealed with butyl rubber septa (Glass 
vials (e.g. Exetainer®, Labco Limited, High Wycombe, UK)).
 Gas chromatography (Teif Gostar Faraz, TG 2552, 
Iran; Brucker, Germany) was used for the analysis, with 
concentrations of  N

2
O, CH

4
, and CO

2
 measured using 

an electron capture detector (ECD), a flame ionization 
detector (FID), and a thermal conductivity detector (TCD), 
respectively (Al-Shammary et al. 2022). The fluxes were 
calculated based on changes in linear concentration 
gradient over time and on the ratio between chamber 
volume and soil surface area (Liebig et al. 2010; De Klein 
and Harvey., 2013; Bayer et al. 2014 ). Linear interpolation 
of data points and the integration of the underlying area 
were used to calculate the cumulative rate of GHG fluxes 
(Sainju et al. 2012; Wegner et al. 2018).
 Yield-scaled CO

2
 equivalent GHG fluxes were 

determined by dividing the global warming potential 
(GWP) of GHG fluxes in CO

2
 equivalents by dry yield, with 

CH
4
 concentration assumed to be zero, as it constantly was 

below the detection level (Johnson et al. 2012; Bayer et al. 
2014; Hurisso et al. 2016). Equations (1) and (2) were used 
for calculations.

Yield Measurement

 Maize and wheat yields within each plot were 
determined using a 1m×1m quadrat. The entire harvested 
plants were dry-weighted for each plot, and the mean was 
calculated as yield. 

Statistical analysis

 The general linear models (GLM) procedure in SAS 9.4 
software (SAS Institute Inc., Cary, NC, USA) was used for 
data analysis. A mean comparison was performed by using 
the Duncan method at the 0.05 statistical significance level.

Results and discussion
Crop yield and GWP of GHG emissions in maize-wheat 
cropping rotation under NT and CT systems

 In the NT system, the addition of crop residue positively 
impacted maize yield, with significant increases observed 
in full residue retention (R

100
) compared to residue removal 

(R
0
). However, no significant differences were observed 

between R
50

 and R
0
 (Fig. 2A). Conversely, In the CT system, 

residue had no significant impact on maize yield (Fig. 2B). 
Wheat yield in the NT system increased with rising residue 
amounts in R

100
 and R

50
 compared to R

0
 (Fig. 2C). In the CT 

system, wheat yield significantly increased in R
100

 compared 
to R

0
, but no significant differences were noted between 

R
50

 and R
0
 treatments (Fig. 2D). The enhanced crop yield 

attributed to crop residue can be influenced by improved 
soil quality, regulated soil temperature, increased soil 
organic matter, and higher nutrient availability (Choudhury 
et al. 2014; Mu et al. 2016; Pant et al. 2017; Maw et al. 2019). 
Conversely, the decreased crop yield in residue removal 
can be linked  to reduced water availability, high daily 
soil temperature fluctuations, increased soil compaction, 
augmented surface runoff, and lower nutrient intake 
(Blanco-Canqui and Lal, 2009; Cherubin et al. 2018; 
Carvalho et al. 2019; Cherubin et al. 2021). For a more 
in-depth discussion on the crop yield response to crop 
residue management in this experiment, refer to Mirzaei et 
al. (2021).
 Full retention of crop residue resulted in higher GHG 
emissions during the maize season under the NT system, 
with R

100
 showing a significant increase compared to 

R
0
. However, no significant differences were observed 

between R
100

 and R
50

 treatments (Fig. 3A). In the CT system, 
the GWP of GHG in maize showed a significant increase 
in R

100
 and R

50
 compared to R

0
 (Fig. 3B). The GWP index for 

the wheat crop, under both systems, also increased with 
rising residue amounts, and R

100
 and R

50
 both showed a 

significant increase compared to R
0
 (Figs. 3C and 3D). In 

line with our findings, Dendooven et al. (2012) reported 
that, under semi-arid conditions in Mexico, removing crop 
residue reduced the GWP of GHG 1.3 times in a wheat-
maize rotation. Similarly, Zhang et al. (2014) found that 
residue treatments significantly increased GWP by 9-30% 
relative to no residue treatment during a rice-growing 
season in China. Enhanced GWP in crop residue treatment 
is attributed to both crop residue and GHG emissions from 
the soil. Crop residue plays a crucial role in GHG emissions 
by altering carbon (C) and nitrogen (N) dynamics (Guzman 
et al. 2015; Nawaz et al. 2017; Seiz et al. 2019; Essich et al. 
2020; Al-Shammary et al. 2023), and indirectly influencing 
the soil environment (Baggs et al. 2006; Taghizadeh-Toosi 
et al. 2021). The lower GWP of GHG in plant residue removal 
treatment may be due to reduced C and N uptake into (1)

(2)
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the soil, along with microclimatic variations related to 
changes in soil cover (Jin et al. 2014). In Brazil, Gonzaga et 
al. (2019) also found a reduction in N2O emissions under 
total sugarcane straw removal. However, indiscriminate 
sugarcane straw removal led to reduced crop yields 
(Carvalho et al. 2019), soil C stocks (Tenelli et al. 2021), and 
soil health (Cherubin et al. 2021).

The effect of crop residue on YSE in maize-wheat 
cropping rotation under NT and CT systems

 In the NT system, maize YSE was not significantly 
affected by crop residues (Fig. 4A), potentially due to the 
short-term duration of the corn season, insufficient for crop 
residue to show their true effect. However, crop residue 

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 2023

Fig. 3.	Impact	of	residue	rate	on	maize	(A	and	B)	and	wheat	(C	and	D)	seasonal	GWP	of	GHG	fluxes	under	NT	(left)	and	CT	
(right) systems

Fig. 2. Impact of residue rate on seasonal maize (A and B) and wheat (C and D) yield under NT (left) and CT (right) systems

* Similar letters indicate no significant difference. Whiskers represent standard error (n=3).

*. Similar letters indicate no significant difference. Whiskers represent standard error (n=3).
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rates significantly impacted (p < 0.05) YSE for wheat (Fig. 
4B). The highest amount of YSE for wheat (0.62 Mg CO

2
eq 

Mg-1 dry yield) was obtained from the R
100

 treatment, 39 % 
higher compared to the R

0
 treatment (0.45 Mg CO

2
eq Mg-1 

dry yield). Additionally, R
50

 (0.54 Mg CO
2
eq Mg-1 dry yield) 

resulted in a 20 % increase over R
0
. 

 In the CT system, YSE for both maize and wheat 
crops increased with rising residue rates (Figs. 4C and 
4D), although no significant differences were observed 
between R

100
 and R

50
. For maize, R

100
 (0.32 Mg CO

2
eq Mg-1 

dry yield) and R
50

 (0.30 Mg CO
2
eq Mg-1 dry yield) led to 33% 

and 25% increases in YSE compared to R
0
 (0.24 Mg CO

2
eq 

Mg-1 dry yield). Similarly, for wheat, 28% and 20% increases 
in YSE were noted in R

100
 (0.8 Mg CO

2
eq Mg-1 dry yield) and 

R
50

 (0.75 Mg CO
2
eq Mg-1 dry yield) compared to R

0
 (0.62 Mg 

CO
2
eq Mg-1 dry yield).

 Higher YSE for wheat and maize in residue treatments 
compared to residue removal could be attributed to the 
strong influence of residue on the GWP of GHG relative to 
crop yield. Compared to R

0
, R

100
, and R

50
 led to 6% and ~2% 

increases in maize yield under the CT system, respectively 
(Fig. 2B), while the GWP of GHG for this crop showed 
36% and 26% increases for R

100
 and R

50
 under the CT, 

respectively (Fig. 3B). Furthermore, under the NT system, 
wheat yields were 6% and 5.5% higher for R

100
 and R

50
 than 

R
0
, respectively, whereas, in the CT system, R

100
 and R

50
 

resulted in 5% and 1% higher yields than R
0
 (Figs. 2C and 

2D).  In addition, the GWP of GHG for wheat was 50% and 
28% higher in R

100
 and R

50
 than in R

0
 under the NT system. 

These quantities were equivalent to 37% and 25% under 
the CT system (Figs. 3C and 3D).
 In the CT system, there were no significant differences 
in YSE for both maize and wheat crops between R

100
 and R

50
 

treatments (Figs. 4B and 4D) due to the lack of significant 
differences between GWP and crop yield in these two 
treatments (Figs. 2B and 2D; 3B and 3D). In both tillage 
systems, YSE was higher in wheat than in maize cultivation 
(Fig. 4). This difference is primarily driven by the higher 
GWP of GHG emissions in wheat than in maize (Fig. 3). 
Additionally, the longer crop season of wheat (November 

2018 – July 2019) compared to maize (July 2018 – October 
2018) contributes to higher emissions of GHG.
 Our results, indicating higher YSE in areas with 
substantial crop residue maintenance, align with data 
reported in rice and rice-wheat cropping systems in China 
(e.g., Feng et al. 2013; Yao et al. 2013; Zhang et al. 2015). 
However, Pratibha et al. (2016) reported lower YSE with an 
increase in crop residue and a decrease in tillage intensity 
for both pigeon pea and castor crops in semi-arid regions 
of Southern India. Zhang et al. (2014) reported that residue 
mulching decreased YSE for rice by 35-72% relative to no 
residue treatment in China. These discrepancies with other 
studies highlight the importance of considering different 
residue management practices and their duration.

Conclusions

 The assessment of cropping systems’ effects on crop YSE is 
valuable for selecting innovative and promising management 
practices to balance higher yields and lower GHG emissions. 
Our findings demonstrate that crop residue removal mitigates 
wheat and maize YSE under both CT and NT systems. In addition, 
YSE was higher for both crops under CT compared to the NT 
system. Furthermore, wheat had higher YSE than maize under 
both tillage systems. Despite the lower YSE in crop residue 
removal, this practice negatively impacts crop productivity, C 
sequestration, soil health, and biodiversity. Additionally, residue 
removal accelerates soil quality degradation. Thus, considering 
all these aspects, retaining 50% of post-harvest crop residue 
in the field may be considered as a more sustainable crop 
residue management in the study area. Finally, considering 
the perspectives of farmers, particularly in terms of economic 
viability, is essential for the successful implementation of new 
management strategies.

Ethical approval statement

 The authors declare no known competing financial 
interests or personal relationships that could have influenced 
the work reported in this paper.

Fig. 4. Impact of residue rate on maize (A and B) and wheat (C and D) YSE under NT (left) and CT (right) systems

* Similar letters indicate no significant difference. Whiskers represent standard error (n=3).
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