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ABSTRACT. Water storage is one of the key components of terrestrial water balance, therefore its accurate assessment is 
necessary for a sufficient description of hydrological processes within river basins. Here we compare terrestrial water storage 
using calibrated hydrological model ECOMAG forced by gauge observations, uncalibrated INM RAS–MSU land surface 
model forced by reanalysis and GRACE satellite-based data over Northern Dvina and Pechora River basins. To clearly identify 
differences between the datasets long-term, seasonal and residual components were derived. Results show a predominance 
of the seasonal component variability over the region (~64% of the total) by all datasets but INM RAS–MSU shows a 
substantial percentage of long-term component variability as well (~31%), while GRACE and ECOMAG demonstrate the 
magnitude around 18%. Moreover, INM RAS–MSU shows lowest magnitude of annual range. ECOMAG and INM RAS–MSU is 
distinguished by earliest begin of TWS decline in spring, while GRACE demonstrates latest dates. Overall, ECOMAG has shown 
the lowest magnitude of random error from 9 mm for Northern Dvina basin to 10 mm for Pechora basin, while INM RAS–MSU 
has shown largest one.
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INTRODUCTION

 Terrestrial water storage (TWS), containing surface 
water, soil moisture, groundwater, canopy, snowpack and 
glaciers, is one of the key components of the hydrological 
cycle. Accurate estimation of TWS at various temporal and 
spatial scales is important for global change research and 
water resources monitoring (Frolova et al. 2021). Many 
extreme hydrological events such as floods and droughts 
are accompanied and followed by extreme TWS magnitude 
(Tapley et al. 2019). Besides, TWS change (TWSC) can also 
be employed in the validation and calibration process of 
climate, land surface and hydrological models (Gupta and 
Dhanya 2021; Massoud et al. 2022; Scanlon et al. 2019; Wu 
et al. 2021). Occurrences of arid and humid periods in river 
catchments lead to fluctuations in TWS, whose changes, 

even over a multi-year period, can be significant compare 
to other water balance components. Thus, imbalance 
caused by ignoring storage change accounts for 7% (3%) 
of precipitation in arid (humid) catchments for a typical 10-
year period  (Han et al. 2020).
 In situ measurements of TWS components, such as 
soil moisture, surface water, and snowpack, provide the 
most accurate and precise estimate of TWS at a local scale. 
However, the observations are often both sparse and 
heterogeneous in space and time. This applies especially 
to the Arctic region for which data are limited. The 
observations can be complemented by remote sensing or 
model output, but tracking of the variations of deep soil 
moisture and groundwater is still a challenge. 
 Variations of the Earth’s gravity field on a century 
timescales are mainly driven by air and water mass 
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redistributions within the Earth’s climate system. The Gravity 
Recovery and Climate Experiment (GRACE) and GRACE-
FO satellite missions, since 2002 and 2018 respectively 
(Landerer et al. 2020), constitutes the variations and provide 
monthly, decadal and daily values of TWS. Hence GRACE 
retrieved data are independent of land surface properties, 
meteorological and hydrological observations, it provides 
an excellent opportunity for model evaluation. The GRACE 
derived TWS (TWS

GR
) has been recognized to be reliable as 

the reference data to validate accuracy of models. 
 Different types of the models exist, such as global land 
surface models, whose main purpose is to sufficiently 
establish interconnection between atmosphere and land 
as the parts of climate system, or regional hydrological 
models, which have to derive accurate streamflow 
estimates under different conditions. As mentioned before, 
TWS plays an essential role in both climate system and 
streamflow generation process, so there are no clear signs 
of what kind of model should perform better. Besides, 
models differ in initial data, parametrization of river basin, 
meteorological forcing, etc. In the present study a regional 
hydrological model ECOMAG (EM) (Kalugin and Motovilov 
2018) and the global land surface model INM RAS–MSU  
(IM) (Volodin and Lykosov 1998) were used as the main 
research tools.
 So far, climate and land surface models showed larger 
range of TWS annual cycle in cold regions and smaller 
range in tropical and (semi)arid basins compared to GRACE 
(Scanlon et al. 2019; Wu et al. 2021). Moreover, the models 
have tendency to underestimate long-term TWSC, both 
positive and negative (Scanlon et al. 2018). However, in 
the absence of the ground truth TWS measurements there 
are great uncertainties for such assessments. On a basin 
scale (~105 km2) the random errors of monthly TWS

GR
 have 

been estimated using different methods from 10 to 20 mm 
(Chen et al. 2021; Ferreira et al. 2016). An assessment of 
bias in TWS

GR
 over river basins can be performed for some 

areas and seasons by water balance equation. Thus, during 
snowmelt streamflow is the main source of TWS variation, 
and it can be measured in situ, while precipitation and 
evaporation assessment errors are neglectable. However, 
in general, precipitation and evaporation bias estimates 
are required to TWS estimate.
 Current research on Arctic rivers is mainly aimed at 
investigating possible future changes in the water balance. 
Less attention is paid to the assessment of the current 
water balance. Thus, Nasonova et al. (2022) showed that 
the Northern Dvina basin (NDB) receives about 665 mm 
of precipitation annually, 295 mm of which leaves the river 
basin as river runoff. At the same time, the river runoff is 
likely to increase by 10% during the 21st century. The main 
component of the TWS variability over the Arctic region is 
seasonal snowpack formation and melting (Scanlon et al. 
2019). Long-term SWE in late winter varies across the basin 
from 80-100 mm in the southwest to 200-220 mm in the 
east and northeast. Basin average SWE at the end of March 
(approximately maximum of SWE) in the NDB showed that 
they ranged from 126 mm to 221 mm according to ground 
measurements (Popova et al. 2021).
 A GRACE-based assessment of the impact of 
precipitation (P), evaporation (E), and runoff (R) on TWSC 
was performed at a global scale earlier (Zhang et al. 2019). 
It was shown that P, ET, and R at the global scale explain 
42.6%, 43.2%, and 4.2% of TWSC, respectively. However, 
over the Arctic region, ET and R are the key components 
explaining TWSC. Thus, in the NDB ET explains over 80% 
of TWSC. In the Pechora basin (PB) ET and R each explains 
40-60% of TWSC. Comparison of seasonal TWS variation 

to global hydrological models and LSM was evaluated by 
Scanlon et al. 2019. A GRACE-derived estimate of seasonal 
amplitude in the NDB showed 191 mm with uncertainty 
around 15 mm. Similar results were obtained in the PB 
– 190±20 mm. On average models overestimated the 
seasonal amplitude of TWS by 22 and 27% in the NDB and 
PB, accordingly. However, there are significant variations in 
the ratio depending on the model and forcing. Thus, the 
ratio ranges between 1.17–1.26 in the NDB and between 
1.12–1.49 in the PB.
 The main objectives of this study were to: (1) evaluate 
GRACE, ECOMAG and INM RAS–MSU retrieved TWS 
variation over the Northern Dvina River basin (NDB) and 
the Pechora River basin (PB); (2) estimate systematic and 
random errors in the series. The overarching goal of this 
study is to provide an assessment that will allow more 
sophisticated validation of land surface and hydrological 
models against GRACE retrieved observations.

MATERIALS AND METHODS
The study area

 The entire NDB and most part of the PB are covered 
with taiga. Northern part of the PB is characterised by 
tundra. Human impact on TWS variation is neglectable – 
there are no water reservoirs or significant water demand. 
Although flat terrain prevails in both catchments, a narrow 
stretch on the eastern edge of the PB belongs to the 
western slopes of the Nether-Polar Ural and Northern Ural 
Mountains. Mean annual air temperature in the NDB and 
PB is 1.2°C and -3.3°C accordingly. Magnitude of the annual 
precipitation is around 550 mm for the both basins. The 
northeastern part of the PB is occupied by permafrost. 
Flood period, which accounts for 2/3 of the runoff, in the 
NDB typically occurs in April to June, while in the PB occurs 
from May to July. During the summer-autumn period, 21% 
of the annual runoff is formed in the NDB, and 20% in the 
PB (Georgiadi and Groisman 2022). 

Materials

 We used the state of the art GRACE ITSG-Grace2018 
daily dataset (Kvas et al. 2019). As in the standard processing 
of monthly GRACE gravity field models, not TWS mass 
variations are removed by subtracting the output of 
geophysical background models. The limited satellite 
ground track coverage during one day (15 tracks per day) 
does not allow for a stable global gravity field inversion 
so that additional information has to be employed. The 
time series is therefore processed by a Kalman smoother 
approach and auto-regressive model of order 3 which apply 
information about spatio-temporal variations of gravity 
field at sub-monthly time scale (Eicker et al. 2020; Kvas et 
al. 2019). Spatial resolution of the data is approximately 500 
km, though it is provided as 0.5° grid.
 ECOMAG is an integrated hydrological and channel 
routing model (Motovilov et al. 1998; Kalugin and 
Motovilov 2018). It calculates the characteristics of snow 
cover; soil moistening, freezing, and thawing; surface, 
subsurface, and groundwater flow; water motion through 
channel network with one-day time step and with a spatial 
resolution of the size of elementary watersheds. USSR soil 
and landscape maps as well as regional reference books of 
agrohydrological soil properties were used to estimate soil 
properties. Daily air temperature, precipitation and vapor 
pressure deficit series at 200 weather stations were used 
to force the model. Model parameters were calibrated 
and verified by daily water discharge series at 12 and 7 
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gauges within the NDB and PB accordingly. Depending on 
available observation data, NDB model was calibrated for 
1994–2003 and verified for 2004–2013, while 1984–1993 
and 1994–2003 were chosen for calibration and verification 
of PB model. ECOMAG showed good results in reproducing 
monthly mean runoff in both the Northern Dvina (Nash–
Sutcliffe coefficient is 0.88) and Pechora (Nash–Sutcliffe 
coefficient is 0.76) basins.
 INM RAS–MSU is a grid-based model with spatial 
resolution of 0.5° and hourly time stepping (Volodin and 
Lykosov 1998; Machul’skaya and Lykosov 2009). The model 
takes into account snow cover accumulation and melting, 
evaporation of intercepted water; surface, subsurface, 
and groundwater flow; freezing, and thawing of the soil; 
water uptake and transpiration by vegetation. The soil is 
discretized into 23 layers, resulting in a total depth of 10 
m. The depth of the first soil layer is 1 cm and the last one 
is 5 m. GLCC was used to specify land cover properties 
(Loveland et al. 2000). Soil texture is derived from (Wilson 
and Henderson-Sellers 1985). Hourly ERA5 datasets were 
used to force the model (Hersbach et al. 2020). Computation 
was performed starting with 01.01.2000 and full saturated 
soil. No calibration was applied to the model. 

Methods
Decomposition of TWS series

 In order to separate a systematic and random 
components from TWS

GR
, TWS

EM
 and TWS

IM
 signals we 

separated them into a long-term (TWSlong), seasonal 
(TWSseas) and subseasonal/residual components (TWSres). 
The decomposition was accomplished by STL method 
(seasonal-trend decomposition using locally estimated 
scatterplot smoothing). The key idea of the method is to 
consistently apply seasonal and long-term smoothing 
filters that are based on local regression (Cleveland 
et al. 1990). Since the method requires the length of 
seasonal cycle as constant, we have dismissed February 
29 from further computations. The parameters of the 
decomposition were adopted from (Humphrey et al. 2016) 
as a polynomial of degree 2 was chosen to filter seasonal 
cycle and linear function was employed to obtain a long-
term component. The width of smoothing window of local 
regression for seasonal cycle separation was set to 45 days. 
The parameter of long-term component separation was 
set to 548 days. The number of iterations in an inner loop 
have been 5 and we assumed that 3 iterations in an outer 
loop would be sufficient. We preferred STL over simple 
seasonal averaging because STL allows to reduce weight 
of outliers in series so they have limited effect on seasonal 
and long-term components. Thus, the weights of TWSres 
values after the first inner loop decrease from 1 to 0 as their 
absolute values increase from the median to 6 medians.
 The relative variation of each component can be 
calculated as the ratio of mean absolute deviation (MAD) of 
a single component to the sum of the MAD. This metric was 
proposed in (Kim et al. 2009) and is called the component 
contribution ratio (CCR). As an example, for TWSlong

 Seasonal and long-term components of TWS and 
TWSC were estimated based on their deviation from the 
ensemble mean.

Three-cornered hat method

 The residual component of TWS contains a short 
periodic signal and random noise. Assuming that all three 
datasets include a short-period component we applied the 
generalized three-cornered hat method (TCH) to estimate 
the magnitude of short periodic signal and noise. The 
generalized three-cornered hat method (TCH) is similar to 
the classical TCH or triple collocation (TC) approach. TC as 
well as TCH allows to estimate random error in time series if 
there are at least three time series with common signal but 
different noises. Consider TWS series to be {TWS

i
: i є (1, 2, 3)} 

and split each time series as TWS
i
=TWS

true
+ε

i
 where TWS

true
 

denotes a true value of TWS and ε
i
 is a random error. Let’s 

also denote 

 with standard deviation of ε
ij
 and ε

i
 as σ

ij
 and σ

i
 

accordingly.
 Then if all ε

i
 are independent, TC is follows as

 The system includes 3 unknown variables and 3 
algebraic equations. However, if ε

i
 are dependent, so as 

coν(ε
i
, ε

j
)≠0 , there are 6 unknown variables and 3 algebraic 

equations. TCH, unlike TC, under some assumptions can 
be used to solve the underdetermined problem. TCH as 
proposed in (Premoli and Tavella, 1993) used three key 
assumptions/requirements: ε

i
 is normally distributed 

ε
i
~N(0,σ

i
2) and the covariance matrix of ε

i
 is positive definite. 

The third assumption is the minimum of the sum

 TCH was previously used to estimate accuracy of 
several monthly TWS

GR
 and ET products (Ferreira et al. 2016; 

Xu et al. 2019).

RESULTS

 Over the NDB  and  have shown good 
agreement with Pearson correlation coefficient (r) equals 
to 0.82, while r between  and  and  
have been 0.77 and 0.51 accordingly (Fig. 1). The PB has 
similar magnitudes of r, from 0.42 ( - ) to 0.69 
( - ).
 There are no clear signs of decrease or increase TWS 
over the basins in 2003–2014. Negative anomalies of TWS 
took place over both basins in 2005–2006 and in 2011 over 
the PB as well. Each dataset showed pronounce seasonal 
cycle of TWS with one phase of growth and one phase of 
decline (Fig. 2). 
 Generally, the maximum of TWS in NDB occurs at the 
end of March, almost a month early than over the PB. The 
dates of TWS minimum in both basins lay in the first half of 
August (Tab. 1).
 There are a few patterns in the dates of seasonal 
peaks obtained from different datasets. Firstly, GRACE 
extremums occur later than the others. The tendency 
is most pronounced for the maximums over NDB and 
minimums over PB. Despite up to one month lag between 
the maximums around the basins, minimums occur almost 
at the same time. Over the NDB, ECOMAG and GRACE 
have showed largest difference between the maximum 
dates reaching 20 days, whereas the minimums showed 7 
days range. Over the PB, GRACE showed minimum of TWS 
15 days later than ECOMAG and IM did. INM RAS - MSU 
demonstrate earliest begin of TWS spring decline over the 
PB, more than three weeks earlier than the other datasets. 
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Fig. 1. Change of TWSlong over Northern Dvina and Pechora basins, mm.

Fig. 2. Mean annual cycle of total water storage (TWSseas) over Northern Dvina (a) and Pechora (b) basins and deviations 
from ensemble mean for Northern Dvian c) and Pechora d), mm.

Table 1. The average dates of maximum/minimum TWS and their respective standard deviation (in days) in Northern 
Dvina and Pechora basins according to ECOMAG, GRACE and INM RAS – MSU

The average date of max/min ECOMAG GRACE INM RAS – MSU

Northern Dvina 24.03 (1.7)/7.08 (3.4) 13.04 (4.3)/ 14.08 (9.3) 28.03 (5.4)/ 11.08 (5.6)

Pechora 24.04 (7.0)/4.08 (1.4) 26.04 (6.6)/ 19.08 (6.5) 3.04 (6.1)/ 4.08 (1.1)
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ECOMAG showed the least variability in the date of the 
extremums occur and GRACE showed the most. Also, TWS 
extremums are rather flattened - for about 7 days around 
them TWS change for less than 4 mm.
 In the NDB, in terms of magnitude,  and 

 differ the most, while GRACE has intermediate 
position between them. Relative to average over three 
datasets, ECOMAG overestimates TWS from the beginning 
of a year to mid-April and underestimates from mid-April 
to the early August. IM shows opposite to ECOMAG signs of 
bias. From mid-August to late December ECOMAG and IM 
have shown similar magnitude with difference not more 
than 15 mm. The minimum of  is in range from -93 
mm (IM) to -113 mm (ECOMAG and GRACE). Maximums 
of  and  are close (99 mm and 104 mm 

accordingly) while  maximum is significantly 

higher – 118 mm. Consequently, the range of  
variations exceeds GRACE by 8% and IM by 17%. 
 The dynamic of  differs most from  and 

 during period of rapid TWS decline from April to 
May. Thus, maximum of a 10-days average rate of  
decline is 4.2 mm/day against 3.2 mm/day and 10.4 mm/
day for GRACE and IM accordingly. Every  series 
shows that rate of TWS decline starts to decrease from April 
24th ( ) to June 3rd (  and ), so it is 
less pronounce for . From the occurring of TWS 
minimum until the second half of winter, all three datasets 
show almost identical trajectories.
 The differences among the datasets are more 
distinguish within the PB. Maximum difference was 
retrieved for pair  -  at the second half of 
May when it reaches 128 mm. The range of  variate 
from 193 mm to 247 mm according to IM and ECOMAG. 
GRACE has shown magnitude and the range close to 
average between IM and ECOMAG. Unlike the NDB, 

 within the PB does not show the highest 10-day 

TWS decline rate (5.1 mm/day). The  and  
both shows significantly higher decline rate than in NDB – 
6.1 mm/day and 4.7 mm/day, respectively. 
 Overall, the datasets do not differ much in MAD TWSres 
magnitude (Fig. 3). The seasonal component is the most 
pronounced in EM dataset and the least pronounced 
in IM’s. IM has though shown some differences with less 
pronounced seasonal component and more substantial 
long-term component.
 Within the NDB, GRACE and ECOMAG have shown 
similar results as CCRseas  is around 67–70%, whereas CCRlong  
is 14.5% and CCRres is roughly 17%. GRACE and ECOMAG 
also showed similar ratio of MAD TWSseas/MAD TWSres 

(the ration of seasonal component variation to residual 
component variation) – 4.6 and 4.8, while the ratio of IM 
is significantly less - 3.8. The most noticeable difference of 
INM RAS - MSU from other datasets is the significant TWSlong 
component (34 mm), which MAD is more than twice as large 
as GRACE and ECOMAG. The datasets’ performance over the 
PB is similar to NDB one, but IM shows a less pronounced 
TWSlong component (29.3 mm) and GRACE more pronounced 
(20.5 mm).
 Overall, the difference, between how dominant 
particular components are, among the datasets can be 
seen. GRACE is taking middle position having CCRlong more 
than ECOMAG, but less than IM. However, GRACE has the 
lowest MAD TWSseas/MAD TWSres ratio, as GRACE ratio is less 
IM one by 6% and less than ECOMAG one by 28%.
 Over both basins, ECOMAG showed smallest random 
error (Tab. 2). GRACE and INM RAS – MSU presented similar 
performance with error (σ

err
) more than that of ECOMAG by 

33-42% and 52-53% in NDB and PB respectively.
Table. 2. Random error   of TWS estimation by GRACE, 
ECOMAG and INM RAS – MSU datasets, in mm, and its ratio 
to variation of TWSres,  %.
 ECOMAG also showed smallest σ

err
/ σ

res
 ratio in both 

basins. Over the PB GRACE and IM have showed similar 
ratio, while over the NDB GRACE appeared to be worse 
than IM.

Fig. 3. Contribution of each temporal component to TWS variation. Blue – long-term, orange – seasonal, green – residual
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Table 2. Random error σ
err

 of TWS estimation by GRACE, ECOMAG and INM RAS – MSU datasets, in mm, and its ratio to 
variation of TWSres,  %

 Basin GRACE ECOMAG INM RAS - MSU

σ
err

, mm
NDB 12.8 9.0 13.8

PB 13.4 10.1 15.4

σ
err

/ σ
res

, %
NDB 68 48 65

PB 73 56 81

DISCUSSION

 Predominance of seasonal component in TWS 
variation over cold regions based on the monthly series 
was evaluated worldwide in previous works (Humphrey et 
al. 2016; B. R. Scanlon et al. 2019). However, TWS variations 
over the Northern Dvina and Pechora basins differ from 
each other both in magnitude and timing. PB has later 
date of the maximum and faster rate of TWS decline during 
spring flood. However, despite higher snowfall magnitude, 
rate of TWS accumulation during cold period in the PB is 
close to NDB rate – less than 80 mm. Occasionally, it can be 
explained by higher runoff during the period.
 In (Scanlon et al. 2019) it was shown that LSM have 
tendency to overestimate (compared to GRACE) variations 
of  TWSseas over cold regions. Our results are rather opposite. 
IM showed smallest range of TWSseas in both basins, while 
hydrological model ECOMAG showed largest range. It’s 
probably not related to the difference in forcing data. Thus, 
the annual precipitation in the NDB (PB) basin used in 
ECOMAG was 605 (704) mm, while in the INM RAS – MSU 
it was 706(719) mm. INM RAS-MSU obtained TWS begins 
to differ from that of ECOMAG in February-March, which 
is associated with overestimation of river discharge during 
the winter low flow period in INM RAS-MSU, which is 
more noticeable in the PB. A much sharper decline in TWS 
compared to other data sets is characteristic of INM RAS-
MSU in the NDB. This is due to both overestimation of water 
discharge during the flood period (maximum discharge is 
overestimated by 50%) and annual water discharge (by 
13%). The sharp decline in the rate of TWS decrease in the 
first decade of June is associated with the beginning of low 
flow period. INM RAS - MSU shows a short period of flood 
recession, about 45 days, while ECOMAG shows an average 
duration of 75 days. One reason for these differences may be 
the use of the water-holding capacity of snow in ECOMAG, 
which delays the start of flood season, as well as the use 
of more detailed vegetation and land surface properties 
maps over Russia, which caused the snowmelt process in 
the model to be less synchronous compare to INM RAS - 
MSU. Overestimation of river discharge during winter may 
be related to overestimation of the groundwater supply, 
which may also be related to the high magnitude of MAD 
TWSlong.
 Over the PB according to INM RAS – MSU spring 
flood period starts approximately 16 days early and more 
smoothly compared to ECOMAG. In spite of this, over the 
PB the models perform more similar in terms of shape and 
volume of flood runoff than over the NDB. Therefore, the 
dynamics of TWS in the PB according to the INM RAS - MSU 
dataset differs from the others mainly by the presence of a 
shift by 15-20 days.
 Magnitudes of MAD TWSres over the basins are similar 
according to all datasets. That is rather surprising since daily 
resolution of GRACE series is the result of an approximation 
that should lead to partially loss of TWS signal, that was not 
eliminated in EM and IM datasets.

 Over the NDB the datasets have shown the smaller 
random error σ

err
 as well as its ratio to σ

res
. Probably it 

is related to a large number of weather stations and 
less complicated features of the basin like absence of 
permafrost and mountain regions. GRACE also shows 
higher random error in the PB, which is probably related 
to a less than the NDB area. In the PB, the random error of 
GRACE is larger than that in the NDB by only 0.6 mm, while 
for other datasets it is 1.1 mm and 1.6 mm. 
 The results obtained here have a number of limitations. 
Two catchments selected in this study are located in the cold 
climates. For these catchments, the relative contribution of 
river runoff and evapotranspiration is approximately equal, 
which is not the case for most of the Earth. Therefore, the 
effect of calibrating a hydrological model to discharge data 
may not have as much effect on the TWS in other regions. 
Also, the ECOMAG calibration was aimed at improving 
the accuracy of spring flood, which for the area under 
consideration means also accuracy in reproducing the 
seasonal TWS. Moreover, the Northern Dvina and Pechora 
basins do not have a significant economic impact such as 
irrigation and pumping that models cannot always take 
under consideration. Therefore, the choice of the study 
area is mostly a favorite of ECOMAG. However, the large 
size of the basins and the absence of large-scale intense 
rains are mostly favorable to GRACE, which is not able to 
catch short-term variations of TWS.    

CONCLUSION

 Results show a predominance of the seasonal 
component variability over the region (64% of the total) 
by all datasets but INM RAS–MSU shows a substantial 
percentage of long-term component variability as well 
(~31%), while GRACE and ECOMAG demonstrate the 
magnitude almost twice as low. Hydrological model 
ECOMAG showed the highest magnitude of the seasonal 
maximum and minimum, while LSM INM RAS – MSU 
showed the lowest. However, INM RAS – MSU showed most 
rapid decline of TWS over the NDB during approximately 
the first half of spring flood period, while GRACE’s rate was 
lowest. ECOMAG is distinguished by earliest begin of TWS 
decline in spring, while GRACE demonstrates latest dates. 
 ECOMAG has shown the lowest magnitude of random 
error from 9 mm for Northern Dvina basin to 10 mm for 
Pechora basin, while INM RAS – MSU has shown the 
highest magnitude. However, none of the datasets showed 
a significantly higher than 1 signal-to-noise ratio in the 
residual TWS component. The question remains open to 
what extent the obtained errors are related to the models 
themselves and to what extent the accuracy of input 
precipitation data since short-period changes in TWS are 
related to precipitation.
 Over three datasets ECOMAG showed the best 
performance considering the lowest rate of random error 
and the most accurate spring flood hydrograph. However, 
calibration to discharge data may not be so effective in 
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evaporation-predominant regions without snowmelt 
floods. The region also lacks significant economic impacts 
on water resources, which greatly simplifies model 
development for this area. The large size of the basins and 
predominance of seasonal component in TWS variation 
are favorable to GRACE.

 It should be noted that the advantages of using GRACE 
data in hydrology are related not so much to the accuracy 
of this product as to its independence from ground 
observation data and physiographic features of river basins. 
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