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ABSTRACT. Due to Tropical Storm Dianmu’s influence in the Lam Khan Chu watershed (LKCW) area, central Thailand saw 
its worst flood in 50 years from September 23 to September 28, 2021. The flooding lasted for 1-2 months. The objective 
of this research is to study flood susceptibility using logistic regression analysis in LCKW area. According to the study 11 
floods occurred repeatedly between 2005 and 2021, in the southern of Bamnetnarong district and continued northeast to 
Chaturat district and Bueng Lahan swamp. These areas are the main waterways of the LKCW area, the Lam Khan Chu stream 
and the Huai Khlong Phai Ngam, for which the dominant flow patterns are braided streams. The main factors influencing 
flooding are geology, stream frequency, topographic wetness index, drainage density, soil, stream power index, land-use, 
elevation, mean annual precipitation, aspect, distance to road, distance to village, and distance to stream. The results of the 
logistic regression analysis shed light on these factors. All such variables were demonstrated by the β value coefficient. The 
area’s susceptibility to flooding was projected on a map, and it was discovered to have extremely high and high levels of 
susceptibility, encompassing regions up to 148.308 km2 (8.566%) and 247.421 km2 (14.291%), respectively, in the vicinity of 
the two main river sides of the watershed. As a result of this research the flood susceptibility map will be used as a guideline 
for future flood planning and monitoring.
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INTRODUCTION

 Floods are major natural disasters on a global scale that 
can cause significant damage to life and property (Faiz et 
al. 2018; Maleki et al. 2020; Leal et al. 2021). It can be seen 
from the statistics of The Emergency Event Database (EM-
DAT), which has recorded flood events all over the world, 
found that in 2021 there were 223 flooding events (CRED 
2022). There are many factors affecting the occurrence of 
floods, including the occurrence of thunderstorms caused 
by low-pressure patches over the terrain, the Intertropical 
Convergence Zone across the low-latitude tropical 
region, and low-latitude tropical cyclone formation from 
turbulence, inevitably causes rain to soak for a long time 

(Sarjito et al. 2022; Purwanto et al. 2021). There are also 
additional factors that make territory more vulnerable to 
flooding, which are all caused by human activities such as 
building water barriers, urbanization, agricultural expansion, 
land-use change, including deforestation (Camara et al. 
2020; Coetzee 2022; Waiyasusri and Chotpantarat 2022) 
catalysts the severity of floods and increases the frequency 
of flooding.
 The floods in Thailand occur every year, especially 
during the monsoon season in May-October of each year 
(Tomkrtoke and Sirisup 2022; Rojpratak and Supharatid 
2022). Tropical Storm Dianmu, which developed in the 
South China Sea and travelled west towards Vietnam, Laos, 
and Thailand between September 23 and September 28, 

https://doi.org/10.24057/2071-9388-2022-159
https://doi.org/10.24057/2071-9388-2022-159
https://crossmark.crossref.org/dialog/?doi=10.24057/2071-9388-2022-159&domain=pdf&date_stamp=2023-07-01


41

2021, had a significant impact on a catastrophic flood that 
occurred in central Thailand during that time (Thodsan 
et al. 2022). Tropical Storm Dianmu has created a massive 
rainstorm that lasted six days, causing flooding in 30 
provinces in Thailand, leaving 6 dead and 2 missing (AHA 
centre 2021). It makes Lam Khan Chu Watershed (LKCW), 
which is an upstream area of Chi watershed in Chaiyaphum 
Province, in the north-eastern region of Thailand, with an 
area of 1731.289 km2, prone to frequent flooding during 
the monsoon season (July-October of every year). This 
has caused considerable damage to communal and 
agricultural areas. Tropical Storm Dianmu had an impact 
on LKCW between September 23 and September 28 of 
2021, causing the worst flooding in 50 years. The incident 
caused damage in the along the Huai Lam Khan Chu 
stream, affecting riverbank overflows and flooding up to 
3-4 meters, affecting communities, agricultural areas, and 
transport routes in the Bamnetnarong district, Chaturat 
district, and Chaiyaphum Province, flooded lasting 1-2 
months. Another reason for the great flooding is that the 
topography of LKCW is an upstream area with relatively low 
slopes and wide plains, coupled with land-use dominated 
by agriculture. And there is very little forest area upstream, 
which prevents rainfall from being retained in upstream 
forests and causes it to quickly become surface runoff into 
the downstream area.
 Application of geo-informatics technology plays 
an important role in the analysis of current disaster 
management, especially in flooding. This is because it is a 
technology that can display spatial data and determine the 
coordinates and relationships of various variables that affect 
floods. For this reason, flood susceptibility mapping needs 
to be designed from a common database of hydrological, 
meteorological, geological and anthropogenic factors 
(Khosravi et al. 2016; Waiyasusri et a. 2021; Ghasemlounia and 
Utlu 2021). Typically, flood susceptible areas are analysed 
using hydrologic and hydraulic modelling approaches 
with field-based measurements or remote sensing data is 
used to feed the database into the analysis model (Maan et 
al. 2020; Bharath et al. 2021; Chauhan et al. 2022). However, 
statistical analysis principles were developed based on 
spatial models to conduct flood susceptibility studies to 
determine its behaviour (Nguyen et al. 2020; Suharyanto 
2021; Khiavi et al. 2022). In terms of statistical principles 
for finding flood-risk areas, it is important to be able to 
analyse many variables and to analyse a wide area to see 
the distribution of flood-risk areas (El-Fakharany et al. 2021). 
In addition, the progress of geo-informatics technology 
can analyse and process various database sets compiled 
from past to present. The technology can effectively assess 
flood-susceptible areas and show good effectiveness.
 The most popular educational approaches for flood 
susceptibility mapping are univariate models (Zhang et al. 
2018; Li et al. 2018), multivariate models (Tosunoglu et al. 
2020; Jane et al. 2020), and artificial neural network (ANN) 
models (Elsafi 2014; Dahri et al. 2022). Still, the technique 
has limitations on the complexity of database manipulation 
and processing that requires high levels of computer 
memory hardware and long analytics when using a large 
number of variables. Other models such as the Frequency 
Ratio (Ramesh and Iqbal 2022; Jaiswal et al. 2022), Analytic 
hierarchy process (Mitra et al. 2022; Ekmekcioğlu et al. 2021), 
and Logistic Regression (Al-Juaidi et al. 2018; Chowdhuri et 
al. 2020; Kim et al. 2020) also received attention, but not as 
much as the ANN model. For this reason, logistic regression 
analysis (LR) may be a better alternative statistical analysis 
procedure in flood susceptibility studies. Because it can 
analyse multiple geographic database sets, and databases 

that are continuous and categorical data. This can be 
seen from research that studies flood susceptibility in 
different regions of the world, such as the assessment of 
flooded areas in Jamaica that has applied LR. Importantly, 
the relevant variables are local geology, geomorphology, 
hydrology and land-use (Nandi et al. 2016). In Fujian 
Province, China, techniques of geodetector, certainty factor, 
and logistic regression were applied to establish a frame 
for the flash flood susceptibility assessment. According to 
empirical results the model achieves the highest degree 
of accuracy in terms of the success rates (Cao et al. 2020). 
Although Iran is an arid region, it experiences flash floods in 
the Haraz watershed in Mazandaran Province. The research 
introduced key parameters for assessing flood-sensitive 
areas: altitude, slope angle, plan curvature, Topographic 
Wetness Index (TWI), Stream Power Index (SPI), distance 
from river, rainfall, geology, land-use, and Normalized 
Difference Vegetation Index (NDVI) are all important 
variables (Bui et al. 2019). Even in the southern Gaza Strip 
areas, LR was applied to assess flood susceptible areas 
until the proposed model is robust with very reasonable 
accuracy (Al-Juaidi et al. 2018). However, it is crucial that the 
variables that are being added to the model be moderated 
before they are used in the study. As a study by (Tehrny et 
al. 2017), 15 flood conditioning factors were compiled and 
included geo-databases: altitude, slope, aspect, geology, 
distance from river, distance from road, distance from 
fault, soil type, land-use, rainfall, Normalized Difference 
Vegetation Index, SPI, TWI, STI, and curvature were analysed 
for LR and the results showed the highest prediction 
rate of 90.36%. (Hamid et al. 2020) studied the sensitivity 
of flash flood hazard using geospatial techniques, and 
analysed key variables such as elevation, slope, distance 
from the network, land-use, density of the drainage, flow 
accumulation, surface roughness, SPI, TWI, and curvature 
were analysed in Khartoum area, Sudan. When considering 
the variables, geography variables are considered first in 
the study process in which the data is generated from a 
digital elevation model (DEM). (Lim and Li 2018) in a study 
of flood mapping using multi-source remotely sensed data 
and LR in the heterogeneous mountainous regions in North 
Korea, found that DEM data that can be analysed for terrain 
should be of high resolution between 1-30 meters to be 
able to analyse terrain analysis as well. (Chen et al. 2020) 
using a machine learning technique for flood mapping in 
the Yangtze River Delta, China identified rainfall variables 
that are important for model analysis and can also be a 
catalyst for flooding. For this reason, LR was applied in this 
research to find flood susceptibility and mapping for floods 
in the future, specifically in accordance with the principles 
of the United Nations Sustainable Development Goals 
(SDGs), Goal 13 addresses: Take urgent action to combat 
climate change and its impacts (Department of Economic 
and Social Affairs 2022). It defined climate change as one of 
the main causes of natural disasters that are more frequent 
and likely to intensify, causing enormous losses to people’s 
lives and property, as well as having broad economic and 
social impacts, especially at the community and local level 
with limited disaster response capacity.
 The objective of this research was to study flood 
susceptibility using logistic regression analysis in Lam 
Khan Chu Watershed, Chaiyaphum Province, Thailand, by 
using spatial database that affects flooding in preparing 
a flood susceptibility map in LKCW. The study guideline 
has compiled variables that affect the occurrence of 
floods, as physical factors such as elevation, slope, aspect, 
stream power index (SPI), sediment transport index (STI), 
topographic ruggedness index (TRI), topographic wetness 
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index (TWI), stream frequency (SF), drainage density (DD), 
infiltration number (IN), mean annual precipitation, geology, 
soil, and distance to stream; and the socio-economic factor 
involved and provide flood, and are important variables 
that used in flood applications including land-use, distance 
to village, and distance to road. This study is able to predict 
the factors of influential flood causing variables on flood 
occurrence. By developing a geographical database for 
simple management of flood risk regions for sustainable 
solutions to probable future flooding, the research results 
will be applied as a guideline for planning and monitoring 
in the event of future floods.

MATERIALS AND METHODS
Study area

 Lam Khan Chu Watershed is a sub-watershed of the 
Chi watershed. The study area is located between latitudes 
15°15’ N to 15°40’ N and longitude 101°20’ E to 102°E. The 
total study area is approximately 1731.289 km2. LKCW 
area covers Thep Sathit, Bamnetnrong, Chaturat, and Sap 
Yai districts in Chaiyaphum Province, and covers part of 
Theparak district, Nakhon Ratchasima province (Fig. 1). The 
topography in the study area has an altitude of between 
186-819 meters above mean sea level. The western part 
is a high mountain range, with the highest point of the 
LKCW area in the northwest of the study area. Elevation 
of 819 meters, located in Pa Hin Ngam National Park, is 
an important watershed forest area in the study area. An 
undulating plain with a small slope that slopes of the 
research area makes up the majority of the study area. It 
appears that the lowest point of the study area is Bueng 
Lahan, which is an important wetland in this region. The 
elevation of the terrain is 186 meters. The drainage pattern 
of the LKCW is a parallel drainage pattern, i.e., there are 

tributaries flowing dendritic-parallel to the main waterway. 
There is a direction of flow from west to east. The geological 
features in the study area are homogeneous, consisting 
of sedimentary rock covering the entire study area. The 
Korat group is a group of rocks that belong to the Jurassic–
Cretaceous (210-66.4 million year) period, namely the Phu 
Kradueng formation, Phra Wihan formation, Sao Khua 
formation, Phu Phan formation, Khok Kruat formation, 
and Maha Sarakham formation, respectively, and Alluvial 
deposits in Quaternary (1.6-0.01 million year) covered the 
downstream area of   LKCW around Bueng Lahan swamp.
 The sedimentary rocks are described below: 
Quaternary deposits (Qa) consists of fluvial deposits, Maha 
Sarakham formation (KTms) consists of sandstone and rock 
salt, Khok Kruat formation (Kkk) consists of siltstone and 
sandstone, Phu Phan formation (Kpp) consists of siltstone 
and conglomerate, Sao Khua formation (Ksk) consists of 
siltstone and sandstone, Phra Wihan formation (JKpw) 
consists of quarzitic sandstone and conglomerate, and 
Phu Kradueng formation (Jpk) consists of siltstone and 
claystone.

Data

 For the preparation of data in this research, Secondary 
data from various sources were collected for the analysis of 
flood recurrence areas in the LCKW, in particular the Actual 
flood area data for 2005-2021 and spatial data for the analysis 
of factors contributing to flooding, collecting data as follows: 
physical factors such as elevation, slope, aspect, SPI, STI, TRI, 
TWI, SF, DD, IN, mean annual precipitation, geology, soil, 
and distance to stream. Socio-economic factors that are 
relevant and provide for flooding, and are considered the 
most important variables used in flood work are land-use, 
distance to village, and distance to road (Table 1). All data are 
generated in raster database format, grid cell size 30x30 m.

Fig. 1. Geographic map of the Lam Khan Chu Watershed area, Chaiyaphum Province
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Method

 The research process consists of the following steps, as 
shown in Fig. 3 (1): flood prone area analysis, (2) spatial database 
analysis of driving factors, and (3) statistical approach. The details 
of each step are briefly explained below (Fig. 2).

Flood prone area analysis

 The past occurrences records analysis may estimate future 
flood hazard events (Degiorgis et al. 2012; Tehrany and Kumar 
2018). The first step for the analysis of flood susceptible areas is to 
analyze past events that tend to occur in the same area and the 
environmental variables that affect the flooding there. The Geo-
Informatics and Space Technology Development Agency (public 
organization) (GISTDA) has analyzed and synthesized flood data 
from satellite imagery from various sources and compiled into a 
database system that can be used from the source https://flood.
gistda.or.th/. Next, the flood prone area was generated from 
actual flood area during 2005 to 2019 using overlay analysis tools 
in GIS, obtained repeated flooding data over the past 16 years 
and then analyzed to determine the proportion of flooded area 
in the LKCW area, and those flood prone area data were analyzed 
for logistic regression in the next step.
 
Spatial database analysis of driving factors

 The selection of factors affecting flooding is important for 
the flood susceptibility analysis to obtain accurate spatial results. 
In this study, the most related and repeated flood conditioning 
factors selection is crucial (Tehrany et al. 2015; Rahmati et al. 
2019).

 The first important data for this research study is 
Elevation (DEM) data obtained from the Royal Thai Survey 
Department (RTSD) in shapefile format, namely elevation 
point data, contour line data, stream line data, water 
bodies and watershed boundary. Most of the initial source 
data from the Royal Thai Survey Department (RTSD) are 
vector data, and thus are difficult to statistically analyze in 
research. Therefore, such vector data must be converted 
into a raster showing the statistical grid, especially digital 
elevation. The data was analyzed by spatial analysis by Topo 
to Raster technique in ArcGIS 10.2 software. The result was 
DEM data of 30x30 m grid cell size (Fig. 3a) for subsequent 
analysis of other variables. The local topographic slope 
(Fig. 3b), aspect (Fig. 3c), SPI (Fig. 3d), STI (Fig. 3e), TWI (Fig. 
3f ), TRI (Fig. 3g), SF (Fig. 3h), DD (Fig. 3i), and IN (Fig. 3j), 
were then calculated from the DEM. Flood prone areas 
are generally at low elevation and with a low degree of 
topographic slope (Kia et al. 2012). Aspect data, spatial 
data showing the direction of the slope, is an important 
component in determining the direction of water flow in 
high-slope terrain (Mojaddadi et al. 2017). The hydrological 
factors such as SPI, STI, TRI, and TWI also have considerable 
impacts on flood creation (Tehrany et al. 2017). 
 Stream power index (SPI) is the most widely used 
variable in flood susceptibility research. This is because it 
is a variable that indicates the potential for river currents 
to cause erosion. For this reason, such variables play a role 
in altering the surface condition of the terrain. The results 
show negative values for areas with topographic potential 
deposition and positive values for potential erosive areas. 
The SPI analysis can be calculated from Equation 1 (Moore 
et al. 1991; Tehrany et al. 2017):
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Table 1. Spatial data layers used in this research

Driving Factor Variable (Theme) Year Source

Actual flooding area 2005-2021
Derived from Geo-Informatics and Space Technology 
Development Agency (public organization) (GISTDA)

Physical factor

Elevation (Digital Elevation Model-DEM) 2020 Derived from Royal Thai Survey Department (RTSD)

Slope 2020 Derived from the DEM

Aspect 2020 Derived from the DEM

Stream Power Index (SPI) 2021 Derived from the DEM

Sediment Transport Index (STI) 2021 Derived from the DEM

Topographic Ruggedness Index (TRI) 2021 Derived from the DEM

Topographic Wetness Index (TWI) 2021 Derived from the DEM

Stream Frequency (SF) 2021 Derived from the DEM

Drainage Density (DD) 2021 Derived from the DEM

Infiltration Number (IN) 2021 Derived from the DEM

Mean annual precipitation 2005-2020 Derived from Thai Meteorological Department (TMD)

Geology 2017 Derived from Department of Mineral Resources

Soil 2017 Derived from Land Development Department (LDD)

Distance to stream 2021 Derived from Department of Water Resource, Thailand

Socio-economic 
factor

Land-use 2020 Derived from Land Development Department (LDD)

Distance to village 2021 Derived from Royal Thai Survey Department (RTSD)

Distance to road 2021
Derived from Department of Public Works and Town 

&Country Planning.
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 Where, A
s
 indicates the definite catchment area, and β   

denotes the slope gradient.
 Sediment transport index (STI) is another variable that 
defines the movements of the sediments due to the water 
movement. The erosion and deposition processes are 
characterized using STI (Mojaddadi et al. 2017). The results 
obtained with a high level of STI indicate an area of high 
sedimentation. Conversely, a low level of STI indicates an 
area of low sedimentation. STI analysis can be calculated 
from Equation 2:

 Where, A
s
 indicates the definite catchment area, and β   

denotes the slope gradient.
 Topographic wetness index (TWI) is a watershed-
forecasting index and an indicator of the tendency for water to 
flow to a basin based on gravity (Chen and Yu 2011). High TWI 
values   indicate areas prone to water accumulation in the basin, 
which may occur in lowland, low slope or basin areas. The TWI 
analysis can be calculated from Equation 3 (Hamid et al. 2020):

 Where, A
s
 indicates the definite catchment area, and β   

denotes the slope gradient.
 Topographic ruggedness index (TRI) provides a 
quantitative measure of terrain heterogeneity. TRI is a 
geomorphological variable that is related between the 
elevation of the terrain and the flood area (Werner et al. 
2005). The results obtained with high levels of TRI indicate 
areas of high roughness appearing on the terrain, while low 
levels of TRI indicate relatively flat terrain. The TRI analysis 
can be calculated from Equation 4 (Tehrany et al. 2017):

 Where, x
ij
 is elevation of each neighbor cell to cell (0,0).

 Stream frequency (SF) is the ratio between the numbers 
of first-order streams to the watershed area. As a result, a 
high SF indicates an area with a low runoff, refers to the 
flow of water in a stream from upstream to downstream 
slowly and takes a long time. A low SF value indicates that 
the water flow in the stream flows quickly. The SF analysis 
can be calculated from Equation 5 (Horton 1932):

Fig. 2. Flowchart of methodology

(1)

(2)
(4)

(3)
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 Where, N
s
 is the total number of first order streams and 

A is the total watershed area (km2).
 Drainage density (DD) is the ratio of the total stream 
length per watershed area. The result of the DD value, if 
the DD value is greater than 3, the watershed area has 
a drainage at the level of well drainage, if the value is 
between 1 to 3 indicates that the area of the watershed has 
a moderate drainage pattern, and if the value is less than 
1, the area of the watershed has poor drainage. The DD 
analysis can be calculated from Equation 6 (Horton 1932):

 Where, L
s
 is the sum of all river basin lengths and A is 

the total watershed area (km2).
 The Infiltration Number (IN) is the result of the DD 
and SF analysis of the watershed studied. IN is directly 
proportional to runoff (Faniran 1968; Das and Mukherjee 
2005; Joji et al. 2013; Elewa et al. 2016). As the IN of the 
watershed shows high, the runoff remains high; and low 
infiltration number means the runoff is low. The IN analysis 
can be calculated from Equation 7:

 The additional physical factors applied in this study 
were mean annual precipitation, geology, soil, and distance 
to stream (Fig. 4). Mean annual precipitation factors 
were analyzed using data from the Thai Meteorological 
Department (TMD) from 2005-2020 to determine average 
rainfall, then spatial analysis using inverse distance weighted 
interpolation technique in spatial analysis tools in ArcGIS 
10.2 software. The geology and soil variable data as nominal 
data were converted to raster data format. The distance 
to stream variable data were analyzed for distance from 
waterways using the Euclidean distance technique in spatial 
analysis tools.
 The geology, soil, and land-use data are a nominal scale 
and is represented as categorical as float-number data as 
follows:
 Geology data in the study area consisted of Phu 
Kradueng formation (Jpk) equal to 1, Phra Wihan formation 
(JKpw) equal to 2, Sao Khua formation (Ksk) equal to 3, Phu 
Phan formation (Kpp) equal to 4, Khok Kruat formation (Kkk) 
is 5, Maha Sarakham formation (KTms) is 6, and Quaternary 
fluvial deposits (Qa) is 7, according to the Department of 
Mineral Resources classification criteria.
 Soil data in the study area consisted of slightly gravelly 
sand, coarse sand, loamy coarse sand, loamy fine sand, 
clay loam, clay, salinity soil, and marl soil. The two types of 
soils have different drainage potentials as shown in Fig. 4c, 
thus being represented as 1 and 2. Poorly drained soils are 
represented as 1 and well drained as 2, according to the 
classification criteria of the Land Development Department 
(LDD).
 As for the land-use data, the study area has a variety of 
land uses, so it has been reclassified as follows: Agricultural 
land represented as 1, Forest land represented as 2, City and 
village represented as 3, Waterbodies represented as 4, and 
Miscellaneous area (including grass land, wetland, mineral, 
and salt pan) represented as 5, according to the classification 
criteria of the Land Development Department (LDD).
 Land-use, distance to village, and distance to road 
are examples of key socioeconomic factors that affect 
flooding (Fig. 5). Land-use data is nominal data obtained 

from the Land Development Department (LDD). The data 
were converted to a raster data format, and the distance 
to village and distance to road variable data was obtained 
by analyzing distance from waterways using the Euclidean 
distance technique in spatial analysis tools.

Statistical approach

 From the sequence of flood prone area analysis and 
spatial database analysis of driving factors, it was necessary 
to find factors affecting flooding in order to determine 
the flood context in LKCW, 17 variables were analyzed 
including elevation, slope, aspect, SPI, STI, TRI, TWI, SF, DD, 
IN, Mean annual precipitation, geology, soil, distance to 
stream, land-use, distance to village, and distance to road. 
These variables were analyzed together with flood prone 
area data using LR.
 LR is a technique for discovering the empirical 
relationships between a binary dependent and several 
independent categorical and continuous variables (Nandi 
et al. 2016; Tehrany et al. 2017; Kim et al. 2020; Cao et al. 
2020). LR is calculated using the following Equation (8).

 Where, P is the flood prone area, x
i
  are independent 

variables and β is the coefficient value.
 This statistical method was used to provide the variables 
that were analyzed to determine which variable had an 
influence on flooding in that area. It shows the effect of the 
variable in the β value, to determine the factor affecting the 
amount of flooding. These statistical principles consider the 
underlying and dependent variables for all grid cells in the 
LKCW area. In the conclusion, spatial data obtained from 
those Logistic regressions can be used to predict flood risk 
areas in the LCKW area by performing a classification method 
into 5 classes: very high, high, moderate, low, and very low. 
It is expressed as Flood Susceptibility Mapping to determine 
the area that should be addressed in a timely manner for flood 
disaster management for sustainable spatial development in 
the future.

RESULTS
Flood Prone Area during 2005–2021 in LKCW area

 The flow system in dendritic-parallel drainage pattern of 
LKCW can divide the branch stream into two banks, on the 
left side and on the right side of the Lam Khan Chu stream. On 
the left side are the branch streams Huai Wang Kuang stream, 
Huai Sai stream, Huai Hoep stream and a short stream that 
flows into Bueng Lahan swamp. The important right-bank 
branches of Lam Khan Chu stream are Lam Sisiat stream, Huai 
Wang Ta Lat stream, Huai Dak Tat stream, Huai Muang stream, 
Huai Khlong Phai Ngam stream, Huai Khlong Lam In and short 
streams that flow into Bueng, Lahan swamp. The study of 
flooding area that occurred during August to October 2021 
as Tropical Storm Dianmu hit Thailand, resulting in rainfall that 
exceeds the water-resistance area, causing overflow in the 
Lam Khan Chu reservoir. It partially damaged the reservoir, 
causing massive water inflows to flood the downstream areas, 
damaging the Bamnetnarong district and Chaturat district 
covering up to 112.067 km2 (6.47% of the LKCW area) (Fig. 6a.). 
Although the flooded area is a narrow area along both banks 
of the Lan Khan Chu stream, Huai Khlong Phai Ngam, and Huai 
Khlong Lam In, but it has caused great damage to the area in 
the city, as most of them are community areas, economic and 
commercial areas, government offices, and agricultural areas.
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Fig. 3. Spatial database analysis of physical driving factors: 
elevation (a), slope (b), aspect (c), SPI (d), STI (e), TWI (f), TRI (g), SF (h), DD (i), and IN (j)
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Fig. 4. Spatial database analysis of physical driving factors: 
mean annual precipitation (a), geology (b), soil (c), and distance to stream (d)
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Fig. 5. Spatial database analysis of socio-economic driving factors: land-use (a), 
distance to village (b), and distance to road (c)

 The area has undergone 11 frequent floods since 2005, 
according to the results of the flood prone area research 
conducted in LKCW between 2005 and 2021. 2017 was the 
year when flooding covered the LKCW the most, 127.252 
km2 (7.33% of the total watershed), followed by 2006, found 
that the flood area covered 118.054 km2 (6.81 % of the total 
watershed area), and the years that no flood areas were found 
in the basin were 2005, 2011, 2015, and 2018, showing the 
proportion of flooded areas as shown in Table 2. The study 
of repeated flooding during 2005 – 2021 in LKCW found that 
most of the repetitive flooding areas occurred in the southern 

part of the Bamnetnarong district and continued northeast 
to Chaturat district and Bueng Lahan swamp. These areas 
are the main waterways of the LKCW area, namely Lam Khan 
Chu stream and Huai Khlong Phai Ngam, which flow patterns 
are braided streams, resulting in floodplain landscapes and 
therefore frequent flooding. As for the repeated flooding area, 
occurring 11 times in 17 years, it was found that an area of   up 
to 0.543 km2 (Table 3) appeared around Bueng Lahan swamp, 
which is northeast of Chaturat district, because it is a lowland 
terrain where many tributaries flow to the area (Fig. 6b).
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Factors affecting flooding in LKCW area

 From the analysis of 17 key variables for determining the 
susceptibility to flooding in the LCKW area, were analyzed 
using the LR statistical process and the spatial database 
variables affecting flooding, the results of the study are shown 
in Table 4. The results were shown by statistical value β. If the β 
value of the variable was positive, the higher the variable, the 
more susceptible to flooding. But if the β value of that variable 
shows a negative value, it means that the variable with a lower 

value is more susceptible to flooding. The relative operating 
characteristic (ROC) shows how the regression equation can 
be used to predict flood prone risk area based on probability. 
The ROC values obtained for the probability of flooding area 
and non-flooding area are 0.899 and 0.865, respectively (Fig. 
7), indicating a high value, because a value approaching 1.00 
indicates that all 17 variables are effective in analysis of flood 
prone areas.
 All variables were significant at the p < 0.01 entry and p > 
0.02 removal levels (ROC relative operating characteristics)

Table 2. Flood Prone Area during 2005 – 2021 in LKCW

Table 3. Repeated flooding area over a period of 15 years (2005-2021) in LKCW

Table 4. Logistic regression analysis of the flood prone area and affecting factors in LKCW area

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013

Area
km2 - 118.054 68.846 22.327 16.139 101.531 - 11.087 78.854

% - 6.81 3.92 1.27 0.92 5.83 - 0.63 4.50

Year 2014 2015 2016 2017 2018 2019 2020 2021

Area
km2 10.986 - 82.768 127.252 - 5.370 17.025 112.067

% 0.57 - 4.73 7.33 - 0.31 0.98 6.47

Repeated 
flooding (Time)

1 2 3 4 5 6 7 8 9 10 11

Area (km2) 125.414 64.875 27.919 20.523 16.591 14.445 8.701 5.782 3.298 3.884 0.543

Variable

Flooding area Non-flooding area

Coefficient β value
Coefficient Exp β 

value
Coefficient β value

Coefficient Exp β 
value

Elevation (digital elevation model-DEM) -0.032 0.968 0.041 1.040

Slope - - 0.018 1.018

Aspect -0.001 0.999 0.001 1.001

Stream Power Index (SPI) -0.079 0.924 0.079 1.082

Sediment Transport Index (STI) - - - -

Topographic Ruggedness Index (TRI) - - - -

Topographic Wetness Index (TWI) 0.042 1.043 -0.051 0.969

Stream Frequency (SF) 0.795 2.214 -0.785 0.442

Drainage Density (DD) -0.786 0.456 0.796 2.195

Infiltration Number (IN) - - - -

Mean annual precipitation -0.014 0.986 0.014 1.014

Geology 0.845 2.327 -0.855 0.430

Soil -0.629 0.533 0.639 1.875

Distance to stream -0.0002 1.000 0.0002 1.000

Land-use -0.067 0.935 0.067 1.069

Distance to village -0.001 0.999 0.001 1.001

Distance to road 0.0001 1.000 - 1.000

Constant 20.908 -20.875

The relative operating characteristic (ROC) 0.899 0.865
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Fig. 6. Flooding area on August to October 2021 in LKCW area (a) and 
Repeated flooding area during 2005-2021 in LKCW area (b)
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 The results showed that the flooding area had 4 variables 
showing high positive β value, namely geology, SF, TWI, and 
distance to road, respectively. For the variables showing high 
negative β value, there were 9 variables, namely DD, soil, 
SPI, land-use, elevation, mean annual precipitation, aspect, 
distance to village, and distance to stream, respectively. 
There were 4 variables that did not affect the flooding area 
in the LKCW area: slope, STI, TRI and IN.
 The main reason that four variables (slope, STI, TRI, and 
IN) did not show β values after logistic regression analysis 
was due to the physical topography of the study area being 
largely flat. Only steep slope appeared in a small amount of 
watershed in the western part of the study area, making 
slope and TRI variables not statistically significant.
 STI levels in the study area were very low, covering the 
middle and lower parts of the watershed, showing that 
sediment-carrying was seldom present in the study area. 
Because there are two important reservoirs, Lam Khan 
Chu Reservoir and Huai Sai Reservoir, which are sediment 
banks. In addition, the tributary streams are small and 
short streams, causing the water mass to not have enough 
strength to erode the channel until sediment occurs along 
the waterway, so it is not statistically significant.
 As for IN, moderate to low values are found in the 
area, where IN values are low means, the runoff is low. 
This is because in the study area there is topography with 
low potential to store water in the form of surface water. 
Because most of the waterways are perennial streams, 
causing them to seep into the ground and collect in the 
form of groundwater layers, making the IN value not 
statistically significant.
 The flooding area occurred mainly from geology and 
SF variables, both of which showed high positive β values     
at 0.845 and 0.795, respectively. It shows that the flooding 
area is mainly caused by physical factors, as the topography 
of the LCKW area is supported by soft sedimentary strata, 
especially modern quaternary sedimentary rocks formed 
by fluvial deposits. In addition, the area is a low-lying area, 
resulting in large volumes of water being stored in the area. 
Most of the LCKW area is also covered by the Mahasarakham 
Formation, which consists of sandstone and rock salt, soft 
shale geologic, submerged sedimentary region secondary 
to Quaternary Neolithic sedimentary rock. The SF variables 
were the results obtained from the analysis considering 
the 1st order waterways in the watershed. The SF high 
value represents an area where the low runoff of the river is 
defined as the slow flow of water in the river from upstream 
to downstream over a long period of time, the greater the 
flooding in the lowland areas for a long time. It can be seen 

that a high SF value of 2.36 appeared in the surrounding 
Bueng Lahan swamp. The TWI variable is a predictive index 
of water accumulation in a watershed area. A high TWI 
value indicates an area prone to accumulation of water in 
a basin, making it more prone to flooding in an area. The 
TWI level shows a high of 31.58 visible on both sides of the 
main river. High TWI levels can be observed in the vicinity 
of the Bueng Lahan marsh, the Huai Lam Khan Chu stream, 
the Huai Sai stream, the Huai Khlong Phai Ngam, and the 
Huai Dak Tat. As for the distance to road variable, flood-
affected areas tend to be far from transport routes.
 For variables showing high negative β values     affecting 
flooding area, it can be seen that DD and soil variables 
showed high negative β values     at -0.786 and -0.629, 
respectively. It shows that the flooding area is mainly 
caused by physical factors as well. In particular, the DD 
variable, which was found to be moderate to less than 1, 
indicates a moderate to low level of drainage. It shows that 
flood-prone area conditions, especially in the southern and 
central lowlands of the LKCW area. As for soil variables, the 
high negative β value was found at the secondary level. 
The results showed that most of the soil conditions are 
poorly drained soil found in salinity soil, loam fine sand, 
and clay loam. As a result, the water volume cannot be 
drained effectively underground. The SPI variable shows 
the negative β value as well. It can be seen that the area 
where the low SPI value found is on both sides of the 
mainstream where flooding occurs. The land-use variant, 
floodplains mainly occur in agricultural and lowland areas. 
Elevation, distance to village, and distance to stream were 
the three variables that were found to have low negative 
β values. It represents an area with low elevation of terrain 
that is susceptible to flooding, including areas near villages 
and stream.
 The results of the study in the non-flooding area 
consisted of 9 variables showing high positive β value: DD, 
soil, SPI, land-use, elevation, mean annual precipitation, 
aspect, distance to village, and distance to stream, 
respectively. There were four variables showing high 
negative β value, namely geology, SF, TWI, and distance to 
road, respectively. It can be seen that it is the reverse of 
the factors affecting the previous flooding. There are also 
four variables that do not affect the non-flooding area 
in the LKCW area: slope, STI, TRI and IN. The results of all 
variables that were indicators for the occurrence of flood 
prone areas were subsequently analyzed on the flood 
susceptibility map in LKCW to form a spatial database for 
effectively managing flood risk areas.

Fig. 7. The relative operating characteristic (ROC) value:
 flooding area (a) and non-flooding area (b)
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Flood susceptibility map in LKCW area

 The results of the study of flood prone risk area in 
LCKW by statistical analysis of LR, using the β value as a 
database and creating a map for disaster management 
at the watershed level to show it as a flood susceptibility 
map in LKCW area (Fig. 8) was analyzed spatial using GIS as 
shown in Equation 9.

 The β value of the variables made the findings a highlight 
of this study, as it was able to show the level of risk as 
spatially appropriate data based on the variables involved 
and affecting specific flooding in the LKCW area. Results of 
the flood susceptibility study show that flood susceptibility 
areas are classified into 6 levels: Very high, High, Medium, 
Low, Very Low, Non-flooding susceptibility respectively (Table 
5). A very high flood susceptibility level is discovered in the 
LKCW region, spanning up to 148.308 km2 (8.566% of the 
total area). They appear mainly in the surrounding areas of 
both main rivers from the downstream to the middle stream 
of the watershed, especially around the Bueng Lahan swamp 
and the Huai Lam Khan Chu stream, Huai. Khlong Phai. Ngam, 
and Huai Muang. The water feature is Braided stream and the 
terrain is floodplain which makes the area prone to flooding, 
thus making it a very high level of flood susceptibility. High-
risk areas and moderate-risk areas appear close to the very 
high level of flood susceptibility area as well, but far from 
the main stream. It covers an area of   more than 247.421 km2 
(14.291%) and 310.414 km2 (17.930%), respectively. The low-
risk area, covering an area of 271.594 km2 (15.687%), was found 
in the Huai Lam Khan Chu stream, including Huai Khlong Lan 
In, Huai Khuean Lan, Huai Sai, Huai Wang Ai Pho, Huai Wang 
Ta Lat, and Huai Dak Tat. Most of the above areas are upstream 
of the LKCW area. The very low-risk area covers most of the 
LKCW area, up to 725.153 km2 (41.885%). Nearly half of the 
watershed is prone to flood disasters at very low levels, but 
the likelihood is relatively low. Most of them are upstream of 
secondary waterways in the northern region, south and west 
of the basin. Non-flooding susceptibility, appearing in the 
Northwestern region of the LCKW area, is 28.399 km2 (1.640% 
of the total area) considered to be non-flooding susceptibility. 
Mountainous area can be found in Pa Hin Ngam National Park, 
a significant watershed forest area in the research area.

DISCUSSION

 Floods can be caused by a number of factors and future 
major floods cannot be accurately predicted (Khosravi 
et al. 2016). Therefore, it is imperative to collect as many 
variables affecting flooding as possible, and to select an 
analysis model that is consistent and timely in response to 
future flood disasters. It can be seen that from this research, 
we have tried to select factors that affect flooding, i.e., 
physical factor and socio-economic factor, with 17 
variables related to flooding in the LKCW area as follows: 
elevation, slope, aspect, SPI, STI, TRI, TWI, SF, DD, IN, mean 
annual precipitation, geology, soil, and distance to stream. 
Land-use, distance to village, and distance to road. All 17 
variables were created in a geo-database for analysis along 
with actual flooding area data. The data is then analysed 
in a geographic information system (GIS) to assess flood 
susceptibility assessment in the LKCW area. Finally, a flood 
susceptibility map was created, yielding satisfactory and 
reliable results, which can be used as a geospatial database 
for decision-making for flood risk management.
 The study of recurrent flooding in the LKCW area 
yielded interesting data. Over the past 17 years, GISTDA 
data on flooding from 2005 to 2021 found that 11 
recurrent flooding areas occurred mainly in the central 
region and continued to outlet area, surrounding Bueng 
Lahan swamp, northeast of the study area, especially the 
main waterways such as Lam Khan Chu stream and Huai 
Khlong Phai Ngam stream. The terrain is floodplain with 
a vast marshland and a braided stream system. Therefore, 
the area is prone to repeated flooding. This is consistent 
with the results of a study by (Izumida et al. 2017), studied 
the repeated flooding area in the Kinu river, Central region 
in Japan by applying UAV-SfM photogrammetry and aerial 
lidar to assess the damage caused by flooding. The Piave 
River in Italy also found that the landscape of the basin 
was a braided river. It is similar to the floods in the Piave 
River in northern Italy, which appear braided rivers with 
strongly impacted flow and sediment regimes (Ziliani 
et al. 2020). Like the results of a study by (Rajbanshi et al. 
2022) in the braided Brahmaputra River in Assam, India, it 
was found that the 2019 major floods in the Brahmaputra 
River affected sediment changes in the river, whether 
it is the movement or accumulation of sediments in the 
river. It can be concluded that watersheds with floodplain 
morphology and braided river systems tend to experience 
repeated flooding almost every year. The communities 
and agricultural areas in these areas are often affected by 
floods.
 Factors affecting flooding in LKCW area were analysed 
using LR statistical process. The results showed that 

(9)

Table 5. Flood susceptibility area in LKCW area (km2)

Flood susceptibility level
Area

km2 %

Very high 148.308 8.566

High 247.421 14.291

Medium 310.414 17.930

Low 271.594 15.687

Very Low 725.153 41.885

Non-flooding susceptibility 28.399 1.640

Total 1731.289 100.000
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the physical factor variables were the most important 
flooding probability indicators. Specifically, a study in the 
LKCW area found that geology and SF variables showed 
high positive β values at 0.845 and 0.795, respectively. 
Meanwhile, DD and Soil variables showed high negative 
β values at -0.786 and -0.629. respectively. Geological 
conditions are supported by an important sedimentary 
rock group, the Korat group. The rocks of the Jurassic to 
Cretaceous period are Phra Wihan formation, Sao Khua 
formation, Phu Phan formation, Khok Kruat formation, 
and Maha Sarakham formation, respectively (Rattana et 
al. 2022). Alluvial deposits in the Quaternary era were the 
most susceptible variables to flooding in the study area, 
as soft rock contributes to the erosion of water systems 
on the terrain surface (Prasanchum et al. 2022). Those 
are located in the valley bottoms which are most prone 
to flooding in terms of relative elevation. This creates a 
cuesta topography landscape with steep edges in the west 
and gradually slopes to the east, resulting in a dendritic-
parallel drainage pattern i.e., several tributaries such as 
Huai Muang, Huai Dak Tat, Huai Wang Ta Lat, LamSisiat, 
Huai Wang Ai Pho, Huai Sai, Huai Khuean Lan and the short 
streams surrounding Bueng Lahan flow to the main line, 
Huai Lam Khan Chu stream. In addition, the SF variables in 
the study area show the SF high value, indicating the area 
where the low runoff is the flow of water in the river from 
the upstream area to the downstream area moving slowly, 
causing enormous volumes of water flooded in Huai Lam 
Khan Chu stream for over a month. The DD variable found 
at a moderate to the level less than 1, showing a moderate 
to low level drainage system, indicating that the area is 
prone to flooding, especially in the southern and central 
lowlands of the LCKW area. The soil variable found a high 
negative β value at a lower level. The results showed that 

most of the soil conditions were poorly drained soils found 
in Salinity soil, Loam fine sand, and Clay loam, which were 
more consistent with the results of the SF and geology 
variables. It can be seen that the results of the study in 
the LKCW area revealed different variables that affect the 
susceptibility to flooding from other areas. As a case study 
of (Tehrany et al. 2017) of flood susceptibility mapping 
in the Xing guo area, China, it was found that the slope 
variable was the most important variable affecting the top 
susceptibility to flooding, as did (Al-Juaid et. al. 2018) found 
high logistic regression coefficient values for Topographic 
slope variable as high as 1.0483. (Cao et al. 2020) studied 
flood susceptibility from the Fujian Province, located in 
south-eastern China, and found that the top influencing 
variables were land-use and topographic relief. Unlike this 
study, it was found that the slope variable did not show 
the coefficient β value in the LKCW area, since most of the 
area, more than 80 percent, has a low slope of 0–5 degree, 
but other physical variables that affect susceptibility to 
flooding were found, including geology, SF, TWI, DD, 
soil, and SPI, which showed high β value coefficients. In 
summary, the overall picture from the discussion results 
shows the difference of factors affecting flooding. It is 
evident that the LKCW area has different topography and 
geomorphology from other areas, resulting in β value 
coefficient of the variables studied changes according to 
the physical characteristics of the area. Therefore, flood 
susceptibility studies in other areas should be aware of the 
causal factors to be studied first in the study of flood risk 
areas.
 Flood susceptibility mapping, that has been generated 
after obtaining a flood susceptibility variable in the LCKW 
area, can be indicated sensitivity into 6 levels. It was found 
that 8.566% of the study areas showed a very high flood 

Fig. 8. Flood susceptibility map in LKCW area
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susceptibility level, and 14.291% of the study areas showed 
a high flood susceptibility level. It can be seen that one-
fifth of the basin is at high risk of flooding, particularly in 
the surrounding areas of Bueng Lahan swamp, Huai Lam 
Khan Chu stream, Huai Khlong Phai Ngam, and Huai. 
Muang. It should be especially vigilant if being in the Inter-
tropical convergence zone or a tropical cyclone moving 
into the watershed area, because of the physical nature of 
the area that is a large basin with slow drainage. For this 
reason, flood susceptibility mapping is therefore essential, 
in order for people in the area to understand the spatial 
context, to understand the geography and limitations of 
the area, especially at the community and local level that 
still have the limited capacity to cope with disasters and be 
prepared to cope and reduce the loss of life and property 
of people in the LKCW area in the event of the next major 
disaster.

CONCLUSIONS 

 Flooding is a catastrophic event that occurs almost every 
year during Thailand’s monsoon season and is particularly 
severe during the tropical cyclone moving into the area, 
especially in the watershed areas of northeastern Thailand 
where this problem is often encountered. This research 

aims to solve the problems and mitigate such impacts by 
analyzing individual factors to find answers to the causes 
of flooding in the study area, by using logistic regression 
analysis together with GIS to create a Flood susceptibility 
mapping in LKCW. The results of the study identified 
important variables affecting flooding including geology, 
SF, TWI, DD, soil, SPI, land-use, elevation, mean annual 
precipitation, aspect, distance to road, distance to village, 
and distance to stream. All such variables are represented 
by the β value coefficient, which is analyzed to create a 
flood susceptibility mapping in LCKW. Recommendations 
for physical research in the basin where high-resolution 
DEM data can clearly detect the physical characteristics of 
the stream channel. Stream channel gradient and stream 
channel depth/width ratio should be added. This research 
shows that the utilization of flood prone risk map is a useful 
basis in taking preventive actions to mitigate floods, and 
relevant agencies should be expedited to assist the most 
vulnerable areas to mitigate floods. Also, planning and 
preparing for future floods in high- to very high-risk areas 
in the LKCW area must be performed. However, this risk 
map is suitable for alluvial terrain. If used in other areas, 
other relevant factors should be examined, including the 
flood context, to make logistic regression analysis more 
effective.
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