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USING STRUCTURE FROM MOTION (SFM)
TECHNIQUE FOR THE CHARACTERISATION
OF RIVERINE SYSTEMS - CASE STUDY IN
THE HEADWATERS OF THE VOLGA RIVER

ABSTRACT. Digital terrain models (DTM) were produced with the structure from motion
(SfM) technique, using data from high resolution terrestrial photography. In addition
360-degree spheres were created from ground taken photos. These spheres allow
capturing the environment at this moment and coming back to the environment virtually
later on. Also overlapping this virtual realty of the environment with model results can
be used for distributing study results to a broad audience. On this basis hydraulic and
morphological conditions were assessed and compared to field records. The proposed
methods enable the creation of a detailed view on different riverine systems, i.e. from
small to large rivers. This enables a morphodynamic characterisation which can be linked
with the biological dataset of the monitoring project REFCOND_VOLGA. We propose that
environmental intelligence gathering using ground-based as well as remote sensing
observations can be applied increase the scope of scientific surveillance, and can lead to
new opportunities to detect and quantify complex ecological interactions across a wide
spectrum of scales.
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INTRODUCTION

A wide range of applications and benefits
of this novel image-based remote sensing
technology is already shown (Everaerts
2008; Remondino et al. 2011; Nex and
Remondino 2013; Whitehead et al. 2014),
mostly taking the sensors up in the air
with @ Unmanned Aerial Vehicle (UAV),
but surveys are basically also possible
from the ground. Systems with advanced
measurement equipment have become
smaller, safer, and more efficient, due to
advances in materials, electronics and
software. A common application is the
generation of high-resolution geo data,
with a relatively small expenditure of time.
Besides interesting new perspectives on
nature, the most promising advantages
of this new technology are a decrease in
time and effort for surveying as well as an
increase of safety and accuracy.

For claiming a fast method, a new approach
was derived from photogrammetric
analyzes of satellite and aerial imagery:
the Structure from Motion (SfM) (Fig. 1)
method (Snavely et al. 2006, 2007). Both
photogrammetric and SfM generated geo
data and their accuracy have been proofed
over the last decades, now both on large
scale and small scale (Eisenbeiss and Zhang
2006; Mancini et al. 2013; Hugenholtz et
al. 2013; Smith and Vericat 2015; Smith et
al. 2015). Related to progress in software
development and increases in computer
performance, the generation of digital

elevation models (DEM) and orthomosaics
imagery using SfM is becoming increasingly
common.

Therefore the application of this technology
within the field of hydro sciences and
engineering is a promising tool, especially
for modeling purposes. Hydraulic models
are used and developed commonly, to study
a variety of hydrogeomorphic processes
as well as to design river rehabilitation
projects. Advances in hardware and model
coding bring model application and
performance to new levels (Barker et al.
2010). Boundary conditions for hydraulic
models as well as changes from erosion
and deposition of sediments can be tracked
through transect measurements over long
periods (Klein et al. 2007). Natural and near-
natural rivers often feature a large variety
of morphological characteristics, which
cannot be measured simply as a series of
two-dimensional  transects  (Buffington
and Montgomery 2013). This leads to the
necessity of increasing advances in data
ascertainment, especially in topographic
mapping, to provide data for driving these
large and detailed simulations. For larger
scale this can be performed with Aerial
Photogrammetry (Dietrich  2015) and
Airborne Laser Scanning (ALS) (Charlton
et al. 2003). But they are also limited by
equipment costs, which can become
critical considerations for smaller projects or
if surveying has to be conducted regularly
with these methods. UAV can be one
solution for this situation, but depending
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Fig.1. The structure from motion (SfM) technique increases scope
and accuracy of river surveys.
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on regulations also UAV flights might not
be possible, especially when date and time
for the field survey are fixed very shortly
before starting. Also for practical reasons
other solutions can be easier to conduct
compared to ground based survey, eg.
for very remote places with re-charging
opportunities.

Overall image (photo) based surveys and
post-processing with SfM can provide
reliable data with a very high accuracy an
appropriate amount of time and with the
added advantage of easy and fast replication
and repetition (Fonstad et al. 2013). This
data combinded with appropriate post-
processing can be used for mapping
topography in river environment (Room and
Ahmad 2014; Thumser et al. 2015), mapping
river bathymetry (Fleneretal. 2013; Javernick
etal. 2014; Ouédraogo et al. 2014; Bagheri et
al. 2015; A. Tamminga et al. 2015; Woodget
et al. 2015), mapping vegetation (Berni et al.
2009; Mathews and Jensen 2013; Flynn and
Chapra 2014; Kaneko and Seiich Nohara
2014), mapping and quantifying sediment
and habitat parameters (Casado et al.
2015; Woodget 2015), quantifying changes
in morphology, erosion and deposition
(Wheaton et al. 2010; Lucieer et al. 2013;
Smith and Vericat 2015; Tamminga et al.
2015; Stumpf et al, 2015) and many more.
The particular value of the monitoring data
lies in the combination of a high spatial and
a moderate temporal resolution (Hering et
al. 2010). Data acquisition and surface water
mapping of aquatic habitats is critical to
assess the conditions of lentic ecosystems as
well as for planning. This approach demands
intensive  cooperation of  engineers,
ecologists and geomorphologists  to
determine the essential characteristics with
sufficient accuracy (Rice et al. 2010).

This article describes the methodology
and it's application within the monitoring
programme REFCOND_VOLGA, in the
headwaters of the Volga.

RESEARCH AREA

Within the research expedition “Upper
Volga 2005" an assessment of hydrological,
hydrochemical and biological parameters

was carried out in the Volga River upstream
of Tver, including the main channel as
well as major tributaries. This assessment
revealed that the headwaters of the Volga
River represent conditions which are either
reference or least disturbed and stipulated
the establishment of the monitoring
programme “REFCOND_VOLGA", which is in
operation since 2006 and includes stretches
along the Volga River (Rzhev, Staritsa, Tver)
as well as along the tributary Tudovka. This
long-term monitoring includesassessments
of hydrochemistry, as aquatic flora / fauna
as well as hydromorphology (Schletterer et
al. 2016). Therefore a detailed assessment,
applying the structure from motion (SfM)
technique as well as the establishment
of 360°-panoramas, was carried out to
supplement the environmental intelligence
gathering at the monitoring sites.

MATERIAL & METHODS
Field work
Survey for SfM analyses

A standard camera (Canon EOS 600D)
was used for generating the pictures. It
uses a 18 Megapixel APS-C CMOS-Sensor
with 18mm fixed focal length. Usually a
UAV would be used for faster surveying
at middle and low height. But as UAV
flying is regulated and time consuming
(dependence on weather conditions,
flight planning), for the current study a
ground-based survey was chosen. The
photographer stood on one riverbank
heading to the other bank in a 90° angle
to the stream. Focusing the other bank,
each photo should cover around 30% of
the water surface and 70% of the bank
and the terrain above and behind. This
ensures that in the post-processing the
software is able to find the water line and
that itis covered in the whole model. After
each photo is taken, the photographer
takes a few steps to the side, focuses
again and takes the next photo. The step
should be the distance that ensures a total
coverage of around 80% or more from
photo to photo (Fig. 2). The process was
continued until the total area of interest
is covered, with a decent extra area in
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~80% coverage

Fig. 2. Schematic drawing of terrestrial photographing of a river for SfM model
purpose. The photographer takes one position and shoots a photo (1)
and moves on to the next position (2)
for shooting another photo with 80% total overlapping and so on (3).

the beginning and at the end (boundary
conditions). After finishing one riverbank
and screening the quality of the images
in the field, the procedure was repeated
from the other riverbank. These photos
are used for SfM post-processing later on.

Virtual River (360° panorama)

Creating virtual spheres has certain
requirements on the photo technique that
are different to SfM requirements. While
pictures taken for post-processing with
SfM should contain motion, meaning angle
and distance to the object of interest and
therewith the position of shooting should
vary between the captures, photos taken
for virtual spheres should be made from one
single point. Usually a tripod and a nodal
point adapter are used in addition to the
camera. The equipment is placed at point,
which is identic to the viewers position
the virtual tour later on, and the whole
surrounding in all dimensions is captured
with photos taken from this point without
changing camera height and position. This
procedure is repeated for different positions.
In the post processing this points can be
merged together to a tour, where the user
can move from point to point. As no nodal
point adapter and tripod was available

during field trip for logistical reasons, photos
were taken by hand, trying not to change
position and height during the photos.

POST PROCESSING

SfM  for high resolution topographic
reconstruction
JStructure-from-Motion”  (SfM) is a

photogrammetric ~ method  for  high
resolution  topographic  reconstruction,
which  differs  fundamentally  from
conventional photogrammetry as the
geometry of the scene, camera positions
and orientation is solved automatically
(Westoby et al. 2012). The SfM approach
uses a highly redundant, iterative bundle
adjustment procedure based on a database
of features automatically extracted from a
set of multiple overlapping images (Snavely
et al. 2008). The 3D point cloud generated
through the SfM worklow is in a relative
Jmage-space” coordinate system and has
to be transformed to an absolute coordinate
system (Fig. 3). Mostly achieved using a 3-D
similarity transform based on a small number
of known ground control points (GCPs) with
known object-space coordinates, it is part of
the post-processing after the SfM worklow
described below.
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Fig. 3. (A) The SfM technology relates image coordinates (gained from different
camera positions) with world coordinates, this approach is exemplified in (B) which
shows the comparison of images in Visual SFM

The SfM  workflow presented herein s
common for a number of open-source
applications, which are implemented e.q.
in VisualSFM (Wu 2011) as well as in the
application  bundle  SFMToolkit3  (Astre
2010). VisualSFM is a freely availaible GUI
application using structure from motion for
3D reconstruction. This system integrates
SiftGPU, a multicore bundle adjustment and
for processing of a dense cloud the Clustering
View or Multi-view Stereo (CMVS) and Patch-
based Multi-view Stereo is implemented (Wu
2007;2011). The bundle SFMToolkit3 includes
SiftGPU (Lowe 2004), Bundler (Snavely et al.
2008), CMVS and PMVS2 (Furukawa and
Ponce 2007; Furukawa et al. 2010). The input
data are pre-calibrated images which have
been undistorted, thus this is a user-friendly
procedure to a sparse and dense point cloud,
which is the basis for a digital terrain model
(DTM) with different resolutions (Fig. 4).

The initial processing step of the SfM
workflow is feature extraction on every
image in the photoset. There are different
methods existing for automated detection
of feature points, but most commonly used,
the scale-invariant feature transform (SIFT)
proved to be very robust against rotation
and scaling and is partially invariant to
illumination changes and view point
variation. After the creation of a feature
descriptor, matching of the extracted
features is performed between all images. A
detailed description of the SIFT algorithm is
shown in Lowe (2004). The relative camera
orientation between pairs of images is
estimated with the established feature
correspondences between images. The
bundle adjustment system used in Bundler
(Snavely et al. 2008) estimates camera
pose and reconstructs the 3D scene by
generating a sparse point cloud. Therefore,

DEM 10 cm (19 k Points)

DEM 50 cm (926 Points)

Fig. 4. Example on different processing steps from the dense cloud towards DTM
(digital terrain model) and DEM (digital elevation model) and the related number of
points (graphic from J.A. Tuhtan)
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approximate nearest neighbour (Arya et
al. 1998) and Random Sample Consensus
(RANSAC; Fischler and Bolles 1987) are
used. Feature correspondences place
constraints on camera pose orientation,
which is reconstructed using a similarity
transformation and the minimisation of
errors isaccomplished by a non-linear least-
square solution (Szeliski and Kang 1994;
Nocedal and Wright 1999). Triangulation of
3D feature points is used for reconstructing
scene geometry in a relative coordinate
system.

The described SfM approach from feature
extraction to the accurate 3D scene
reconstruction is fully automated. The use of
Clustering View or Multi-view Stereo (CMVS)
(Furukawa and Ponce 2007; Furukawa
et al. 2010) and Patch-based Multi-view
Stereo (PMVS2) algorithms (Furukawa and
Ponce 2007) is an additional process which
provides an enhanced density point cloud.

VIRTUAL RIVER (360° PANORAMA)

After checking the photos on quality,
the post-processing can be started. The
proprietary software Kolor Panotour (www.
kolor.com/panotour/) was used for creating
the spheres. The single photos were
merged and projected to a 360-degree
sphere, which is displayed flattened on the
computer screen. With this first product, and
overview of problems occurring between
the different pictures can be estimated. The
most obvious mistake in the merged photo
were blurred parts that result from objects
moving in between two photos, for example
clouds, people and water. For this moving

objects, the status of a single photo has to
be decided to be weighted hundred percent
in the merging process, meaning only this
object occurring after merging process. The
so created spheres were again merged to a
virtual tour, linking the individual spheres,
depending on their position to each other,
together in a row. Also tools for zooming
and switching between the spheres were
implemented.

RESULTS

The application of the SfM approach based
on terrestrial photography turned out to
be applicable for the different streams and
rivers in the research area, i.e. it was shown
that: (I) Monitoring sites along small to
mid-sized rivers, like the Tudovka River,
can be assessed quite well using terrestrial
photography. However it turned out that
at some locations vegetation is a limiting
factor. (Il) Large rivers can be analyzed well,
however as images are taken from the right
bank to the left bank and vice versa — in this
case it turned out to be very difficult to bring
both models (for both banks) into one single
model. (Ill) A promising approach to get a
model for a large river is taking images taken
from a bridge, i.e. the model displays a “cross-
section”(e.g. Volga at Rzhev, (Fig. 5).

The quality of a SfM-model is related texture
and resolution of the images used to create
the model, i.e. high resolution images with
complex structures enable higher accuracy
in the model. Variation in lightning and
individual scenes can influence the texture
and quality. It has to be considered that the
method is not yet feasible for measurements

Fig. 5. View from the bridge at Rzhev upstream: original image (left) and combination
of model and the image (right)
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Fig. 6. Example of SFM-analyses of a river bank near Staritsa, which allow detailed
assessment of the monitoring sites on macro and micro scale

below the water surface and this application
is also limited to transparent shallow water
bodies. As the rivers in the research area are
lowland systems with an influence of mires,
the water surface is the border for the model.
However, it enables to assess non-wetted
areas with high accuracy (Fig. 6), thus the
application of this methodology during the
summer low flow period in the headwaters
of the Volga is a promising approach for
detailed assessments of the river banks
along the monitoring sites.

As photos for the virtual tour were not taken
using a nodal point adapter, creation of full
360-degree spheres was almost impossible.
This problem could be party solved by
splitting the spheres into several parts. In the
cases were spheres could be created or for
the parts of the spheres, photo quality was
very good and high resolution was possible.
This virtual tour - with the possibility of
zooming into scenery, seeing the virtual
actual position within space on a map and
the moving from sphere to sphere — supports
the documentation of certain environmental
conditions, such as flow patterns, vegetation,
etc. (online supplementary material). Also
it is an feasible tool “to come back to field
(during analyses in the laboratory)’, to check
the conditions during a certain sampling
campaign, for model validation or to display
the environment to project partners who
were not able to participate in the field trip.

CONCLUSION AND OUTLOOK

The application of structure from motion
(SfM) technique is very useful for the
characterisation of riverine systems as

« point clouds and surface models of non-
wetted areas

and
« high-resolution (1-10 cm/px) imagery

provide a baseline for modelling and
mapping hydromorphology, as local
conditions and their change over time
(seasonal, after extreme events).

Our study revealed that the methodology
can be applied for ground based surveys
(especially for small to mid-sized rivers
and “cross sections” made from a bridge).
However for large scale surveys areal
investigations are needed: Civil applications
of unmanned aerial vehicles (UAVs) have
grown rapidly over the past years. Thus
we'd like to highlight their use of remote
sensing observations: current applications
are archaeology, geography, mining, as
well as civil engineering and ecology. UAVs
can be leveraged to rapidly create high
resolution (up to 1 cm/px) maps of river
landscapes and thus have the advantage
of being both lean and agile. A lightweight
multi-camera system specially designed for
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UAVs was tested, generating total coverage
spectral imagery. Another advantage is the
possibility spectral imagery is mapping of
macrophyte stands. High resolution maps
of the Normalized Differenced Vegetation
Index (NDVI) can be generated using near
infrared (NIR) imagery gathered by a multi
camera system. This hybrid approach
allows for detailed study of the interactions
between hydromorphological conditions
and aquatic as well terrestrial vegetation.

can be applied to increase the scope of
scientific surveillance, which reveals new
opportunities to detect and quantify
complex ecological interactions across a
wide spectrum of scales. As the applied
imagery  methodologies have huge
potential for environmental variable
classification, future developments will
concentrate on information extraction from
multispectral imagery as well as feature
acquisition and processing in real-time.

Environmental intelligence  gathering
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