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ABSTRACT. Digital topographic maps are created in a series of scales from large to small, and the underlying spatial data is 
commonly organized as a multiscale database consisting of several levels of detail (LoDs). Spatial density of features (or spatial 
objects) in such database varies both between LoDs (coarser levels are less densely populated with features) and within each 
LoD (feature density changes over the area). While the former type of density variation is caused by generalization, the latter 
one is mainly conditioned by geographic location and its properties, such as landscape complexity or fraction of urban areas. 
Since topographic database LoDs are derived using different data sources and generalization techniques, there is a need for a 
method that can help with automated evaluation of resulting feature density in terms of its appropriateness for the specified 
location and level of detail. This paper provides such method by uncovering dependencies between the location properties 
and the density of spatial data in multiscale topographic database. Changes in feature density are modeled as a function 
of spatial (landscape complexity and terrain ruggedness) and non-spatial (land cover types ratio) measures estimated via 
independent data sources. Resulting model predicts how much higher or lower is the expected spatial density of features 
over the area in comparison to the average density for the LoD. This information can be used further to assess the fitness of 
the data to the desired level of detail of the topographic map.
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INTRODUCTION

	 Spatial data for topographic mapping are commonly 
derived at multiple levels of detail (LoDs) which comprise 
a multiscale topographic database (Jones and Abraham 
1986; Kilpeläinen 2000). Official standards for topographic 
map compilation are essentially definitions of level of 
detail which correspond to a specific map scale (Military 
Topographic Service 1978, 1980, 1985). The standards 
prescribe multiple rules for selection and generalization 
of features (spatial objects), as well as precision of their 
representation. Hence, LoD cannot be easily defined as one 
number such as scale, and definitions vary significantly. 
Meng and Forberg (2007) describe LoD as an arbitrary 
milestone in scale-space continuum which corresponds 
to a certain degree of generalization. Lemmens (2011) 
understands LoD as a combination of resolution and the 
amount of spatial, temporal and semantic detail. Ruas and 
Bianchin (2002) conceptualize LoD of a spatial database 
as a combination of the conceptual schema of the data, 
the semantic resolution, the geometric resolution, the 
geometric precision, and the granularity. In many cases an 

LoD can be effectively defined as a specific combination 
of elements which have a particular size or granularity. 
This approach is used in 3D city modeling (Kolbe, Gröger, 
and Plümer 2005; Biljecki, Ledoux, and Stoter 2016), where 
each level of detail is defined by a specific set of building 
elements. Samsonov (2022) identified the typical granularity 
of terrain features selected for small-scale cartographic 
relief presentation, which is 5-6 mm at mapping scale. 
	 Since rules for LoD derivation can be quite sophisticated, 
the differences and inconsistencies in LoD can be inferred 
using the machine learning methods (Touya and Brando-
Escobar 2013). In a pursuit of a universal and effective 
approach to LoD estimation raster analysis methods are 
developed as well. In particular, a detail resolution method 
by Cheng et al. (2017) is based on calculation of a rasterized 
line coalescence. The similar approach can be applied to 
describe the legibility of individual spatial features (Cheng, 
Liu, and Zhang 2021).
	 The notion of LoD can be also traced through the 
literature on cartographic generalization (or generalization 
of spatial data). In particular, formalized LoD-based 
representations are widespread in surface (especially TIN-
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based) modeling where the precision of the resulting 
LoD is defined by simple metric criteria such as vertical 
error (de Floriani, Marzano, and Puppo 1996). The similar 
criteria usually expressed in terms of distances, areas or 
point densities are used in geometric simplification of 
lines (Douglas and Peucker 1973; Visvalingam and Whyatt 
1993; Li and Openshaw 1992), polygons (Buchin et al. 2016; 
Haunert and Wolff 2010) or in point selection (Töpfer and 
Pillewizer 1966). Since the LoD is itself a complex notion, 
its reduction during generalization most probably should 
be expressed as a combination of multiple characteristics. 
Such approach was tested by Samsonov and Yakimova 
(2020), where the authors achieved a similar change in 
level of detail by joint alteration of Modified Hausdorff 
Distance and the number of line bends.
	 Despite a steady interest in the detail-related issues 
in geographical information science, such investigations 
remain quite rare. At the same time, one of the most critical 
requirements for spatial data used in analysis or mapping is 
the appropriate level of detail or degree of generalization. 
Heterogeneous natural conditions produce different spatial 
patterns, some of which can be characterized as a complex 
interplay of different land cover types and underlying 
surface (Phillips  1999). Specifically, mountainous areas 
are characterized by complex terrain, and therefore tend 
to require denser representation of relief (Imhof 1982). 
Economically developed, especially urban areas, are 
characterized by complex configuration of spatial elements 
(Batty 2013). Topographic maps respond to this by denser 
patterns of spatial features. From a cartographic point of 
view, the question arises how much this density should 
variate over the area, and is there any way to determine if 
the data underlying the topographic map is appropriate 
for the selected level of detail and location. To date, no 
formalized methods have been developed for this purpose.
To bring the problem closer to solution we developed a 
new approach which considers the relative feature density 
– i.e., how much denser the features are over the selected 
area in relation to the average density for the whole 
LoD. This property is modeled as a function of location 
properties which are expressed in a number of spatial 
(landscape complexity and terrain ruggedness) and non-
spatial (ratio between various land cover types) measures 
estimated via independent detailed data sources.
	 The rest of the paper is organized into five sections. 
In the Materials and Methods section, we introduce the 
notion of relative feature density and then conceptualize 
our approach to model it as a function of location 
properties. Experimental work subsection sheds the light 
on topographic and land cover data used for the case 
study, as well as their preprocessing needed to construct 
the desired model. In the Results section we demonstrate 

how our approach can be effectively used to improve the 
prediction of LoD based on feature density. Limitations 
of the approach are settled in the Discussion section. 
Finally, the main insights gained during the research are 
summarized in the Conclusion.

MATERIALS AND METHODS
General formulation

	 The aim of the developed method is to model the 
relationships that exist between the geographic location 
and density of features in topographic data. For the sake of 
brevity, we will use the term density to name the feature 
density, unless other type of density is explicitly defined. 
The flowchart of the method in general form is represented 
in Fig. 1.
 
	 We start from some abstract density measure  
calculated for each training data fragment (Fig. 1a). Since 
the expected value of  varies with LoD over the same 
area, we divide it by the mean  for that LoD to obtain the 
relative density (Fig. 1b):

Relative density shows how much denser is the LoD 
fragment in relation to the average density over the whole 
LoD. Relative density is then modeled as a function of 
location properties:

	 where  is i -th relative density measure, lj is the value of  
j-th location property, ε is a free term, g and ƒ are linearizing 
transformation functions specific to the pair of   and l

j
, 

and βij are the coefficients. While building the model, we 
expect that spatial distribution of the relative density is similar 
for all LoDs. Therefore, relative densities are merged into 
one sample (Fig. 1c) and then used in model fitting with 
location properties extracted for the same areas (Fig. 1d).
	 For any new topographic data fragment with known 
values of lj the relative density  can be predicted 

as  (Fig. 1e). Let’s assume that the 

model is  for the 

new data. Then the predicted feature density will be 
 times higher at that location 

than  (the mean for whole LoD).

	 Having the actual density  for the new data fragment 
and its predicted relative value , we can obtain a 
normalized density (Fig. 1f ):

Timofey E. Samsonov, Olga P. Yakimova et al.	 SPATIAL VARIATION OF FEATURE DENSITY IN MULTISCALE ...

Fig. 1. The flowchart of the method
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	 If the specific implementation of the model (2) is 
effective, then  should be equal to the  of the desired 
LoD for well-prepared data. It is expected that for the real-
world cases there will be some difference between these 
values. If the densities (or their transformed values) are 
distributed normally, then Z-score can be used to measure 
the difference in a statistical way:

	 where s
i
 is a standard deviation of i-th density measure.

	 Finally, it is important not only to calculate the 
difference, but also to assess its ability to differentiate LoDs 
effectively. It is expected that for any fragment of k-th LoD 
its Z-score calculated against its own mean and standard 
deviation is smaller than a Z-score calculated against the 
mean and standard deviation of any other LoD (Fig. 1g):

	 This hypothesis is the main objective tested in the 
experimental part of our work.

Specific implementation

	 For this study points, lines and intersections were 
selected as features which densities are modeled. The 
corresponding density measures are calculated as follows:
	 • Point density (d

P
). Each spatial data feature is converted 

to the point features. For linear and polygonal features their 
vertices are extracted. The total number of resulting points 
is divided by the area covered by the data.
	 • Line density (d

L
). The total length of all linear features 

and the total perimeter of polygonal features are summed 
and then divided by the area covered by the data.
	 • Intersection density (d

I
). An overlay of all linear features 

and borders of polygonal features is computed. Resulting 
geometry is set to be point geometry – it means that all 
intersections between linear and polygonal layers are 
derived. The number of intersections is divided by the area 
covered by the data.
	 While point and line density characterize the total 
abundance of spatial data that cover the area, intersection 
density encodes the complexity of topological relations 
between the features in the database: more intersections 
indicate more complex pattern of the features.
	 Location properties act as density predictors. Two 
groups of measures were considered for this purpose:
	 • Non-spatial measures describe general properties 
of location and do not account for the shape and spatial 
pattern of geographic objects that cover the area. 
Specifically, we use the ratios occupied by different land 
cover classes such as water, forest, urban and others.
	 • Spatial measures characterize the location through 
geometry and shape of geographic features that cover the 
area. For this we used the landscape complexity measures 
(joint entropy, contagion index, fractal dimension) and 
terrain ruggedness indices described below. 
	 Joint entropy describes the overall complexity of the 
landscape pattern (Nowosad and Stepinski 2019):

	 where p
ij
 is probability that i-th and j-th class are 

observed in neighboring raster cells, and K is the total 
number of land cover classes.
	 Contagion index is calculated in a similar way (Riitters et 
al. 1996):

	 but accounts for the number of classes. contag 
describes the probability of two random cells belonging to 
the same class.
	 Perimeter-Area Fractal Dimension measures the 
complexity of landscape patches shape and is calculated 
as (Burrough 1981):

	 where β is the slope of the regression of landscape 
patch area A

i
 against the patch perimeter P

i
 for all n patches 

in the landscape:

	 The value of pafrac=1 if patches are simple (squares, 
circles) and   for irregular shapes with high fractal dimension.
	 Terrain ruggedness index is essentially a vertical 
distance between the central cell of a moving window and 
its surrounding cells calculated in a raster digital elevation 
model (Riley, De Gloria, and Elliot 1999):

	 where z
00

 is a central cell of the floating window.

Data preparation

	 Experimental evaluation of the method was 
performed on multiscale topographic database with 3 
levels of detail corresponding to 1:200 000, 1:500 000 
and 1:1 000 000 mapping scales (referred further as 200, 
500 and 1000 LoDs). The database represents layers of 
digital Russian topographic maps of the corresponding 
scales which were compiled by The Federal Service for 
State Registrations, Cadaster and Cartography (Rosreestr) 
using the generalization of larger-scale maps. Each 
LoD is represented in Esri geodatabase storage format 
and contains 47/47/40 layers for 200/500/1000 LoD 
respectively. The layers in each LoD are grouped into eight 
feature datasets inside each geodatabase: administrative 
(3/2/2 layers), economy (7/9/6 layers), geodesy (3/3/2 
layers), hydrography (11/11/10 layers), relief (5/5/5 layers), 
settlements (6/5/4 layers), transport (6/6/6 layers) and 
vegetation/ground (6/6/5 layers). The number of layers 
slightly differ between LoDs because some types of objects 
are removed or added between scales.
	 33 sample fragments centered on settlements located 
in different geographic conditions were extracted from 
each level of detail, resulting in 99 data fragments in total. 
Each fragment was clipped by 100×100 km rectangle, 
and then projected into Lambert Azimuthal Equal Area 
Projection with corresponding center. This projection was 
selected because it allows each fragment to cover the 
similar area. The ratio between different land cover types 
is also correct, while other distortions are negligible within 
the extent of each fragment.  The map of sample fragments’ 
locations is represented in Fig.  2. Samples were divided 
into training and testing groups, which is explained later 
in the Experimental work section. The possible difference 
in feature density between fragments can be judged from 
Fig. 3. It can be clearly seen that highly urbanized Moscow 
fragment is characterized by significantly higher feature 
density at each LoD.
	 To describe the location, we used external data sources 
derived independently of topographic data, with better 
detail and generated without cartographic generalization. 
The main data source is Copernicus Global Land Cover 
(CGLC) (Buchhorn et al. 2020), which is a recent high-
quality 100 m resolution global raster dataset obtained 
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by classification of satellite imagery. From this dataset 33 
fragments were extracted which cover the same area and 
have the same projection as samples from the database. 
All land cover extracts are represented in Appendix 
Fig. A.1.–A.3. with colors according to the official CGLC 
legend in Appendix Table A.1. which includes 23 classes. 

These figures illustrate the variety of landscapes selected 
for the case study, which corresponds to initial selection 
of fragments. In particular, there are fragments with few 
(e.g. Aldan, Tokur) and large (e.g. Irkutsk, Tyumen, Saint 
Petersburg) number of land cover classes. The fragments 
can also be characterized by small (e.g. Komsomolsk-on-
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Fig. 2. Locations of sample fragments

Fig. 3. Example renderings of 500 and 1000 database LoDs for two fragments: (a) Moscow, 500 LoD; (b) Rubtsovsk, 500 
LoD, (c) Moscow, 1000 LoD; (d) Rubtsovsk, 1000 LoD. Point, linear and polygon features are shown by black, blue and red 

color correspondingly. Each fragment is 100 per 100 km. Lambert Azimuthal Equal Area Projection
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Amur, Naryan-Mar) or large (e.g. Elista, Rubtsovsk) size 
of land cover patches. There is also a clear distinction 
between mostly natural (e.g. Lesosibirsk, Ukhta) and urban/
agricultural (e.g. Ufa, Ulyanovsk) landscapes.
	 Before calculating the location property measures CGLC 
data was reclassified to a smaller number of classes. This 
preprocessing step was performed to avoid redundancy 
in the data in cases where land cover is significantly more 
detailed than topographic in terms of classes. In particular, 
all closed forest classes (111–116) and open forest classes 
(121–126) were merged in just two classes: cforest (closed 
forest) and oforest (open forest), which corresponds to 
differentiation applied in topographic databases under 
the study. Similarly, open sea (20) and permanent water 
bodies (80) were merged into one water class. Additionally, 
no input (0), bare (60), snow (70) and moss (100) classes 
were excluded from the case study, since they occupy a 
negligible area on most of the fragments. Resulting 8-class 
land cover classification in addition to open forest, closed 
forest and water, included the initial classes shrubs (20), 
grass (30), crops (40), urban (50), and wetland (90).
	 To estimate terrain ruggedness, we used GMTED_2010 
global raster digital elevation model with resolution 7.5 arc 
seconds (approximately 140 m on 50°N latitude).
	 Since 100 m land cover does not adequately reproduce 
linear objects, we additionally used independent data on 
drainage and road density. Drainage network data was 
obtained from newest MERIT Hydro-Vector database (Lin 
et al. 2021) which was derived globally at 3 arc second 
resolution (approximately 60 m on 50°N latitude). Thus, 
land cover, terrain and drainage density data sources have 
~100 m spatial resolution. Additionally, road density was 
averaged from GRIP database Meijer et al. (2018) with 5 arc 
minute resolution (approximately 6 km on 50°N latitude), 
which was refined using the official Russian road length 
statistics for municipalities (Russian Federal State Statistics 
Service 2021).

Experimental work

	 For modeling purposes 24 fragments (73% of total 
number) were used as training subset, and 9 fragments 
(27% of total number) were used as test subset, which is 
close to the commonly accepted 70/30 ratio. These subsets 
were formed to have the comparable variety of landscape 
types in both of them. 
	 For each sample fragment ,  and  were 

calculated as variables to be modeled. For training subset, 
the mean value of each measure was calculated, and 

relative densities ,  and  were obtained by division 

of raw values on corresponding means.
	 Based on our CGLC reclassification, we calculated the 
ratio of each fragment’s area occupied by each land cover 
class. contag, pafrac and joinent measures were calculated 
based on CGLC data. tri measure was calculated from 
GMTED2010 extracts. roads and rivers variables are the 
densities of road and drainage network correspondingly 
aggregated from GRIP and MERIT Hydro-Vector datasets 
for each database sample as a total length divided by 
fragment area (10 000 km2).
	 Since the initial set of calculated predictors consists 
of 14 variables, we continued with principal component 
analysis (PCA) of their values aimed at reduction of 
dimensions to a smaller number. Before applying PCA the 
variables were log-transformed, centered at zero and scaled 
to unit variance. Log transformation was performed in a 

form , where  is the value of location property. 

The term +1 is used to exclude possibility of transforming 

 into- .

	 After performing the PCA, we fitted the following 
model to each relative density measure:

	 Z-scores for all obtained results were calculated and assessed 
for their effectiveness in differentiating the results. Extraction 
and counting of database objects for density estimation was 
performed using MapAnalyzer QGIS plugin written in Python 
programming language (Yakimova et al. 2021). All remaining 
analytical calculations, including PCA, building the regression 
model and performing the statistical tests were programmed 
in R language, including the landscapemeterics R package by 
Hesselbarth et al. (2019). 

RESULTS
Raw density analysis

	 We begin our analysis of the training subset from visualization 
of probability density estimates for raw density variables (Fig. 4). 
Each variable in each scale has lognormal distribution, which 
is supplemented by all p-values of Shapiro-Wilk test for log-
transformed variables being greater than 0.05. This allows us to 
apply Z-scores in further analysis.

Fig. 4. Distributions of feature density across LoDs: (a-b) point density, (c-d) line density, (e-f) intersection density
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	 As can be seen from lines connecting LoDs of each fragment 
in Fig. 4, raw densities decrease systematically when the level 
of detail is decreased correspondingly. This observation is 
also true for the median values across all fragments. However, 
distributions overlap significantly. To test whether each of the 
training fragments can be unmistakably attributed to its level 
of detail using the density measures, we calculate Z-scores and 
then compare them across all levels. We have the mean and 
standard deviation of  i-th density measure at j-th level of detail 

. Then for each combination  

of i-th density measure calculated at k-th level of detail and 

m-th fragment (3
i
x3

k
x24

m
=216 combinations in total) Z-scores 

are derived against distribution of each . Expectation is 

that absolute value of Z-score should be minimal when k=j, 
i.e.,  when Z-score of a density measure value is calculated 
against the mean and standard deviation of its own LoD. If this 
is true, then raw density measures can be used to assess the 
suitability of the data fragment for inclusion into the LoD.
	 Results of Z-scores calculation are presented in Fig. 5a, 

where the rows correspond to  and the columns correspond 

to . All values are grouped in 3x3 matrices which correpond 

to one group of calculations. Z-scores for density measures 
against their own distributions are located on the antidiagonal 
of each matrix. Therefore, if results meet expectations, these 
scores should have smallest absolute values in each row of the 
matrix (colored with blue color). 

Fig. 5. Z-scores for density characteristics (training fragments): (a) feature density; (b) normalized feature density. Each 
row is a unique combination of fragment and level of detail. Each column is a unique combination of feature density 

measure and level of detail
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	 Fig. 5a indicates that for   fragments out of   there are cases 
where expectation is not realized. In particular, for 17% of all 

 combinations (37 out of 216) the smallest absolute value of 

Z-score is obtained against another LoD. It means that each 6-th 
fragment is statistically closer to another LoD in terms of feature 
density due to it being significantly lower or greater than the 
mean for its own LoD. For example, Rubtsovsk is located in plain 
and dry mostly homogeneous sparsely populated landscape, 
and its database LoDs 200 and 500 are more similar in terms of 
feature density to the average LoD fragment of 500 and 1000 
LoD correspondingly.
	 Such significant variability in feature density poses a question, 
whether it is determined by the properties of its geographic 
location and can be predicted. To answer this question, we apply 
the method presented in the current paper.

Principle component analysis

	 PCA results of the derived models are summarized in Fig. 
6, Fig. 7, and Fig. 8. According to Fig. 6 the first two PCs explain 

53.3% of the total variance, while most of the variance (96%) is 
explained by the first eight PCs, which were selected for further 
analysis. 
	 The quality of each PC and variable contributions can be 
assessed from Fig. 7. In particular, PC1 is formed mainly by joinent 
and contag landscape metrics, as well as both types of forest, 
which most probably describes a variability in forest patterns. PC2 
is dominated by pafrac, shrubs, crops and roads. PC3 is formed by 
tri, cforest, grass and wetland predictors. PC4 is strongly contributed 
by rivers and tri. PC5 is dominated by tri, grass and water, while 
PC6 is formed mainly by pafrac, contag and water variables. PC7 
is comprised mainly by oforest, urban, crops, roads and rivers 
predictors. Finally, PC8 has significant contributions from pafrac, 
contag, tri, shrubs, wetland, crops, roads and rivers. Every variable 
contributed significantly to at least one PC, while most of them 
contribute significantly to 2-3 PCs. 
	 It is notable that, despite the expectation, the fraction of 
urban areas does not contribute as significant as other location 
properties to any specific PC. However, it is the only location 
property which contributes equally to the most important PCs 1-2, 
which results in significant contribution overall analyzed further.

Fig. 7. Principal component analysis summary: (left) quality of representation, cos2; (right) variable contributions

Fig. 6. Fraction of total variance explained by each principal component (scree plot)
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	 Fig. 8 exposes the details of PCA in terms of how the 
fragments and variable contributions are distributed along 
first eight PC dimensions. From Fig. 8a we see clearly that 
the PCs 1–2 differentiate urban/agricultural areas (upper 
right quarter) and mostly natural ones with lots of forest 

(lower left quarter). Fig. 8b reveals that fragments are 
arranged from mountains (left part) to planes (right part) 
and from less (upper part) to more (lower part) developed 
river network by PCs 3–4. On Fig. 8c we see mainly 
differentiation on the ratio of large water bodies by PCs 

Fig. 8. Principal component analysis details: (a,c,e,g) graph of individuals; 
(b,d,f,h) graph of variables
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5-6 with near-water fragments located in lower left quarter 
of the plot. Finally, the contribution of PCs 7-8 on Fig. 8d 
on fragment differentiation is less distinct. The graphs 
of variables represented in Fig. 8b,d,f,h supplement our 
conclusions with contribution vectors of each PC. 

Normalized feature density

	 The summary of the model for each relative density 
measure is presented in Table 1. As we see, PCs 1-5 and 

7  contribute significantly to regression on  and , 

while only PCs  1, 4  and 7 exhibit significant influence on 

. PCs 6 and 8 have neglegible effect on the result in all 

regressions. These relations between principal components 
and modeled relative density measures can be assessed 
visually from Fig. 9 and Fig. 10. In particular, trend lines for 

PCs 6 and 8 have less explicit slope, which indicates a weak 
correlation with relative features density.
	 The derived regression model allows calculation 

of normalized densities , which account for 

landscape heterogeneity and reduce densities to their 
expected values for corresponding LoD. Distributions 
of normalized densities can be assessed from Fig. 11. 
Comparing to raw densities in Fig. 4 it can be seen that 
normalized distributions have higher kurtosis and intersect 
less than for raw densities, which means that they their 
populations can potentially be separated more easily 
based on  Z-scores.
	 To check this hypothesis, we calculated Z-scores of 
normalized values against the mean and standard deviation 
of raw values. Results are presented in Fig. 5b. Now only for 

4.6% of all  (10 out of 216) the smallest absolute value 

Fig. 9. Relationships of relative feature density with principal components 1-4

PC***
Points ( ) Lines ( ) Intersections ( )

Beta 95% CI** *p-value Beta 95% CI p-value Beta 95% CI p-value

Intercept 0.66 0.63, 0.70 • • • 0.67 0.64, 0.69 • • • 0.66 0.62, 0.71 • • •

PC1 0.02 0.00, 0.04 • 0.02 0.01, 0.03 • • 0.04 0.02, 0.06 • • •

PC2 –0.08 –0.10, –0.06 • • • –0.04 –0.05, –0.02 • • • –0.02 –0.05, 0.00 º

PC3 –0.04 –0.06, –0.01 • • –0.03 –0.05, –0.02 • • • 0.01 –0.02, 0.05 º

PC4 0.08 0.05, 0.11 • • • 0.04 0.02, 0.06 • • • 0.09 0.06, 0.13 • • •

PC5 0.05 0.02, 0.09 • • 0.07 0.05, 0.10 • • • 0.03 –0.02, 0.08 º

PC6 0.01 –0.04, 0.05 º 0.01 –0.02, 0.04 º 0.04 –0.02, 0.09 º

PC7 –0.13 –0.18, –0.08 • • • –0.07 –0.10, –0.03 • • • –0.13 –0.19, –0.06 • • •

PC8 0.00 –0.06, 0.06 º –0.02 –0.07, 0.02 º –0.01 –0.09, 0.07 º

Table 1. Summary of relative feature density regression models

* p-values: • • • < 0.001, • •  < 0.01, •  < 0.05, º ≥ 0.05
** CI – confidence interval, *** PC – principal component
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of  Z-score is obtained against another LoD. This result 
means that the error of identifying the most appropriate 
LoD is significantly reduced after processing with our 
method, and approximately 95% of training dataset can be 
recognized correctly.
	 The robustness of the developed approach was 
assessed by using the derived PCA transform and regression 
model to predict relative density for 9 testing fragments 
(3

i
x3

k
x9

m
=81  combinations in total). As can be seen from 

Fig. 12, our approach improves the error of LoD recognition 
from 12.3%  (10 out of 81) to 2.5% (2 out of 81), which is a 
significant gain in precision. As in the case of the training 
dataset, more than 95% of the total samples were related 
to the true LoD after density normalization.

DISCUSSION

	 The developed model has several potential applications. 
First, if a topographic data misses metadata about its level 
of detail or the most appropriate scale of visualization, the 

model can be used to predict the most proper level of 
detail of the data. Second, it can be used as a preliminary 
means of judging if two topographic databases covering 
different areas have similar level of detail and can be 
essentially merged into one database. Third, it is useful to 
evaluate the results of collaborative generalization during 
which multiple areas are generalized using different 
algorithms (Touya, Duchêne, and Ruas 2010). A ratio 
between feature densities which naturally reflects the 
difference in landscape structures, is an indicator of good 
generalization. It must be stressed, however, that all these 
potential applications need practical assessment of their 
effectiveness.
	 There are several limitations of the presented results 
which need to be overcome in future improvements. 
The current study is based on the experimental sample 
which now consists of 33 database fragments. The modest 
sample size and the fact that fragments do not cover all 
possible varieties of landscapes may potentially limit the 
effectiveness of the derived PCs and regression model. In 

Fig. 10. Relationships of relative feature density with principal components 5-8

Fig. 11. Distributions of normalized feature density across scales: (a-b) point density; 
(c-d) line density; (e-f) intersection density
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particular, expected (mean) value of each density measure 
will change if the sample is extended to include additional 
fragments. A reasonable way to improve the current result 
is to subdivide the total area covered by a spatial database 
product by the grid of similar fragments, and perform 
model construction and testing based on the total amount 
of fragments. Since the area of Russia is approximately 
1.7x107km2, and the area of each fragment is 104km2, this 
will result in approximately 1700 fragments. This amount 
can be increased multiple times by extracting smaller 
portions of data (i.e.  50x50 km). Such a large population 
can be randomly sampled to construct more reliable model 
for relative feature density. However, this experiment will 
be substantially more demanding in terms of computing 
time.
	 Additional shortcoming is that current study is tied to 
specific spatial data product and to only three levels of detail. 
Since each product and LoD is derived using a specific data 
selection and generalization rules, the effectiveness of the 
model should be assessed before its application. The same 
issue is true for specific data sources used for prediction. In 
particular, these data sources are not suitable for density 
assessment of detailed (large scale) spatial data due to their 
resolution. Also, each of the data sources has its own errors 
and limited precision, which inevitably affects the quality 
of results. However, assessment of error propagation is out 
of the scope of the current paper.
	 A more convoluted problem is hidden in the 
assumption that the relative feature density is similar for 
each fragment independent from LoD. However, as we’ve 
seen in the paper, the database fragment which is 2 times 
denser than the average in one LoD, can be less different 
from the average in another LoD. We cannot integrate such 
information directly in our model, since LoD is unknown 
in our case. In addition, it should be stressed that only 
density-based characteristics of LoD are considered in the 
current study. Surely, other LoD descriptors such as feature 
granularity must be investigated in a similar way.
	 Finally, more sophisticated methods of model building 
for LoD recognition such as deep learning (DL) can be used 
instead of a simple linear regression with PCA. This may 

potentially improve the reliability and robustness of the 
derived model. Application of DL is impractical on current 
sample, but can be feasible if thousands of data extracts 
comprise the sample.

CONCLUSIONS 

	 Digital topographic maps are commonly represented 
as multiscale spatial databases with several levels of detail 
(LoDs) corresponding to map scales. A sequence of LoDs 
covering the same area is characterized by monotonous 
change of the detail properties such as granularity and 
density of features (spatial objects): the smaller is the 
desired map scale, the less detailed is the LoD. However, 
the properties of one LoD may differ significantly between 
locations. For example, elevation contours in a rugged 
terrain are naturally more complex than over the gently 
sloped areas. The spatially varying shape of individual 
objects and terrain surface as well as their arrangement 
in specific patterns results in heterogeneity of each LoD. 
Hence, the measures which describe the level of detail 
may vary significantly. This complicates the integration of 
topographic data fragments covering different areas into 
one database. There is a need for an automated method 
that will help to assess feature density of the fragments and 
their correspondence to the desired level of detail.
	 In this paper we approached this problem by statistical 
learning from multiscale topographic database constructed 
through manual generalization. For each of the three LoDs 
we analyze how much the density of points, lines and 
intersections in each fragment is higher or lower than 
the average LoD density. This ratio, called relative density, 
is then modeled as a function of location properties 
expressed in a number of spatial and non-spatial measures. 
Principal components derived from measures showed 
significant contributions both from landscape complexity 
measures, and from ratios of different land cover classes. 
Urban and natural, mountainous and flat, with less and 
more developed river network areas were effectively 
differentiated.  Results showed that normalization of raw 
feature density on its predicted relative value provides the 

Fig. 12. Z-scores for density characteristics (testing fragments): (a) feature density; (b) normalized feature density. Each 
row is a unique combination of fragment and level of detail. Each column is a unique combination of feature density 

measure and level of detail
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measure close to the mean value of the desired LoD. Using 
normalized values, the error of LoD recognition is reduced 
several times. This proves the hypothesis that location 
properties can be used as effective predictors of relative 
feature density in topographic data.
	 Results obtained in this paper can be used in spatial data 
integration and generalization workflows which involve 

spatial partitions – either in collaborative generalization 
or merging the data obtained independently for different 
areas. A more representative and large data sample and 
different machine learning methods can be used in future 
investigations to improve the predictive power of the 
proposed approach.
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Appendix

Fig. A.1. Land cover extracts for training fragments 1-12
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Fig. A.2. Land cover extracts for training fragments 13-24
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Fig. A.3. Land cover extracts for testing fragments
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Type Color Description

0   No input data available

20   Shrubs

30   Herbaceous vegetation

40   Cultivated and managed vegetation/agriculture (cropland)

50   Urban / built up

60   Bare / sparse vegetation

70   Snow and Ice

80   Permanent water bodies

90   Herbaceous wetland

100   Moss and lichen

111   Closed forest, evergreen needle leaf

112   Closed forest, evergreen, broad leaf

113   Closed forest, deciduous needle leaf

114   Closed forest, deciduous broad leaf

115   Closed forest, mixed

116   Closed forest, unknown

121   Open forest, evergreen needle leaf

122   Open forest, evergreen broad leaf

123   Open forest, deciduous needle leaf

124   Open forest, deciduous broad leaf

125   Open forest, mixed

126   Open forest, unknown

200   Open sea

Table A.1. Copernicus Global Land Cover classes and colors


