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ABSTRACT. Digital topographic maps are created in a series of scales from large to small, and the underlying spatial data is
commonly organized as a multiscale database consisting of several levels of detail (LoDs). Spatial density of features (or spatial
objects) in such database varies both between LoDs (coarser levels are less densely populated with features) and within each
LoD (feature density changes over the area). While the former type of density variation is caused by generalization, the latter
one is mainly conditioned by geographic location and its properties, such as landscape complexity or fraction of urban areas.
Since topographic database LoDs are derived using different data sources and generalization techniques, there is a need for a
method that can help with automated evaluation of resulting feature density in terms of its appropriateness for the specified
location and level of detail. This paper provides such method by uncovering dependencies between the location properties
and the density of spatial data in multiscale topographic database. Changes in feature density are modeled as a function
of spatial (landscape complexity and terrain ruggedness) and non-spatial (land cover types ratio) measures estimated via
independent data sources. Resulting model predicts how much higher or lower is the expected spatial density of features
over the area in comparison to the average density for the LoD. This information can be used further to assess the fitness of
the data to the desired level of detail of the topographic map.
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INTRODUCTION LoD can be effectively defined as a specific combination
of elements which have a particular size or granularity.
Spatial data for topographic mapping are commonly  This approach is used in 3D city modeling (Kolbe, Groger,
derived at multiple levels of detail (LoDs) which comprise and Plumer 2005; Biljecki, Ledoux, and Stoter 2016), where
a multiscale topographic database (Jones and Abraham  each level of detail is defined by a specific set of building
1986; Kilpeldinen 2000). Official standards for topographic ~ elements.Samsonov (2022) identified the typical granularity
map compilation are essentially definitions of level of  of terrain features selected for small-scale cartographic
detail which correspond to a specific map scale (Military  relief presentation, which is 5-6 mm at mapping scale.
Topographic Service 1978, 1980, 1985). The standards Sincerulesfor LoD derivation can be quite sophisticated,
prescribe multiple rules for selection and generalization  the differences and inconsistencies in LoD can be inferred
of features (spatial objects), as well as precision of their  using the machine learning methods (Touya and Brando-
representation. Hence, LoD cannot be easily defined as one Escobar 2013). In a pursuit of a universal and effective
number such as scale, and definitions vary significantly.  approach to LoD estimation raster analysis methods are
Meng and Forberg (2007) describe LoD as an arbitrary  developed as well. In particular, a detail resolution method
milestone in scale-space continuum which corresponds by Cheng et al. (2017) is based on calculation of a rasterized
to a certain degree of generalization. Lemmens (2011) line coalescence. The similar approach can be applied to
understands LoD as a combination of resolution and the  describe the legibility of individual spatial features (Cheng,
amount of spatial, temporal and semantic detail. Ruas and Liu, and Zhang 2021).
Bianchin (2002) conceptualize LoD of a spatial database The notion of LoD can be also traced through the
as a combination of the conceptual schema of the data, literature on cartographic generalization (or generalization
the semantic resolution, the geometric resolution, the of spatial data). In particular, formalized LoD-based
geometric precision, and the granularity. In many cases an  representations are widespread in surface (especially TIN-
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based) modeling where the precision of the resulting
LoD is defined by simple metric criteria such as vertical
error (de Floriani, Marzano, and Puppo 1996). The similar
criteria usually expressed in terms of distances, areas or
point densities are used in geometric simplification of
lines (Douglas and Peucker 1973; Visvalingam and Whyatt
1993; Liand Openshaw 1992), polygons (Buchin et al. 2016;
Haunert and Wolff 2010) or in point selection (Tépfer and
Pillewizer 1966). Since the LoD is itself a complex notion,
its reduction during generalization most probably should
be expressed as a combination of multiple characteristics.
Such approach was tested by Samsonov and Yakimova
(2020), where the authors achieved a similar change in
level of detail by joint alteration of Modified Hausdorff
Distance and the number of line bends.

Despite a steady interest in the detail-related issues
in geographical information science, such investigations
remain quite rare. At the same time, one of the most critical
requirements for spatial data used in analysis or mapping is
the appropriate level of detail or degree of generalization.
Heterogeneous natural conditions produce different spatial
patterns, some of which can be characterized as a complex
interplay of different land cover types and underlying
surface (Phillips 1999). Specifically, mountainous areas
are characterized by complex terrain, and therefore tend
to require denser representation of relief (Imhof 1982).
Economically developed, especially urban areas, are
characterized by complex configuration of spatial elements
(Batty 2013). Topographic maps respond to this by denser
patterns of spatial features. From a cartographic point of
view, the question arises how much this density should
variate over the area, and is there any way to determine if
the data underlying the topographic map is appropriate
for the selected level of detail and location. To date, no
formalized methods have been developed for this purpose.
To bring the problem closer to solution we developed a
new approach which considers the relative feature density
- i.e., how much denser the features are over the selected
area in relation to the average density for the whole
LoD. This property is modeled as a function of location
properties which are expressed in a number of spatial
(landscape complexity and terrain ruggedness) and non-
spatial (ratio between various land cover types) measures
estimated via independent detailed data sources.

The rest of the paper is organized into five sections.
In the Materials and Methods section, we introduce the
notion of relative feature density and then conceptualize
our approach to model it as a function of location
properties. Experimental work subsection sheds the light
on topographic and land cover data used for the case
study, as well as their preprocessing needed to construct
the desired model. In the Results section we demonstrate
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how our approach can be effectively used to improve the
prediction of LoD based on feature density. Limitations
of the approach are settled in the Discussion section.
Finally, the main insights gained during the research are
summarized in the Conclusion.

MATERIALS AND METHODS

General formulation

The aim of the developed method is to model the
relationships that exist between the geographic location
and density of features in topographic data. For the sake of
brevity, we will use the term density to name the feature
density, unless other type of density is explicitly defined.
The flowchart of the method in general form is represented
in Fig. 1.

We start from some abstract density measure d
calculated for each training data fragment (Fig. 1a). Since
the expected value of d varies with LoD over the same
area, we divide it by the mean d for that LoD to obtain the
relative density d(Fig. 1b):

d=did
Relative density shows how much denser is the LoD
fragment in relation to the average density over the whole

LoD. Relative density is then modeled as a function of
location properties:

8(@)=2p 0 (1) +e

where Ei is i -th relative density measure, I.is the value of
j-thlocation property, €is a free term, g and fare linearizing
transformation functions specific to the pair of d, and lj
and IB;; are the coefficients. While building the model, we
expect that spatial distribution of the relative density is similar
for all LoDs. Therefore, relative densities are merged into
one sample (Fig. 1¢) and then used in model fitting with
location properties extracted for the same areas (Fig. 1d).

For any new topographic data fragment with known
values of Ij the relative density Zii can be predicted
as 3i=g‘1(2ﬂij(lj)+8) (Fig. le). Let's assume that the

J

model is In(dZ+1) =0.74In(1,+1)+0.2and 1 =2 for the
new data. Then the predicted feature density will be
Elze_‘)-741n3+0-2_ 1 ~ 1.753 times higher at that location
than d1 (the mean for whole LoD).

Having the actual density dl_ for the new data fragment

and its predicted relative value Zi, we can obtain a
normalized density (Fig. 1f):
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Fig. 1. The flowchart of the method
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If the specific implementation of the model (2) is
effective, then d, should be equal to the d, of the desired
LoD for well-prepared data. It is expected that for the real-
world cases there will be some difference between these
values. If the densities (or their transformed values) are
distributed normally, then Z-score can be used to measure
the difference in a statistical way:

d.—d.
1 1

z.=
l S .
1

where s is a standard deviation of i-th density measure.

Finally, it is important not only to calculate the
difference, but also to assess its ability to differentiate LoDs
effectively. It is expected that for any fragment of k-th LoD
its Z-score calculated against its own mean and standard
deviation is smaller than a Z-score calculated against the
mean and standard deviation of any other LoD (Fig. 1q):

|4 <|z] m

This hypothesis is the main objective tested in the
experimental part of our work.

Specific implementation

For this study points, lines and intersections were
selected as features which densities are modeled. The
corresponding density measures are calculated as follows:

- Point density (dp). Each spatial data feature is converted
to the point features. For linear and polygonal features their
vertices are extracted. The total number of resulting points
is divided by the area covered by the data.

« Line density (dL). The total length of all linear features
and the total perimeter of polygonal features are summed
and then divided by the area covered by the data.

- Intersection density (d). An overlay of all linear features
and borders of polygonal features is computed. Resulting
geometry is set to be point geometry — it means that all
intersections between linear and polygonal layers are
derived. The number of intersections is divided by the area
covered by the data.

While point and line density characterize the total
abundance of spatial data that cover the area, intersection
density encodes the complexity of topological relations
between the features in the database: more intersections
indicate more complex pattern of the features.

Location properties act as density predictors. Two
groups of measures were considered for this purpose:

- Non-spatial measures describe general properties
of location and do not account for the shape and spatial
pattern of geographic objects that cover the area.
Specifically, we use the ratios occupied by different land
cover classes such as water, forest, urban and others.

- Spatial measures characterize the location through
geometry and shape of geographic features that cover the
area. For this we used the landscape complexity measures
(joint entropy, contagion index, fractal dimension) and
terrain ruggedness indices described below.

Joint entropy describes the overall complexity of the
landscape pattern (Nowosad and Stepinski 2019):

- K K
Jjoinet = — Z,‘:lzl,‘:lpijl()gzpij

where p; is probability that i-th and j-th class are
observed in neighboring raster cells, and K is the total
number of land cover classes.

Contagion index is calculated in a similar way (Riitters et

al. 1996):
)

K K

np ..
i=1 j=lle P

2InK

contag =1+

88

but accounts for the number of classes. contag
describes the probability of two random cells belonging to
the same class.

Perimeter-Area Fractal Dimension measures the
complexity of landscape patches shape and is calculated
as (Burrough 1981):

f 2
aclac = —
P B

where (8 is the slope of the regression of landscape
patch area A against the patch perimeter P for all n patches
in the landscape:

Z?zllnAiza +ﬂ2?=1InPi

The value of pafrac=1 if patches are simple (squares,
circles)and forirregularshapes with high fractal dimension.

Terrain ruggedness index is essentially a vertical
distance between the central cell of a moving window and
its surrounding cells calculated in a raster digital elevation
model (Riley, De Gloria, and Elliot 1999):

SN D S N
- j=— | Ld j= ] %57 %00

where z, is a central cell of the floating window.

Data preparation

Experimental evaluation of the method was
performed on multiscale topographic database with 3
levels of detail corresponding to 1:200 000, 1:500 000
and 1:1 000 000 mapping scales (referred further as 200,
500 and 1000 LoDs). The database represents layers of
digital Russian topographic maps of the corresponding
scales which were compiled by The Federal Service for
State Registrations, Cadaster and Cartography (Rosreestr)
using the generalization of larger-scale maps. Each
LoD is represented in Esri geodatabase storage format
and contains 47/47/40 layers for 200/500/1000 LoD
respectively. The layers in each LoD are grouped into eight
feature datasets inside each geodatabase: administrative
(3/2/2 layers), economy (7/9/6 layers), geodesy (3/3/2
layers), hydrography (11/11/10 layers), relief (5/5/5 layers),
settlements (6/5/4 layers), transport (6/6/6 layers) and
vegetation/ground (6/6/5 layers). The number of layers
slightly differ between LoDs because some types of objects
are removed or added between scales.

33 sample fragments centered on settlements located
in different geographic conditions were extracted from
each level of detail, resulting in 99 data fragments in total.
Each fragment was clipped by 100x100 km rectangle,
and then projected into Lambert Azimuthal Equal Area
Projection with corresponding center. This projection was
selected because it allows each fragment to cover the
similar area. The ratio between different land cover types
is also correct, while other distortions are negligible within
the extent of each fragment. The map of sample fragments’
locations is represented in Fig. 2. Samples were divided
into training and testing groups, which is explained later
in the Experimental work section. The possible difference
in feature density between fragments can be judged from
Fig. 3. It can be clearly seen that highly urbanized Moscow
fragment is characterized by significantly higher feature
density at each LoD.

To describe the location, we used external data sources
derived independently of topographic data, with better
detail and generated without cartographic generalization.
The main data source is Copernicus Global Land Cover
(CGLC) (Buchhorn et al. 2020), which is a recent high-
quality 100 m resolution global raster dataset obtained
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Fig. 3. Example renderings of 500 and 1000 database LoDs for two fragments: (a) Moscow, 500 LoD; (b) Rubtsovsk, 500
LoD, (c) Moscow, 1000 LoD; (d) Rubtsovsk, 1000 LoD. Point, linear and polygon features are shown by black, blue and red
color correspondingly. Each fragment is 100 per 100 km. Lambert Azimuthal Equal Area Projection

by classification of satellite imagery. From this dataset 33
fragments were extracted which cover the same area and
have the same projection as samples from the database.
All land cover extracts are represented in Appendix
Fig. A.1.-A.3. with colors according to the official CGLC
legend in Appendix Table A.1. which includes 23 classes.

89

These figures illustrate the variety of landscapes selected
for the case study, which corresponds to initial selection
of fragments. In particular, there are fragments with few
(e.g. Aldan, Tokur) and large (e.g. Irkutsk, Tyumen, Saint
Petersburg) number of land cover classes. The fragments
can also be characterized by small (e.g. Komsomolsk-on-
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Amur, Naryan-Mar) or large (e.g. Elista, Rubtsovsk) size
of land cover patches. There is also a clear distinction
between mostly natural (e.g. Lesosibirsk, Ukhta) and urban/
agricultural (e.g. Ufa, Ulyanovsk) landscapes.

Before calculating the location property measures CGLC
data was reclassified to a smaller number of classes. This
preprocessing step was performed to avoid redundancy
in the data in cases where land cover is significantly more
detailed than topographic in terms of classes. In particular,
all closed forest classes (111-116) and open forest classes
(121-126) were merged in just two classes: cforest (closed
forest) and oforest (open forest), which corresponds to
differentiation applied in topographic databases under
the study. Similarly, open sea (20) and permanent water
bodies (80) were merged into one water class. Additionally,
no input (0), bare (60), snow (70) and moss (100) classes
were excluded from the case study, since they occupy a
negligible area on most of the fragments. Resulting 8-class
land cover classification in addition to open forest, closed
forest and water, included the initial classes shrubs (20),
grass (30), crops (40), urban (50), and wetland (90).

To estimate terrain ruggedness, we used GMTED_2010
global raster digital elevation model with resolution 7.5 arc
seconds (approximately 140 m on 50°N latitude).

Since 100 m land cover does not adequately reproduce
linear objects, we additionally used independent data on
drainage and road density. Drainage network data was
obtained from newest MERIT Hydro-Vector database (Lin
et al. 2021) which was derived globally at 3 arc second
resolution (approximately 60 m on 50°N latitude). Thus,
land cover, terrain and drainage density data sources have
~100 m spatial resolution. Additionally, road density was
averaged from GRIP database Meijjer et al. (2018) with 5 arc
minute resolution (approximately 6 km on 50°N latitude),
which was refined using the official Russian road length
statistics for municipalities (Russian Federal State Statistics
Service 2021).

Experimental work

For modeling purposes 24 fragments (73% of total
number) were used as training subset, and 9 fragments
(27% of total number) were used as test subset, which is
close to the commonly accepted 70/30 ratio. These subsets
were formed to have the comparable variety of landscape
types in both of them.

For each sample fragment a’P, dL and dl were

calculated as variables to be modeled. For training subset,
the mean value of each measure was calculated, and
-

relative densities dP’ dL and dl were obtained by division

of raw values on corresponding means.

Based on our CGLC reclassification, we calculated the
ratio of each fragment’s area occupied by each land cover
class. contag, pafrac and joinent measures were calculated
based on CGLC data. tri measure was calculated from
GMTED2010 extracts. roads and rivers variables are the
densities of road and drainage network correspondingly
aggregated from GRIP and MERIT Hydro-Vector datasets
for each database sample as a total length divided by
fragment area (10 000 km?).

Since the initial set of calculated predictors consists
of 14 variables, we continued with principal component
analysis (PCA) of their values aimed at reduction of
dimensions to a smaller number. Before applying PCA the
variables were log-transformed, centered at zero and scaled
to unit variance. Log transformation was performed in a

form In (lj + 1), where lj is the value of location property.
The term +1 is used to exclude possibility of transforming
[.=0into-00.

After performing the PCA, we fitted the following
model to each relative density measure:

In(3i+l)=zjﬁijPCj+si

Z-scores for all obtained results were calculated and assessed
for their effectiveness in differentiating the results. Extraction
and counting of database objects for density estimation was
performed using MapAnalyzer QGIS plugin written in Python
programming language (Yakimova et al. 2021). All remaining
analytical calculations, including PCA, building the regression
model and performing the statistical tests were programmed
in R language, including the landscapemeterics R package by
Hesselbarth et al. (2019).

RESULTS
Raw density analysis

We begin ouranalysis of the training subset from visualization
of probability density estimates for raw density variables (Fig. 4).
Each variable in each scale has lognormal distribution, which
is supplemented by all p-values of Shapiro-Wilk test for log-
transformed variables being greater than 0.05. This allows us to
apply Z-scores in further analysis.
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Fig. 4. Distributions of feature density across LoDs: (a-b) point density, (c-d) line density, (e-f) intersection density
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Ascanbe seen fromlines connecting LoDs of each fragment
in Fig. 4, raw densities decrease systematically when the level
of detail is decreased correspondingly. This observation is
also true for the median values across all fragments. However,
distributions overlap significantly. To test whether each of the
training fragments can be unmistakably attributed to its level
of detail using the density measures, we calculate Z-scores and
then compare them across all levels. We have the mean and
standard deviation of i-th density measure at j-th level of detail

dij=di(Lj).Then for each combination dikm =di(Lk’Fm)
of i-th density measure calculated at k-th level of detail and

m-th fragment (3x3x24 =216 combinations in total) Z-scores
are derived against distribution of each dij' Expectation is

that absolute value of Z-score should be minimal when k=j,
i.e, when Z-score of a density measure value is calculated
against the mean and standard deviation of its own LoD. If this
is true, then raw density measures can be used to assess the
suitability of the data fragment for inclusion into the LoD.
Results of Z-scores calculation are presented in Fig. 5a,

where the rows correspond todkmand the columns correspond
to dl,j. All values are grouped in 3x3 matrices which correpond

to one group of calculations. Z-scores for density measures
against their own distributions are located on the antidiagonal
of each matrix. Therefore, if results meet expectations, these
scores should have smallest absolute values in each row of the
matrix (colored with blue color).

a) Points Lines Intersections  b) Points Lines Intersections
6.87 4.075 6.606 2.881 0.773 5341 2526 9.055 4.88 8955 3.02 7.841 3.488 1000
Aldan 8263 -1.721 5.357 1.446 2.722 2431 4.992 4459 8272 3448 3481 8758 500
1.256 -4.724 -3.28 -2.746 -6.056 -4.157-11.241 -8.761 -7.256 -3.969 -8.27 200
5.106 2.761 4183 152 5089 2.291 7954 4.45 6.972 2.728 8281 4.031 1000
Berezniki 1.888 2128 2814 1.07 245 -2.36 3.903 8712 5771 1662 3842 2916 500
2528 -5.227 2557 -3.56 -3.014 -5.966 -4.724-10.245 -4.065 -5.783 -3.448 7.284 200
5.208 2.155 4.197 1.613 4158 1.356 7.22 2659 6.197 2.08 6.835 2502 1000
Bratsk 1.968 2892 2.828 2171 1.656 8028 8177 5089 4.795 4773 2657 8916 500
-3.107 -5.553 2.468 -4.574 4.08 -6.805 7.084-12.079 -4.74 -835 4914 8454 200
5.609 2.296 4.483 1.545 4765 1.902 8057 8.108 6272 1.589 8052 3.624 1000
Chita 228 -1.981 8.129 1685 2208 2289 4005 4074 4888 4325 3654 2587 500
-2.971 -5.045 2534 -4.126 -3.457 -5.813 -6.492-10.728 -5.25 -7.98 -3.838 -6.899 200
3.247 2.655 3646 9.146 5128 2433 7413 3567 1.76 8988 4.256 1000
Elista -1.658 -3.065 1.325 -2.516 1564 -3.188  5.082 6.328 4.421 -1.785 500
-2.055 -4.646 -6.385 -1.459 -3.794 -4.891 -1.468 -4.959 -7.014 -3.831 -7.381 -3.193 -5.073 -3.283 5902 200
5.705 2.201 4894 1981 089 6306 3.202 1.398 8.129 2894 6.873 223 9.029 4.228 1000
Groznyy 2355 -1.561 8.56 3592 4.075 3351 5.646 24 4454 -1.761 500
-3.063 -4.527 -2.112 -3.167 -1.975 -4.082 6.775 -9.765 -4.583 -6.392 -3.259 -5.932 200
5.252 2.021 4136 1.172 4479 1579 7278 2.45 5.487 (0,765 H0I898 6504 2019 1000
Irkutsk ~ 2.002 -1.755 2.764 1045 1.946 2287 3233 389 3898 -2.056 -3.391 2.387 8559 500
-3.287 -4.766 2,894 -3.536 -3.826 -5.874 -7.359-10.483 BI04 -6.108 -7.209 -5.376 -8.087 200
5.453 3.129 4.279 2.145 4579 2656 7454 3983 6695 3.294 714 4.165 1000
Khanty-Mansiysk 2.158 2549 2915 2142 2086 3.34 3.408 5516 5422 -4.255 2907 -4.644 500
2.168 -5.747 -1.952 -4.547 -2.598 -7.205 -5.34 -12.648 -8.476 -7.922 -3.32 9.807 200
6.02 4324 [l 4933 2.196 1.461 4851 2157 7.803 5269 6611 2.25 7.074 2.908 1000
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Fig. 5. Z-scores for density characteristics (training fragments): (a) feature density; (b) normalized feature density. Each
row is a unique combination of fragment and level of detail. Each column is a unique combination of feature density
measure and level of detail
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Fig. 5a indicates that for fragments out of there are cases
where expectation is not realized. In particular, for 17% of all

d .. combinations (37 out of 216) the smallest absolute value of

ikm
Z-score is obtained against another LoD. It means that each 6-th

fragment is statistically closer to another LoD in terms of feature
density due to it being significantly lower or greater than the
mean for its own LoD. For example, Rubtsovsk is located in plain
and dry mostly homogeneous sparsely populated landscape,
and its database LoDs 200 and 500 are more similar in terms of
feature density to the average LoD fragment of 500 and 1000
LoD correspondingly.

Such significant variability in feature density poses a question,
whether it is determined by the properties of its geographic
location and can be predicted. To answer this question, we apply
the method presented in the current paper.

Principle component analysis

PCA results of the derived models are summarized in Fig.
6, Fig. 7, and Fig. 8. According to Fig. 6 the first two PCs explain

Scree plot
29.3%

30-

20-

10~

Percentage of explained variances

7

53.3% of the total variance, while most of the variance (96%) is
explained by the first eight PCs, which were selected for further
analysis.

The quality of each PC and variable contributions can be
assessed from Fig. 7. In particular, PC1 is formed mainly by joinent
and contag landscape metrics, as well as both types of forest,
which most probably describes a variability in forest patterns. PC2
is dominated by pafrac, shrubs, crops and roads. PC3 is formed by
tri, cforest, grass and wetland predictors. PC4 is strongly contributed
by rivers and tri. PC5 is dominated by tri, grass and water, while
PC6 is formed mainly by pafrac, contag and water variables. PC7
is comprised mainly by oforest, urban, crops, roads and rivers
predictors. Finally, PC8 has significant contributions from pafrac,
contag, tri, shrubs, wetland, crops, roads and rivers. Every variable
contributed significantly to at least one PC, while most of them
contribute significantly to 2-3 PCs.

It is notable that, despite the expectation, the fraction of
urban areas does not contribute as significant as other location
properties to any specific PC. However, it is the only location
property which contributes equally to the mostimportant PCs 1-2,
which results in significant contribution overall analyzed further.

8 9

Dimensions
Fig. 6. Fraction of total variance explained by each principal component (scree plot)
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Fig. 8 exposes the details of PCA in terms of how the
fragments and variable contributions are distributed along
first eight PC dimensions. From Fig. 8a we see clearly that
the PCs 1-2 differentiate urban/agricultural areas (upper
right quarter) and mostly natural ones with lots of forest
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(lower left quarter). Fig. 8b reveals that fragments are
arranged from mountains (left part) to planes (right part)
and from less (upper part) to more (lower part) developed
river network by PCs 3-4. On Fig. 8c we see mainly
differentiation on the ratio of large water bodies by PCs
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5-6 with near-water fragments located in lower left quarter
of the plot. Finally, the contribution of PCs 7-8 on Fig. 8d
on fragment differentiation is less distinct. The graphs
of variables represented in Fig. 8b,d,fh supplement our
conclusions with contribution vectors of each PC.

Normalized feature density

The summary of the model for each relative density
measure is presented in Table 1. As we see, PCs 1-5 and

7 contribute significantly to regression on 313 and EL’
while only PCs 1,4 and 7 exhibit significant influence on
dI' PCs 6 and 8 have neglegible effect on the result in all

regressions. These relations between principal components
and modeled relative density measures can be assessed
visually from Fig. 9 and Fig. 10. In particular, trend lines for

PCs 6 and 8 have less explicit slope, which indicates a weak
correlation with relative features density.
The derived regre55|on model allows calculation

of normalized densities d =d /d which account for

landscape heterogeneity and reduce densities to their
expected values for corresponding LoD. Distributions
of normalized densities can be assessed from Fig. 11.
Comparing to raw densities in Fig. 4 it can be seen that
normalized distributions have higher kurtosis and intersect
less than for raw densities, which means that they their
populations can potentially be separated more easily
based on Z-scores.

To check this hypothesis, we calculated Z-scores of
normalized values against the mean and standard deviation
of raw values. Results are presented in Fig. 5b. Now only for

4.6% of all dikm (10 out of 216) the smallest absolute value

Table 1. Summary of relative feature density regression models
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of Z-score is obtained against another LoD. This result
means that the error of identifying the most appropriate
LoD is significantly reduced after processing with our
method, and approximately 95% of training dataset can be
recognized correctly.

The robustness of the developed approach was
assessed by using the derived PCA transform and regression
model to predict relative density for 9 testing fragments
(3x3x9 =81 combinations in total). As can be seen from
Fig. 12, our approach improves the error of LoD recognition
from 12.3% (10 out of 81) to 2.5% (2 out of 81), which is a
significant gain in precision. As in the case of the training
dataset, more than 95% of the total samples were related
to the true LoD after density normalization.

DISCUSSION
Thedeveloped modelhas several potential applications.

First, if a topographic data misses metadata about its level
of detail or the most appropriate scale of visualization, the

model can be used to predict the most proper level of
detail of the data. Second, it can be used as a preliminary
means of judging if two topographic databases covering
different areas have similar level of detail and can be
essentially merged into one database. Third, it is useful to
evaluate the results of collaborative generalization during
which multiple areas are generalized using different
algorithms (Touya, Duchéne, and Ruas 2010). A ratio
between feature densities which naturally reflects the
difference in landscape structures, is an indicator of good
generalization. It must be stressed, however, that all these
potential applications need practical assessment of their
effectiveness.

There are several limitations of the presented results
which need to be overcome in future improvements.
The current study is based on the experimental sample
which now consists of 33 database fragments. The modest
sample size and the fact that fragments do not cover all
possible varieties of landscapes may potentially limit the
effectiveness of the derived PCs and regression model. In
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Fig. 12. Z-scores for density characteristics (testing fragments): (a) feature density; (b) normalized feature density. Each
row is a unique combination of fragment and level of detail. Each column is a unique combination of feature density
measure and level of detail

particular, expected (mean) value of each density measure
will change if the sample is extended to include additional
fragments. A reasonable way to improve the current result
is to subdivide the total area covered by a spatial database
product by the grid of similar fragments, and perform
model construction and testing based on the total amount
of fragments. Since the area of Russia is approximately
1.7x10’km?, and the area of each fragment is 10*km?, this
will result in approximately 1700 fragments. This amount
can be increased multiple times by extracting smaller
portions of data (i.e. 50x50 km). Such a large population
can be randomly sampled to construct more reliable model
for relative feature density. However, this experiment will
be substantially more demanding in terms of computing
time.

Additional shortcoming is that current study is tied to
specific spatial data productandtoonly three levels of detail.
Since each product and LoD is derived using a specific data
selection and generalization rules, the effectiveness of the
model should be assessed before its application. The same
issue is true for specific data sources used for prediction. In
particular, these data sources are not suitable for density
assessment of detailed (large scale) spatial data due to their
resolution. Also, each of the data sources has its own errors
and limited precision, which inevitably affects the quality
of results. However, assessment of error propagation is out
of the scope of the current paper.

A more convoluted problem is hidden in the
assumption that the relative feature density is similar for
each fragment independent from LoD. However, as we've
seen in the paper, the database fragment which is 2 times
denser than the average in one LoD, can be less different
from the average in another LoD. We cannot integrate such
information directly in our model, since LoD is unknown
in our case. In addition, it should be stressed that only
density-based characteristics of LoD are considered in the
current study. Surely, other LoD descriptors such as feature
granularity must be investigated in a similar way.

Finally, more sophisticated methods of model building
for LoD recognition such as deep learning (DL) can be used
instead of a simple linear regression with PCA. This may
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potentially improve the reliability and robustness of the
derived model. Application of DL is impractical on current
sample, but can be feasible if thousands of data extracts
comprise the sample.,

CONCLUSIONS

Digital topographic maps are commonly represented
as multiscale spatial databases with several levels of detail
(LoDs) corresponding to map scales. A sequence of LoDs
covering the same area is characterized by monotonous
change of the detail properties such as granularity and
density of features (spatial objects): the smaller is the
desired map scale, the less detailed is the LoD. However,
the properties of one LoD may differ significantly between
locations. For example, elevation contours in a rugged
terrain are naturally more complex than over the gently
sloped areas. The spatially varying shape of individual
objects and terrain surface as well as their arrangement
in specific patterns results in heterogeneity of each LoD.
Hence, the measures which describe the level of detail
may vary significantly. This complicates the integration of
topographic data fragments covering different areas into
one database. There is a need for an automated method
that will help to assess feature density of the fragments and
their correspondence to the desired level of detail.

In this paper we approached this problem by statistical
learning from multiscale topographic database constructed
through manual generalization. For each of the three LoDs
we analyze how much the density of points, lines and
intersections in each fragment is higher or lower than
the average LoD density. This ratio, called relative density,
is then modeled as a function of location properties
expressed in a number of spatial and non-spatial measures.
Principal components derived from measures showed
significant contributions both from landscape complexity
measures, and from ratios of different land cover classes.
Urban and natural, mountainous and flat, with less and
more developed river network areas were effectively
differentiated. Results showed that normalization of raw
feature density on its predicted relative value provides the
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measure close to the mean value of the desired LoD. Using
normalized values, the error of LoD recognition is reduced
several times. This proves the hypothesis that location
properties can be used as effective predictors of relative
feature density in topographic data.

Results obtained in this paper can be used in spatial data
integration and generalization workflows which involve
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Appendix
Aldan Berezniki Bratsk

e

Fig. A.1. Land cover extracts for training fragments 1-12
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Fig. A.2. Land cover extracts for training fragments 13-24
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Table A.1. Copernicus Global Land Cover classes and colors

Type

20

30

40

50

60

70

80

90

Color

Description

No input data available

Shrubs

Herbaceous vegetation

Cultivated and managed vegetation/agriculture (cropland)

Urban / built up

Bare / sparse vegetation

Snow and Ice

Permanent water bodies

Herbaceous wetland

Moss and lichen

Closed forest, evergreen needle leaf

Closed forest, evergreen, broad leaf

Closed forest, deciduous needle leaf

Closed forest, deciduous broad leaf

Closed forest, mixed

Closed forest, unknown

Open forest, evergreen needle leaf

Open forest, evergreen broad leaf

Open forest, deciduous needle leaf

Open forest, deciduous broad leaf

Open forest, mixed

Open forest, unknown

Open sea
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