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ABSTRACT. Anthropogenic activities can greatly influence the lake ecosystems across the globe. Within these ecosystems, 
the impacts of human activities are most evident on sedimentation, light and nutrient availability, and disturbance frequency. 
There have been times of natural environmental healing of reservoirs and the present research aims to explore the variations 
in the water quality of Tarbela reservoir, Pakistan the largest rock-filled dam of the world, from 1990 to 2020. Landsat imagery 
(Landsat 4-5, 5, 7 and 8) was used to monitor Land Use Land Cover (LULC), Normalized Difference Chlorophyll Index (NDCI), 
Normalized Difference Turbidity Index (NDTI) and  Normalized Difference Water Index (NDWI) in Tarbela reservoir, and its 
surrounding area from 1990−2020, on decadal interval. The results indicated a significant increase in built-up area, of about 
630 km2, in the western and eastern parts of the reservoir, whereas turbidity level, revealed a substantial decline with 4% 
decrease observed in the last decade, 2010-2020 thus confirming improved water quality. The study also presented expanse 
in the spatial coverage of chlorophyll index and water index, indicating increase in residence time of the water. It is concluded 
that the water quality continued to deteriorate with time, however, 2020 was a year of environmental healing and there 
was an overall water quality improvement of the reservoir observed. The study recommends policies to be formulated for 
sediment flushing and turbidity reduction for longer time duration to enhance  the life of this mega reservoir.
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INTRODUCTION

 Reservoir construction, as an anthropogenic activity 
continue to alter and influence fluvial processes, including 
sediment transportation, its resultant altered river 
geomorphology, geochemical composition of water and 
ecology (Pogorelov et al. 2021, Condé et al. 2019). The 
uncontrolled population increase, along with climatic 
variability, leads to intensive land use practices that impact 
the water level and clarity of water in inland water reservoirs. 
A risk assessment approach, in this context, can highlight 
the magnitude of damage they cause to the lacustrine 
environment (Ochoa-Contreras et al. 2021; Lymburner et al. 
2016).
 Inland reservoirs retain the increased sediment and 
nutrient fluxes, which are induced due to intensified 
land use practices and human induced disturbances in 
watershed area, which lead to the eutrophication and 
degradation of water quality and basin-scale hydrological 

regimes (Harrison et al. 2010; Lymburner et al. 2016; Zhang 
et al. 2021). Human induced sediment and nutrient fluxes 
function as pollutant stressor and impact biodiversity and 
human consumption (Vörösmarty et al. 2010). Similarly, 
anthropogenic activities in coastal areas have been said 
to be responsible for enhanced turbidity in coastal waters 
(Dorji and Fearns 2017). Land use/land cover change 
(LULCC), transformation is being experienced in and around 
growing towns (Amin et al. 2014). In recent decades, the 
developing countries have witnessed water pollution after 
unprecedented population growth and industrialization 
(Singh et al. 2016). Thus, there remains a need for water 
quality assessment in inland waters by measuring the 
concentration of human-induced pollutants that degrade 
the aquatic ecosystem in any water reservoir (Hegazy et al. 
2020; Poletaeva et al. 2021).
 Inland waters are sensitive to anthropogenic activities 
and have been affected by environmental disturbances 
resulting from these anthropogenic activities, which affect 
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both water quality and hydrological characteristics, which 
explains the demand for assessing and monitoring water 
quality parameters (Koronkevich et al. 2019). The present 
climate change and anthropogenic activities like industrial 
expansion, urban development, and agricultural practices 
and natural processes such as precipitation frequency, 
weathering processes, and transportation of sediments, 
collectively add sediment flow to reservoirs that affect 
the water quality and storage capacity of the reservoir 
simultaneously (Das 2021). Similarly, a recent study pointed 
out that afforestation schemes like Billion Tree Afforestation 
Project (BTAP) can decrease the sediment load generation 
in the catchment area of Tarbela reservoir (Shafeeque et al. 
2022).
 To study sediment concentration and turbidity level 
in reservoirs, remotely sensed data is of vital importance 
for quantification of both variables (Wu et al. 2007; Dorji 
and Fearns 2017). Turbidity is an important water quality 
parameter from its optical property perspective. It varies 
spatio-temporally over large waterbodies. Normalized 
Difference Turbidity Index (NDTI) for example, has been used 
for qualitative estimates of turbidity in inland waterbodies 
around the globe (Garg et al. 2017). Remotely sensed 
images can assess the dredging impacts on water turbidity 
(Wu et al. 2007), similarly flat-bed pattern in the lower part 
of reservoirs can be detected through turbidity currents 
(Petkovšek 2018). Sedimentation trends and turbidity levels 
in reservoirs are highly determined by human settlements 
constructed near them. These settlements add loads of fine 
suspended sediments to the nearest water body which 
further accumulate in the bottom of the reservoir and create 
“muddy water” (Rutherfurd et al. 2020). Sediments from any 
natural or human source not only decline the water quality 
of the reservoir but also its water storage efficiency and also 
lead to other disasters (Petkovšek 2018, Tundu et al. 2018).
 Elevated chlorophyll-a (pigment found in all 
phytoplankton species) concentrations generally indicate a 
change in the trophic status of a water body, and it is mainly 
associated with degraded water quality and low biodiversity 
which adversely destabilizes the ecosystem services and 
functions (Dalu et al. 2015; Kudela et al. 2015; Masocha et 
al. 2018). The understanding of the chlorophyll-a spatio-
temporal dynamics requires frequent monitoring for water 
quality management (Andrade 2019). Chlorophyll-a, which 
is detectable by satellite imagery, therefore, can serve as an 
indicator of the presence of an algal bloom and is our liable 
source for water quality (Mishra & Mishra 2012). Various 
bio-optical algorithms have been designed to retrieve the 
chlorophyll-a concentration in inland waters, adopting 
different band combinations. One of the most abundant 
photo pigments produced by all types of algae is Normalized 
Difference Chlorophyll Index (NDCI) algorithm (Johansen 
et al. 2018; Mishra & Mishra 2012). The residence time of 
water in the reservoirs indirectly leads to eutrophication, 
as the nutrients get time to stay in water for longer periods 
(Calijuri et al. 2002). Although eutrophication is a natural 
phenomenon, however human activities such as, discharge 
of industrial, agricultural, or domestic effluents, can lead to 
cultural eutrophication (Rabalais et al. 2009; Bhagowati & 
Ahamad 2019; Çelekli 2020). The existence of phytoplankton 
in the in aquatic system, is indicative of enhanced primary 
productivity (Cai et al. 2011) and leads to high emission of 
greenhouse gases (Giles 2006; Barros et al. 2011). Being a 
photosynthetically active pigment, chlorophyll can be used 
for the determination of phytoplankton biomass (Watanabe 
et al. 2015).
 As novel Coronavirus pandemic hit the world at the end 
of 2019, there was a halt to major human-induced events 

due to lockdown and as a result, the natural environment has 
experienced many changes (Xu et al. 2020). The current study 
is looking towards the impact of COVID-19 lockdown on the 
water quality of reservoirs. Globally many rivers, coastal waters 
and reservoirs examined a profound change in water quality 
from a positive perspective. Most anthropogenic activities 
were stopped and inclusion of all pollutants to water channels 
was declined and most reservoirs regained their clean waters 
(Dutta et al. 2020; Robin et al. 2021, Arakelov et al. 2021).
 Studies have been conducted in past exploring the 
reservoir sedimentation (Tate and Farquharson 2000; Khan and 
Tingsanchali 2009; Roca 2012; Mazhar et al. 2021), while others 
dealt with floor risk assessment (Naz et al. 2019), operational 
changes in the reservoir (Rafique et al. 2020) and a study even 
investigated the physiochemical water quality of Tarbela near 
the federal capital, Islamabad (Ahmed et al. 2015). Although 
studies have been conducted to spatially monitor the water 
quality of reservoirs, using remote sensing technology 
(González-Márquez et al. 2018, Vakili and Amanollahi 2020), 
however, there has been a gap in terms of assessing this water 
quality over longer time scales, and the present research aims 
to fill this gap by exploring the variations in the water quality of 
Tarbela reservoir for the last 30 years. The study fundamentally 
has the following objectives: i) to monitor the water quality 
of Tarbela reservoir from 1990−2020, using remotely sensed 
data and ii) to explore any changes in the water quality of the 
reservoir in period under study.

MATERIALS AND METHODS
Study area

 Tarbela reservoir, situated in Haripur and Swabi district 
in Pakistan, about 50 km northwest of Islamabad (Ahmed 
et al. 2015), is the earth’s largest rock filled dam, constructed 
over River Indus in 1976 (Mazhar et al. 2021). At the time of 
conception, its main functions were power generation and 
regulation of seasonal flows for irrigating the Indus plains (Roca 
2012). The reservoir had an initial capacity of 11, 600 m3 (Roca 
2012). According to Tate and Farquharson (2000), average daily 
temperature varies substantially from -7º C in January to 41º C 
in June, while the relative humidity normally remains low, but 
more than 50% humidity is witnessed only in pre-monsoon 
period. The average annual rainfall at Tarbela is around 899 
mm, scattered in almost all the months of the year. January 
and November rarely go rainless. The average inflow in the 
reservoir is 81, 000 Mcm as shared in TAMS 1998 report (Roca 
2012), while Tate and Farquharson (2000) state that snowmelt 
plays a significant role in raising the peak flows of the reservoir, 
with snowmelt contributing peak flows as high as 11, 300 m3s-1, 
comparatively, rainfall contributes a maximum of 5, 660 m3s-1.
 The geographical coordinates of the reservoir are 34.1438° 
North latitude and 72.8077° East longitude (Fig. 1). The mean 
rainfall recorded at Tarbela was 74.41mm for the period 1960-
1996 (Tate and Farquharson 2000).

DATA ACQUISITION
 
 The characteristics of Landsat data used in the study are 
provided in Table 1.

PREPROCESSING

 The above-mentioned data was acquired from United 
States Geological Survey (USGS). Preprocessed Landsat 
imagery from1990 to 2020 was downloaded from USGS. 
Preprocessing of data included geometric and radiometric 
correction, noise removal and cloud cover which was 
less than 10%. Later, Earth Resources Data Analysis 
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Fig.	1.	Study	Area	Map

Satellite Sensor Level Path Row Acquisition Date

Landsat 5 TM L1 150 36 1990/04/24

Landsat 5 TM L1 150 36 2000/05/21

Landsat 7 ETM+ L1 150 36 2010/06/02

Landsat 8 OLI L1 150 36 2020/06/29

Table	1.	Characteristics	of	Landsat	data	used	in	the	study

Fig.	2.	Methodological	Flow	chart
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System (ERDAS) Imagine was used for layer stacking and 
mosaicking of images.

Land use land cover classification (LULC) 

 Land use/land cover change (LULCC) quantification 
is one of the important applications of earth observation 
data sets, and it is vital for assessing global environmental 
change processes and helps in optimizing the maximum 
use of natural resources in sustainable manner and making 
new policies (Srivastava et al. 2012; Singh et al. 2016). 
LULC changes due to afforestation programs also need 
to be monitored closely through remotely sensed data, 
as sediment generation rate is impacted by different land 
uses (Shafeeque et al. 2022). Supervised classification with 
maximum likelihood algorithm was applied on the Landsat 
imagery for land use land cover analysis. The study area 
was broadly classified into five classes, somewhat similar to 
USGS Level 1 classification scheme (Radhakrishnan 2014; 
Singh et al. 2016). The waterbody class included all the 
areas covered by water, including rivers, reservoir, streams, 
lakes, and ponds: vegetation class included all the sparse 
forest vegetation and also grass, crops, parks etc. The snow 
class covered all the pixels showing the presence of snow/
ice; the boulder/rocks class covered all the land covered 
by boulders and rocks within the reservoir boundary and 
the concrete structures outside the reservoir boundary. 
The bareland class included the areas without sparse 
vegetation, without boulders.
 To identify the errors, accuracy evaluation is an 
essential step of image processing procedures (Alam et 
al. 2019; Hussain et al. 2021; Kumar et al. 2021 & Hussain 
& Karuppannan 2022). Overall accuracy determines the 
correctness of the classification process (Mukherjee & 
Singh 2020; Mishra & Jabin 2020). In order to calculate the 
accuracy of each class of LULC from LANDSAT images, an 
accuracy assessment was performed in ArcGIS using the 
equation 1: 

 Producer’s accuracy quantitatively exhibits if all 
attributes shown in real map are correctly classified 
(Mukherjee & Singh 2020, Singh & Jabin 2020, Kafy et al. 
2021). The Producer Accuracy was calculated through 
equation 2: 

 In addition, Kappa coefficient measures accuracies 
between two random values and show reasonable 
accuracy. Kappa coefficient is regarded as a coefficient of 
agreement (Mukherjee & Singh 2020; Mishra & Jabin 2020; 
Gondwe et al. 2021; Bunyangha et al. 2021). The Kappa 
Coefficient was calculated using equation 3:

 According to the assessment results, the overall 
accuracy of 1990 image was 91.43% with a Kappa 
coefficient value of 0.89, while the overall accuracy of 2000 
image was 90.91% with a Kappa coefficient value of 0.89; 
the overall accuracy of 2010 image was 86.67% with a 
Kappa coefficient value of 0.83 and the overall accuracy of 
2020 image was 88% with a Kappa coefficient value of 0.85 
(table 2).

WORLD VIEW WATER INDEX (WVWI)

 World View Water Index (WVWI) has been reported to 
be a powerful algorithm that detects water or shadows 
(IMAGINE 2015). This index works with coastal and Near 
Infrared Reflectance (NIR2) bands, as both these bands have 
variation in wavelengths, therefore, it provides a reliable 
threshold to identify water (Wolf 2012) using equation 4.

NORMALIZED DIFFERENCE TURBIDITY INDEX (NDTI)

 The turbidity in inland waters, like ponds and reservoirs, 
can be monitored through remotely sensed images 
(equation 5), using the NDTI developed by Lacaux, Tourre 
et al. (2007).

 Moderate Resolution Imaging Spectroradiometer 
(MODIS) data can also be used to monitor water surface 
turbidity at both the reservoir level, by analyzing the 
turbidity pattern variability in each reservoir, and the 
sedimentation pattern at the water surface can also be 
retrieved (Condé et al. 2019).
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Year 1990 2000 2010 2020

Accuracy User (%) Producer (%) User (%) Producer (%) User (%) Producer (%) User (%) Producer (%)

Landcover 

Water 87.5 100 100 100 91.67 68.75 100 83

Vegetation 100 83.33 92.31 85.71 82.35 82.35 90 90

Snow 100 100 100 100 81.81 100 75 100

Boulder/Rock 66.67 100 83.33 90.91 88.89 100 91.66 84.61

Bare Land 100 85.71 80 80 90.9 100 80 88.89

Overall Accuracy (%) 91.43 90.91 86.67 88.00

Kappa Coefficient 0.89 0.89 0.83 0.85

Table	2.	Accuracy	assessment	(%)

(1)

(2)

Tot l Number o Correct Cl ssi y Pixels Di gon l
Tot l Number o Re erence Pixels

*100

Number o Correct Cl ssi y Pixels in E ch C tegory
Tot l Number o Re erence Pixels in th t C tegory The Column Tot l

*100

(3)

(4)

(5)

TS*TCS Σ Column Tot l *Row Tot l
TS2 Σ Column Tot l *Row Tot l

*100

WVWI
CB NIR2
CB NIR2

NDTI
Red Green
Red Green
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NORMALIZED DIFFERENCE CHLOROPHYLL INDEX (NDCI)

 Phytoplankton has been used as an organism that is 
indicative of health of a water body, while phytoplankton 
cannot exist without chlorophyll. Chlorophyll content in 
water bodies can be traced through NDCI (equation 6), 
which can help trace algae growth (Mishra, Schaeffer et 
al. 2014). It is necessary to monitor chlorophyll content in 
reservoirs because excessive growth of phytoplankton can 
lead to eutrophication, thus affecting the efficiency of the 
reservoir for power generation and provision of irrigation 
water.

 In order to monitor the settlement expanse during the 
years under study, Google earth high resolution images 
were georeferenced and later stretch option of symbology 
was applied on these images, using Arc GIS 10.3.

RESULTS
LAND USE AND LAND COVER (LULC)

The analysis of Fig. 3 presents the interesting finding that 
the water class underwent increase in area from 167 km2 in 
1990 to 196 km2 in 2020, with maximum increase witnessed 
on the eastern banks of the reservoir. However, the bare land 
class witnessed the greatest decrease of 3184 km2 during 
the period under study. The bare land area was maximum 
in the year 1990, after which it steadily declined, so much 
so, that its area was merely 549 km2 in 2020 (table 3). The 
bare land area was replaced by vegetation, as this class also 
underwent massive increase of 2593 km2 from 1990 to 2020.
 Similarly, the boulders/rocks class, also representing 
the settlement area in the area of interest, experienced a 
substantial increase of 609 km2. The snow-covered class 
existed only in year 1990 and 2010, and its spatial coverage 
remained less than 50 km2 and that too limited to only 
north eastern side of the study area.

Fig.	3.	LULC	classification	of	Tarbela	reservoir,	1990−2020

Classes

1990 2000 2010 2020

area area area area

(sq.km) (sq.km) (sq.km) (sq.km)

Water 167 166 151 196

Bare Land 3733 3424 2680 549

Boulders/Rock 20 90 321 630

Snow 47 0 44 0

Vegetation 2100.94 2388 2872 4694

Table	3.	Land	Use	and	Land	Cover	(LULC)	characteristics	of	the	study	area

(6)NDCI
Blue
Red
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NORMALIZED DIFFERENCE CHLOROPHYLL INDEX (NDCI)

 Figure 4 presents the spatio-temporal variations in the 
chlorophyll level of the study area. The high NDCI class 
underwent a decrease of 712%, while the low class of NDCI 
experienced a decrease of 33%. 
 The highest NDCI value was recorded in 1990, while 
the lowest high value of NDCI was identified in 2020. The 
mean values of NDCI indicate a gradual decrease in the 
intensification of NDCI from 3.04 in 1990 to 1.12 in 2020 
(table 4). Another significant finding is that although 
the intensity of the high NDCI decreased over the years, 
however, its spatial coverage significantly increased by 
2020. The eastern and western arms of the reservoir, located 
in the south of the study area appear saturated with high 
chlorophyll content. This increase in spatial coverage of 
NDCI shows high eutrophic activity which affects the water 
quality (Watanabe, Alcântara et al. 2015; Liu, Zhang et al. 
2019).

NORMALIZED DIFFERENCE TURBIDITY INDEX (NDTI)

 Figure 5 presents the turbidity variation in Tarbela 
reservoir and its surrounding area. The area covered by 
high turbidity has declined from 0.15 to 0.09 from 1990 to 
2020 (see Table 5) and witnessed a total decrease in spatial 
coverage by 6%. Whereas there was an increase of 16% 
recorded for the low NDTI class, which points towards the 
environmental healing, where the turbidity significantly 
declined over the years leading to cleaner water 
concentration in the left and right arm of the reservoir in 
2020. The highest spatial coverage of low NDTI was in 2000, 

while the lowest was observed in the year 1990. However, 
the mean value of NDTI has increased from -0.13 in 1990 
to -0.05 in 2020, which proves gradual decrease in the 
turbidity level of the waters of the Tarbela reservoir, over 
the years.

WORLD VIEW WATER INDEX (WVWI)

 According to Fig. 6, the spatial extent of water has 
increased in Tarbela reservoir over the years,
 Table 6. World View Water Index (WVWI) characteristics 
of the study area precisely in year 2020, representing 
second most widespread spatial coverage of WVWI, after 
1990. However, according to Table 4, the highest value of 
WVWI has decreased by 44% over the years, with highest 
value of 0.80 recorded in 2000, and lowest value of high 
WVWI of 0.34 reported in 2020 (Table 6). Similarly, the low 
WVWI class underwent a 28% decrease from -0.29 in 1990 
to -0.57 in 2020. The mean WVWI has also witnessed a 
decline from 0.13 in 1990 to -0.11 in 2020, thus referring to 
an overall decrease in intensification of the WVWI values.

SETTLEMENT EXPANSE

 Settlement expanse in the study area can be identified 
through Fig. 7, where shades of brown are indicative 
of settlement expansion. The same can be seen to be 
increasing steadily in the south eastern and south western 
parts of the study area. The rapid expanse of these 
settlements on the banks of the reservoir hint towards 
human intervention in the water quality of the reservoir.

Fig.	4.	NDCI	of	Tarbela	reservoir,	1990–2020

Classes 1990 2000 2010 2020

High  4.80  3.04  2.49  1.35

Medium  2.99  2.04  1.86  1.05

Low  1.19  1.05  1.24  0.75

Mean  3.04  1.76  1.79  1.12

Table	4.	Normalized	Difference	Chlorophyll	Index	(NDCI)	characteristics	of	the	study	area
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Fig.	5.	NDTI	of	Tarbela	reservoir,	1990–2020

Fig.	6.	WVWI	of	Tarbela	reservoir,	1990–2020

Classes 1990 2000 2010 2020

High 0.15 0.21 0.17 0.09

Medium -0.07 0.01 0.04 -0.02

Low -0.30 -0.18 -0.08 -0.14

Mean -0.13 0.05 0.05 -0.05

Table	5.	Normalized	Difference	Turbidity	Index	(NDTI)	characteristics	of	the	study	area
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DISCUSSION

 This study explored the water quality of world’s largest 
earth and rock filled dam, and its surroundings, using 
geospatial techniques. The results indicated significant 
increase in built-up area, of about 609 km2, in the western 
and eastern parts of the reservoir, from 1990 to 2020. This 
increase in built up, corresponds with decrease in bare 
land and increase in vegetation cover over the years and all 
these directly have impacts on water quality as Srivastava 
et al. (2012) have mentioned that the combination with 
remote sensing water quality, the use of multivariate 
statistical techniques offers a detailed understanding 
of water quality parameters and possible factors that 
influence the water quality behavior. The findings of this 
study can be supported by another recent study where the 
expanse in vegetation has been reported in the catchment 
and area around Tarbela reservoir, due to the BTAP project 
(Shafeeque et al. 2022).
 From 1990 to 2010, within the reservoir boundary 
substantial increase in the boulder class can be identified 
which is supported by the notion that during the pre-

lockdown years, the water drawdown was high from 
Tarbela for agricultural and hydroelectric power generation 
purposes, which resulted in the exposure of the boulders 
lying along the reservoir edges, when the waterlevel 
went too low. However, in 2020, after Covid-19 related 
lockdown in Pakistan, an increase in the water level within 
the reservoir was witnessed which led to the submergence 
of the boulders within the reservoir boundary. However, 
an increase in the same category was identified on the 
south western bank of the reservoir, during the same 
period, which can be associated with settlement expanse 
in the region. The Landsat data comparison presents the 
variation in turbidity, chlorophyll and water area during 
pre-Covid-19 years and Covid-19 year.
 The analysis of the water quality based on turbidity 
level, revealed a substantial decline in turbidity of the 
reservoir with 4% decrease observed in the last decade, 
thus hinting towards the higher turbid waters in Tarbela 
reservoir, during the pre-covid years. Similar findings by 
(Yunus et al. 2020) identified lesser suspended particulate 
matter concentrations in Vembanad lake, India, during 
the lockdown period. Aman et al. (2020) also concluded 

Fig.	6.	WVWI	of	Tarbela	reservoir,	1990–2020

Classes 1990 2000 2010 2020

High 0.78 0.80 0.63 0.34

Medium 0.17 0.07 0.11 -0.21

Low -0.11 -0.23 -0.13 -0.46

Mean 0.13 0.28 0.21 0.20

Table	6.	World	View	Water	Index	(WVWI)	characteristics	of	the	study	area
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noticeable decline in the suspended particulate matter 
that causes turbidity, in Sabramati river of Ahmedabad, 
India during the lockdown period, using OLI-8 imagery.
 The study also presented expanse in the spatial 
coverage of chlorophyll index and water index, indicating 
increase in residence time of the water (Calijuri et al. 2002), 
which causes increased rate of eutrophication, and this 
was witnessed in 2020 NDCI analysis, where although 
intensity of mean NDCI decreased from pre-covid years to 
Covid-19 year by 192%, yet its spatial coverage increased. 
The deposition of dead vegetative matter and suspended 
sediments can cause decreased capacity of reservoirs 
(Bishwakarma and Støle 2008), thus contributing towards 
declined power generation capacity.

CONCLUSION

 Based on the aforementioned results and discussion 
it can be summed up that the Covid-19 related lockdown 
acted as an environmental healer, which led to repairing 
of the water quality of the reservoir. The lockdown period 
led to the closure of factories. and decline in electric and 

irrigation related water demands, leading to a probable 
enhanced stay period of water in the reservoir which led to 
increased NDCI. However, this positive impact of Covid-19 
related lockdown requires a more detailed study, where 
sample collections from the reservoir can help in validating 
the results obtained from remotely sensed images.
 The findings of the study are general in nature as it 
analyzes and compares the water quality, as gauged by 
the satellites, on decadal basis. For detailed analysis, future 
research in 2019 and 2020 is recommended where, month 
wise comparison of the variables under study can be 
investigated and variation in water quality can specifically 
be studies for pre covid and covid year. The findings of the 
study provide the policy makers with the fruit for thought 
that measures must be taken for formulating policies 
regarding sediment flushing and turbidity reduction on 
larger time scales, and plan for sustainable urban dynamics 
in Sobra city, located near Tarbela reservoir, and also in the 
upstream urban centers. Such policies can increase water 
holding capacity of the reservoir and thus the reservoir can 
stay functional even for our future generations.
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