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ABSTRACT. The article presents the results of study of the application of machine learning methods to the problem of 
classification and identification of different river water regimes in a large region – the European territory of Russia. An 
accumulation of hydrological observation data for the 60 – 80 years makes it possible to create an information basis for 
such studies. The article uses information on the average monthly runoff at 351 hydrological gauges during the period from 
1945 to 2018. The most widely used data clustering approaches were used as analysis methods – K-means, EM-method, 
agglomerative hierarchical clustering, DBSCAN algorithms and the application of gradient boosting methods (CATBUST). 
Clustering and classification algorithms were given eight parameters as a basis for prediction. It was found that the most 
distinct and stable clusters are formed with three parameters, and the highest silhouette coefficient (SS = 0,3-0,5) is obtained 
using the numbers for months of the maximum and minimum runoff and the ratio of the maximum to the minimum water 
flow. The best result gives DBSCAN (SS = 0,6 – 0,7). Supervised classification models also show high correspondence with 
the reference classification, with an accuracy of 87%. Both clustering methods and classification methods showed a shift 
of clusters representing southern water regimes. In the central region these regimes expanded by a 1000 km to the north. 
Furthermore, results demonstrate that currently available data already makes it possible to apply machine learning methods 
to the analysis of hydrological data. Clusters corresponding to different types of water regime can be obtained by utilizing 
contemporary clustering algorithms. The study shows that over the past 40 years, the southern types of water regimes have 
noticeably shifted to the north.
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INTRODUCTION

 The hydrological regime of a river represents a specific 
pattern of changes in the state of the water body, unique for 
each territory (Frolova et al. 2021, 2022; Gelfan et al. 2021). 
The main characteristics of the hydrological regime of rivers 
are the character of inflow components, morphodynamic 
and climatic conditions (Blöschl et al. 2017; 2019; Hall and 
Blöschl 2018; Frolova et al. 2021; Frolova et al. 2020; Kireeva et 
al. 2019). The local unevenness of these values has led to the 
development of various methods for zoning rivers according 
to the types of water regime (Water regime… 2001; Frolova et 
al. 2021; Ayzel 2021). The study of geographic dependencies in 
the formation of the water regime, the analysis of the impact 
of economic activity – all of this is necessary to improve the 
existing methods of hydrological calculations. Climate change 
is also an important factor that affects rivers and leads to 
transformations and shifts in the water regime types.

 One of the most important tasks of modern society is to 
develop resistance mechanisms and adapt to these changes 
(Frolova et al. 2021, 2022; Djamalov et al. 2014, 2015). In 
many regions, climate change has a negative impact on the 
quality and quantity of water resources, water temperature 
and the state of related ecosystems, leading to an increase 
in the scale and frequency of extreme natural events such as 
floods and droughts (Georgievsky and Shalygin 2012; Long-
term fluctuations… 2021). All this, in turn, negatively affects 
many sectors of the economy, including agriculture, energy, 
fisheries, tourism and healthcare.
 In addition, it is necessary to study the transformation of 
the water regime due to decreasing performance by currently 
existing methods and classifications. Most of the systematic 
studies devoted to the classification of the water regime of 
the ETR rivers were published decades ago and as of now 
have undergone significant changes that require a detailed 
analysis.
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 The goal of this work is to create a new model for automatic 
classification of ETR rivers by water regime type and assess the 
impact of climate change on changes in the water regime and 
its classes.
 The abundance of up-to-date hydrometeorological 
information, automation of calculations, the development of 
different technologies and machine learning methods have 
made it possible to move away from general geographical 
patterns of classification to more modern quantitative 
methods. Modern approaches to the analysis of the water 
regime reduce the possibility of a subjective assessment of 
the analysis processes and allow to infor accurate numerical 
indicators of zoning and additional informative visualization.
 Over the past 35 years, a lot of work has been done in 
the context of application of numerical methods to the task 
of water regime clustering. The pioneering work on the global 
data scale in this area was a 1988 paper (Haines et al. 1988). 
The authors set themselves the task of identifying different 
regions of the water regime and climatic zones algorithmically 
and exclusively on the basis of data. This work became possible 
precisely during this period due to accumulation of data on a 
significant scale and existence of reliable algorithms to process 
it. In their work, the authors used hierarchical clustering 
methods, and the Ochiai coefficient was taken as a distance 
measure. As a result of the work, the authors obtained the first 
map of water regimes in Western practice based only on the 
characteristics of the river runoff and made algorithmically. 
In the 2000s, a lot of new regional works appeared (Harris 
et al, 2000; Tavassoliet et al. 2014; Olden and Poff 2003; 
Kingston 2011; Brunner et al. 2018) where the authors have 
used algorithmic tools for assessing and classifying the water 
regime of rivers.
 For example in (Harris et al. 2000) authors analyze the water 
regimes of rivers in the UK using multivariate analysis methods. 
Average monthly water discharges and temperature regime 
were separately classified in accordance with the form of their 
intra-annual distribution. As a result, the authors obtained 3 
classes of rivers according to the shape of the hydrograph 
(peaks in November, December-January, March); these classes 
were also divided into 2 subclasses by years with different 
water levels: dry and high-water. In (Kidanewold et al. 2015) 
Ethiopian scientists  have classified national rivers using daily 
average data and a multivariate (hierarchical) classification 
method. In general terms, this method is similar to that used 
in (Haines et al. 1988). The variables used were: average daily 
runoff modulus (flow water divided by the catchment area), 
the ratio of the average daily discharge to the average basis 
flow, dispersion of average daily water discharge, frequency 
and magnitude of abrupt changes in water discharge, average 
day of maximum annual discharge, and average number of 
days when the river dries up. As a result, 208 hydrological 
gauges were grouped into 3 clusters: «ephemeral» rivers that 
flow only after precipitation, «seasonal» rivers that flow only at 
certain times of the year, and «permanent» ones.
 In «Classification of natural flow regimes in Iran to support 
environmental flow management» (Tavassoli et al. 2014), 
Iranian scientists have already attempted to clusterize water 
regimes using data from 539 stations over a period of 47 years. 
The data used were inferred from average daily discharges by 
converting it into 66 metrics used in the work (Olden and 
Poff 2003). Metrics were divided into the following groups: 
monthly water discharge and its statistical characteristics, 
magnitude and duration of annual maxima and minima of 
water discharge, dates of extreme discharges (start and end 
of maximum and minimum), frequency and duration of 
periods with the difference in average discharge by no less 
than a standard deviation, rate and frequency of changes in 
water discharge. As a clustering method, the authors chose 

the Bayesian mixture of distributions (Webb et al. 2007). 
This method works by choosing a most likely classification 
option out of several selected based on existing data. Each 
of the metrics above was modeled by the authors with a 
continuous normal distribution. As a result, 12 classes of rivers 
were obtained, while more than 90% of all stations were 
unambiguously assigned to any of the classes.
 A radically different approach was tried by a team of authors 
in the article «Identification of Flood Reactivity Regions via the 
Functional Clustering of Hydrographs» (Brunner et al. 2018). In 
this work, the classification of hydrographs is carried out by the 
methods of functional analysis. Unlike other works described 
in this section, the authors are engaged in the classification of 
flood hydrographs. The authors propose to decompose the 
hydrograph into smooth functions and reduce the modeling 
problem to the identification of appropriate functions and 
parameters for them, which in total will give the actual values 
of the hydrograph. The authors use this approach for flood 
sample values from data collected in 163 Swiss watersheds. 
From the result obtained, the authors were able to derive three 
reference hydrographs corresponding to the average values 
of the clusters. The difference between the hydrographs was 
in the time that the flood lasts and the intensity of its growth.
 The next qualitative leap occurred by using neural 
networks in this field of hydrology. In the work (Kratzert et al. 
2019), the authors use a neural network with a long short-term 
memory (LSTM network). The method is based on a neural 
network of a special architecture. In the architecture of the 
LSTM network there are elements that are able to remember 
the previous state of a network node and transfer the values 
between layers distant from each other, which makes it 
possible to avoid signal blur. Among other things, the authors 
developed a special version of the LSTM network for solving the 
prediction problem, which differs in that the incoming signal 
is fed separately to each layer of the network. The authors were 
able to teach the network using the CAMELS dataset, which 
contains daily average precipitation, temperature, humidity, 
soil composition, and snowfall information for 531 gauging 
stations across the United States. As a result of training, the 
neural network was able to form an internal representation 
and identify two options for clustering the water regime for 
these gauging stations (with 5 and 6 clusters, respectively). 
As a result, the authors obtained clusters of water regimes 
geographically corresponding to: the US Northwest (Oregon 
and Washington), the Rocky Mountains and California, the 
Great Plains, the East Coast Southeast, and, finally, the East 
Coast Northeast and the Appalachians. The key characteristics 
influencing water regimes were: altitude, aridity, average daily 
precipitation, catchment area, presence of forests and other 
vegetation, and the average annual difference in the amount 
of green vegetation.
 This model was successfully applied by the authors to the 
problems of flow forecasting using an input signal containing 
precipitation values and other meteorological variables. Finally, 
the team of authors from (Kratzert et al. 2019) presented the 
article «Accurate Hydrologic Modeling Using Less Information» 
(Shalev et al. 2019), in which they showed that a neural LSTM 
network pre-trained on the CAMELS dataset can learn to 
predict and classify rivers by water regime only on the basis of 
averaged data on discharge, temperature, and precipitation, 
and without taking into account average daily information 
on precipitation, temperature, humidity, and soil composition 
and snow cover. The method was applied to the data from 
Indian rivers. An experiment comparing the performance of 
models with available data on the static characteristics of the 
watershed (size, soil type, etc.) with a model without them 
demonstrated that it is possible to achieve comparable model 
quality without static characteristics of a watershed
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 It’s rare to find a study with the use of machine learning 
methods in the problems of classifying the water regime for 
Russian rivers. In fact, the study (Ayzel 2021) is a unique work. 
A map of water regime types in the USSR is used as a class 
reference (Water regime... 2001). In this work the problem 
of reproducing the types of water regime in 1990 for the 
North-West of the European territory of Russia is solved by 
using the «random forest» class of methods on the basis of 
data on climatic runoff for the period 1979–2016. Then its 
transformation is estimated based on the calculated values 
of Future runoff projections ( R5CH, 2006–2099) according to 
the three emission scenarios of the respective RCPs (RCP2.6, 
RCP6.0, RCP8.5). The calculations are carried out on a regular 
grid. As a result, the author obtained a very high classification 
accuracy – 91.6%, the calculations showed that by the end 
of the 21st century, the water regime of the rivers of the 
north-west of the ETR will change significantly: low periods 
of relatively stable water flow will become more intermittent 
or due to emerging rain floods or due to thaws. The second 
important aspect will be the transformation of the snowmelt 
flood – it will become significantly lower and will be observed 
at an earlier date.
 In addition to regional studies, large-scale continental 
generalizations have begun to appear in recent years, using 
machine learning methods for problems of hydrological 
classification. In the work «Spatial patterns and characteristics 
of flood seasonality in Europe» (Hall and Blöschl 2018), a more 
general classification of the characteristics of the maximum 
runoff on the scale of the European continent was carried 
out. The authors took data from 4,105 measuring stations and 
used it to extract the maximum flow rates for each year. Then, 
for each station, a vector of 12 variables was constructed, 
where each variable corresponds to the frequency with which 
flood peaks occurred in that month. The K-means algorithm 
was chosen as the clustering algorithm, and the silhouette 
coefficient was chosen as the cluster quality assessment 
metric. The authors considered three options for the number 
of clusters: 4, 6, 7. As a result of the work, the authors identified 
6 main clusters according to the peaks of floods, localized in 
geographically common subregions.
 Another similar work – In «Regional classification, 
variability, and trends of northern North Atlantic river flow» 
(Kingston et al. 2011), the team of authors from (Harris et al. 
2000) extended the problem of classifying water regime types 
to the North Atlantic. This time, instead of modeling statistical 
distributions, the authors used full-fledged clustering 
algorithms, in particular, several methods were tested: 
 Agglomerative hierarchical clustering with average 
pairwise distance metric; 
 Agglomerative hierarchical clustering with Ward’s 
algorithm; 
 k-means method; 
 Agglomerative hierarchical clustering with subsequent 
application of the K-means method;
 Using Principal Components and then Hierarchical 
Clustering.
 The collective of authors came to the conclusion that the 
second approach is the most optimal in terms of the quality of 
the obtained clusters. The physical result of the work was the 
identification of seven different types of hydrographs in the 
region.

MATERIALS AND METHODS

Selected watersheds

 Average monthly water discharges for 351 hydrological 
gauges located on the European territory of Russia (ETR) 

were used as a data source for this research. Catchment area 
size varied from 1000 to 200 000 square kilometers therefore 
both medium and large rivers were studied. The gauges 
were selected to cover the entire region of interest from the 
Far North to the arid south, including the natural zones of 
the tundra and forest-tundra, taiga, mixed and broad-leaved 
forests, forest-steppe and steppe.

Hydrological data and observation periods

 Average values for monthly runoff of different rivers 
were used as data for this study. This dataset was created by 
converting the following publications into a digital format. 
Data for the period from 1985 to 2007 were purchased from 
the State Fund VNIIGMI-WDC (http://meteo.ru/). Data for the 
period from 2007 to 2019 were available online from the AIS 
GMVO (https://gmvo.skniivh.ru/). The selected parameters 
were calculated for each year and then averaged over two 
periods 1945–1977 and 1978–2019. The choice of periods is 
based on literary analysis, as according to the most modern 
studies (Long-term fluctuations... 2021; Frolova et al. 2022) in 
the period from 1978 and up to today hydrological systems 
start to display different behavior compared to historical 
period in response to changes in climate. 

Feature selection 

 To carry out the analysis for each year of observation and 
for each river, the following hydrological characteristics were 
calculated: 
 Month number for the maximum average monthly flow 
(nMax) – the month in which the maximum value of water 
discharge was observed during the calendar year 
 Month number for the maximum average minimum flow 
(nMin) – the month in which the minimum value of water 
discharge was observed for the calendar year 
 The share of runoff volume during the spring season (dP) 
– was determined as the ratio of the sum of runoff volume 
for March, April, May to the sum of total runoff volume for the 
entire calendar year 
 Maximum average monthly discharge per year (Qmax) 
 Minimum average monthly discharge per year (Qmin) 
 The ratio of the maximum discharge to the average 
annual discharge (Qmax / Qyear) – the ratio of the maximum 
average monthly discharge for a calendar year to the average 
annual flow rate. 
  The ratio of the maximum flow to the minimum flow 
(Qmax / Qmin) – the ratio of the maximum average monthly 
flow to the minimum average monthly flow for a calendar 
year. 
 Coefficient of natural regulation (Phi) – was calculated 
as the ratio of the sum of the base annual runoff to the total 
total runoff for the year, where the base runoff is the sum of 
all discharge values that are less than the average. If the flow 
rate is greater than the average, then the average flow is used 
during summation instead. 
 During the aggregation of values for periods of 1945–
1977 and 1978–2019, numerical values were averaged, and 
for categorical ones (i. e. nMax) a mode (most frequent value) 
was used.

Clusterization methods

 Several algorithms were used to cluster data samples for 
two previously described periods by types of water regime. 
The K-means algorithm was first described in 1957 and has 
been one of most famous algorithms due to its widespread 
(Xu and Tian 2015). Modern versions of the algorithm 
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optimize its computational complexity to some extent or try 
to take advantage of various distance metrics. An important 
feature of the algorithm is the lack of guarantee to find an 
optimal solution in the global sense; it only finds a local one. 
Another disadvantage of the algorithm is the requirement 
to specify the number of clusters into which the data should 
be partitioned. Therefore this number should be inferred 
beforehand.
 The next clustering algorithm that was used in the work 
is the EM-algorithm (Expectation–maximization algorithm) 
(Dempster et al. 1977). In general, this algorithm works similarly 
to the K-means algorithm. The main difference between them 
is that the EM-algorithm does not calculate the distance from 
points to centroids, but instead uses the probability that a 
point belongs to a particular cluster.
 Hierarchical clustering, just like the K-means method, 
requires choosing a distance metric (usually, Euclidean one is 
used), but unlike the previous method, it is not that sensitive 
to changes in this metric. The idea of the algorithm is that a 
tree of elements is built and for each step of the algorithm 
the nearest clusters are glued together until only a single set 
remains. The choice of cutoff at which to stop gluing is left to 
the discretion of the researcher. The option where individual 
elements are combined into one is called agglomerative 
hierarchical clustering (Sasirekha and Baby 2013). The 
algorithm for determining the distance between the merged 
nodes also remains at the choice of the researcher, as a rule, 
the Ward criterion is used. Therefore an algorithm tries to 
minimize the total value of the variance within each cluster. 
The main advantage of this class of algorithms is the relative 
ease of use, which could have influenced their comparative 
popularity in the works of the 2000s.
 Another interesting approach to perform data clustering 
is the DBSCAN algorithm proposed in (Schubert et al. 2017). 
Unlike previous algorithms, DBSCAN groups points into 
clusters according to the density of their distribution in space, 
and not according to the distances between them. Also, 
DBSCAN does not require a beforehand knowledge of the 
number of clusters that the researcher intends to obtain. The 
method is described in detail in (Schubert et al. 2017).
 For all the methods described above their implementations 
in Python 3 programming language were used. Specifically, 
the Scikit-Learn machine learning library was used. Other 
libraries used in data analysis and transformation were Pandas 
and Numpy. Matplotlib was used as a visualization library. Data 
preparation consisted of analysis of the parameter variability 
and its limits, and structuring the data in a way appropriate for 
drawing maps.
 The silhouette coefficient was chosen as a metric for 
assessing the quality of clustering, similar to (Haines et al. 1988; 
Hall and Bloshl 2018). The value of the silhouette coefficient S 
shows how similar the object is to its cluster compared to other 
clusters, which is described in detail in (Rousseeuw 1987).
 The value of the coefficient lies between -1 and 1. The 
closer the score to 1 the more it indicates that the object 
is close to the objects in the cluster it was assigned to, and 
doesn’t have much similarity with the objects from «foreign» 
clusters. If the majority of objects have a high value of this 
metric, then we can consider the clustering result to be of 
sufficient quality. If a large number of objects have low or 
negative silhouette coefficients, then there may be too many 
clusters, too few clusters, or the data simply isn’t structured in 
a way that could be clusterized.

Classification using Gradient Boosting

 During the course of work another approach was tried, 
gradient boosting algorithms were used to classify the types 

of water regimes. Unlike clustering algorithms, gradient 
boosting algorithms are from a family of supervised learning 
algorithms. First, the algorithm is trained on a labeled piece 
of data, and then the inferred underlying law is applied to the 
new data. This family of algorithms (boosting) was chosen 
because as of now it is a kind of an industry standard. Their 
implementations are:
 Microsoft: LGBM algorithm;
 Yandex: CatBoost algorithm;
 XGboost algorithm implemented in the open package 
Sklearn is also widely used.
 The popularity of this family of algorithms is the result 
of their fast speed of work and a relative ease of choosing 
input parameters. In fact, this algorithm is a special case of an 
ensemble of decision trees (i.e., a large number of decision 
trees are built and their average result value is taken). At each 
step of the algorithm, a temporary intermediate model is 
created and the residuals of this model are calculated (i.e., the 
difference between the actual value at the point and the value 
the algorithm returned). After that, a new ensemble of trees is 
created that models these residuals and the resulting model is 
added to the previous solution. This process goes on until the 
criteria specified at the start of a classification process are met 
(usually a set number of steps is specified). For a classification 
of water regime types authors chose the implementation of 
gradient boosting from Yandex (Prokhorenkova et al. 2019). 
The available sample was divided into training and test sets 
to assess the quality of the model. The training data set for 
1945–1978 was labeled according to the Water Regime Types 
map (Water regime… 2001). MultiClass classification metric 
was chosen as the function to be optimized, i.e. a function 
that predicts the class of a point among several options and 
an overall accuracy of the model is calculated as a number of 
correct predictions divided by the number of datapoints. At 
the beginning, the authors made an attempt to simply build 
a model on 2000 steps, but later other parameters had to be 
adjusted.
 The main feature of this algorithm is that it can work on 
relatively small amounts of data, which is a very useful feature 
given the amount of data used in this work. The difference 
between CatBoost and other gradient boosting algorithms 
also lies in the system for constructing decision trees. CatBoost 
uses absolutely symmetrical tree construction. To split a tree 
into branches, a certain metric is needed. In CatBoost, however, 
the value of the split depends on its ability to approximate 
the gradient vector. The splitting value is the value that is as 
close as possible to the gradient. According to the results of 
testing by the Yandex team, it was found that this mechanism 
really improves the quality of the algorithm. In the CatBoost 
algorithm, as in other algorithms, the calculation of the quality 
of the result is implemented for each split of the tree. The value 
with the best quality score in the end will be the split point of 
the tree. However, Yandex developers came up with the idea 
of adding a certain value to each quality result. This value will 
depend on the number of iterations passed and on the length 
of the gradient vector. The use of the CatBoost algorithm in 
this work took place in several stages, which gave different 
results at the output.
 The basis of the metrics for assessing the quality of 
classification is the contingency matrix (Townsend 1971). 
The most common metric is accuracy, which was also used 
as a metric in the work (Ayzel 2021). This metric was used to 
evaluate the classification result, despite the fact that it has 
a significant drawback. It lies in the fact that it assigns the 
same weight to all classes, regardless of how many points 
fall into a particular class. However, it is the most common 
and frequently used metric for assessing the quality of a 
classification.
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RESULTS AND DISCUSSION

 Various combinations of parameters were tested by authors 
in an attempt to cluster water regime types. Three parameters 
out of the entire dataset were chosen as the optimal number 
of features to use. Authors were able to identify clusters using 
only Nmax, Nmin, and Qmax/Qmin. Additional characteristics 
did not improve the quality of clustering, but increased 
the instability. Among all clustering methods, K-means and 
DBSCAN, had the highest silhouette coefficient. By using 
K-means and setting the number of clusters to 8, authors 
acquired clusters with a silhouette score of 0.478 for the first 
period and 0.498 for the second one. The DBSCAN method 
performed much better. An algorithm found 9 clusters, 5 of 
significant size and 4 small ones. For the sample of data up to 
the year of 1978 parameters eps = 1, minPts = 3 were and the 
resulting silhouette coefficient was 0.610, for the sample after 
1978 and parameters eps = 0.6, minPts = 3 the score was 0.720.

 The distribution of points across clusters is uneven, 80% of 
all points fall into the three main clusters, the remaining ones 
account for less than 20%. At the same time, the clusters were 
very well localized in the geographical space, despite the fact that 
zonal characteristics (vegetation, soil, meteorological parameters) 
did not participate in any way in clustering. As a result, maps of 
localization of clusters obtained by the DBSCAN method for the 
period before and after 1977 were built, which are presented in 
(Fig. 1). The resulting clusters are associated with the types of water 
regime (TWR) on the map «Water regime of the rivers of Russia and 
adjacent territories» (Water regime… 2001). The dark blue cluster 
corresponds to the types numbered 15 and 2. The green cluster 
can be interpreted as types №14 and 3, and the yellow as 16. The 
algorithm also singled out the red cluster, which is intermediate 
between 14 and 16 TWR. The remaining clusters account for less 
than 20% of the points, of which the orange cluster corresponds to 
the 21st type of water regime on the map (Water regime… 2001), 
covering the Kuban basin, and the dark purple cluster corresponds 
to the 12th type, covering most of the Terek basin.

Table 1. Silhouette Score (SS) for different methods and dataframes for parameters Nmax, Nmin, Qmax/Qmin

Algorithm Period
Silhouette score (SS) for N кclusters

N = 5 N = 6 N = 7 N = 8

K-means
Before 1978 0.438 0.463   0.468 0.478

After 1978 0.464   0.469   0.482 0.498

EM-method
Before 1978 0.181 0.213   0.083 0.041

After 1978 0.162   0.233   0.15 0.017

Agglomerative 
hierarchical clustering

Before 1978 0.423 0.428   0.432 0.437

After 1978 0.446   0.447   0.455 0.463

Number of clusters determined by an algorithm Parameters

DBSCAN Before 1978 0.61 eps=1, minPts=3

After 1978 0.72 eps=0.6, minPts=3

Fig. 1. Scheme of clusters for period 1945–1977 (a) and 19782019 (b) 
created with DBSCAN algorithm for three parameters: Nmin, Nmax, Qmin/Qmax
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 The result of clusterization largely corresponds to the 
map of water regime types created in (Frolova et al. 2021). 
An algorithm could not identify fractional clusters that 
differ in continentality conditions in the Сentral part of the 
Russian Plain. Figure 1 shows that for the second period 
there is a noticeable shift of the southern clusters; they 
are expanding to the north. For example, during the first 
period the yellow cluster mainly included points within the 
Seversky Donets basin, right-bank tributaries of the Lower 
Don. At the present stage, the yellow cluster corresponds 
to type 16 on the TVR map (Water regime… 2001) and 
already covers some tributaries of the Middle and Upper 
Don. The most noticeable changes affected the central 
zone – the red, intermediate cluster moved north by more 
than 1000 km, covering most of the Oka and Upper Volga 
basins, as well as the entire central and eastern part of the 
Don basin, while the initially dominant green cluster 14- 
15 TBP has been preserved only to the east of the Volga 
– in the Kama basin and partly on the Upper Volga. This 
result corresponds to the data obtained earlier in the 
work (Frolova et al. 2020), where estimates of the water 
regime transformation coefficient were given, and it was 
shown that this calculated coefficient is maximal in this 
region. At the same time, there is practically no shift of the 
green cluster to the north compared to the others, which 
indicates the relative stability of the water regime of the 
northern regions of the EPR.
 The similarity of the obtained results compared to the 
existing map of water regime types (Water regime… 2001) 
suggested the possibility of using it to train the supervised 
model, with the aim of subsequent reproduction on a 
modern data set. The primary analysis of the «predicted 
classes» showed a low quality of classification compared 
to the existing map (about 0.68%). The reason behind this 
was an inability of the algorithm to recognize relatively 
similar water regime types: 2 and 14, 3 and 15, as there are 
relatively few data points in the sample to infer differences 
between them. As a result, it was decided to combine each 

pair into one class. After that, on the test part of the data 
set (1945–1977) with the parameters set to default, the 
accuracy of determining the type of water regime raised 
to 78%. This is a very good result, given the volume and 
quality of the data used by the algorithm. To improve the 
obtained values, manual selection of parameters of the 
CatBoost algorithm was carried out. In addition to this 
selection, a dynamic visualization from a CatBoost package 
was used to display the process of training the model. 
With its help, the point at which overfitting began was 
determined, which in turn made it possible to select the 
appropriate regularization parameters in order to avoid 
it. The quality of the algorithm reached 87% in terms of 
accuracy. In the field of application of machine learning, 
the result of metrics of 80+% is often considered good. 
All methods of improving the quality of the algorithm 
were tried: cross-validation, K-fold validation, One Hot 
Encoding, regularization, bagging, stacking, normalization 
and standardization. Subsequent improvements to the 
algorithm are possible only with the addition of the initial 
hydrological data. According to the results obtained by 
using the CatBoost algorithm, a water regime classification 
map was also built for the past and present periods (Fig. 2). 
Similar to the clustering, a classification algorithm wasn’t 
able to distinguish between the water regimes for western 
and eastern regions of ETR. A border between rivers of 
«northern» (in a relative sense) «central» regions of ETR 
lies further to the south compared with the existing map 
and approximately corresponds to the Oka macrovalley. 
Supervised classification confirmed a noticeable shift of 
the more «southern» type of water regime (corresponding 
to No. 16 on the TBP map) to the north, but the shift of the 
14th TBP to the north in the case of supervised classification 
was not detected as supervised training initially sets the 
classes to match the reference division . On the other hand, 
class 13 was separately identified, localized in the Ural 
basin, which compared to a historical period broadened to 
a larger area.
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CONCLUSIONS

 The results obtained allow us to formulate the following 
main conclusions:
 The accumulated volume of hydrological data allows 
the use of machine learning methods in the problems of 
classifying water regime types.
 The simplest class of methods – clustering methods 
shows that by selecting a combination of parameters and 
using data series with a length of 6070 years it is possible 
to obtain good results. The clustering performed by the 
DBSCAN method showed a high silhouette coefficient and 
good localization of clusters in space.

 By using clustering methods, it is possible to assess the 
transformation of the water regime types over the past 40 
years by dividing the sample into two periods.
 Supervised classification models also show high 
correspondence with the reference classification, with an 
accuracy of 87%. However, the initial selection of clusters 
may not reveal the transitional types that are revealed by 
using unsupervised methods.
 Both clustering methods and classification methods 
showed a shift of clusters representing southern water 
regimes. In the central region these regimes expanded by 
a 1000 km to the north.

Fig. 2. Classes according to the map of Types of water regime of the rivers of the USSR with points of hydrological gauges 
(a), classes obtained by training on the test set 1945–1977 (b) and classes obtained using the trained model on modern 

data for 1978–2018 (c)
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