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ABSTRACT. This article investigates the possible permanent vegetation cover (VC) change over an extended time for five 
municipal regions in South Africa by applying satellite-acquired remote sensed normalized difference vegetation index 
(NDVI) values within a geographic information system (GIS), spatial (West Coast District) and time (1981 to 2019 and 2000 
to 2020) context. The NDVI index measures surface reflectance and give a quantitative estimation of vegetation growth and 
biomass. The study found relevance in its application since VC change detection has taken prominence over the past number 
of years in terms of sustainable development. Methods of analysis include image mapping, temporal image differencing, 
Moran I statistic, and the Mann-Kendall trend test. In the main areas that recorded significant changes in their NDVI values 
(plus or minus 0.4 difference on their original NDVI value) over time, in general, have experienced substantial and permanent 
VC change. These areas are also spatially clustered and concentrated within specific areas within the wider district. However, 
these areas constitute only a minority of areas (less than 20%), whereas most of the areas within the district did not experience 
such significant and permanent change in VC.  Instead, the changes that did occur in these majority of areas were related to 
seasonal variation, i.e., temporal changes. 
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INTRODUCTION

 Vegetation Cover (VC) is most probably not a stable or 
constant phenomenon and presumably ebbs and flows 
over time. These changes could purely be seasonal or 
could be more permanent, i.e., the changes in VC may be 
short to medium term or could be long lasting. To this end, 
Alawamy et al. (2020) state that a great many of studies 
reveal that hardly any terrains on earth, in outlying places 
and isolated regions, are enduring in their unaffected 
environment.  
 VC change detection becomes very relevant when 
given the significance and relevance of VC change 
for economic development and planning and policy 
formulation. As Das and Angadi (2021) put it, “Exact statistics 
on how fast or slow VC transform and urban growth is 
crucial for the sustainable development and management 
of natural resources”. This view is echoed by Alawamy et 
al. (2020) stating that our appreciation and mapping of 
VC change have preoccupied a relevant and significant 
bearing in policy-making in terms of the management of 
the world’s natural resources as well as the monitoring of 
environmental changes.  
 It, therefore, seems plausible that the monitoring of VC 
change dynamics should be instrumental in the effectual 
planning and sustainable development of expanding 
economies. To this end, the NDVI is one of the more 
appropriate classification methods commonly adopted 

in exploring VC change (Aburas et al., 2015; Lunetta et al., 
2006). Given that vegetation and, in particular, vegetation 
growth and biomass are in general regarded as the principal 
proxy of VC (Di Gregorio and Jansen 2000), the quantitative 
analysis regarding changes in its composition, biomass 
and vigour based on multispectral remote sensing assist in 
land cover change detection. 
 Remotely sensed NDVI features came to be extensively 
applied for VC change detection (for example, Mbatha and 
Xulu, 2018; Alphan and Derse, 2011; Cihlar, 2000). Rogan 
and Chen (2004) and Deng et al. (2008) described digital 
change detection as “the process of determining and/or 
describing changes in VC properties based on co-registered 
multi-temporal remote sensing data.”  Ayele et al. (2018) 
and Zhao et al. (2004) elaborate on the above statement 
proposing that the main focus of the change detection 
process based on digital images is to mathematicise the 
VC change for divergent features of interest for different 
time resolutions.
 Gandhi et al. (2015) and Aburas et al. (2015) also note 
that the assessment of change detection is a desirable 
method of representing the changes detected in the 
various land use categories. The studies employed the 
NDVI technique with different threshold values for features 
extraction by calculating the percentage of land use per 
land cover and the associated change over time. Sahebjalal 
and Dashtekian (2013) detected the locations where the 
land cover has changed by subtracting the 2006 NDVI 
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image values from the 1990 NDVI image values. The 
derived 10% change threshold image, i.e., image displaying 
only the 10% decrease or increase in NDVI values, were 
presented.
 According to Meneses-Tovar (2012), the NDVI can be 
used as a proxy for computing the difference between 
the energy received and emitted by earth phenomenon. 
The NDVI can be estimated by incorporating the Red and 
Near Infra-Red (NIR) bands of a sensor system, typically 
from Landsat satellites. The NDVI approach is based on the 
proposition that healthy/unhealthy vegetation has low/
high reflectance rates of the electromagnetic spectrum’s 
visible side. This is true because of the presence of high 
levels of chlorophyll. In addition to the above, Firl and 
Carter (2011) published a detailed tutorial on deriving 
Vegetation Indices (VI) from Landsat 5 Thematic Mapper 
and Landsat 7 Enhanced Thematic Mapper.
 Given the fact that the NDVI index can be viewed as 
a dominant indicator that can be used in detecting the 
physical material at the surface of the earth over time 
intervals and in defined locations utilizing the remote 
sensing technique, the purpose (aim) of this study is to 
utilize the remote sensed NDVI over two periods (1982 to 
2019 and 2000 to 2020) for five municipal regions located 
on the West Coast of South Africa as a change detection 
function to differentiate whether or not such changes have 
been permanent (long-lasting) in nature or not. 
 The article has been structured in the following way:  
Section 2 puts forward a brief background to calculating 
the NDVI, the study approach, the data generation process, 
and the study area. Section 3 focuses on the geographical 
information system (GIS), spatial, time, and trend analysis 
using the NDVI in point pattern methodology. Reconciling 
the findings of the vegetation temporal change analysis is 
the focus of Section 4. In the final section, a summary and 
conclusion are provided. 

MATERIALS AND METHODS

Study Area

 Five municipal regions were chosen for this study. There 
are no particular reasons for this choice, and it is purely by 

default. These five municipal regions are:
 Swartland (size = 3 700 km²)  
 Bergriver (size = 2 015 km²)
 Saldanha Bay (size = 4 407 km²)
 Cederberg (size = 8 007 km²)
 Matzikama (size = 12 981 km²)
 The municipal regions (right panel) within the South 
African context (left panel) are displayed in Figure 1. The 
district (municipalities as a collective) are located on the 
West Coast of South Africa within the Western Cape 
Province (red boundary).  
 The district is bordered by the  Atlantic Ocean  on 
the west and the  Swartland  region on the east.   As 
such, the district is characterised by a low winter rainfall 
which decreases rapidly northwards, from 400 mm in the 
Swartland region to less than 100 mm in the Matzikama 
region. Because of dry summers, the Region has a distinct 
vegetation of grasses, shrubs, and trees. As part of the 
Cape Floral Kingdom, the Region is home to thousands of 
species of plants, including fynbos which is indigenous to 
the Region and found nowhere else in the world. 
 Overall, the Regional climate is typically Mediterranean, 
with warm, dry summers and mild, wet winters and 
low summer rainfall prevail. Near the coast, summer’s 
temperature rises from a pleasant low of 15º C to a heart 
warming 27º C. Inland temperatures are some 3-5º C 
higher. Coastal winters see the mercury dropping to a 
mild 7º C at night and rising to a comfortable 18º C by day. 
Away from the beach, morning wakens to an invigorating 
5º C and midday peaks at 22º C. Because of the Indian and 
Atlantic oceans’ influence, inland and coastal temperatures 
differ over short distances, and macro- and micro climates 
are created.

Methods

 According to Wu et al. (2016) and Zhang et al. 
(2013), NDVI can be used as a measure or proxy of 
surface reflectance and offer a quantitative estimation of 
vegetation health, i.e., vegetation growth and biomass. In 
general, healthy vegetation (greater levels of chlorophyll) 
reflects greater levels of near-infrared (NIR) and green light 
in relation to other wavelengths. However, greater levels 
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Fig. 1. Regions with the South African Context
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of red and blue light (RED) are absorbed. A plant is green 
as observed by the human eye, since the chlorophyll 
pigment in it reflects the green waves and absorbs the 
red waves. Consequently, a healthy/unhealthy plant - one 
with many/few chlorophyll and cell structures - actively 
absorbs/reflects red light and reflects/absorbs NIR. The 
exact opposite will be true for an unhealthy plant. To this 
end space-based satellite sensors measure wavelengths of 
light absorbed and reflected by green plants. 
 The index defined values ranges from -1.0 to 1.0, 
portraying greens, where negative values are mainly 
formed from clouds, water and snow, and values close to 
zero are primarily formed from rocks and bare soil. Values 
0.1 or less match empty areas of rocks, sand or snow. 
Values between 0.2 to 0.4 represent shrubs and meadows, 
while values ranging from 0.6 to 0.8 represent temperate 
and tropical forests (Wu et al., 2016; Zhang et al., 2013).
 The NDVI derived values per location will be presented 
analyzed in a Geographical Information System (GIS) 
context. Visualizing the NDVI values gives a perspective 
of the state of vegetation cover in the Region and 
notably the historical trend and changes thereof at a 
very decentralized level. In the main, the analysis was 
performed in Excel, EVIEWS, and QGIS. 
 To test or assess the possible prevalence of spatial 
autocorrelation the study employed the Global Moran 
I index. According to Sowunmi et al. (2012), the global 
spatial autocorrelation (Moran I) analysis supply applicable 
statistics to capture the sequence of NDVI values in the 
Region of interest. Homogeneity of the Region of interest 
(the locations displays the same NDVI patterns) were 
assumed. Spatial clustering of similar values across geo-
space are associated with positive Moran I values. Negative 
and significant values proposes that neighbouring values 
are more distinct than expected by chance. This suggest 
that high values are often found near low values. An 
advantage of using the Moran I is that its maximum 
and minimum possible values are not forced within 
the (–1, 1) range, unlike the Pearson  product-moment 
correlation coefficient, for example. The Moran’s I can be 
calculated as follows(Viton, 2010);

 where
S = number of observations
Σijwij= sum over all i and j of ωij 
wij = spatial weight between i and j.
ωij bibj = weight * cross product terms.
 To further explore the possible spatial autocorrelation 
nature of the locations, the study made use of a 
local indicator of spatial association (LISA) suggested 
in Anselin (1995). A LISA is seen as having two important 
characteristics. First, it provides a statistic for each location 
with an assessment of significance. Second, it establishes 
a proportional relationship between the sum of the local 
statistics and a corresponding global statistic. These 
statistics and relationships are then presented in the form 
of a cluster map and a significance map. The significance 
map shows the locations with a significant local statistic, 
with the degree of significance reflected in increasingly 
darker shades of green. The cluster map augments the 
significant locations with an indication of the type of 
spatial association, based on the location of the value and 
its spatial lag in the Moran scatter plot. 
 Following on the possible spatial autocorrelation 
nature of the locations, the study tested the NDVI 
behaviour of each location for the existence of possible 

structural breaks. A  structural break  occurs when a time 
series abruptly changes at a point in time and, as such, 
proposes a fundamental change in the underlying 
vegetation cover. In time series analysis, the detection of 
structural breaks can be performed using the cross-section 
independent and cross-section dependent unit root 
testing methods. The Dickey-Fuller test has been widely 
used to detect possible structural breaks and, as such, has 
been used as well.   The presence of a unit root (structural 
break) in the NDVI of a location or locations suggests that 
the vegetation cover has indeed fundamentally changed 
at that location or locations. The testing procedure for the 
Dickey-Fuller test is applied to the model, i.e.,

 where
α = constant term
β = the coefficient on a time trend
ρ = the lag order of the autoregressive process
y = variable under consideration
ε = error term
 Supplementing the structural break analysis, the study 
also employed a trend assessment of the NDVI behaviour 
of each location.    In this regard, the Mann Kendall Trend 
Test was used to analyze the NDVI behaviour of each 
location for consistently increasing or decreasing trends. 
The  Mann-Kendall test  is used to determine whether a 
time series has a monotonic upward or downward trend. 
A mean-reverting NDVI series (irrespective of location) 
suggest very little, if any, change in the underlying 
vegetation cover over the period under consideration. 
However, a mean-reverting series excludes the presence 
of any significant trend (either upward or downward). 
Thus, the presence of a trend proposes that the underlying 
vegetation cover has indeed changed over the period 
under consideration. The Mann Kendall Trend Test is 
applied to the model, i.e.,

 where
Time Series = x1, .., xn
n = length of the sample
xk and xj are from k=1, 2, …, n-1 and j= k+1, …, n

Data

 This study used two remote sensing datasets in both 
the general and specific approaches. The first dataset 
is the NOAA CDR AVHRR NDVI: Normalized Difference 
Vegetation Index, Version 5 dataset (NOAA, 2021 and 
Vermote et al., 2014). The dataset is available from 1981-06-
24 to 2021-03-04 on a daily basis, gridded at a resolution of 
0.05°, computed globally over land surfaces and provided 
by NOAA (NOAA, 2020). The data is generated using the 
Google Earth Engine Code Editor.
 The second dataset is the MOD13Q1.006 Terra 
Vegetation Indices 16-Day Global 250 m dataset (MODIS, 
2021). The data is available from 2000-02-18 to 2021-02-
18, twice monthly, gridded at 250 m spatial resolution 
(pixel size), and provided by NASA LP DAAC at the USGS 
EROS Centre (USGS, 2020 The data is also generated using 
the Google Earth Engine Code Editor.
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 The results of the data generation process (both datasets) 
can be presented as shown in Figure 2. The figure to the left 
represents the daily average (1981 to 2019) NOAA NDVI value 
for the district (five regions collective) per granular location, 
whilst the right figure represents the daily average (2000 to 
2020) USGS MODIS NDVI value for the district also per granular 
level. In both cases, dark green coloured locations represent 
NDVI values closer to 1, whilst very light green (almost white) 
coloured locations represent NDVI values closer to 0. As 
referenced, locations with high NDVI values portray healthy 
vegetation and/or high biomass levels and vice versa. 
 Given the size of the district, the study will also make 
use of point pattern analysis. Therefore, it was necessary 
to generate random points within each of the regions. The 
random points in the polygons function in QGIS were used 
to generate 100 random point-locations in each Region 
of interest, i.e., 500 point-locations in total. These randomly 

generated 500 point-locations are displayed in Figure 3. It 
is relevant to note that some areas were not covered with 
random points suggesting that the included random points 
may not be fully representative of the Region as a collective. 
However, it is worth noting that these areas are mostly nature 
reserves or high elevation areas, which should, in theory, be 
relatively immune to significant and permanent vegetation 
change.  
 These 500 point-locations were populated with monthly 
NDVI data from 1981 to 2019 using the NOAA dataset and 
from 2000 to 2020 using the MODIS dataset using the Google 
Earth Engine Code Editor. In terms of the two datasets, the 
following general statistics were presented:
 NOAA dataset, 500 point-locations and 448 months (224 
000 observations)
 MODIS dataset, 500 point-locations and 251 months (125 
500 observations)                                                                  
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Fig. 2. NOAA and MODIS NDVI Map

Fig. 3. Random Point-locations
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Results - NDVI GIS Analysis

 The NOAA and MODIS datasets for the 500 point-
locations for the stated periods is presented in panel format 
in Figure 4 and Figure 5. The mean regional (RegionDemean) 
and mean district (Regionmean) NDVI values for the NOAA 
and MODIS datasets are illustrated with the red and green 
lines, respectively. Point-locations 0 to 44 802, 44 903 to 
89 601, 89 602 to 134 401, 134 402 to 179201 and 179 201 
to 224 000, represent the Bergriver, Cederberg, Matzikama, 
Saldanha Bay and Swartland regions with regards to the 
NOAA dataset, respectively. Point-locations 0 to 25 101, 25 
102 to 50 201, 50 202 to 75 301, 75 302 to 100 401 and 
100 402 to 125 500, represent the Bergriver, Cederberg, 
Matzikama, Saldanha Bay and Swartland regions with 
regards to the MODIS dataset, respectively.  
 From a time perspective, the two datasets can be 
presented as set out in Figure 6 and Figure 7. The datasets 
indicate the monthly NDVI value per point-location (500 
point-locations) for the respective periods. The colored 
lines represenstthe various point locations and given 
the number of the locations it is not possible to present 
them in a legend. The seasonal nature of the NDVI values 

is clearly visible. In general, the datasets seem to contain 
no significant structural breaks, i.e., fairly constant mean 
values following a seasonal trend.
 Figure 8 displays the temporal difference image (in 
absolute format) between the average February 2019, 
2018, and 2017 and February 1982, 1983, and 1984 NDVI 
values in terms of the NOAA dataset (left panel) and the 
temporal difference image (in absolute format) between 
the average February 2020,2019 and 2018 and February 
2000, 2001 and 2002 NDVI values in terms of the MODIS 
dataset (right panel). Dark green represents significant 
positive change (increase in NDVI values). In contrast, 
white represents significant negative change (decrease in 
NDVI values), suggesting that many locations within the 
Swartland, Saldanha Bay, and Bergriver regions experienced 
positive change while most locations with the Cederberg 
and Matzikama regions experienced negative change.  
 The global spatial autocorrelation (Moran I) analysis 
results for the February 1982 and February 2018 periods 
regarding the NOAA dataset and February 2000 and 
February 2020 periods concerning the MODIS dataset are 
displayed in Figure 9 and Figure 10. The Moral I statistics 
are displayed in the first column showing a value of 0.74 
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Fig. 4. NOAA NDVI per Point-Location, January 1982 to April 2019

Fig. 5. MODIS NDVI per Point-Location, January 2000 to December 2020
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and 0.73 in February 1982 and February 2018, respectively, 
regarding the NOAA dataset, compared to 0.39 and 0.51 
in February 2000 and February 2020 regarding the MODIS 
dataset. The associated z-values (not indicated) for the four 
periods suggest a strong acceptance of the alternative 
hypothesis of spatial clustering. The second column 
(cluster map) shows that the high NDVI locations bordered 
by high NDVI locations (high-high clusters in red) are 
concentrated in the six sub-point-locations (representing 

around 24 percent of the 500 point-locations). The low-
low NDVI point-locations (low-low clusters in blue) are 
concentrated in the four sub-point-locations (representing 
about 20 percent of the 500 point-locations). The results (as 
per the third column = significance map) also show that 
the NDVI point-locations have not changed much over the 
two respective periods, irrespective of the dataset, i.e., the 
point-locations with significant clusters (in green) have not 
changed over the two periods, regardless of any dataset.
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Fig. 6. NOAA NDVI per Month, January 1982 to April 2019

Fig. 7. MODIS NDVI per Month, January 2000 to December 2020

Fig. 8. NOAA and MODIS NDVI Change Visualization
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Moran I Scatter Plot LISA Cluster Map LISA Significance Map

Moran I Scatter Plot LISA Cluster Map LISA Significance Map

Fig. 9. Moran I, Cluster and Significance Map, February 1982 and 2018 and February 1982 to 2018 (change) NDVI values, 
NOAA dataset

Fig. 10. Moran I, Cluster and Significance Map, February 2000 and 2020 and February 2000 to 2020 (change) NDVI values, 
NOAA dataset

Note: top row = February 1982, Middle row = February 2018 and Bottom row = February 2018 minus February 1982 (change)

Note: top row = February 2000, Middle row = February 2020 and Bottom row = February 2020 minus February 2000 (change)
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 Additionally, the Moran I analysis (Figure 11) displays 
the average monthly Moran I statistics for the year 1982 
(grey line) and 2018 (yellow line) using the NOAA dataset 
and the average monthly Moran I statistics for the year 2000 
(orange line) and 2020 (blue line) using the MODIS dataset. 
It is noticeable that the Moran I statistics significantly 
increases during the winter (rain) months irrespective of 
the dataset. In each case the Moran I statistics doubles 
during the winter months. The spatial autocorrelation 
of the 500 point-locations, therefore, displays significant 
seasonal patterns.  
 The Moran I derived results suggest strong spatial 
relationships, especially during the winter months (May 
to August). Testing for the presence of time relationships 
(figures 6 and 7) also seems warranted (structural break 
analysis) utilizing both the cross-section independent and 
cross-section dependent unit root testing procedures in 
EViews (Chang and Song 2002). The results (not presented) 
for both datasets strongly support the stationarity 
hypothesis in that the various test statistics’ (Levin, Lin & 
Chu, Pesaran, and Shin, ADF – Fisher, PP – Fisher, Bai and 
Ng, Pooled statistic, CIPS, and Truncated CIPS) probability 
values indicate the acceptance of the alternative 
hypothesis, i.e., the absence of unit-roots. This suggests 
that the NDVI values of the 500 point-locations are mean-
reverting over time, and therefore no significant structural 
change has occurred.
 However, on closer inspection of the results, there are 
indeed point-locations that experienced structural breaks 
over the period. Thus, although the vast majority of point-
locations have experienced no significant change (mean-
reverting), there are indeed several point-locations that 
have (contain unit-roots). Regarding the NOAA (left panel) 
and MODIS (right panel) datasets, there are 197 and 139 
point-locations (of the 500 point-locations) where the null 
hypothesis, i.e., the presence of unit roots, could not be 
rejected. These point-locations (unit root point-locations) 
are displayed in Figure 12 below (red colour).
 Identifying a trend in a series, albeit including a seasonal 
component, can be done by applying a nonparametric 
test such as the Mann-Kendall trend test (Mbatha and Xulu, 
2018; Drapela and Drapelova, 2011). Meals et al. (2011) 
further state that the Mann-Kendall trend test is especially 
appropriate for non-normal distribution data, which is 
the case for both datasets (applying the Jarque-Bera and 
Shapiro-Wilk tests to both datasets reveal that none of 
the point- locations or months are normally distributed, 

test results not included). Meals et al. (2011) further argue 
that the Mann-Kendall test explores whether increases 
or decreases in the y-values over time can be found. This 
can be done through what is essentially a nonparametric 
form of monotonic-trend regression analysis. The Mann-
Kendall test assesses the sign of the post-measured and 
pre-measured data difference. Each post-measured value 
is compared to all values measured earlier; resulting 
in a total of n(n-1)/2 possible pairs of data. In this case, 
the aggregate observations are represented by n. This 
argument is supported by Ahmad et al. (2015) that further 
argue that the Mann-Kendall test is also not affected by 
outliers.
 There has been no trend over time accounts for the null 
hypothesis (H0), while there has been a trend (increasing 
or decreasing) over time accounts for the alternate 
hypothesis (H1) (Motiee and McBean, 2009). Measuring 
the significance of the trend is done through the test 
statistic Zs. In other words, if | Zs| is greater than Zα/2, then 
the alternative hypothesis is valid, implying that the trend 
is not significant. The chosen level of significance (e.g. 5% 
with Z 0.025 = 1.96) is represented by α.   An additional 
statistic obtained performing the Mann-Kendall test is 
Kendall’s tau. Kendall’s tau measures correlation and hence 
accounts for the significance of the association between 
the two variables. Kendall’s tau is performed on the data 
ranks, i.e., the values are put in order and numbered, 1 
for the lowest value, etc. Like other correlation measures, 
Kendall’s tau assumes values between ±1 and +1, with 
a positive correlation indicating that the ranks of both 
variables increase or decrease together and vice versa (Yue 
and Wan 2004).
 Concerning the NOAA and MODIS datasets, there were 
on average 367 and 171 point-locations (of the 500 point-
locations) where the alternative hypothesis could not be 
rejected. These point-locations (trend point-locations) are 
displayed in Figure 13 below (red colour). Within the NOAA 
dataset (left panel), most trend point-locations are within 
the Bergriver and Swartland regions. Within the MODIS 
dataset (right panel), most trend point-locations are within 
the Cederberg and Bergiver regions. Again, it is evident that 
the two types of point-locations (non-trend in green and 
trend in red) follow a spatial clustering pattern. Therefore, 
the trend point-locations are characterized by spatial and 
time autocorrelation, while the non-trend point-locations 
are represented by only spatial autocorrelation. 

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 2022

Fig. 11. Average Monthly Moran I statistics for the selected years using the NOOA and MODIS datasets
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DISCUSSION

 Aligning the findings of the time autocorrelation 
analysis (Figure 12) and the trend analysis (Figure 13) 
yields the results as presented in Figure 14. The results 
were derived from averaging the NOAA and MODIS 
structural break and trend images. The point-locations with 
structural breaks and trends are shown in red, while the 
mean-reverting and non-trend point-locations are shown 
in green. The spatial autocorrelation or spatial clustering 
is again very evident. It is also apparent that most areas 
or point-locations within the district did not experience 
any significant trend/structural change in vegetation over 
the 40- or 20-year periods. Thus, it can be argued that the 
majority of the vegetation change was most probably 
because of seasonal variation and changes thereof. 
Locating the structural break and trend -point-locations, 
i.e., point-locations that experienced statistically significant 
vegetation change over time within the NOAA and MODIS 
temporal differencing images (Figure 3.5), yields the 
results in Figure 15. Within the average NOAA and MODIS 
temporal differencing image, only point-locations that 
recorded significant NDVI change (increase or decrease 
of more than 0.4 in the original NDVI value) have been 
highlighted, i.e., blue coloured point-locations (left image) 
and bright coloured point-locations (right image). In the 
main areas that recorded significant changes in their NDVI 
values (plus or minus 0.4 difference on their original NDVI 
value) over time, in general, have experienced significant 
and permanent vegetation change. These areas are also 
spatially clustered and concentrated within specific areas 
within the wider district. However, these areas constitute 
only a minority of areas (less than 20%), whereas most 
of the areas within the district did not experience such 
significant and permanent change in vegetation.  Instead, 

the changes that did occur in these majority of areas 
were related to seasonal variation, i.e., temporal changes.   
It is, therefore, possible to argue that most of the point-
locations within the district have not experienced any 
significant and permanent change since the 1980’
 In the main areas that recorded significant changes 
in their NDVI values (plus or minus 0.4 difference on their 
original NDVI value) over time, in general, have experienced 
significant and permanent VC change. These areas are also 
spatially clustered and concentrated within specific areas 
within the wider district. These areas constitute, however, 
only a minority of areas (less than 20%), whereas most of the 
areas within the district did not experience such significant 
and permanent change in VC.  Rather, the changes that did 
occur in these majority of areas were related to seasonal 
variation, i.e., temporal changes.  It is, therefore, possible to 
argue that most of the point-locations within the district 
have not experienced any significant and permanent 
change since the 1980s.
 For the purpose of this article, no inference will be 
made as to the causes for the significant and permanent VC 
change. For such an inference, further work will be required, 
which falls outside the scope of this article. Nevertheless, 
various hypothetical causes can be put forward, such as 
Agricultural expansion, Urban expansion, Surface water 
change, and change in weather patterns. Le Roux, Cooper, 
and Mans (2016) argued that proximate causes for Land 
Use Land Cover Change in the Western Cape Province (the 
West Coast Region falls within the Western Cape Province, 
see Figure 2.1) were identified as infrastructure, agriculture 
and forestry changes and underlying causes as political, 
demographic, economic, technological and cultural 
factors.
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Fig. 12. Mean Reverting and Unit Root Point-locations

Fig. 13. Non-trend and Trend Point-locations
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Summary and Conclusions

 Land use and land cover (VC) is most probably not a 
stable or constant phenomenon and ebbs and flows over 
time. Given the significance and relevance of land use 
change for economic development and planning and 
policy formulation, VC change detection becomes very 
relevant. It therefore seems plausible that the monitoring 
of VC change dynamics should be instrumental in the 
effectual planning and sustainable development of 
expanding economies. To this end, the normalized 
difference vegetation index (NDVI) is one of the widely 
accepted methods of classification applied in VC change 
detection.
 The study mainly followed a general to specific 
approach, specifically with regard to the method of 
analysis. In terms of the general approach, the focus was on 
raster and vector (area) analysis applied to the five regions 
covering the regions as a collective (i.e., the district). The 
specific approach, on the other hand, focused on point 
pattern (point-locations) analysis applied to a sample of 
100 random points within each Region of interest, i.e., 
reducing the size of the regions to 100 point-locations 
each, assuming these point-locations are representative of 
the regions as a whole.   
 Two remote sensing datasets were used for this study 
in both the general and specific approaches. The first 
dataset was the NOAA CDR AVHRR NDVI: Normalized 
Difference Vegetation Index, Version 5 dataset. The second 
dataset was the MOD13Q1.006 Terra Vegetation Indices 
16-Day Global 250m dataset. Five municipal areas (regions 
of interest) were chosen for the study. The regions (district 

as a collective) are located on the West Coast of South 
Africa within the Western Cape Province (red boundary). 
The district accounts for about 2.6 percent and 24 percent 
of the total land surface of South Africa and the Western 
Cape Province, respectively.
 Temporal differencing the 1981 to 1985, 2015 to 2019, 
2000 to 2004, and 2015 to 2020 NOAA and MODIS images 
respectively yielded images that suggested that the areas 
that experienced large changes in NDVI values have been 
random in spatial terms. In general, most of these areas 
(large change areas) experienced decreases (deterioration) 
in NDVI values. On the other hand, most areas within each 
Region only experienced modest decreases (deterioration) 
in NDVI values. The 500 point-location analysis proposed 
that many locations within the Swartland, Saldanha Bay 
and Bergriver regions experienced positive change whilst 
most locations within the Cederberg and Matzikama 
regions experienced negative change. 
 In order to test the NDVI spatial autocorrelation 
hypothesis the study employed the Global Moran I index. 
The associated z-values suggested a strong acceptance of 
the alternative hypothesis of spatial clustering, i.e., presence 
of spatial autocorrelation. It was noticeable that the Moran 
I statistics significantly increased during the winter (rain) 
months irrespective of the dataset. In each case, the Moran 
I statistics doubled during the winter months. The spatial 
autocorrelation of the 500 point-locations, therefore, 
displayed significant seasonal patterns.  
Testing for the presence of time relationships utilizing 
both the cross section independent and cross section 
dependent unit root testing procedures strongly 
supported the stationarity hypothesis in that the various 

Fig. 14. Non-Change vs Change Vegetation Cover Point-locations

Fig. 15. Point locations that Experienced Significant Land Cover Change over Time
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in their NDVI values (plus or minus 0.4 difference on their 
original NDVI value) over time, in general, have experienced 

significant and permanent VC change. These areas are also 
spatially clustered and concentrated within specific areas 
within the wider district. These areas constitute, however, 
only a minority of areas (less than 20%), whereas most of the 
areas within the district did not experience such significant 
and permanent change in VC.  Rather, the changes that did 
occur in these majority of areas were related to seasonal 
variation, i.e., temporal changes.  It is therefore possible to 
argue that most of the locations within the district have 
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since the 1980s.
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