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ABSTRACT. Intensive socio-economic interactions are a prerequisite for the innovative development of the economy, but 
at the same time, they may lead to increased epidemiological risks. Persistent migration patterns, the socio-demographic 
composition of the population, income level, and employment structure by type of economic activity determine the intensity 
of socio-economic interactions and, therefore, the spread of COVID-19.
We used the excess mortality (mortality from April 2020 to February 2021 compared to the five-year mean) as an indicator 
of deaths caused directly and indirectly by COVID-19. Similar to some other countries, due to irregularities and discrepancies 
in the reported infection rates, excess mortality is currently the only available and reliable indicator of the impact of the 
COVID-19 pandemic in Russia.
We used the regional level data and fit regression models to identify the socio-economic factors that determined the impact 
of the pandemic. We used ordinary least squares as a baseline model and a selection of spatial models to account for spatial 
autocorrelation of dependent and independent variables as well as the error terms.
Based on the comparison of AICc (corrected Akaike information criterion) and standard error values, it was found that SEM 
(spatial error model) is the best option with reliably significant coefficients. Our results show that the most critical factors that 
increase the excess mortality are the share of the elderly population and the employment structure represented by the share 
of employees in manufacturing (C economic activity according to European Skills, Competences, and Occupations (ESCO) v1 
classification). High humidity as a proxy for temperature and a high number of retail locations per capita reduce the excess 
mortality. Except for the share of the elderly, most identified factors influence the opportunities and necessities of human 
interaction and the associated excess mortality.
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INTRODUCTION

 Intensive socio-economic interactions are a 
prerequisite for the innovative development of the 
economy, but at the same time, they may lead to increased 
epidemiological risks. Persistent migration patterns, socio-
demographic composition of the population, income level, 
and employment structure by type of economic activity 
determine the intensity of socio-economic interactions 
and, therefore, the spread of COVID-19.
 Most research on COVID-19 focuses on factors affecting 
COVID-19 infection rates and the resulting mortality. Many 
papers employ spatial regression models to achieve a better 
model fit and more trustworthy estimates of the effects. 
With this paper we aim to add to the existing body of 

research by revealing various factors for the case of Russian 
regions with a specific focus on physical human interaction 
using models that could be compared between countries. 
Below we provide an in-depth review of previous research 
along with the variable selection process.

MATERIALS AND METHODS

Data

 The full data set and analysis code for this paper is 
available on GitHub, so the findings are fully reproducible 
and auditable: https://github.com/e-kotov/ru-covid19-
regional-excess-mortality (doi: 10.5281/zenodo.6515455).

https://doi.org/10.24057/2071-9388-2021-076
https://doi.org/10.24057/2071-9388-2021-076
https://crossmark.crossref.org/dialog/?doi=10.24057/2071-9388-2021-076&domain=pdf&date_stamp=2022-06-30
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The dependent variable

 A meta-analysis of 63 research papers (Franch-Pardo et 
al. 2020) showed that the most frequently used indicators 
for COVID-19 analysis are COVID-19 infection and mortality 
rates.
 However, the use of these parameters relies heavily on 
the quality of data collection and reporting. When there is 
little trust in the collected data, it cannot be used, which 
is why the data on infection rates should be avoided 
even when it is available. Therefore, in this study, we used 
excess mortality as our target variable. The downside of 
using excess mortality is that this data becomes available 
much later than COVID-19 infection rates and reported 
deaths. However, recently published infection and death 
rates seem to correlate well with the excess mortality, so 
analysis for more recent periods can be performed on the 
data similar to what most researchers use.
 Another reason to use excess mortality is that apart 
from deaths caused directly by the COVID-19 infection, it 
also takes into account deaths caused by the interruption 
of the regular healthcare provision. Excess mortality is also 
helpful for comparing data between different counties as 
it compensates for the possible differences in the mortality 
statistics collection (Rodríguez-Pose and Burlina 2021; 
Yarmol-Matusiak et al. 2021).
 Our excess mortality variable is the ratio of per capita 
mortality for April 2020 - February 2021 to the mean over 
the previous five years.

The independent variables

 We used the existing research to guide the selection of 
variables. A review of recent studies allowed us to divide 
the variables into several groups. Additionally, we also used 
our own Human Interaction group, which was a primary 
focus of this research. The final list of examined variables is 
presented in Appendix A.

Human Interaction

 Under this group, we summarised multiple variables 
that fall under different groups in other studies but 
indicate how much physical human contact is required 
(or is possible, if there is a choice) for day-to-day activities, 
even during lockdowns.
 Although the type of economic activity suggests a 
certain income level, we think it is an excellent indicator 
of how much physical human contact with clients or co-
workers a particular job requires. For example, the share 
of the population working in retail influences the number 
of physical contacts. A higher number of retail outlets per 
capita may indicate a larger number of people working 
in retail, leading to more opportunities for violating the 
lockdown or distancing measures for both workers and 
consumers.
 However, a higher area of retail per capita may allow 
better social distancing. Similarly, the mobility-related 
variables such as airport density, road and rail-road density, 
and the number of buses per capita may be regarded as 
indicators of how many people may be in direct contact 
and at what distance.
 Some researchers (Andersen et al. 2021; Chakraborti 
et al. 2021; Desmet and Wacziarg 2021; Hass and Jokar 
Arsanjani 2021; Henning et al. 2021; Mollalo et al. 2020; 
Rahman et al. 2020; Scarpone et al. 2020) include very 
similar variables (retail outlets provision, big retail provision 
and road densities) as so-called environment factors.

Demographic

 This group includes age structure with a specific focus 
on the share of population past working age, urbanisation 
and ethnic mix (Agnoletti et al. 2020; Amdaoud et al. 2021; 
Andersen et al. 2021; Ascani et al. 2021; Bański et al. 2021; 
Chakraborti et al. 2021; Desmet and Wacziarg 2021; Ehlert 
2021; Hass and Jokar Arsanjani 2021; Henning et al. 2021; 
Konstantinoudis et al. 2021; Luo et al. 2021; Maiti et al. 2021; 
Mogi et al. 2020; Mollalo et al. 2020; Oto-Peralías 2020; 
Perone 2021; Rahman et al. 2020; Raymundo et al. 2021; 
Rodríguez-Pose and Burlina 2021; Sannigrahi et al. 2020; 
Scarpone et al. 2020; Sun et al. 2020; Zemtsov and Baburin 
2020). We were primarily concerned with the age structure 
due to the higher COVID-19 fatality risks for the older 
population, using the share of post-, under- and working-
age population in the analysis.
 This group also includes migration flows at intra- 
and inter-regional levels, as well as international level 
(Chakraborti et al. 2021; Chen et al. 2021; Maiti et al. 2021; 
Wang et al. 2021). Even though international travel was 
heavily restricted at the beginning of the pandemic, it was 
not restricted early enough. Therefore, past international 
migration flows might be indicative of the international 
travel at the beginning of 2020, which influenced the 
spread of the virus and the excess mortality early on. The 
inter- and intra-regional travel within Russia were not as 
restricted and were even encouraged at some point to 
stimulate internal tourism.

Socio-economic

 These indicators include unemployment rate, poverty 
rate, real income, salary, and employment across different 
economic activities (Agnoletti et al. 2020; Amdaoud et 
al. 2021; Andersen et al. 2021; Ascani et al. 2021; Bański 
et al. 2021; Chakraborti et al. 2021; Desmet and Wacziarg 
2021; Ehlert 2021; Konstantinoudis et al. 2021; Luo et al. 
2021; Maiti et al. 2021; Mogi et al. 2020; Mollalo et al. 2020; 
Oto-Peralías 2020 p.; Rahman et al. 2020; Raymundo et al. 
2021; Rodríguez-Pose and Burlina 2021; Sannigrahi et al. 
2020; Scarpone et al. 2020; Sun et al. 2020; Zemtsov and 
Baburin 2020). We included income-related variables in 
the analysis (see Appendix  A) as we expected them to 
reveal the regions where the population cannot afford to 
obey the lockdowns and cease work or cannot afford extra 
medical care due to low income. However, employment 
by economic activities was regarded as part of a different 
group of variables - human interaction.

Mobility

 These indicators include mobility patterns, passenger 
flows on public transport, mean travel time and more 
(Andersen et al. 2021; Ascani et al. 2021; Luo et al. 2021; 
Maiti et al. 2021; Rodríguez-Pose and Burlina 2021; Zemtsov 
and Baburin 2020). We included some mobility-related 
variables in the human interaction group above.

Healthcare provision and population health

 In this category, other researchers note healthcare 
expenses per capita, the number of ventilators per capita, 
medical personnel per capita (Amdaoud et al. 2021; Bański 
et al. 2021; Konstantinoudis et al. 2021; Luo et al. 2021; 
Maiti et al. 2021; Mollalo et al. 2020; Perone 2021; Rahman 
et al. 2020; Raymundo et al. 2021; Rodríguez-Pose and 
Burlina 2021; Sannigrahi et al. 2020; Scarpone et al. 2020; 
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Sun et al. 2020; Zemtsov and Baburin 2020). Others also 
include indicators of public health, such as the number of 
smokers, the number of people with diabetes, the share of 
the overweight population (Andersen et al. 2021; Desmet 
and Wacziarg 2021; Ehlert 2021; Konstantinoudis et al. 
2021; Luo et al. 2021; Mogi et al. 2020; Mollalo et al. 2020; 
Zemtsov and Baburin 2020). Even though a meta-analysis 
by Kolosov et. al (2021) suggests that there is no significant 
influence of the level of healthcare provision on mortality, 
we still tested this hypothesis for Russia on a regional level. 
Since healthcare indicators are usually highly correlated, 
we used the number of doctors per capita as an indicator 
of the current level of healthcare and its variation over five 
years as an indicator of how the healthcare provision had 
changed recently.

Climate and Environment

 Many researchers also considered climate factors. Most 
of them used mean temperature and humidity, as well as 
precipitation and UV exposure (Hass and Jokar Arsanjani 2021; 
Konstantinoudis et al. 2021; Luo et al. 2021; Maiti et al. 2021; Oto-
Peralías 2020; Perone 2021; Qi et al. 2020; Rahman et al. 2020; 
Wang et al. 2021). Some papers also used data on droughts 
and floods (Luo et al. 2021) as well as air quality via CO2 levels 
and other emissions (Agnoletti et al. 2020; Chakraborti et al. 
2021; Hass and Jokar Arsanjani 2021; Luo et al. 2021; Maiti et 
al. 2021; Oto-Peralías 2020; Perone 2021; Rodríguez-Pose and 
Burlina 2021; Wang et al. 2021). We argue that temperature and 
humidity, apart from possibly affecting the survival of the virus, 
may also influence the willingness and opportunities of the 
population for outdoor vs indoor social gatherings.

Indices

 Various indices may be regarded as a separate group, 
as they usually combine multiple indicators. A self-isolation 
index published by Yandex was used by Russian researchers 
(Zemtsov and Baburin 2020). Some indices are more focused 
on a particular topic, such as the healthcare quality index 
(Perone 2021), social trust index (Amdaoud et al. 2021), and 
economic diversity index (Ascani et al. 2021). Some indices are 
more comprehensive, for example, Community Need Index 
which covers income, culture, education, living conditions and 
healthcare (Henning et al. 2021) and the infection risk index 
(only available as a pre-print at the moment1). Due to the 
underlying data and methodology, it is often hard to calculate 
similar indices for different countries. We considered using the 
Herfindahl-Hirschman Index (HHI) for employment structure, 
which was applied in the study of Ascani et al. (2021). However, 
it was found that the shares of employment across different 
economic activities are a much better predictor of the excess 
mortality.
 As we demonstrate in Fig. 1 below, most variables are 
subject to spatial autocorrelation. Therefore, we used spatial 
regression models to achieve the best results.
 Clusters of the Excess mortality variable in Fig. 1 
seem to provide limited support for the hypothesis that a 
pandemic should follow the pattern of the spatial diffusion 
of innovations (Hägerstrand 1973). During the first year, 
we can see that high excess mortality clustered in the 
regions of the Central Federal District while low mortality 
was observed in relatively remote regions that do not 
have intensive communication with the Central Federal 
District. However, we do not see high-value clustering in 

Fig. 1. Spatial autocorrelation tests for excess mortality and some explanatory variables
1Baum C.F. and Henry M. (2020). Socioeconomic Factors influencing the Spatial Spread of COVID-19 in the United States [SSRN Scholarly 
Paper]. DOI: 10.2139/ssrn.3614877
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the Far Eastern Federal District and around The Republic 
of Tatarstan. The absence of such clustering may be due 
to the large size of the regions. We would expect the 
clustering to be present at the municipal level, confirming 
that the virus spread from the most populated cities to 
the least populated ones, which is in line with the spatial 
diffusion of innovations theory.
 Clustering of other variables is given in Fig. 1 for illustrative 
purposes only. Clustering is different for different variables 
which justifies the incorporation of spatial effects into the 
regression analysis to compensate for these variations. 
Since the spatial clustering of excess mortality has diverging 
patterns, we can assume that it cannot be explained only by 
spatial autocorrelation of explanatory variables. Therefore, 
a model that compensates for the unobserved spatially 
correlated model errors should be used.

Method

 We performed exploratory data analysis for all variables 
listed in Appendix A. Some variables were log-transformed 
for a better fit in linear models.
 The selection of variables for the models was performed 
in the following way. For all the dependent variables we 
calculated Pearson correlation coefficients. We also fitted an 
ordinary least squares model for every independent variable 
against the excess mortality and calculated the R2 and the 
p-value of the model (see the LM R2 and LM p-value columns 
in Table 1). After that, independent variables were ranked by 
descending R2 and correlation (see Table 1). Using the list of 
top-ranked independent variables we eliminated the ones 
with the highest correlation (with a correlation coefficient 
of more than 0.7) to avoid potential multicollinearity in the 
models.
 Then we constructed a series of baseline ordinary 
least squares (OLS) regression models following the basic 
equation:

 where yi is excess mortality in the region i, β0 is the 
intercept, Xi is a vector of selected explanatory variables, β is 
a vector of regression coefficients, and εi  is a random error 
term. 
 We tried various combinations of factors in OLS 
regressions based on exploratory data analysis and 
corresponding model interpretation. After obtaining the 
best OLS model (1) we tested the independent variable, 
explanatory variables, and the OLS model residuals for spatial 
autocorrelation. The matrix of spatial neighbours for the 
spatial autocorrelation test and the resulting spatial models 
were created based on region boundary polygons from 
OpenStreetMap (OpenStreetMap contributors 2017) with 
GeoDa software2 (Anselin et. al 2006) using first-order queen 
contiguity. Regions without neighbours (such as Kaliningrad 
Region and Sakhalin Region) were manually connected to 
2-3 closest regions3.
 Based on the results of spatial autocorrelation tests we 
applied a selection of spatial models (LeSage and Pace 2009).
 Spatially Lagged-X Model (SLX) was used to compensate 
for spatial autocorrelation of the explanatory variables:

  where, in addition to the OLS (1), Wi is a vector of spatial 
weights (a corresponding row of the spatial weights matrix), 
θ is the k×1 coefficient vector for the exogenous spatially 
lagged independent variables.
 Spatial Lag Model (SLM, also referred to as SAR – spatial 
autoregressive model) was used to compensate for spatial 
autocorrelation of the dependent variable:

 where p is the spatial lag parameter.
 Spatial Error Model (SEM) was used to compensate for 
spatial autocorrelation of the error terms:
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(1)

(2)

(3)

y Xi i i= + +β β ε0

y X W Xi i i i i= + + +β β θ ε0

y X W yi i i i i= + + +β β ρ ε0

Variable Name Correlation LM R2 LM p-value

Workers_in_C_EconAct_Share 0.5820 0.3387 0.0000000

Workers_in_G_EconAct_Share 0.5387 0.2902 0.0000001

Population_log 0.5344 0.2856 0.0000001

Floor_Area_per_capita 0.5007 0.2507 0.0000011

Workers_in_O_EconAct_Share -0.4971 0.2471 0.0000013

Road_Density_log 0.4732 0.2239 0.0000048

Workers_in_P_EconAct_Share -0.4722 0.2230 0.0000051

Population_Density_log 0.4573 0.2091 0.0000108

Workers_in_B_EconAct_Share_log -0.4223 0.1783 0.0000569

Population_Below_Living_Wage_Share -0.4081 0.1666 0.0001056

SME_in_GRDP_Share 0.3890 0.1513 0.0002335

Workers_in_R_EconAct_Share -0.3839 0.1473 0.0002873

GRDP_in_GDP_Share_log 0.3780 0.1429 0.0003618

Migr_Outflow_InterReg_3Y_mean_per_capita_x10000 -0.3592 0.1290 0.0007364

Buses_per_capita_log -0.3502 0.1226 0.0010187

Table 1. Explanatory variables ranked by the highest correlation with excess mortality

2https://geodacenter.github.io
3The specific neighbours for those regions can be viewed by downloading the provided data and code.
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 where λ is a spatial lag parameter for the spatially correlated 
errors, ui is a spatial component of the error, and   εi is a spatially 
uncorrelated error.
 Spatial Durbin Model (SDM) was used to compensate for 
spatial autocorrelation of the explanatory and the dependent 
variables:

 Spatial Durbin Error Model (SDEM) was used to compensate 
for spatial autocorrelation of the explanatory variables and the 
error terms:

 SARAR (spatial autoregressive model with spatially 
autocorrelated disturbances, also referred to as SAC – spatial 
autoregressive combined model) was used to compensate for 
spatial autocorrelation of the independent variable and the 
error terms (Kelejian and Prucha 1998):

 General Nesting Spatial Model (GNS, also referred to as 
mixed spatial autoregressive combined model) was applied as 
the final model that combines all the models above and tries 
to compensate for spatial autocorrelation of all components:

 The code for all plots and tables was written in R language. 
The data, code and weights matrix are available in the 
supplementary materials on GitHub (Kotov 2022).

RESULTS AND DISCUSSION

Baseline OLS selection

 We analysed a series of OLS models (see Fig. 2 and Fig. 3 
below) by looking at the coefficients of the variables and 
their 95% confidence intervals. All coefficients are robust and 
z-standardised, which makes their effect on excess mortality 
comparable regardless of the unit size of any individual variable. 
If the confidence interval of a coefficient is entirely located to the 
right or to the left of the center at the 0 mark in Fig. 2 and Fig. 3, it 
means that there is a statistically significant negative or positive 
effect on the excess mortality.
 We started with the model M0, which takes into account 
population density (using population density and residential 
floor per capita variables), employment in economic sectors that 
require close human interaction (B – mining, C – manufacturing, 
G – retail and services, P – education, and in small and medium 
enterprises in general), and local transportation opportunities 
and constraints (number of buses and cars per capita). M0 clearly 
showed that population density and transportation constraints 
have no effect on mortality. The only two significant variables are 
the share of employees in manufacturing (C) and retail & services 
(G), as these are the only variables with confidence intervals 
that do not cross the zero-line. The proximity of the confidence 
interval to zero may be due to the inclusion of insignificant 
variables in the model, therefore we removed some of these 
variables starting with the model M4 below.
 M1 is an extension of M0 with climate variables (temperature 
and humidity). It was found that temperature does not affect 
mortality, while the effect of humidity is uncertain and should 
be tried in further models.

Egor A. Kotov, Ruslan R. Goncharov, Yuri V. Kulchitsky et al. SPATIAL MODELLING OF KEY REGIONAL-LEVEL FACTORS ...

(4)

(5)

(6)

(7)

(8)

y X u u Wui i i i i i i= + + = +β β λ ε0 ,  

y W y X W Xi i i i i i i= + + + +β ρ β θ ε0

y X W X u u Wui i i i i i i i i= + + + = +β β θ λ ε0 ,  

y X W y u u Wui i i i i i i i i= + + + = +β β ρ λ ε0 ,  

y X W y W X u u Wui i i i i i i i i i i= + + + + = +β β ρ θ λ ε0 ,  

Fig. 2. Comparison of the coefficients of the models M0-M6_C
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 M2 adds the healthcare component (number of doctors 
per capita). It was found that, depending on the model, the 
confidence interval may touch the zero mark, but this factor is 
still worth considering in further models.
 M3 adds interregional migration flow and opportunity for 
the spread of COVID-19 following the Hägerstrand’s (1973) spatial 
diffusion of innovation (via the airport density). It was found 
that airports have no detectable effect, which suggests that air 
travel between regions was likely not a significant factor in the 
COVID-19 spread across Russia, while inter-regional migration is 
worth considering.
 With the next model M4, we eliminated the non-significant 
variables from previous models and added age (as the elderly 
are the most affected by both the virus and the deterioration of 
regular medical care) and income (following the hypothesis that 
in poorer regions the population will ignore the restrictions more 
frequently as they must provide money for their families). It was 
found that on its own M4 has almost no significant coefficients, 
however, it provides information on the potential of individual 
variables. Population density expressed as residential floor area 
per capita proved to be insignificant, as its coefficient in M4 
falls almost to zero. The coefficients for the share of workers 
in manufacturing (C) and retail & services (G), the number of 
doctors per capita, and humidity in M4 and previous models vary 
slightly but mostly remain significant, suggesting that these two 
economic domains with intensive and close human interaction 
are important negative factors of the excess mortality.
 M5 builds on M4 by adding digital skills, the share of 
e-commerce users and the overall provision of retail businesses. 
In M5 we can see that income expressed as the share of the 
population with income below the living wage has a high 
negative impact on excess mortality. This is counterintuitive but 
may suggest that those households interacted less, as they had 
no money to spend. The higher share of e-commerce users, as 
well as the higher number of retail locations per capita, also had a 
negative effect, as the reliance on face-to-face contact was lower 
in regions with high values for these variables. Interestingly, 
M5 also suggests that a higher share of the population using 
government services over the Internet somehow negatively 
affects mortality. 
 Finally, models M6_C, M6_G and M6_CG are the ultimate 
models with the most significant variables that demonstrate a 
noticeable and explainable effect. The difference is that M6_C 
uses the share of employees in manufacturing (C), while M6_G 
replaces it with the share in retail and services (G). M6_CG uses 
the shares in both C and G economic activities. We can see 
the comparison of these M6 models in Fig. 3. Clearly, the share 

of employees in C and G is almost equally important, both 
according to the models and the logic behind the variables, 
however with the M6_C model we are able to capture the 
effect of retail with the number of retail locations per capita 
and e-commerce. M6_G and M6_CG, despite their overall 
similarity to M6_C, do not reproduce the same effects reliably. 
M6 models also suggest that the number of doctors is irrelevant, 
which makes sense compared to the previous models as this 
variable had a positive effect on excess mortality, which could 
only be explained by assuming that contacts through doctors 
were stimulating additional infections. The insignificance of 
the healthcare provision is also in line with previous findings 
(Kolosov et al. 2021).
 A statistical summary of all OLS models is provided in Fig. 
4 below. It shows that models M6_CG and M6_C are the best 
according to most model quality metrics. They have the lowest 
AICc (corrected Akaike information criterion), highest R-squared 
and adjusted R-squared, and lowest RMSE (root-mean-square 
error). Therefore, we used these models and their variables as the 
best baseline for the spatial extension of the model.

Extension of the best OLS with a spatial component

 We used M6_CG as the baseline OLS model and 
extended it with spatial specifications as described in the 
methodology in equations (2) through (8). As we can see 
from Fig. 5, the best models are SEM (Spatial Error Model), 
LAG (Spatial Lag Model) and OLS. These models have the 
lowest corrected Akaike Information Criterion (AICc), but 
the values are very close and not significantly different. 
However, SEM helps to compensate for the spatial 
autocorrelation of some unobserved and unaccounted 
spatially autocorrelated factors. The LAG model corrects for 
the spatial autocorrelation of the excess mortality (as seen 
at the top of Fig. 1) and the fact that the spread of COVID-19 
is indeed quite likely to occur between the neighbouring 
regions, which is also observed on the global scale. Other 
models (all models below OLS in Fig. 5) do produce lower 
model errors, however, they add very little in terms of 
interpretability of the results in general and the model 
coefficients.
 Fig. 6 provides a comparison of the OLS model 
coefficients with and without its spatial extensions. 
The graph suggests that compensating for spatial 
autocorrelation increases confidence in the significance of 
several variables, including the number of retail locations 
per capita, the share of post-working age population and 
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the share of employees in manufacturing (C), but not the 
share of workers in retail (G) and the number of doctors 
per capita. The effect of the share of e-commerce users on 
excess mortality is still insignificant, which might be due 
to the use of old data as Rosstat has not yet published the 
2020 data, and pre-2020 the share of consumers who shop 
online was lower.
 We can also observe that most variables do not show 
any external effects on neighbouring regions («lag.» 
variables at the bottom of Fig. 6). That is, the values of 

these variables in the neighbours of any given region do 
not affect the excess mortality in the region of interest. The 
only exception is the number of doctors per capita, which 
increases the excess mortality in neighbouring regions 
without any logical explanation.
 Lambda   and rho   are significant in the corresponding 
SEM and LAG models, but not in their derivatives. SEM 
and LAG models are almost equivalent in all other aspects 
(model quality based on AICc, R-squared and RMSE, as 
well as model coefficients). This reinforces the statement 

Egor A. Kotov, Ruslan R. Goncharov, Yuri V. Kulchitsky et al. SPATIAL MODELLING OF KEY REGIONAL-LEVEL FACTORS ...

Fig. 4. Summary of baseline OLS models 

Fig. 5. Comparison of the OLS model performance with and without spatial extensions for the final set of variables
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that there are some unobserved spatially autocorrelated 
components missing from the model. However, their 
absence is partially compensated by the spatial extension 
of the OLS. Given that in the SARAR model both lambda   
and rho   are insignificant and demonstrate an opposite 
effect, we can conclude that only LAG (compensates for the 
autocorrelation of excess mortality) or SEM (compensates 
for unobserved spatially autocorrelated variables) models 
can be considered as the best fit.
 In Table 2 we directly compare the z-standardised 
coefficients and the number of significant variables in all 
models. It can be seen that the LAG extension of the OLS 
model results in more robust estimates for a larger number 
of variables.
 As we can see from Table 2, the most important factor 
for excess mortality according to the best SEM model is 
the share of the post-working age population. It has the 
highest value of the standardised coefficient (0.31), which 
confirms the well-known fact that the early COVID-19 wave 
largely affected the elderly. Almost equally important (0.29) 
is the share of workers in manufacturing, where very close 
contact is common and social distancing is sometimes 
impossible. What is more, in manufacturing jobs workers 
often reside together in communal accommodation.
 High humidity has a negative (-0.22) effect on excess 
mortality. In fact, humidity is highly correlated with 
temperature, and even though the temperature did not 

make it into the final model, we can assume humidity as 
a proxy for temperature. Climate conditions might explain 
not only the specifics of the COVID-19 virus related to 
humidity and temperature but also differences in the 
behaviour of the population, for example, the propensity 
to spend more or less time outdoors.
 We manually marked the number of retail locations 
per capita as significant as it only formally misses the 5% 
significance level with a p-value of 0.0506. The negative 
coefficient (-0.15) confirms that a larger number of shops 
per capita in a given region leads to a lower density of 
customers in those shops, and therefore increases the 
opportunities for social distancing and reduces interaction. 
The share of employees in retail (G) is not significant, 
however, we expect it to be a proxy for a similar effect.
 The last parameter that is significant and highly 
important in terms of its effect is the lambda of the 
SEM model. This suggests that there are one or more 
unobserved spatially autocorrelated factors, that neither 
we nor other researchers have considered. The effect of 
other variables is not significant. From the literature review, 
we have not seen high R2 values and therefore full models 
even in studies concerning much smaller spatial units than 
Russian regions. We expect that a more complete model 
would be able to capture more individual effects at the 
municipal level.
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Fig. 6. Comparison of the OLS model coefficients with and without spatial extensions
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 As we can see from Fig. 7 below, the shares of 
employment in many economic activities are highly 
correlated with each other, as well as with the excess 
mortality. So hypothetically a model for excess mortality 
could be composed completely based on employment 
rates. We explored this option and can conclude that using 
just one of the economic activity types, either G (trade) or 
C (manufacturing), is the best option. Fitting the same set 
of spatial models using A, D, G and R economic activities 
results in similar R2 and model error and even lower AICc 
values, however, it unnecessarily limits the model to just 
economic activities, which cannot be the only explanation 
for the excess mortality.

 The employment in C (manufacturing) does not 
necessarily capture the whole employment and interaction 
structure, but it is just enough to explain the excess 
mortality without relying on other economic activities. 
Employment in G (retail) is just as important but was 
pushed out from the final model by the employment in 
C (mining) variable. The large workforce in retail leads to 
more opportunities and more necessity for close physical 
interaction between co-workers and with the customers. 
As a result, even though it was not found to be significant 
in the model, the overall correlation of the share in G with 
the excess mortality suggests that it does have an effect, 
which is not captured at the regional level.

Egor A. Kotov, Ruslan R. Goncharov, Yuri V. Kulchitsky et al. SPATIAL MODELLING OF KEY REGIONAL-LEVEL FACTORS ...

  OLS SEM LAG

(Intercept)
0.00 -0.02 -0.02

(0.08) (0.10)  (0.07) 

Migr_IntraReg_3Y_mean_per_capita_x10000
-0.10 -0.03 -0.06

(0.09) (0.08)  (0.08) 

Doctors_per_capita_x1000
0.12 0.06 0.11

(0.11) (0.08)  (0.08) 

Jul_Humid_Mean_10yr
-0.18 -0.22 * -0.15

(0.10) (0.10)  (0.08) 

Post_Working_Age_Population_Share
0.34 * 0.31 ** 0.27 *

(0.15) (0.12)  (0.11) 

Retail_N_per_capita_x1000
-0.16 -0.15* -0.15

(0.11) (0.08)  (0.08) 

Workers_in_G_EconAct_Share
0.13 0.14 0.13

(0.13) (0.10)  (0.11) 

Workers_in_C_EconAct_Share
0.28 0.29 * 0.24 *

(0.15) (0.12)  (0.12) 

Ecommerce_Users_Share
-0.15 -0.11 -0.15

(0.10) (0.08)  (0.08) 

Population_Below_Living_Wage_Share
-0.11 -0.16 -0.12

(0.11) (0.09)  (0.10) 

Lambda λ
     
     

0.35 **      
     (0.13)  

Rho p
     
     

      
      

0.24 *

(0.12) 

N 85 85 85

Pseudo-R2 0.59 0.63 0.62

Adjusted pseudo-R2 0.54 0.58 0.57

AICc 113.57 111.42 111.80

Table 2. Comparison of the OLS, SEM and LAG estimates

All continuous predictors are mean-centered and scaled by 1 standard deviation. Standard errors are heteroskedasticity robust.  
*** p < 0.001;  ** p < 0.01;  * p < 0.05.
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CONCLUSIONS 

 We identified the most important factors that caused the 
excess mortality between April 2020 and February 2021. The 
share of the elderly population was confirmed by our model 
as the obvious reason for excess deaths, followed closely by 
the share of employees in manufacturing (C economic activity 
according to European Skills, Competences, and Occupations 
(ESCO) v1 classificaiton). On the other hand, higher humidity, 
and a higher number of retail locations per capita reduce the 
excess mortality with a comparable impact.
 Our final model is not complete and mostly focuses on a 
few factors, however, it is reliable in terms of the selection of 
these factors, which were identified based on the significance 
of their effect, as well as accounting for spatial autocorrelation. 
Still, there is room for improvement of the model.
 Queen-type contiguity neighbourhood matrix is too 
simplified, so the spatial extensions of the baseline OLS 

model can potentially be improved by using a different type 
of spatial weights. For example, spatial weights based on 
the air-and rail-passenger flows for the year 2020 could be 
a better fit, as they would probably explain the pandemic 
transmission paths and intensity following the Hägerstrand’s 
(1973) model of the spatial diffusion of innovations. Currently, 
we focused heavily on human interaction and possibly failed 
to take into account other factors, while compensating for 
spatial autocorrelation was not enough.
 Due to data limitations, the current best model was built 
for the regional level. Because of the modifiable area unit 
problem, which is manifested in the excessive averaging 
of mortality and other variables over irregularly sized and 
populated regions, it might not be possible to improve the 
obtained results. We expect the same model to provide better 
results at a municipal level when the mortality data becomes 
available.

Fig. 7. Correlation matrix for the shares of employment in different economic activities
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Appendix A. Variables used in the study

Group Variable Name Description Source*

Dependent 
variable

Excess_mortality_apr_feb_per_
capita

Excess per capita mortality over a period from April 2020 to February 
2021 compared to the mean over previous 5 years

1

Demographic Population Mean population during a calendar year 1

Demographic Urban_Population_Share Share of urban population 1

Demographic
Migr_IntraReg_3Y_mean_per_

capita_x10000
3-year mean intraregional migrants per 10 000 inhabitants 1

Demographic
Migr_Inflow_InterReg_3Y_
mean_per_capita_x10000

3-year mean interregional arriving migrants per 10 000 inhabitants 1

Demographic
Migr_Inflow_International_3Y_

mean_per_capita_x10000
3-year mean international arriving migrants per 10 000 inhabitants 1

Demographic
Migr_Outflow_InterReg_3Y_

mean_per_capita_x10000
3-year mean interregional departing migrants per 10 000 inhabitants 1

Demographic
Migr_Outflow_International_3Y_

mean_per_capita_x10000
3-year mean international departing migrants per 10 000 inhabitants 1

Demographic
Employees_in_Working_Age_

Population_Share
Share of employed people in total working-age population 1

Demographic Working_Age_Population_Share Share of working-age population in total population 1

Demographic
Under_Working_Age_

Population_Share
Share of under working-age population in total population 1

Demographic
Post_Working_Age_Population_

Share
Share of post-working-age population in total population 1

Environment Jan_Temp_Mean_10yr 10-year mean of temparature in January (2010-2020) 2

Environment Jul_Temp_Mean_10yr 10-year mean of temparature in July (2010-2020) 2

Environment Jan_Humid_Mean_10yr 10-year mean of humidity in January (2010-2020) 2

Environment Jul_Humid_Mean_10yr 10-year mean of humidity in January (2010-2020) 2

Human 
Interaction

Road_Density Total length of federal and regional level roads / area of the region 3

Human 
Interaction

Rail_Road_Density Total length of standard width rail roads / area of the region 3

Human 
Interaction

Airport_Density Total number of airports / area of the region 3, 4

Human 
Interaction

Buses_per_capita Number of buses per person 1

Healthcare Doctors_per_capita_x1000 Number of doctors per 1 000 inhabitants 1

Healthcare
Change_over_5yrs_Doctors_

per_capita_x1000
Ratio of the number of doctors per 1 000 inhabitants, 2019 to 2015 1

Human 
Interaction

Modern_Retail_Area_per_
capita_x1000

Total area of large retail (600+ square meters) per 1000 inhabitants 1

Human 
Interaction

Floor_Area_per_capita Residential floor area per person 1

Human 
Interaction

Retail_N_per_capita_x1000 Total number of all retail stores per 1000 inhabitants 1

Human 
Interaction

Retail_Area_per_capita_x1000 Total area of all retail retail per 1000 inhabitants 1

Human 
Interaction

Cars_per_capita_x1000 Number of private passanger cars per 1 000 inhabitants 1

Human 
Interaction

Ecommerce_Users_Share Share of people using ecommerce for shopping 1
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Human 
Interaction

Digital_Gov_Serv_Users_Share Share of people using digital government services 1

Human 
Interaction

Workers_in_A_EconAct_Share Share of working-age population working in A - Agriculture 1

Human 
Interaction

Workers_in_B_EconAct_Share Share of working-age population working in B - Mining 1

Human 
Interaction

Workers_in_C_EconAct_Share Share of working-age population working in C - Manufacturing 1

Human 
Interaction

Workers_in_D_EconAct_Share Share of working-age population working in D - Electricity, Gas, etc. 1

Human 
Interaction

Workers_in_E_EconAct_Share Share of working-age population working in E - Water Supply 1

Human 
Interaction

Workers_in_F_EconAct_Share Share of working-age population working in F - Construction 1

Human 
Interaction

Workers_in_G_EconAct_Share
Share of working-age population working in G - Wholesale and Retail 

Trade
1

Human 
Interaction

Workers_in_H_EconAct_Share
Share of working-age population working in H - Transportation and 

Storage
1

Human 
Interaction

Workers_in_I_EconAct_Share Share of working-age population working in I - Accomodation and Food 1

Human 
Interaction

Workers_in_J_EconAct_Share Share of working-age population working in J - IT and Communication 1

Human 
Interaction

Workers_in_K_EconAct_Share Share of working-age population working in K - Finance and Insurance 1

Human 
Interaction

Workers_in_L_EconAct_Share Share of working-age population working in L - Real Estate 1

Human 
Interaction

Workers_in_M_EconAct_Share
Share of working-age population working in M - Professional, Scientific, 

Technical
1

Human 
Interaction

Workers_in_N_EconAct_Share
Share of working-age population working in N - Administrative and 

Support
1

Human 
Interaction

Workers_in_O_EconAct_Share
Share of working-age population working in O - Public Administration 

and Defence
1

Human 
Interaction

Workers_in_P_EconAct_Share Share of working-age population working in P - Education 1

Human 
Interaction

Workers_in_Q_EconAct_Share
Share of working-age population working in Q - Healthcare and Social 

Work
1

Human 
Interaction

Workers_in_R_EconAct_Share
Share of working-age population working in R - Arts, Entertainment and 

Recreation
1

Human 
Interaction

Workers_in_S_EconAct_Share Share of working-age population working in S - Other Services 1

Socioeconomic Salary_Region_to_Country_Ratio Ratio of mean regional salary to mean national salary 1

Socioeconomic
Population_Below_Living_

Wage_Share
Share of population with income below the living wage 1

Socioeconomic Mean_Real_Wage Mean Real Wage 1

Socioeconomic Income_per_capita Income per person 1

Socioeconomic SME_in_GRDP_Share
Share of Small and Medium Enterprise output in Gross regional domestic 

product
1

Socioeconomic GRDP_in_GDP_Share Share of Gross regional domestic product in Gross Domestic Product 1

Socioeconomic Patents_per_capita_x10000 Number of patents per 10 000 inhabitants 1

*1 – Federal State Statistics Service – Rosstat, 2 – All-Russia Research Institute of Hydrometeorological Information - World Data 
Center (RIHMI-WDC), Roshydromet, 3 – OpenStreetMap, 4 – Aircraft owners and pilots association of Russia


