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ABSTRACT. Most methods in the field of wildfire prevention are based on expert assessment of fire danger factors. However, 
their weights are usually assumed constant for the entire application area despite the geographical and seasonal changes 
of factors. This study aimed to develop a wildfire prevention method based on partial and general fire danger ratings taking 
into account their spatio-temporal variability. The study was conducted for Krasnoyarsk territory, Orenburg region and the 
Meschera lowland as the most forest, steppe and peat fire dangerous regions of Russia respectively. Surface temperature, 
moisture, vegetation structure, anthropogenic load, topography and their variation over subzones and in time were used as fire 
danger factors. They were evaluated by measuring parameters such as radiobrightness temperature, Normalized Difference 
Water Index (NDWI), Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), distance to 
settlements and roads, elevation, slope and aspect. Materials from the Terra/Aqua, Sentinel-3, Landsat-8, Sentinel-2 satellites, 
ASTER Global Digital Elevation Model and Open Street Maps vector layers were used in the study. Correlation between these 
parameters and the actual fires in 2016-2018 was analyzed. Linear relationships were established, and correlation coefficients, 
equations of partial ratings and prevention 90%-threshold values were identified. On their basis, the parameter weights were 
computed to integrate them into the general fire danger rating. The developed method was validated using data over 2019. 
The results showed 67% confidence and 61% reliability of fire prevention along with the spatio-temporal patterns of fire 
danger factors. The method is recommended for preventing wildfires within the study areas and can be extend to similar 
regions.
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INTRODUCTION

 Fire danger is a key indicator in the prevention of 
wildfires. It is estimated based on weather variables 
influencing the fire conditions (Camia and Amatulli 2009) 
and the health of vegetation, which acts as the main fuel 
(Yebra et al. 2013; Sofronova and Volokitina 2017). With 
methodological advances, various national fire danger 
rating systems were developed, including American 
National Fire Danger Rating System (Deeming et al. 1972; 
Burgan 1988), Canadian Fire Weather Index (Van Wagner 
1987), Russian Nesterov (Nesterov 1949) and Australian 
(McArthur 1967) Fire Danger Index, etc. These systems 
mainly use ground meteorological observations at weather 
stations and forest inventory data.
 The development of remote sensing technologies 
has led to the use of satellite datasets with larger spatial 
coverage and higher temporal resolution. Estimation of 
fire danger based on remote sensing data is performed 
using visible and infrared imagery, which characterize 
major fire danger factors (Chuvieco and Congalton 1989). 
It is commonly used to assess live and dead fuel moisture 
content (Chuvieco et al. 2003; Arganaraz et al. 2016), 

temperature (Chuvieco et al. 2004), topography (Eskandari 
et al. 2020), and anthropogenic load (Suresh Babu et al. 
2016). The usual practice is to define fire prevention zones 
by assigning certain weights to the classes of all fire danger 
factors according to their influence on fire probability 
(Jaiswal et al. 2002; Xu et al. 2005). Combining all factors 
into a general fire danger parameter is usually conducted 
using GIS operations such as overlay and raster algebra 
(Akbulak et al. 2018; Yankovich et al. 2019), with the recent 
addition of machine learning, neural networks (Bui et al. 
2018) and big data (Piralilou et al. 2022) technologies. 
Modern methods have advanced to using ensembles of 
different techniques with the selection of the most optimal 
and accurate results (Rosadi and Andriyani 2021).
In Russia, methods for fire prevention and fire danger 
assessment are currently developed for three major areas:
 – Institute of Space Research of the Russian 
Academy of Sciences (RAS) developed technologies for 
improving the Remote Monitoring Information System 
of the Russian Federal Forestry Agency, which is aimed at 
predicting pyrogenic tree mortality (Bartalev et al. 2017), 
stochastic simulation of fire ignition and propagation 
(Khvostokov et al. 2016) and mapping of fire danger classes 
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based on remote sensing products (Plotnikova and Ershov 
2015) for the Central and European parts of Russia as well 
as its entire territory;
 – The Siberian branch of RAS devoted its studies to 
enhancing fire danger classes and developing local and 
regional scales for Siberian forests (Sofronova et al. 2008; 
Volokitina et al. 2016);
 – Far-Eastern branch of RAS developed methods 
for predicting fires based on vegetation combustibles 
(Zubareva 2018) and evaluating grass fire danger (Glagolev 
2018) for Far-Eastern regions.
 However, despite the great number of methods and 
their regional and local corrections, almost all of them 
have a major shortcoming – the key parameters describing 
fire danger factors (threshold values, weights, etc.) are 
assumed to be constant for large territories, while in fact 
they are characterized by significant spatial (geographical 
and scale) and temporal (seasonal) variability. This leads 
to a rough and inaccurate assessment of fire danger: for 
example, one temperature threshold value for a large 
meridional territory can perform well for the middle 
part of the area, overestimate the danger in the south 
and underestimate it in the north. Another shortcoming 
concerning Russian territory is that the Nesterov index, 
which mainly uses ground meteorological data and 
ignores the huge potential of remote sensing and other 
spatial products, is usually applied at the official level.
 The aim of this study was thus to develop a method 
for preventing wildfires based on fire danger estimation, 
which would rely on the general principles of existing 
systems (Gizatullin et al. 2019) and take into account the 
spatio-temporal variability of fire danger factors. The 
study was conducted in the most fire dangerous regions 
of Russia – Krasnoyarsk Territory, Orenburg Region and 
the Meschera lowland, using Terra/Aqua, Sentinel-2,3 
and Landsat-8 images, ASTER GDEM elevation model and 
OpenStreetMap layers.

MATERIALS AND METHODS

The study area

 The study areas were selected based on the number 
of fire cases and the spatial variability of fire conditions 
and fuels in Russia, which is characterized by the type of 

wildfire: forest, steppe and peat. Sample analysis included 
an overlay of landcover maps (Ogureeva and Kotova 
2013) with FIRMS hotspot (fire points) layers (Hanston et 
al. 2014, https://firms.modaps.eosdis.nasa.gov/). It was 
demonstrated that during the last decade (in 2010-2018), 
the largest number of forest, steppe and peat fires was 
observed in the Krasnoyarsk territory, Orenburg region, 
and the Meschera lowland respectively. The study areas 
were divided into zones of homogeneous vegetation (Fig. 
1) corresponding to different types of forests, steppes and 
peatland which determine the possible fuel (based on 
Furaev et al. 2016; Pavleychik 2016; Medvedeva et al. 2019).
 Krasnoyarsk territory is characterized by a high forest 
cover – more than 70% of the region area or 160 million 
hectares. The forests of the region have a large meridional 
extent and can be divided into seven forest zones (Fig. 1a) 
with different natural pyrological conditions. The area is 
characterized by the prevalence of coniferous tree species 
along with fire dangerous moss and lichens, lowland (0-
200m) and tableland (500-700m) topography, and a heavy 
continental climate with the maximum temperature 
(+25…40°С) and consequently the largest number of fires 
observed in summer due to lightning ignition (based on 
Sofronov and Volokitina 1990 with authors’ updating). In 
addition, the region has a population of about 2.8 million 
people, concentrated in its southern part. However, the 
middle and northern parts are also characterized by a high 
anthropogenic fire load due to the development of oil and 
gas fields and pipelines installation. Under these conditions, 
several million hectares of forest burn annually within the 
region as more than 700 thousand MODIS hotspots were 
registered here from 2010 to 2018.
 In Orenburg region, the main pyrological factors 
include the dominance of dry steppe vegetation (sheep 
fescue, needlegrass, artemisia, etc.), heavily continental 
arid climate with a shortage of liquid precipitation and 
significant variation in topography (segments of the 
Southern Urals). Anthropogenic factors of fire ignition are a 
population of 1.9 million people, agriculture development 
and a great number of grass fires in the spring during a 
sharp temperature increase by 10-20°С. From 2010 to 2018, 
about 140 thousand MODIS hotspots were registered in the 
region.
 The Meschera lowland is located within Moscow, Ryazan 
and Vladimir regions and is characterized by a continuous 
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Fig. 1. Spatial units of the study areas: (a) Overview map (b) Legend (c) Krasnoyarsk territory (d) Orenburg region (e) 
Meschera peat area
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spread of dry peatlands. The fire vulnerability of the region is 
determined by its high population density (more than 150 
people per km2) and consequently great anthropogenic 
load, as well as the presence of drained peatland locations 
with low moisture. The region is known for the fires of 2010 
during the summer heat wave, while 7.4 thousand MODIS 
hotspots were also determined here from 2010 to 2018.

Data

 In the study, we used only data that met the 
requirements of spatial reference, regular updating and 
open access, which makes it possible to reproduce the 
developed method for further studies and use it for similar 
purposes.
 Fire data. Previously mentioned FIRMS MODIS and 
VIIRS hotspots with confidence values greater than 95% 
were used as a reference sample of fires from 2010 to 2019. 
This sample was divided into several parts: 
 – 2000-2018 – to select the regions of Russia with 
the most fires in the last decade for further study (as was 
mentioned in the Study areas section);
 – 2016-2018 – for estimating fire danger parameters 
based on the available remote sensing data of the selected 
satellites;
 – 2019 –to test and validate the developed fire 
prevention method in near-real-time conditions.
For Krasnoyarsk territory, 2016-2019 ground data from the 
regional forest fire center (http://www.lpcentr.ru/) was 
additionally applied.
 Remotely sensed data. To identify the changes in fire 
danger factors during the considered period, we used 
atmospherically corrected satellite products over 2016-
2019 with different spatial and temporal resolution: MODIS 
(Moderate Resolution Imaging Spectroradiometer, Aqua/
Terra, 250/500 meters, 0.5-2 days), SLSTR (Sea and Land 
Surface Temperature Radiometer, Sentinel-3, 500/1000 
meters, 1.5 days), OLI/TIRS (Operational Land Imager/
Thermal Infrared Sensor, Landsat-8, 30/100 meters, 16 
days) and MSI (Multispectral Instrument, Sentinel-2, 
10/20/60 meters, 5 days). Satellite data were derived from 
the USGS EarthExplorer service (https://earthexplorer.usgs.
gov/). During the processing, they were divided into two 
complementary spatial levels: regional (MODIS and SLSTR, 
resampled to a base resolution of 500 m, available 1-2 
times a day for all the study areas) and local (OLI/TIRS and 
MSI, resampled to a base resolution of 30 m, more accurate 
sensors, but available only once every 5-14 days).
 Digital elevation model. The ASTER GDEM (Advanced 
Spaceborne Thermal Emission and Reflection Radiometer 
Global Digital Elevation Model) Version 3 was also obtained 
from the USGS EarthExplorer service to characterize the 
topography of the areas, including elevation, slope and 
aspect parameters. Its spatial resolution is 1” (~30 meters), 
vertical accuracy (RMSE) – 8.52 meters, and it covers the 
area between 83°N and 83°S, which is crucial for the 
territory of Russia.
 Map layers. Feature layers for settlements and 
roads located in the study areas were extracted from 
OpenStreetMap (https://www.geofabrik.de/data/
download.html) to estimate the anthropogenic load.

METHODS

 To achieve the main goal of the study, a mixed 
methodological approach was used. Quantitative methods 
of GIS, raster algebra and mathematical statistics were 
applied to process the input spatial data, calculate fire 

danger parameters, investigate their correlation with 
the observed fires and evaluate the applicability of the 
developed method. But to interpret the results and make 
some conclusions, qualitative expert methods were 
included in the study.
 Fire danger parameters. Fire danger parameters were 
defined in this study as parameters that are related to the 
fire danger factors and can be used to quantify them. 
The structure of the forest, steppe and peat vegetation 
was described using vegetation indices – Normalized 
Difference Vegetation Index (NDVI; Rouse 1973) and Soil 
Adjusted Vegetation Index (SAVI; Huete 1988), which 
were applied for complete and partial projective cover 
respectively. These parameters are calculated based on 
two stable spectral bands – red (R) and near-infrared (NIR). 
Normalized Difference Water Index (NDWI; Gao 1996) 
was also used to evaluate surface moisture based on the 
near-infrared and shortwave infrared (SWIR) bands. These 
indices were computed using the following formulas:

 where BR, BNIR and BSWIR correspond to reflectance in 
channels 1, 2 и 5 of MODIS, 2, 3, 4 of SLSTR, 4, 5, 9 of OLI 
and 4, 8а, 10 of MSI.
 The surface temperature was derived from the MO/
YD11 (MODIS) and LST (SLSTR) thermal products and was 
also calculated from the thermal channels 10 and 11 of TIRS 
using QGIS (Quantum Geographic Information System). 
Topography was expressed in terms of morphometric 
parameters – true altitude, slope and aspect, derived from 
ASTER GDEM. 
 The anthropogenic load was determined as a 
normalized back-weighted function of the distance to 
settlements and roads. One of the main causes of fires is an 
anthropogenic factor. Therefore, a simple assumption was 
used: lower distance to settlements and roads as places 
of possible human presence corresponds to the higher 
fire danger. The weights of normalized distance values 
were calculated for different features using the ranked 
method: 0.91 for settlements and 0.09 for roads. Finally, the 
anthropogenic load (AL) was computed by the following 
formula:

 where DS – distance to settlements, DR – distance to 
roads, DSmax and DRmax – maximal values of distance to 
settlement and roads respectively, for normalization.
 All fire danger parameters were divided into two types 
according to their variability:
 – variable – NDVI, SAVI, NDWI and surface 
temperature, which vary within a day and over longer time 
intervals and were estimated using remotely sensed data 
for 2016-2018 and 2019;
 – constant – topography parameters and 
anthropogenic load, which are characterized by negligible 
temporal changes and were determined once using the 
elevation model and feature layers.
 Correlation of variable fire danger parameters with 
the actual fires. 4,590 actual fires were extracted from the 
fire data for 2016-2018, when all the used satellites were 
operational. To analyze the occurrence of these fires, we 
introduced the conditional probability of ignition P as 
a linear function of time. The zero probability was fixed 
at the time T1: 7 days before the fire at the regional level 
(when using frequent MODIS and SLSTR data) and 30 

(1)

(2)

(3)

(4)

NDVI B B B BNIR R NIR R= − +( ) / ( )

SAVI B B B BNIR R NIR R= − + = × +( ) / ( . ) ( . )0 5 1 0 5

N B B B BDWI NIR SWIR NIR SWIR= − +( ) / ( )

MML D D D DS Smax R Rmax= × + ×0 91 0 09. / . /
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days at the local level (rare OLI/TIRS and MSI). These time 
intervals allowed to gain a sufficient number of points 
and analyze trend lines. The threshold probability of 90%, 
characterizing a potential fire, was defined as the value of 
the maximum difference in the parameter before the fire 
– at the time T2. As a result, the conditional probability of 
ignition P was found by interpolating between (T1, 0) and 
(T2, 90).
 To determine the correlation between variable 
parameters V (NDVI, SAVI, NDWI and surface temperature 
t) and the value of P, we built their regional 7-day and local 
30-day time series and established linear relationships 
between them (example in Fig. 2). To take into account 
the spatio-temporal variability of the fire danger factors, 
the analysis was performed in each of the 12 spatial units 
(seven forest zones, four steppe zones and one peat area) 
of the study areas for each of the 7 fire season months, from 
April to October. Finally, the linear transition equations 
P(V), correlation coefficients r and 90%-threshold values 
Vthreshold were derived for each variable parameter and 
84 space-time units on two spatial levels. All these values 
were published at https://preventfires.github.io/.

 Correlation of constant fire danger parameters with 
the actual fires. The constant fire danger parameters (C) 
within the study areas were divided into 8 equal topography 
(true altitude, slope, aspect) and anthropogenic load (L) 
classes. Based on these classes, the statistical probability of 
ignition S, which was defined as the ratio of the number 
of fires in the current class to the total number of fires, 
was calculated for the 84 space-time units and two spatial 
levels mentioned above (the values are presented on 
https://preventfires.github.io/). 

RESULTS

 The derived transition equations and 90%-threshold 
values of variable parameters can be used to prevent 
wildfires in the study areas over the fire season: if at least 
one indicator is greater than its threshold value, then this 
location can be interpreted as a fire point. For example, the 
temperature threshold value for the Meschera peat area in 
July is 51.5°C on a regional level and 55.1°C on a local level, 
while in June it is 41.5°C and 42.3°C respectively. Thus, the 
conditional probabilities P of NDVI, SAVI, NDWI and surface 
temperature represent partial ratings of fire danger. 
 However, the main principle of the existing systems is 
the weighted combination of partial ratings into a general 
fire danger rating. In our case, variable and constant 
parameters were combined at the highest hierarchical 
level. As the significance of variable parameters is larger 
compared to constant parameters due to the temporal 
updatability, their weights were ranked as 0.66 and 0.33 

respectively. At the next level, the NDVI, SAVI, NDWI 
and temperature weights were established based on 
the correlation coefficient r, while statistical probability 
was used to determine the weights for topography and 
anthropogenic load factors. As a result, the equation of the 
general fire danger rating G within each space-time unit 
was as follows:

 where n, m – the number of significant (r > 0.7) variable 
and constant parameters. For example, for the Altai-Sayan 
taiga May unit this equation was as follows:

 The weights of fire danger parameters that were used 
to generate equations for other space-time units as well 
as other result values from this study were published 
at https://preventfires.github.io/. The obtained general 
fire danger rating was used to divide the territory into 2 
classes: fire points and no-fire area. If the value of the rating 
was greater than 0.9 or 90%, then the pixel was attributed 
to the fire point class, otherwise – to the no-fire class.
 The workflow of the wildfire prevention method is 
shown in Fig. 3. It was validated by monitoring the study 
areas from April to August 2019. The fire points obtained 
using the developed method were compared with the 
reference FIRMS fire data of the same period (Table 1). To 
evaluate the applicability of the method, two metrics were 
used:
 – reliability – the ratio of truly prevented (observed) 
fire points to all prevented (potential) fire points, this metric 
demonstrates the plausibility of the method results;
 – confidence – the ratio of observed fire points, 
registered by the method, to all observed (real) fire points, 
this metric indicates how much the method results relate 
to the real situation.
 Overall, the reliability of the method was 61%, and its 
confidence was 67%. These values were reached due to the 
spatio-temporal sampled variability of threshold values, 
equations and weights of fire danger partial and general 
parameters. It was also improved by combining the results 
of two spatial levels: regional data has large territorial 
coverage and high temporal resolution, but local data is 
more spatially detailed and accurate in identifying the fire 
danger parameters. There were common cases, when fires 
were not prevented by MODIS/SLSTR data, but prevented 
by OLI/TIRS/MSI data, and cases, when a fire was prevented 
on both levels. 
 However, the one weakness of the method is a 
sufficiently great number of falsely prevented points. It is 
planned to correct this in further studies.
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Fig. 2. Correlation between surface temperature t and conditional probability of ignition P in the case of the Altai-Sayan 
taiga forest area in May

(5)G r
r

P V
S
S C

i

V P
i

j
j

m

i

n
= +

−
== ∑ ∑∑∑2 3 1 3
11

/ ( ) /
( )



(6)G P NDVI P t S L= + +0 28 0 39 0 33. ( ) . ( ) . ( )



35

DISCUSSION

 The proposed method is based on the spatio-temporal 
variability of fire danger factors, which was achieved by 
dividing the study areas into space-time units. To confirm 
that, changes in the threshold values of variable fire danger 
parameters were analyzed.
 In Krasnoyarsk Territory, it was found that informative 
parameters with r > 0.7 were NDVI and surface temperature 
(Fig. 4a, b). The threshold values reached a maximum in June 
and July, during the flowering phenological phase and the 
highest surface heating. In Orenburg region, SAVI, NDWI 
and surface temperature were found to be informative. The 
time variation of SAVI showed a maximum in May, which 
corresponds to the phenological season in the steppes 
(Fig.  4c). Temperature threshold variation (Fig.  4d) was 
similar to the trend in the Krasnoyarsk forests. The NDWI 
changes (Fig. 4e) were inversely related to the temperature 
curve with a negative peak displacement towards August, 
when the surface moisture is minimal. The largest number 
of informative parameters (NDVI, SAVI, NDWI and surface 
temperature) was found in Meschera. Their variation 
(Fig.  4f ) corresponded to the general trends described 
above with a difference only in values. Spatially, threshold 
values varied monotonically from North to South, which 
indicates the zonal variability of surface temperature, 
vegetation and consequently fire danger factors.
 These trends led to the following conclusions. The 
dependence of fire danger on vegetation indices is 
complex. The higher index value usually corresponds to 
more live green vegetation, which limits the fire ignition. 
However, in our case, the inverse quantitative trend was 
identified as the higher index value indicates a larger 
amount of available fuel, which changes both zonally and 
seasonally. Surface temperature and moisture are inversely 
proportional and change in accordance with the air 
temperature curve, which creates conditions for ignition.

 The significance of constant fire danger parameters 
represented by statistical probabilities was also great. The 
largest number of wildfires were observed in areas with 
slightly sloping surfaces (1…3°), southern aspect (South, 
South-East, South-West) and high anthropogenic load. These 
patterns allow to prevent fires in areas with these classes of 
constant parameters. It proves that the inclusion of constant 
fire danger factors in the analysis is crucial, particularly when 
variable parameters do not reach threshold values.
 To summarize, we had the following policy implications. 
The revealed spatial and temporal trends of threshold values, 
especially zonal and seasonal, justified the relevance of 
the discrete approach to fire danger assessment based on 
space-time units (zones and months). The obtained values 
of correlation coefficient (in most cases higher than 0.7) 
and statistical probability allowed to establish the relations 
between fire danger factors and integrate them in the 
general fire danger parameter for the study areas.

CONCLUSIONS 

 As a result of the study, we developed the wildfire 
prevention method that is distinguished by original and 
advantageous features:
 – the method involves multidimensional discrete 
adaptive modelling of significant fire danger factors – NDVI 
and SAVI as vegetation fuel factor; NDWI as water content 
factor; surface temperature as thermal factor; elevation, 
slope and aspect as topography factor; and distance to 
settlements and roads as anthropogenic load factor;
 – the identification of possible fire points was 
performed both analytically, based on partial ratings (each 
variable factor has a threshold value and can independently 
characterize a potential fire), and synthetically by normalized-
weight integration of parameters into the general rating;
 – the fire prevention was enhanced by the use of 
heterogeneous regional and local data, which complement 
each other at two different spatial levels;
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Fig. 3. Wildfire prevention by computing partial and general fire danger ratings

Parameter Krasnoyarsk territory Orenburg region Meschera lowland In total

Number of potential fires 201 60 41 302

Occured of them 119 37 29 185

Reliability, % 59 62 71 61

Number of occured fires 98 25 20 143

Prevented of them 64 15 17 96

Confidence, % 65 60 85 67

Table 1. Results of the fire prevention method validation
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 – the main feature is the establishment of the key 
parameters (threshold values, equations and weights) for 
different space-time units (forest, steppe and peat zones and 
months), which makes it possible to improve fire prevention 
based on the spatio-temporal differentiation of fire danger 
factors.
 All of this indicates the validity of the method for solving 
scientific and practical problems in similar study regions, 

which was confirmed by the relevant validation results with 
the confidence and reliability values above 60%. Further 
studies will be devoted to improving the prevention by 
extending fire danger parameters for the study areas by 
including deviation spring, relative greenness (Cheret and 
Denux 2011), etc.
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