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ABSTRACT

This paper demonstrates the possibility of 

using nonlinear modeling for prediction of 

the Caspian Sea level. Phase space geometry 

of the of a model can be reconstructed by the 

embedology methods. Dynamical invariants, 

such as the Lyapunov exponents, the Kaplan-

Yorke dimension, and the prediction horizon 

were estimated from reconstruction. Fractal 

and multifractal analyses were carried out for 

various time intervals of the Caspian Sea level 

and multifractal spectra were calculated. 

Then, historical data resolution was improved 

with the help of fractal approximation. The 

EMD method was used to reduce noise of 

the time series. Global nonlinear predictions 

were made with the help of Artificial Neural 

Network for combinations of different 

empirical modes.

KEY WORDS: Caspian Sea level, Fractal 

Approximation, Multifractal Analysis, 

Empirical Mode Decomposition, Embedology, 

Nonlinear prediction

INTRODUCTION 

The Caspian Sea is the largest intercontinental 

reservoir without water outflow which 

exhibits a unique global evolution 

over an extremely long interval of time. 

On geological scale, the history of the 

Caspian Sea is represented by alternations 

of transgressive and regressive phases 

reflected clearly by paleodata, reflected 

in scanty historical records, and shown by 

instrumental measurements during recent 

and a relatively short monitoring period. In 

Holocene, for example, the fluctuations of 

the Caspian Sea Level (CSL) were caused by 

climate changes. It is possible that the CSL 

was influenced not only by water balance, 

but also by tectonic changes of the seabed, 

and that these factors did not necessarily 

coincide in time [Golitsyn, 1995]. Up to date, 

the CSL has being raising for already 18 

years. By the beginning of 1996 year, the 

CSL has reached –26,6 meters and the area 

of the Caspian Sea has increased by 40 000 

square kilometers. The rising sea level and 

strong winds resulted in multiple problems 

for economic development. Economics of 

the regions near the Caspian Sea depended 

on modern sea fluctuations. Modeling the 

dynamics of a closed reservoir without 

outflows may appear straightforward on 

the first sight. However, simple balance 

models may not adequately describe the 

situation. Only nonlinear models may be 

applied to describe a chaotic dynamics 

of the CSL [Makarenko et al., 2004; 

Kozhevnikova & Shveikina, 2008]. Thus, in 

this paper, we applied nonlinear modeling 

to predict the CSL. This approach was 

based on reconstruction of phase dynamics 

from observed time series by means of 
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topological embedding methods. A 

nonlinear global forecast has been made 

with the help of Artificial Neural Network 

(ANN). The CSL time series were constructed 

by fractal approximation.

EMBEDOLOGY AND NONLINEAR 

PREDICTION

The nonlinear approach for modeling 

and prediction of dynamic regimes of sea 

level can be based on chaotic dynamics 

[Makarenko, et al., 2004]. According to 

general assumptions about properties of 

an unknown dynamic model of sea level 

we can reconstruct the diffeomorphic 

copy of its attractor in an n-dimensional 

space. This technique, called embedology, 

is widely known [Sauer et al., 1991]. We 

used it to create the nonlinear scheme of 

sea level prediction. Embedology methods 

assume that an observed variable is typical 

and contains all characteristic elements of 

dynamics. However, the CSL data have being 

measured only since 1830 and they do not 

contain information about global variations 

of sea level. Thus, one can hope only for a 

short-term forecast. In fact, the prediction 

horizon is determined by the maximum 

positive value of the Lyapunov exponent 

[Schaw, 1981] according to T . log2N/k +
maxl

, where N is time series length, k = [1÷3]. 

Applying the embedding dimension with 

m = 3, τ = 2, and a number of nearest 

neighbors of 20, we obtained Lyapunov 

exponents: +
1l  = 0.302797, −

2l  = –0.14458, 
−
3l  = –0.838176 for the instrumental time 

series. The Kaplan-Yorke dimension is 2.18876 

that is close to the embedding dimension. In 

our case, the length is N = 1955 and the 

prediction horizon is Т ≈ 12–36 months 

[Makarenko, et al., 2004]. 

The reconstruction of the copy of the attractor 

into Euclidian space Rm gives possibility to 

obtain the following predictor [Sauer et al., 

1991, Makarenko, 2003]:

y((k + l)Δt) = 

= F(y(k), y(k – τ), y(k – 2τ), ..., y(k – mτ)).

We used m = 27 and τ = 37 to construct delay 

vectors y. Unknown function F-predictor 

is nonlinear and continuous function of m 

vectors of the reconstruction. Their best 

approximation is found by ANN [Poggio 

& Girosi, 1989; Bishop, 2006]. ANN training 

was carried out using a set from available 

values of the CSL data. In the case when 

a lag of τ ≠ 1, one can obtain τ predicted 

points simultaneously, i.e. can construct a 

vector prediction. The lower estimate of the 

embedding dimension m > 8 was obtained 

with the help of the False Nearest Neighbors 

method. The prediction horizon is limited by 

the time series length and rate of divergence 

of close reconstructed trajectories. The 

prediction horizon of instrumental monthly 

CSL data was estimated at 12–36 months, as 

mentioned above.

FRACTAL APPROXIMATION OF THE CSL 

HISTORICAL DATA

In order to use a nonlinear context and 

obtain a nonlinear prediction for historical 

data from 600 BC, we applied fractal 

approximation [Barnsly, 2000; Karimova 

et al., 2003; Makarenko et al. 2004]. The 

latter could enhance the historical data that 

are poor in accuracy and have low time-

resolution (a point per ten years). The usage 

of historical data in the prediction task is very 

important, because its accurate instrumental 

measurements reflect short time variations of 

the CSL and does not trace its global evolution. 

The main ideas of fractal approximation is as 

follows. The interpolation problem deals with 

a set of input pairs  ( ){ }=0
,

N

i i i
x y  where the 

0 = x0 < x1 < ... < xN = 1 are nodes and yi = 

= F(xi) ∈ R ordinates with some continuous 

function F:[0, 1] → R. As a rule, in the 

case of smooth data, the input points are 

interpolated by a single-degree N polynomial, 

or by piecewise interpolations with a low-

degree polynomial. Recent research has 

provided an alternative assumption that the 

interpolation function Fis self-similar, and 

typically not smooth, but fractal. We note 

that a function F:[0, 1] → R is well defined 

by its graph, and use the same symbol to 

denote the set of points in its graph. Hence 
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a point (x, y) ∈ F if and only if. We also use 

the notation F[x1, x2] to denote the graph 

of F over the interval [x1, x2]. Hence a point 

(x, y) ∈ F[x1, x2] if (x, y) ∈ F and x ∈ [x1, x2]. We 

construct an Iterated Function System (IFS) ) 

[Barnsly, 2000] whose attractor is the graph 

of a function F:[0, 1] → R. Such a function 

is called a Fractal Interpolating Function (FIF) 

[Cochran, W.O. et al. 1998]. For i = 1, 2, ...., N, 

let Ti:[0, 1] × R → [0, 1] × R has the form 

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
∝ + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

0
:

i

i

i

i i

dt a t
T

ex b c x
,

where ci < 1 is given as a parameter 

controlling the roughness of the function, 

and ai, bi, di and ei are determined either by 

the constraints 

Ti(0, x0) = (ti – 1, xi – 1), Ti(1, xN  ) = (ti – 1, xi – 1), 

or the “reflected” constraints

Ti(1, xN) = (ti, xi), Ti(0, xN) = (ti, xi). 

Given a metric d((t1, x1), (t2, x2)) = |t1 – t2| + 

+ 
 ( )−1

2

A

B
|x1 – x2|, where A = maxi|ai| and 

B = maxi|bi|, it can be shown that each Ti has 

contractility s = max{(1 + A)/2, C  }, 1, where 

C = maxi |ci|. Hence, by the fixed point theorem, 

there exists one and only one function F 

satisfying the invariance F = UiTi (F ).

Fractal approximation can be used in the case of 

prior uncertainty, when available measurements 

are insufficient for determination of statistical 

characteristics of the concerned process. 

And it is the best tool for data approximation 

when the mean square of process augments 

depends on correlation interval according to 

the scaling law, i.e. E[(x(t + τ) – x(t))2] ≈ τγ, where 

γ is the Levy index and inverse value to the 

Hurst exponent.

In the case of the CSL, it has been shown that 

such time series satisfy the latter condition 

and we applied fractal approximation 

technique. The approximated data were 

historical decennial CSL time series measured 

from 600 BC to 2000 AD (261 records). 

The output of the fractal approximation 

procedure was the annual CSL time series, 

2601 records in length. The time series of the 

annual CSL was obtained directly from the 

original historical time series.

MULTIFRACTAL CHARACTERISTICS

Multifractal formalism [Halsey et al., 1968; 

Riedi & Scheuring, 1997; Karimova et al., 

2007] has proved to be a very useful technique 

in the study of both measures functions, 

deterministic as well as random. Multifractal 

analysis connects pointwise regularity of the 

function with a “size” of sets where regularity 

possesses some value. Function regularity may 

change abruptly from one point to the next. 

Pointwise regularity [Karimova et al., 2007] is 

a positive real number α(x), which describes a 

certain smoothness of the graph of a function 

at a point x. In general, let h be a nonnegative 

real number, x0 ∈ R, a function F(x):R → R is Ch(x0) 

if there exists C > 0, δ > 0 and a polynomial P(x) 

of the order smaller than h so that if 

|x – x0| ≤ δ, |F(x) – P(x – x0)| ≤ C|x – x0|h,

then the Hölder exponent of F at x0 is a(x0) = 

sup{h:FisCh(x0)}. 

Let Eα = {x ∈ R:α(x) = α}, then the fine 

(Hausdorff ) multifractal spectrum [Riedi & 

Scheuring, 1997] is fH(α) = dimHEα, where 

dimHEα is the Hausdorff dimension of the set 

Eα. Because dimH of the set is never greater 

than its box dimension, one can estimate it 

by counting the boxes (or intervals) over F, 

the number of which increases roughly with 

the “right” Hölder exponent. In applications, 

however, one considers a course grained 

version fG which is:

fG(α) =  
ε→∞δ→∞
limlim sup

 ( )
( )
δ α ε

δ
log ,

log 1/

N
.

Here Nδ denotes the number of cubes of size 

δ with the coarse Hölder exponent roughly 

equal to α. Let μ(Nδ) be a measure contained 

in a δ-cube, then a = logμ(Nδ)/logδ.
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We computed the large deviation spectrum 

fG(α) and the Legendre spectrum fL(α) using 

FracLab software (http://fraclab.saclay.inria.

fr/). Both Legendre and large deviation 

spectra of the time series are presented 

in Fig. 1. The multifractal spectra were 

computed for the fragment of the annual 

data constructed by fractal approximation 

using 1500-yr long decennial data. Fig. 

1 shows that these spectra have similar 

maxima corresponding approximately to the 

Hölder exponent equal to 0.8. 

EMPIRICAL MODE DECOMPOSITION 

(EMD) FOR THE CSL

The main difficulty for construction of the 

global nonlinear prediction is an uncertainty 

associated with monthly instrumental time 

series. To avoid this difficulty we apply the well 

known Empirical Mode (EMD) decomposition 

[Huang et al., 1998] and approximate time 

series by the sum of smooth empirical modes. 

According to this method, it is possible to use 

a coarse-grained approximation of a signal, 

excluding high-frequency details, without 

breaking global structure of the signal (Fig. 2).

Thus, the method of decomposition of a signal 

by means of empirical modes [Huang et al., 

1998; Flandrin et al., 2003] represents the signal 

as a set of functions corresponding to various 

oscillations in observed signal. A basic operation 

in EMD is the estimation of the upper and lower 

“envelopes” as interpolated curves between 

extremes. The nature of the chosen interpolation 

plays an important role, and our experiments 

tend to confirm (and are in agreement with) 

what is recommended in [Huang et al., 1998], 

specifically, that cubic splines are to be preferred. 

Other types of interpolation (linear or polynomial) 

tend to increase the required number of sifting 

iterations and to “over-decompose” signals by 

spreading out their components over adjacent 

modes.

Given a signal x(t), the effective algorithm of 

EMD can be summarized as follows [Flandrin, 

et al., 2004]:

1. identify all extremes emin, emax of signal 

x(t). 

2. interpolate between minima and maxima, 

ending up with some envelope emin(t), 

emax(t). 

3. compute the mean m(t) = (emin + emax)/2. 

4. extract the detail d(t) = x(t) – m(t). 

5. iterate on the residual m(t).

In practice, the above procedure has to be 

refined by a sifting process which amounts to first 

iterating steps 1 to 4 upon the detail signal d(t), 

until this latter can be considered as zero-mean 

according to some stopping criterion. Once 

this is achieved, the detail is referred to as an 

Intrinsic Mode Function (IMF), the corresponding 

residual is computed and step 5 is applied. 

By construction, the number of extremes is 

decreased when going from one residual 

to the next, and the whole decomposition 

is guaranteed to be completed with a finite 

number of modes. For calculation of empirical 

components software batch http://perso.ens-

lyon.fr/patrick.flandrin/emd.html was applied.

Fig. 1. The large deviation fG(α) (1) and the 

Legendre fL(α) (2) spectra for the fragment of 

the annual data constructed by fractal approxi-

mation using 1500-yr long decennial data

Fig. 2. Decomposition of the signal by means of 

empirical modes. From [Flandrin et al., 2004]

Signal = low oscillation + high oscillation
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NUMERICAL RESULTS

During the experiment, the monthly data from 

January 1837 to December of 2002 were used. 

From 8 constructed empirical modes, the sum 

of modes 2, 4, 5, 6, 7, and 8 were taken, 

for which the correlation coefficient with the 

original data was 99,8%. For selected delay 

interval τ = 37, the prediction interval was 37 

months: December 1999 – December 2003. 

All predictions of the CSL time series were 

carried out by ANN, namely Statistica Neural 

Network v4.0E. Fig. 3 demonstrates real 

CSL month data (1) and the prediction (2). 

Fig. 4 shows the CSL real monthly data, 

the sum of 2, 4, 5, 6, 7, and 8 modes of 

EMD decomposition and the mean values 

of three predictions made with the help of 

EMD. Deviation of predicted values from 

the real data did not exceed 1%.

CONCLUSION

We have discussed the method of the CSLs 

predictions based on the reconstruction of a 

dynamical system with the help of embedding 

time series in Euclidian space of an appropriate 

dimension. This approach makes it possible to 

construct vector prediction, i.e. to forecast a 

consecutive set at the same time. Therefore, 

one can avoid an exponential increase of 

errors inherent in a step-by-step prediction. 

The prediction is realized by means of the 

ANNs, that are optimal approximating tool for 

an unknown continuous and multivariable 

function, i.e. a nonlinear predictor.

The ANN is trained by transforming input 

examples into the outputs as the known 

answer of the training set constructed by 

the known records from the past. To use the 

decennial historical data together with the 

annual instrumental data, we constructed 

fractal approximation of the decennial data 

that allowed increasing the time series. 

The necessary property of statistical scale 

invariance was verified by multifractal spectra. 

Additional improvement of the data was 

implemented with the help of EMD technique 

that allowed delicate noise filtration without 

disturbance of correlation of the time series. 

The global nonlinear predictions were made 

with the help of ANN for combinations of 

different empirical modes.

Our experiments based on the approaches 

mentioned above have shown possibility to 

forecast the CSLs at 1–3 yrs intervals, which 

is extremely useful in practice. It is necessary 

to point out that a nonlinear prediction 

represents an ill-posed problem as it produces 

a great number of possible variants. Selection 

of the most probable variant from a set of 

predictions remains an open challenge.
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Fig. 3. The CSL real monthly data (1) 

and the prediction (2)

Fig. 4. Comparison of the real CSL monthly data 

(1), the sum of 2, 4, 5, 6, 7, and 8 modes of EMD 

decomposition (2) and the mean value of three 

predictions based on EMD decomposition (3)
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