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ABSTRACT. Spatial distribution and spreading patterns of COVID-19 in Thailand were investigated in this study for the 1 
April – 23 July 2021 period by analyzing COVID-19 incidence’s spatial autocorrelation and clustering patterns in connection 
to population density, adult population, mean income, hospital beds, doctors and nurses. Clustering analysis indicated 
that Bangkok is a significant hotspot for incidence rates, whereas other cities across the region have been less affected. 
Bivariate Moran’s I showed a low relationship between COVID-19 incidences and the number of adults (Moran’s I = 0.1023-
0.1985), whereas a strong positive relationship was found between COVID-19 incidences and population density (Moran’s I = 
0.2776-0.6022). Moreover, the difference Moran’s I value in each parameter demonstrated the transmission level of infectious 
COVID-19, particularly in the Early (first phase) and Spreading stages (second and third phases). Spatial association in the early 
stage of the COVID-19 outbreak in Thailand was measured in this study, which is described as a spatio-temporal pattern. The 
results showed that all of the models indicate a significant positive spatial association of COVID-19 infections from around 
10 April 2021. To avoid an exponential spread over Thailand, it was important to detect the spatial spread in the early stages. 
Finally, these findings could be used to create monitoring tools and policy prevention planning in future.
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INTRODUCTION

 On 13 January 2020, the Thailand government reported 
they had first detected a tested positive of coronavirus 
disease (COVID-19) from a Wuhan resident who had travelled 
to Bangkok. A COVID-19 outbreak then rapidly spread 
from Bangkok into all provinces of Thailand. To prevent 
the coronavirus from spreading, Thailand’s government 
announced a nationwide lockdown and curfew from March 26 
to May 31, 2020. These actions immediately changed the daily 
life activities of Thai people, had impacts on the environment, 
pollution, the economy, jobs and other things, and has since 
been the subject of various debates (Wetchayont 2021, 
Wetchayont et al. 2021). Figure 1 illustrates a time series plot 
of daily confirmed new cases (DDC 2021). Considering that 
COVID-19 was spreading like an ocean wave, the first wave 
of COVID-19 in Thailand, which began in March 2020 and 
extended across 68 provinces, had initially started at boxing 

events and nightclubs in Bangkok. By May 25 2020, the 
number of total confirmed cases had reached 3,042 cases 
with 57 deaths (Rajatanavin et al. 2021). The second wave 
was spurred by some Thai workers who entered Thailand 
illegally from Myanmar and were not apprehended by state 
quarantine. They transported the infection and disseminated 
it across Thailand’s Northern provinces. In addition, a huge 
number of infected migrant laborers traveled directly and 
illegally from Myanmar to work in industries and seafood 
markets in Bangkok’s neighboring province of Samut Sakhon. 
Between December 18, 2020 and February 27, 2021, new 
cases rise from 3,042 cases in the first wave to 21,584 cases 
in the second wave. However, daily incidences had reduced 
to less than 100 by the last week of February 2021, indicating 
that the problem was progressively being brought under 
control (Rajatanavin et al. 2021). The most recent wave of 
the coronavirus outbreak in Thailand is now number three. 
As of 23 July 2021, 467,707 cases of COVID-19 were officially 
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confirmed in Thailand, including 3,811 deaths, with a record 
high of 14,575 new COVID-19 cases and 114 fatalities over one 
24 hour period. For every day since 10 April 2021, the total 
number of COVID-19 cases in Thailand increased rapidly due 
to the Songkran holiday because of a new variant virus. The 
Songkran holiday, which runs from April 10 to 15, saw a large 
number of workers return to their hometowns from Bangkok 
and other big cities where infection rates were high, causing 
COVID-19 to spread nationwide. Over 2020 Thailand had a 
commendably low number of cases and successfully slowed 
the rate of infections by using strict measures. Nevertheless, 
on this current wave, the infection rate is rising exponentially 
and has not stopped up till now. This has caused a hospital 
bed shortage and left medical officials exploring home 
isolation for asymptomatic cases. Regular hospitals have been 
advised to treat only those patients with moderate symptoms 
or severe conditions. Early in the first wave of this COVID-19 
pandemic, sex differences in the incidence of the disease were 
observed. The incidence rate in males was about 15% higher 
than in females in younger age groups, as shown in Figure 2. 
The same results were also found in the European region. A 
study by Green et al. (2021) provided evidence of sex and age 
differences in the case-fatality rates (CFR) of infection from 
COVID-19 in seven countries throughout Europe. They found 
that higher CFRs in males within younger age groups could be 
related to hormonal factors. Meanwhile, in the second wave, 
females tended to have higher incidence rates by about 30%, 
but then the incidence rates came down to become equal. 
There could be several factors responsible for the increased 
number of cases in the third wave. One of the reasons is that 
the mutant virus is more effective at transmitting and has a 
shorter incubation period (Li et al. 2021).
 Previous studies have evaluated the geographical 
heterogeneity of chronic respiratory diseases (CRDs) in Thailand 
by using spatial statistics and found that high cluster areas of 
CRDs associate with population and industrial booms which 
generally contribute to epidemics (Laohasiriwong et al. 2018). 
Other studies have looked at the spatial spread of severe acute 
respiratory syndrome (SARS) in Beijing and mainland China 
(Meng et al. 2005; Fang et al. 2009). The findings show that there 
were different spatial connections between provinces in terms 
of possible pathways for the spread. Recently, there have been 
some studies that explored spatiotemporal clustering patterns 
of COVID-19 outbreaks at the provincial level by using global 
and local Moran’s I indices in mainland China, which were also 
attributed to changes in social and demographic factors (Wang 
et al. 2021; Kang et al. 2020; Li et al. 2020; Zhang et al. 2020). 
COVID-19 incidence rates showed spatial connections between 

the district level and socioeconomic determinants, according 
to studies conducted in Brazil and Iran, which employed the 
global Moran’s index and the Local Index of Spatial Association 
(LISA) as tools (Raymundo et al. 2021; Ramírez-Aldana et al. 
2020). Moreover, a study among European nations, discovering 
a substantial positive association between income/population 
and COVID-19 cases/deaths, implied that these two variables 
could be important control variables for assessing COVID-19-
related human casualties (Sannigrahi et al. 2020). 
 There was an assessed effort over temporal and 
spatiotemporal reproduction numbers to track transmission 
of COVID-19 dynamics in Thailand during the first wave 
(Rotejanaprasert et al. 2020). Results showed that the outbreak 
could contain reproduction numbers when it was under the 
control of strict measures. However, the real situation was 
difficult to determine in the early transmission stage due to 
limited incidence numbers. Additionally, Triukose et al. (2021) 
reported on the causes and lessons learned from the first wave 
of COVID-19 spread in Thailand. Their study used effective 
reproduction numbers to characterize the spread of COVID-19 
across the country in five stages. Their results revealed that 
COVID-19 was mostly limited to Bangkok in the Early stage, 
but then started to cross over Bangkok’s borders during the 
Spreading stage. After that, it spread nationwide, primarily 
due to a massive movement to people’s hometowns after the 
Bangkok lockdown on 26 March 2020 in the Intervention I stage. 
In the Intervention II stage, the infectious rate downturned and 
became stable. Finally, the average of daily confirmed cases 
declined to zero and held the country in the Easing stage. 
 So far, the number of studies on spatial association of 
COVID-19’s spread in Thailand are limited. Understanding 
the early stages of the COVID-19 outbreak’s spatial spread is 
critical, as it may aid in the prediction of local epidemics and 
the development of public health policies based mainly on 
outbreak data (Kang et al. 2020). Even if those studies show 
how well temporal and spatial reproduction numbers track 
the transmission of COVID-19 dynamics in Thailand, in order 
to utilize these tools for tracking a spreading wave, or for 
preventive and crisis management policy planning, it requires 
extensive study to assess the effect of other variables on the 
spread of COVID-19. Thus, the goal of this study is to detect 
early transmission by using spatial distribution of COVID-19 
incidence in Thailand’s provinces and its relationship with 
sociodemographic factors. The expected results of this study 
could gain better understanding of the social environment 
and the epidemic’s spread for utilizing tools needed to inform 
disease control activities in the future.
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Fig. 1. Trend chart of new confirmed cases in Thailand during the period of January 1, 2020 to July 23, 2021. The first 
(March-May 2020), second (January-February 2021) and third waves (April-July 2021) are indicated by the daily new 

number of confirmed cases
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MATERIALS AND METHODS

Data collections

 The number of confirmed COVID-19 cases, as registered by 
the Department of Disease Control of Thailand and updated 
daily, were obtained from their Thai website at the Digital 
Government Development Agency (https://data.go.th/
dataset/covid-19-daily). There are 76 provinces and one special 
administrative area (Bangkok) in Thailand. This study used 4 
months’ data from 1 April to 19 July 2021, which was during the 
early stages of the third wave of COVID-19 in Thailand. Other 
datasets were obtained from the National Statistical Office 
of Thailand (NSO) website, including population, population 
density, number of doctors, and hospital beds by province 
(NSO 2021). All population-related and medical resource 
datasets were collected in 2020, making this the most up-to-
date demographic information available (Table 1). 
 Figure 3 depicts a province-by-province map of monthly 
cumulative cases. The total number of instances is the sum of 
newly confirmed cases from 1 April–23 July 2021. The largest 
number of cases was in Bangkok, which is the capital city. Figure 
4(a) presents the total population and population density 
(population/km2) for each province in 2020. Metropolitan 
Bangkok had the highest population density, number of adult 
people and mean household income. As shown in Figure 
4(d) – (f ), Bangkok also has the highest number of hospital 
beds, doctors and nurses, whereas Chiang Mai and Nakhon 
Ratchasima Provinces ranks third and fifth for the number of 
hospital beds and doctors, respectively.

Data analysis

 The number of COVID-19 cases as confirmed from the 
laboratory in the 76 provinces and one special administrative 
area (Bangkok) in Thailand, including the total population in 
each province, were used to compute the incidence rates 
in this section. The cumulative number of all reported cases 
between 1 January and 23 July 2021, as announced by the 
Department of Disease Control (DDC) of Thailand on July 23, 
2021 (DDC 2021), were calculated to get the incidence of 
COVID-19 in each province according to the following formula:

 The most commonly used measure of global spatial 
autocorrelation is Moran’s I, which represents the overall 
distribution of deviations from randomness (Tu and Xia 2008). 
To provide information on spatial clusters and outliers, as well 
as forms of spatial correlation, we presented both global and 
local Moran’s I. By using global Moran’s Index (global Moran’s I) 
based on Queen’s contiguity spatial-lag of order 1: immediate 
neighbors (Moran 1950), the COVID-19 incidence rates in 
Thailand for each month from April to July 2021 were used as 
a variable. Global Moran’s I is a spatial autocorrelation test that 
determines whether or not the spatial patterns of COVID-19 
incidence are clustered by considering that space and location 
presents an influence on a single variable. Global Moran’s I and 
P test values were used to determine the number of incidence 
rates with different types of neighbors using the spatial weight 
matrix, based on geographical adjacency at a 5% level of 
significance. Spatial autocorrelation was measured using the 
global Moran’s I statistic, which was derived as follows:

Fig. 2. Distribution by gender and age groups of patients admitted for COVID-19 during the first (March-May 2020), 
second (January-February 2021) and third waves (April-July 2021)

(1)

Fig. 3. Spatial distribution of monthly accumulative COVID-19 confirmed cases in Thailand by province during the 
period of April 1, 2021 to July 23, 2021
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 where N is the total number of analysis locations, zi is the 
variable value for each location i, and wij is the spatial weight 
(or connectivity) for location i and j. Notice that locational 
information for this formula is found in the weights. For non-
neighboring tracts, the weight is zero, so these add nothing 
to the correlation. Global Moran’s I ranges from -1 to +1, 
where +1 indicates strong positive spatial autocorrelation 
(clustered pattern), 0 indicates no spatial autocorrelation 
(random pattern), and -1 indicates strong negative spatial 
autocorrelation (checkered pattern).
 The local Moran’s I, or local indicators of spatial association 
(LISA), (Anselin 1995) was used to identify the location of local 
clusters for each individual location in the region as either a hot 

or cold spot, which is the likelihood of a unit’s attribute value 
being associated with values in neighboring regions. The LISA 
spreading maps (LISA map) and LISA significance maps were 
then created with the following equation:

 where zi and zj are the deviation of the variable with respect 
to the mean values for location i and j, and j is a location in the 
neighboring region of location i.
 The LISA significance map and cluster map are used to 
visualize clusters of COVID-19 incidence more thoroughly. The 
maps highlight significant provinces with the LISA statistics 
using four alternative methods of clustering. Each one is based 
on a province’s local spatial relationship with its neighbors 
(Anselin and Bao 1997; Anselin 2019): High-High (indicates a 
province with a high value surrounded by provinces of high 
values), Low-High (a province with a low value surrounded 
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Fig. 4. Spatial distribution of (a) population density (people/km2), (b) number of adult people (million), (c) mean 
household income (baht/month), (d) number of hospital beds, (e) doctors (people) and (f) nurses (people) in 2020

Type Description of variable Data source Period

Pandemic COVID-19 confirmed cases https://data.go.th/dataset/covid-19-daily January-July 2021

Demographic

Total population of province

http://statbbi.nso.go.th/staticreport/page/sector/th/
index.aspx

2020Population density

Number of adults in province

Healthcare

Number of Hospital beds in province

http://statbbi.nso.go.th/staticreport/page/sector/th/
index.aspx

2020Number of Doctors in province

Number of Nurses in province

Socioeconomic
Mean monthly household income in 

province
http://statbbi.nso.go.th/staticreport/page/sector/th/

index.aspx
2020

Table 1. Description of parameters, data sources, and periods used in this study
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by provinces of high values), Low-Low (a province with a 
low value surrounded by provinces of low values), and High-
Low (a province with a high value surrounded by provinces 
of low values). The spatial dependence of the provinces are 
represented on a map and color-coded based on the type 
of interaction. Positive local spatial correlations are detected 
as spatial clusters: High-High and Low-Low areas (red and 
light green color, respectively), whereas negative local spatial 
correlations are defined as spatial outliers in the High-Low and 
Low-High sectors (orange and dark green color, respectively).
 Moreover, bivariate Moran’s I statistic is a spatial version of 
the correlation coefficient. It captures the changing relationship 
between two variables at multiple locations and embeds 
this information in a geographical context (Lee 2001). We 
also calculated the bivariate spatial autocorrelation between 
province-level demographics, healthcare, socioeconomic 
parameters and COVID-19 incidence rates. The spatial 
correlations of COVID-19 incidence based on the two variables 
are as follows (Anselin 2019):

 Six distinct types of neighborhood were selected, as 
in a prior study (Kang et al. 2020; Meng et al. 2005). Three 
groups of parameters (Table 1) that may describe the 
spatial relationship with incidence rates of the COVID-19 
pandemic were examined using bivariate Moran’s I statistic: 
demographic (population density and age), socioeconomic 
(mean income) and healthcare (hospital beds, number 
of doctors and nurses). To employ the bivariate Moran’s I 
method, the incidence rates were analyzed within those 
parameters, providing six models in this stage. Because 
COVID-19 travels from person to person, the coronavirus 
spreads from places with the largest to the smallest 
population size (Kang et al. 2020; Meng et al. 2005). Model 

1 took into account population density. As seen in Fig.2, 
the key inflection age group is adults, thus, numbers of 
adult people were important factors to consider for Model 
2. In Model 3, we considered the mean household income 
in each province by assuming that COVID-19 spread refers 
to socioeconomic factors, from the largest to the smallest 
provinces (Mollalo et al. 2020). In terms of healthcare 
resources, Models 4, 5 and 6 took into account the number 
of hospital beds, as well as doctors and nurses, respectively. 
Its assumes that the spread of COVID-19 goes from where 
the largest to the smallest healthcare resources exist (Kang 
et al. 2020; Mollalo et al. 2020; Meng et al. 2005). Spatial 
autocorrelation analyses in this study were implemented 
using a PySAL package, Version 1.14.0 (Rey and Anselin 
2007), based on a Python Version 3.8 package.

RESULTS

Spatial Distribution of monthly COVID-19 incidence

 Monthly COVID-19 incidence rates in the third wave are 
shown in Figure 5(a-d) for April, May, June and July, respectively. 
The incidence rates in Thailand clearly increased from month 
to month. The infection rate first increased in Bangkok, 
Chonburi and Prachuap Khiri Khan Provinces, then came first-
order neighboring provinces like Nonthaburi, Pathum Thani, 
Samutprakarn, and Phetchaburi (Figure 5b), and eventually 
second-order neighboring provinces such as Nakhon Pathom, 
Chachoengsao and Samut Songkhram (Figure 5c). Finally, the 
epidemic spread to neighboring regions in the third-order, 
including Nakhon Nayok, Saraburi, Ayutthaya, Suphan Buri, Ang 
Thong, Sing Buri, Lopburi, Tak, Ratchaburi, Ranong, Songkhla, 
Pattani, Yala and Narathiwat (Figure 5d). This confirms that 
COVID-19 is regionally dispersed and that investigating spatial 
dependency is necessary.

Fig. 5. Spatial distribution map of Thai COVID-19 incidence rates at the provincial level during the period of (a) April 
2021, (b) May 2021, June 2021 and July 2021

(4)
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Fig. 6. Global Moran’s I and univariate LISA cluster map of monthly COVID-19 incidence in provinces of Thailand, 
(a) April 2021, (b) May 2021, (c) June 2021, and (d) July 2021. Significance of the LISA map for monthly COVID-19 

incidence in (e) April 2021, (f) May 2021, (g) June 2021, and (h) July 2021

Univariate spatial correlation 

 The goal of this research was to examine if COVID-19 
incidences in Thailand had a spatial correlation. To measure 
spatial dependency, Moran’s I statistic was utilized to 
determine COVID-19 incidence in various types of 
neighborhoods. The global Moran’s I value for COVID-19 
incidence was 0.3290, 0.3739, 0.5789 and 0.7605 for April, 
May, June and July, respectively (P < 0.05), which indicates 
that COVID-19 incidence at the province-level showed a 
very significant spatial dependence. Additionally, Figure 
6 presents the LISA map (upper panel) and its p-value 
(lower panel) for each month during the third wave of 
the pandemic at Thailand’s province level. The LISA map 
highlights the main clusters of COVID-19 incidence, where 
the High-High clustering zones (red) indicate regions 
with high numbers of incidence relative to the average, 
surrounded by regions that also present high numbers. 
The Low-Low clustering zones (light green) denote spatial 

association groups with low numbers of incidence (below 
the average) surrounded by low-valued regions. In April, 
most provinces in Central Thailand (including Bangkok) and 
surrounding provinces belonged to a High-High clustering 
zone. In contrast, Samut Sakorn and Samut Songkarm 
Provinces were close to these High-High clustering zones 
but contained significant Low-Low clustering zones. Since 
those provinces were the main COVID-19 clusters in the 
second wave, most of its citizens received a COVID-19 
vaccine afterward. Therefore, these regions have had 
low incidence rates in the third wave. In May, the High-
High clustering zone from East of Bangkok decreased, 
and a Low-Low clustering zone appeared in North and 
Northeast Thailand, indicating that COVID-19 had spread 
across the country (Fig.9a). It became apparent during 
May to July (Fig 9b-d) that a Low-Low clustering zone is 
continuously increasing its distribution in the North and 
Northeast regions, and a High-High clustering zone has 
also expanded.
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Fig. 7. Summary of Pearson correlation analysis between COVID-19 incidence rates and factors related to demographic, 
socio-economic, and healthcare resources.

Bivariate spatial correlation

 Figure 7 shows the summary of results obtained 
from Pearson correlation analysis. Factors of population 
density and mean income showed the highest significant 
positive correlation (0.55) with COVID-19 incidence rates, 
followed by healthcare resources, which also represented a 
significant positive correlation (0.33). Meanwhile, the adult 
age group showed a weak positive (0.2) association with 
COVID-19 incidence rates. Additionally, population density 
showed a strong significant positive correlation (0.8) with 
the number of hospital beds, as well as doctor and nurse 
numbers. Accordingly, the distribution of medical resources 
in Thailand leans towards regions with greater population 
size and economic development.
 Bivariate Moran’s I analysis of demographics, health care 
and socioeconomics with COVID-19 incidence revealed a 
positive spatial autocorrelation, with Moran’s I values shown 
in Table 2. With a significance threshold of 0.05, these values 
were statistically significant, except for Model 2: number of 
adult people in April and May. Based on these results, all 
the Models exhibit strong spatial association for COVID-19 
incidence, and Moran’s I value increases as the number of 
COVID-19 incidences increase. Figure 8 shows changes in 
the global Moran’s I and P-values over time. The incidence 
rates of confirmed COVID-19 cases in all models showed 
significant global spatial correlation (Moran’s I > 0.0, p < 0.05), 
except for the first few days in April 2021 and in early May 
2021 of Model 2 (Figure 8b). Features of Moran’s I index trend 
changes are evident in three stages: they first increase in a 
low slope from April to May 2021; then, an increasing slope 
appears from May to June; after that, the trend becomes 
steadier in July (Fig. 8). These results are inconsistent with 
a change in the incidence trend that rapidly increased from 
May to July. This indicates that, even though the incidence 
rates were increasing, the number of clusters did not change 
or were slightly less than previously (Fig. 5 and 6). Cluster 
features still influence global spatial correlation, however, 
reflecting that COVID-19 incidence tends to develop into a 
spread. Global bivariate Moran’s I revealed that Model 1 had 
the highest spatial dependence between COVID-19 cases 
and population density in July 2021 (Moran’s I = 0.6022, p 
= 0.001), as shown in Table 2 and Fig. 8a. The primary High-
High clustering zones were located in big cities of Thailand 
such as Bangkok, Rayong, Samut Prakan, Patumthani and 
Nonthaburi (Fig. 9a-d). The Low-Low clustering zones were 

mainly located in Northern Thailand. This implies that high 
COVID-19 incidence rates occurred in regions with high 
population density such as big cities, then distributed to 
rural areas with low population density. Because COVID-19 
spreads primarily from people to people by touching, 
breathing and talking, high population density should be 
considered to have a high possibility of infection. Model 
2 indicates that the number of adult people determines 
the highest proportion among COVID-19 infections in 
people. Global bivariate Moran’s I dramatically increased 
each month with weak positive spatial autocorrelation 
(Moran’s I = 0.1023-0.1985), as shown in Table 2 and Fig. 8b. 
The LISA map for April and June presented three groups 
of clustering zones: High-High, Low-Low and Low-High. A 
High-High clustering zone was located in Bangkok, Samut 
Prakan and Chonburi, similar to Model 1, indicating a high 
incidence rate with high numbers of adult people in the 
surrounding area. A Low-Low clustering zone was found in 
Suphanburi, Nakhonsawan and Chiang Mai, and a Low-High 
clustering zone appeared in Samut Sakorn, Chaiyaphoom 
and Buriram, which indicates low incidence rates with a low 
and high number of adult people in the surrounding area, 
respectively. Then in July, the Low-Low clustering zone in 
Chiang Mai disappeared, while the Low-Low clustering zone 
in Suphanburi became a High-Low clustering zone. These 
results suggest that Chiang Mai successfully reduced the 
incidence rate, whereas Suphanburi increased its incidence 
rate in other age groups. For the mean household income 
variable, Model 3 had strong positive spatial autocorrelation 
(Moran’s I = 0.2980-0.3523), as shown in Table 2 and Fig. 
8c. Most of the LISA map reveals two primary clustering 
zones - one High-High and one Low-Low (Fig. 9 i-l). It can 
be observed how dynamically changes between the High-
High and Low-High clustering zones occurred, depending 
on how the incidence rates changed. The results indicate 
that a region with high income tends to have a high 
possibility of infection due to being densely populated. 
Model 4 (hospital beds), Model 5 (doctor numbers) and 
Model 6 (nurse numbers) indicated moderate positive 
spatial autocorrelation (Moran’s I = 0.1986-0.4853), as shown 
in Table 2 and Fig. 8d-f, with a uniform pattern of High-High 
and Low-Low clustering zones (Fig.10). The results show 
that hospital beds were not more essential than doctors or 
nurses in COVID-19’s third wave, and they were significant 
throughout the whole period.
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April May June July

Moran’s I P-value Moran’s I P-value Moran’s I P-value Moran’s I P-value

Model 1 0.2776 0.0020 0.3788 0.0010 0.5765 0.0010 0.6022 0.0010

Model 2 0.1023 0.0570 0.1081 0.0840 0.1985 0.0340 0.1885 0.0400

Model 3 0.2980 0.0010 0.3908 0.0010 0.4663 0.0010 0.4853 0.0010

Model 4 0.1986 0.0210 0.2237 0.0080 0.3424 0.0020 0.3457 0.0040

Model 5 0.1881 0.0140 0.2223 0.0030 0.3440 0.0010 0.3523 0.0050

Model 6 0.1718 0.0210 0.2144 0.0050 0.3295 0.0020 0.3340 0.0070

Table 2. Moran’s I statistical and P-values for Models 1 to 6

 For each day, Moran’s I statistics and associated p-values 
are shown in Figure 10. Except for the first few days and 
Model 2, the p-values in Figure 11 are all very close to 
zero. All the models show systematically spatial clustering 
correlation with the COVID-19 incidence rates since 10 April, 
being especially strongest in Model 1 (Fig.10a). In Figure 11, 
the features of Moran’s I index trend changes are seen in 
three phases: they first increase and then fall from April 10; 
after that, they increase again and then fall from May 20; 
after that, they increase again from June 7. Interestingly, 
after they went down, they then increased with higher 
Moran’s I values, indicating that the COVID-19 spread was 
continuously increasing. Moreover, the different Moran’s I 
value in each stage demonstrated the transmission level 
of infectious COVID-19, particularly in the Early (first phase) 
and Spreading stages (second and third phases).
 In addition, daily changes in the bivariate global Moran’s 
I value expressed the key factors affecting the spread of 
the COVID-19 epidemic. The results reveal that COVID-19 
incidence has a significant spatial dependence on all six 
variables, indicating that effecting factors on the outbreak 
and transmission of an epidemic occur primarily through 
the source of infection, the channel of transmission, and 
the receptive population. As seen in Model 1, the results 
point to the fact that COVID-19 expanded significantly, 
from crowded areas to adjacent areas. During the periods 
with no significant spatial dependence in Model 2, we 

demonstrated that COVID-19 was spreading to other 
age groups. The third wave of the COVID-19 pandemic in 
Thailand started with a spike in daily confirmed cases on 10 
April associated with the Songkran holiday. Workers went 
back to their hometowns and spread COVID-19 to their 
family members, resulting in a wider spread and transmitting 
it to other age groups. It has been demonstrated that the 
factors that affect the outbreak and transmission of an 
epidemic occur mainly through influences on the sources 
of infection, the routes of transmission, and the susceptible 
population. COVID-19’s spread may be linked to ecological, 
social, and economic factors, as well as preventative 
measures and controlling activities such as limiting the 
infection sources and shutting off transmission routes.

DISCUSSION

 This study provides information on the spatial and 
temporal patterns of the third wave of the COVID-19 
pandemic in Thailand. In the early stage of the COVID-19 
outbreak, new cases occurred intensively in Bangkok and 
Rayong, Chonburi and Prachuap Khiri Khan Provinces. The 
pandemic extended to bordering provinces over time, with 
the first-order, second-order and third-order neighboring 
provinces showing a notably high number of confirmed 
cases after May 2021. Results on the spatial distribution 
patterns of COVID-19 incidence rates in Thailand show a 

Fig. 8. Monthly changes in local Moran’s I statistics and p-values from April 1, 2021 to July 23, 2021 in Thailand for six 
models: (a) Model 1: population density, (b) Model 2: number of adults, (c) Model 3: mean income, (d) Model 4: number 

of hospital beds, (e) Model 5: number of doctors, and (f) Model 6: number of nurses
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Fig. 9. Spatial distribution of LISA cluster maps between COVID-19 incidence and related parameters: Model 1: 
population density (a-d), Model 2: number of adults (e-h), and Model 3: mean household income (i-l) from April to July 

2021
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Fig. 10. Spatial distribution of LISA cluster maps between COVID-19 incidence and related parameters: Model 4: 
hospital beds (a-d), Model 5: number of doctors (e-h), and Model 6: number of nurses (i-l) from April to July 2021
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clear systematic pattern among provinces: high incidence 
rates surrounded by provinces with similar levels of 
incidence, and provinces with low incidence surrounded 
by provinces with low values. The highest infected clusters 
have occurred in Bangkok and its neighboring provinces, 
while lower infection rates have been in the countryside. 
The same pattern was observed for the relationship 
between incidence rates and population density, adult 
numbers, mean household income, hospital beds, and 
doctor and nurse numbers. 
 Meng et al. (2005) modeled the influence of 
demographic, socioeconomic and healthcare resources 
on the (SARS) respiratory syndrome in Beijing and found 
that population density and medical care resources did 
influence the spatial spread of SARS in Beijing. However, 
the major variables that caused the epidemic to spread 
were different at different times. Kang et al. (2020) provides 
information on the spatial and temporal patterns of the 
COVID-19 pandemic in mainland China. They show that, in 
the early phases of the COVID-19 pandemic, the disease 
distributed rapidly from region to region in mainland 
China. Moreover, they also evaluated the influence of 
demographic, socioeconomic and healthcare resource 
factors on COVID-19 cases. The results presented significant 
spatial autocorrelation between COVID-19 cases and 
population density and the number of doctors, but no 
significant spatial autocorrelation existed with hospital 
beds. Population size is a key factor in COVID-19 spread.
 Their findings are in line with our results, except that 
we found a significant spatial autocorrelation between 
COVID-19 incidence and hospital beds, as it showed strong 
correlation between population density and healthcare 
resources. Having a large number of beds, doctors and 
nurses in a location means that the area can handle a 
large number of critically ill patients, this could lead to 
the infection spreading. Moreover, the daily change 
in global Moran’s I values in this study could indicate 
the Early and Spreading stages during the COVID-19 
pandemic’s third wave. Similarly, Triukose et al. (2021) used 
effective reproduction numbers to identify the COVID-19 
transmission level in Bangkok. On the other hand, the LISA 
statistic showed the dynamics of cluster distribution to be 

consistent with the Spreading stages, which were found 
by the daily change in global Moran’s I values. Therefore, 
global and local Moran’s I can be used as a monitoring 
and policy-decision-making tool to inform disease control 
activities in the future. (Laohasiriwong et al. 2018; Triukose 
et al. 2021). There are several limitations to this paper. 
The factors that influence the epidemic’s propagation 
are numerous. This paper developed an indicator system 
based on the available data that influences the epidemic’s 
multiple factors (Meng et al. 2005; Kang et al. 2020). Other 
non-quantitative factors may have been overlooked, 
adding to the inadequacy of the study’s evaluation. 
Without access to precise information on those diagnosed 
with COVID-19, such as medical history, weight, smoking 
status, and so on, the study’s findings may have been 
weakened. Nevertheless, attempts to investigate probable 
external environmental impacts are critical for protecting 
healthcare workers and containing the COVID-19 outbreak 
(Wang et al. 2021). Future research may be useful in 
delving deeper into the epidemiological factors and social 
environment of COVID-19.

CONCLUSIONS 

 A new geographic database for studying the COVID-19 
epidemic was created based on the COVID-19 outbreak 
in 76 provinces and one special administrative region 
(Bangkok) in Thailand. A PySAL package based on python 
language was used to detect early transmission by using 
the spatial distribution of COVID-19 incidence in Thailand’s 
provinces and its relationship with sociodemographic 
factors in order to better understand the outbreak and 
transmission of the disease in Thailand from April to July 
2021. Thus, the following conclusions were found. Global 
spatial autocorrelation was employed to confirm that 
COVID-19 incidence in Thailand has a spatial association, 
and the correlation characteristics increased at a slow 
rate in April, and then rapidly increased in June and July 
2021. However, considering local spatial autocorrelation, 
the correlation characteristics tended to remain steady 
over time and mostly consisted of High/Low aggregation 
zones. In the provinces surrounding Bangkok, hotspots 

Fig. 11.  Daily changes in the global Moran’s I statistic and p-values from April 1, 2021 to July 23, 2021 in Thailand for 
six models: (a) Model 1: population density, (b) Model 2: number of adults, (c) Model 3: mean income, (d) Model 4: 

number of hospital beds, (e) Model 5: number of doctors, and (f) Model: 6 number of nurses
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have stabilized over time (Nonthaburi, Pathum Thani, 
Samutprakarn Chonburi, and Prachuap Khiri Khan 
Provinces). Among social factors, population density 
exhibited the highest positive correlation with incidence. 
Our results revealed that the diverse spatiotemporal 
clustering patterns we discovered may represent variances 
in social and demographic characteristics, public health 
emergency readiness and response capacities, as well 

as differences in transmission patterns and mechanisms 
of these coronaviruses. Finally, daily changes in global 
Moran’s I successfully indicated the Early and Spreading 
stages during the third wave of the COVID-19 pandemic. 
These findings could be used to create monitoring tools 
and aid in policy prevention planning. Future researches 
may be useful in delving deeper into the epidemiological 
factors and social environment of the COVID-19.
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