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ABSTRACT. Cities are centres of economic growth with fascinating dynamics, including persistent urbanisation that 
encroaches adjacent arable lands to build urban physical features and sustain services offered by urban ecosystems. Even 
though industrial revolution, economic dynamics, and environmental changes affect spatial feasibility for housing, complex 
urban growth is always followed by the development of environmentally friendly cities. However, with such quality having 
multiple facets, it is necessary to assess and map liveable areas from a more comprehensive and objective perspective. This 
study aimed to assess, map and identify the biophysical quality of an urban environment using a straightforward technique 
that allows rapid assessment for early detection of changes in the quality. It proposed a multi-index approach termed the 
urban biophysical environmental quality (UBEQ) based on spectral characteristic of remote sensing data for residential areas 
calculated using various data derived from remote sensing. Statistical analyses were performed to test data reliability and 
normality. Further, many indices were analysed, then employed as indicators in UBEQ modelling and tested with sensitivity 
and factor analysis to obtain the best remote sensing index in the study area. Based on PCA Results, it was found that the 
built-up land index and vegetation index mainly contributed to the UBEQ index. The generated model had 86.5% accuracy. 
Also, the study area, Semarang City, had varying UBEQ index values, from high to low levels.
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INTRODUCTION

 Urbanisation affects population growth, causes 
functional shifts in land use and urban climate change 
and degrades water and air quality (Yuan & Bauer 
2007). Within the context of rapid global urbanisation, 
participatory urban spatial planning plays an essential 
role in preventing uncontrolled city expansion, dealing 
with segregation and reducing carbon emission in cities 
(Psaltoglou & Calle 2018). Sustainable Development Goal 
(SDG) No. 11.1 states that in 2030, regional governments 
will guarantee access to housing and basic services that 
are decent, secure, and affordable for all society members, 
thus improving the condition of slums. Goal No. 11.7 also 
mentions that by 2030 regional governments must have 
provided universal access to green, public open spaces 
that are safe, inclusive, and easily accessible. To support 
such planning, it is imperative that actual steps to create a 
sustainable green environment be taken according to the 
ecological resilience of an urban biophysical environment 
to climate change (SDG 13). SDG 13 document deals with 

increased resilience, adaptive capacity and risks arising as 
an effect of climate change and disasters in all countries, as 
well as education improvement, awareness enhancement, 
human resource capacity, and the role of institutions in 
the mitigation, adaptation, impact reduction and early 
warning of climate change. 
 A large share of urban lives is exposed to conditions that 
harm human health and well-being and threaten natural 
resources. With the complex interrelation between urban 
physical environments, social components, and economic 
demands, it can be said that most environmental issues like 
pollution do not originate in urban physical characteristics 
but rather the behaviour and way of life of the residents 
that sometimes exacerbate the situation (Li et al. 2016). The 
liveability of an urban environment depends on three main 
factors: biophysical features (i.e., built-up land, vegetated 
areas and water bodies), climate and air quality (Xiao et 
al. 2018). Therefore, the development of sustainable and 
liveable cities needs to be supported by effective and 
efficient planning that also takes into account urban 
biophysical conditions and ecological resilience (Rezvani 
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et al. 2013). Some examples include building settlements 
outside hazard-prone areas (e.g., riverbanks), enforcing 
spatial planning laws and ensuring that new planning 
simulates mobility and optimises urban structural design 
so that it does not merely lead to the increasing number 
of vehicles but also provides new solutions for effective 
transport (Mao et al. 2014). 
 Understanding and exploring ecosystems and 
standards of living (liveability) in various land uses in a 
city will provide insight into urban planning, governance 
and management (Fu, Yu, & Zhang 2019). A city is an 
economic-spatial system that requires biophysical and 
social approaches in its management. Examples include 
temperature to characterize urban redevelopment (Pan et 
al. 2019) and relative humidity generated by fire emissions 
to model urban air quality (Cuchiara et al. 2017). Some 
more complex approaches commonly used for spatial 
ecological analysis in cities are temperature-carbon 
storage relationship, urban green space calculation and 
planning and computation of thermal comfort in cities. 
However, simple urban biophysical factors with remote 
sensing-derived data have not been widely used for 
liveability measurement. Therefore, this research proposes 
the mapping of urban comfort using a simple biophysical 
approach. Comfort (liveability) is very carefully considered 
when discussing urban environments, but in general 
there is no universally acknowledged definition of the 
parameter because it can be measured from various points 
of view; the same case applies to quality of life, welfare 
or development stability. Comfort is also part of urban 
biophysical environmental quality, which is a function of 
built-up land and urban vegetation (Hidayati et al. 2019). 
 Urban Biophysical Environmental Quality (UBEQ) is a 
term used in scientific studies to assess the quality of the 
biophysical environment in urban spaces, assuming that 
a high-quality biophysical environment is a precondition 
for liveable areas. A biophysical environment comprises 
biotic components (vegetation) and abiotic components 
(e.g., built-up land and water) (Hidayati et al. 2019b; Stossel 
et al. 2017), which in the context of UBEQ shape a city’s 
ecological resistance and sustainable development. 
UBEQ modelling is a simplified version of the quality of 
housing environments that determines whether or not 
and to what extent a residential area provides decent lives 
for its inhabitants. Urban Environment Quality attempts 
to address current challenges in urban environmental 
quality assessment: complicated modelling (Liang & Weng 
2011). There is a vast possibility of how many, and which 
research variables and data can be included to accurately 
model UBEQ. Multitemporal and multiscale data from 
many sources can help determine relevant variables and 
optimise the number of variables used in modelling. The 
evolution of biophysical parameters starts with Forster 
(1983), who considered residence quality as an approach 
to assessing residential biophysical quality. Further 
development in 1990–2000 defined biophysical quality 
as a result of surface temperature, building density and 
socio-economic parameters, namely income per capita 
and educational attainment (Charreire et al. 2012; Weber 
et al. 2014). A decade later Deng & Wu (2012) introduced 
Biophysical Composition Index (BCI) and compared it with 
several remote sensing indices (NDVI, NDISI, and MNDWI) 
using Landsat ETM+, IKONOS and MODIS image data. 
Results prove that BCI can effectively assess impervious 
surfaces and bare soils. State of the art in biophysical quality 
assessment techniques is the extraction of vegetation data 
from high-spatial-resolution images by Aditya et al. (2021) 
to determine urban greenness.

 This research uses remote sensing data with various 
spatial resolutions (level of mapping scale/detail) and 
spectral resolutions (the ability to distinguish spectral 
characteristics of remotely sensed data) in addition to 
primary spatial data collected through field surveys. 
Remote sensing is selected because this technology 
can distinctively provide global coverage data both 
in pure and mixed pixel relevant to geo-information 
technology, such as GIS, spatial analysis and dynamic 
modelling. Further, a combination of remote sensing 
and GIS data is thereby used extensively for monitoring, 
synthesising and urban environment modelling that 
involve internal complexities. Many urban features can be 
extracted from remote sensing imagery (Silva & Mendes 
2012), e.g., built-up land, vegetation and temperature. 
The data extraction usually involves two main methods, 
namely digital classification and spectral transformation 
(index). Based on spectral reflection alone, the red, near-
infrared and mid-infrared image bands provide varying 
spectral responses and can show spectral differences 
in built-up land (Zha et al. 2003), meaning that remote 
sensing technology captures the unique appearance and 
distribution patterns of buildings, vegetation, water and 
bare land in urban spaces (Xu et al. 2000). The response 
spectra of developed urban areas increase significantly in 
near- and mid-infrared bands. 
 Overall, the city’s liveability is indicated by the urban 
environmental quality that factors in both physical and 
biophysical factors. The mapping of urban environmental 
quality uses socio-economic approaches and involves 
very complex parameters, but this paper attempts to 
produce the same map using two main parameters, 
namely vegetation and built-up land, and spatial data 
derived from remote sensing imagery. Also, it cannot 
be denied that cities are constantly developing and 
changing. Therefore, remote sensing products that offer 
spatial and temporal records are used to help urban 
communities and decision-makers maintain or improve 
the liveability of their cities in the future. This approach is 
beneficial for developing countries like Indonesia, whose 
big cities are overpopulated and need decent residential 
spaces. Currently, Semarang is one of the big cities that has 
problems regarding land availability (Muladica, Murtini & 
Suprapti 2018). Urban development causes limited land 
availability. Mijen Semarang area which is in peri urban 
area also experiences high land conversion. Therefore, it is 
necessary to analyse the environment quality in Semarang 
along with the high land conversion. The aims of the 
research were (1) to select UBEQ parameters based on the 
spectral characteristics of remote sensing-derived data 
and spatial data and (2) to analyse the spatial distribution 
of UBEQ in the Semarang urban areas. This information is 
expected to provide a straightforward approach for land-
use mapping, planning and monitoring in urban areas.

MATERIALS AND METHODS

 This study used medium-resolution Landsat 8 OLI 
images recorded on 13 September 2019, path 120, row 
65. To achieve the first goal, it performed various data 
extractions, i.e., image transformation index: building 
index, vegetation index, water index, land surface 
temperature index, and impervious surface index (Table 1). 
Also, to select the appropriate index, it performed factor 
analysis on Normalized Difference Built-up Index (NDBI), 
Normalized Difference Vegetation Index (NDVI), and Soil 
Adjusted Vegetation Index (SAVI.The transformation index 
formulas used are presented in detail in Table 1.
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Fig. 1. The location of the research area on Java Island, Indonesia

 Landsat 8 image processing involved radiometric 
and geometric corrections to ensure the quality of the 
images. In the radiometric correction, pixel values were 
converted to spectral radiance values, with corrections to 
the reflectance values made using the formula developed 
by Chander et al. (2009). Processing of the indices used the 
normalized difference index formulation. 
 The research location was the City of Semarang (the 
Province of Jawa Tengah, Indonesia), which is bordered by 
the Demak Regency, Semarang Regency, Kendal Regency, 
and the Java Sea. It has varying topography from lowland 
to hilly areas. To the south, there is Mount Ungaran, which 
affects urban environmental quality and vegetation 
distribution in the city. The research location is shown in 
Fig. 1. 

Selection of the Research Variables

 This research stage consisted of four steps: detection 
of outliers, data normality, sensitivity analysis and factor 
analysis. The research variables comprised various built-up 
land and vegetation indices. The best index was chosen 
to create a composite UBEQ index of urban biophysical 
environmental quality represented by NDBI, NDVI, and 
SAVI (Hidayati 2019). Outliers were detected as data that 
were outside the normalized index range, namely -1 to 
1. If an error was found in the image correction process 
or in the normalized index, the correction process was 
repeated, starting with radiometric image correction. 
The next step was to test the data normality using two 
variables: vegetation and built-up. If one variable fulfils 

the normality assumption, then all variables are also 
considered as satisfying data normality. Furthermore, 
the test between the variables used to determine the 
perfect relationship between them does not require the 
two variables to have the same value; to a certain degree 
values are always accompanied by changes in the value of 
other variables (Morisson 2012). Statistically, factor analysis 
was used to complete the index selection, wherein the 
index was determined whether or not it would be used by 
considering the return value of Bartlett’s test of sphericity 
or the measure of sampling adequacy (MSA). Analysis of 
the feasibility of the variables was conducted in stages by 
performing the sensitivity analysis on the variables one by 
one to obtain the optimal statistical value. Here, optimal 
means the correlation value is close to 0, Kaiser-Meyer-
Olkin (KMO) and Bartlett’s test return values are above 0.5 
and an MSA value is > 0.5. 

Combining the Research Variables

 Principal component analysis (PCA) is a transformation 
that identifies an equation that is the optimum linear 
combination of several input bands that can calculate the 
image variance value (Campbell & Wynne 2011; Danoedoro 
2012). It is basically a rotation technique applied to a 
multiband coordinate system resulting in a new image 
with fewer bands. PCA can reduce the dimensionality 
of data; thus, it is often seen as a very efficient data 
compression technique (Danoedoro 2012). Its role in this 
study was to combine the research variables derived from 
remote sensing data with different spatial and temporal 

Index Formulas Sources

NDBI Zha et al., (2003) 

NDVI Guo et al., (2015)

SAVI Huete (1988)

Table 1. Formulas of the image transformation indices analysed in the study
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resolutions. Therefore, because the variables are on 
different scales, PCA was performed based on a correlation 
matrix to obtain the desired standard value.

RESULTS

Selected Research Variables

 Vegetation data were extracted from the Landsat imagery 
using several normalized index values . One of these is NDVI 
(infrared and red bands), which was found to be in the range 
of -0.185 to 0.752. Soil reflection has a positive correlation with 
wavelengths; in other words, the greater the wavelength, 
the higher the electromagnetic energy reflected by the soil, 
especially at wavelengths between 0.4 µm and 1.0 µm. For 
example, the normalization used in NDVI is the spectral 
response between the near-infrared and red band reflections. 
However, a very typical spectral response such as NDVI is not in 
the range of soil reflections because soils have widely diverse 
and complex physical and chemical properties. Therefore, in 
this study the combination used is adjusted to the spectral 
reflectance of the soil sample. Soil indexing is directly related 
to the complexity of soil properties and the spectrum used. 
Here, indexing aims to calculate the ratio of differences in 
the indices that had been selected effectively based on the 
reflection curve used in order to avoid spectral variability 
in different geographic studies. SAVI was used to observe 
vegetation reflections by involving near-infrared (NIR) with 
red reflections. SAVI is an algorithm developed from NDVI 
that suppresses the influence of soil background on canopy 
brightness. It uses vegetation isoline equations (vegetation 
with the same density and different soil backgrounds) derived 
from canopy reflectance approximation with a first-order 
photon interaction model between the canopy and the soil 

layer. The spectral reduction of the red mixture, the darker 
ground area, causes a significant increase in NDVI values.
 The index developed from the unique spectral response 
of built-up land had higher reflections at SWIR than at NIR 
wavelengths. Several image transformations were used for 
the transformation of urban built-up land indices, such as 
NDBI (Normalized Difference Built-up Index), EBBI (Enhanced 
Built-up and Bare Land Index), UI (Urban Index) and NDBaI 
(Normalized Different Built-up and Bare Land Index) (Hidayati 
2019). These indices are intended to ascertain which is the 
most suitable for detecting built-up area because each has its 
own advantages and disadvantages. The statistical correlations 
between NDBI and the two vegetation indices (NDVI and 
SAVI) are presented in Table 2. In general, NDVI is the standard 
method used to measure and distinguish healthy vegetation 
and is expressed in the range of -1 to 1. Utilisation of other 
indices such as infrared/red will produce a simple ratio whose 
values are always positive, and it gives the possibility that there 
are also certain unlimited mathematical values. Apart from 
NDVI, SAVI is also used in the research to produce different 
variables from NDVI.
 NDVI was selected as the most suitable index, or in this 
case variable, for assessing UBEQ in that the results of the 
NDVI radiometric correction were high, unlike SAVI. Some 
vegetation indices incorporate certain numbers that are 
determined using reflectance data, e.g., spectral bands used 
in SAVI and NDVI. The vegetation index was adjusted to soil 
reflection in the SAVI calculation by adding a constant 0.5 and 
a multiplying factor 1.5 to the formula used. It is assumed that 
the red and near-infrared spectral reflections are on a scale of 
0–1. The spatial distributions of NDVI and NDBI are shown in 
Fig. 2 and Fig. 3, respectively.
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Correlations

NDVI NDBI SAVI

NDVI

Pearson Correlation 1 0.091** 1.000**

Sig. (2-tailed) 0.000 0.000

Sum of Squares and Cross-products 78138.792 1989.265 115401.660

Covariance 0.087 0.002 0.129

N 893514 893514 893514

NDBI

Pearson Correlation 0.091** 1 0.088**

Sig. (2-tailed) 0.000 0.000

Sum of Squares and Cross-products 1989.265 6091.454 2836.282

Covariance 0.002 0.007 0.003

N 893514 893514 893514

SAVI

Pearson Correlation 1.000** 0.088** 1

Sig. (2-tailed) 0.000 0.000

Sum of Squares and Cross-products 115401.660 2836.282 170438.064

Covariance 0.129 0.003 0.191

N 893514 893514 893514

** Correlation is significant at 0.01 (2-tailed)

Table 2. Formulas of the image transformation indices analysed in the study
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Sensitivity Analysis and Factor Analysis Results

 The factor analyses of three variables, namely NDBI, NDVI 
and SAVI, were based on KMO, Bartlett’s test, and MSA values. 
The KMO and Bartlett’s test return values were 0.500 for NDBI 
and NDVI (a significance value of 0.000<0.005), meaning that 
the combination of the three variables is suited for factor 
analysis (Table 3). As seen in the MSA calculation results in 
Table 3, one of the factors must be reduced to get an MSA 
value  0.5, which would indicate that the variable is predictable 
and further factor analysis can be performed. Because SAVI and 
NDVI both represent vegetation characteristics, one of which 
was reduced. Hidayati (2019) has also tested several variables 
for UBEQ modelling and found that the KMO and Bartlett’s 
test results of the NDBI, NDVI and SAVI were 0.343, meaning 
that the three indices are statistically not accepted for further 
modelling. 
 The factor analysis and sensitivity analysis results showed 
that the MSA of NDBI and NDVI (0.500).). This indicates NDVI as 
the most representative vegetation index. After the SAVI was 
omitted, the MSA of NDBI and NDVI was 0.500 (Table 4). The 
return value of the KMO and Bartlett’s tests for NDBI and NDVI 
was 0.500 (Table 5). Therefore, NDBI and NDVI can be used 
for liveable index analysis. The assumption used for the factor 
analysis was the determinant of the correlation matrix test, 
which shows that the variables were interrelated. KMO is an 

index comparing the distance between the partial correlation 
coefficients and the variable pairs of low values and the 
number of correlation coefficients.
 The combination of NDVI and NDBI indicates that the 
built-up land has a negative value (-), while the vegetation 
has a positive value (+) (Table 6). This proves that vegetation 
and built-up land directly affect UBEQ, although with different 
effects. NDBI is associated with discomfort: a higher building 
density results in more uncomfortable living and lower UBEQ 
(less liveable city). Similarly, when combined with NDVI to 
create a composite index, NDBI contributes to inconvenience 
and is inversely proportional to NDVI: the more extensive the 
built-up land in urban areas, the narrower the vegetated land.
 Principal component analysis was used to identify 
uncorrelated components and to provide wide variance to 
the original indicator. Based on PCA analysis, eigen values 
greater than 1 are retained and used in modelling, while 
eigen values less than 1 are excluded from the model. An 
eigen value shows the contribution of the factor to the 
variance of all original variables. In order to obtain optimal 
PCA results, the varimax method was used to rotate 
several components to make them consistent. The factors 
formed were in accordance with the existing theory: UBEQ 
modelling requires the simplest variables, namely built-up 
and vegetated land. The more extensive the built-up land, 
the fewer the vegetated area. Thus, component 1 is termed 

Anti-image Matrices

NDVI NDBI SAVI

Anti-image Covariance

NDVI 1.108E-5 -0.002 -1.108E-5

NDBI -0.002 0.521 0.002

SAVI -1.108E-5 0.002 1.108E-5

Anti-image Correlation

NDVI 0.406a -0.689 -1.000

NDBI -0.689 0.017a 0.689

SAVI -1.000 0.689 0.406a

a. Measures of Sampling Adequacy (MSA)

Anti-image Matrices

NDVI NDBI

Anti-image Covariance
NDVI 0.992 -0.090

NDBI -0.090 0.992

Anti-image Correlation
NDVI 0.500a -0.091

NDBI -0.091 0.500a

a. Measures of Sampling Adequacy (MSA)

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.500

Bartlett's Test of Sphericity

Approx. Chi-Square 7459.495

Df 1

Sig. 0.000

Table 3. Formulas of the image transformation indices analysed in the study

Table 4. MSA analysis results of NDBI and NDVI

Table 5. KMO and Bartlett’s test return values of NDBI and NDVI
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‘the impact of land-use change’; the higher the component’s 
score, the worse the biophysical environmental conditions 
(UBEQ).
 The PCA results of NDVI and NDBI showed that PC1 
had a variance value of 54.55%, which means that PC1 
constitutes 54.55% of information of the UBEQ index 
(Table 7). This figure serves as a coefficient in UBEQ index 
calculation. Meanwhile, PC2 explains 45.45% of UBEQ. The 
coefficients of PC 1 and PC2 are the values used for UBEQ 
modelling that describe the spatial distribution of the 
biophysical environments. The formed factors correspond 
to the theory that UBEQ modelling needs the simplest 
variables, namely built-up land and vegetated land—and 
an increase in built-up land almost means a decrease in 
vegetation. Based on the communalities, the two variables 
have a negative correlation value for NDBI (-0.739), which is 
a reflection of urban built-up land (i.e., asphalt, concrete and 
paved roads), and has a positive correlation value for NDVI 
(0.739), which closely represents vegetation characteristics. 
This urban environment quality component decreases by 
growing the urban built-up land and impervious area and 
reducing urban vegetation and green areas. The results 
of the rotation matrix also illustrate that built-up land 
and vegetation are components of liveability, which are 
expressed by component 1: built-up land with a negative 
value and vegetation with a positive value. 
 In this research, the index representing built-up land 
was primarily observed because this object is typical of 
urban areas. Based on the designed UBEQ model, NDBI 
tended to have negative effects, making it a degrading 
factor in UBEQ. In the UBEQ model, the variant value of 
NDBI and NDVI was multiplied by the result of PCA derived 
from NDBI and NDVI, NDBI multiplied by -1 and NDVI 
multiplied by 1. The statistical analysis and factor analysis 
results showed that the combination of NDBI and NDVI 
could be a simple parameter in measuring UBEQ.

DISCUSSION

 A settlement can be defined as an area with a certain 
scope dominated by a residential environment and 

equipped with infrastructure, environmental facilities and a 
workplace that provides limited services and opportunities. 
An environment consists of many elements, both in natural 
and built-up areas. It also comprises physical parameters 
and social, economic and political forces that control human 
life and eventually form a separate settlement pattern. In 
urban residential areas, the symbiosis between physical 
and social factors is highly visible and intercorrelated. 
Every day human activities are greatly influenced by 
and depend on the physical conditions of the area. The 
liveability concept, which in this case is actualised as urban 
biophysical environmental quality (UBEQ), refers to people’s 
perception of their residence. Basically, it is determined by 
three issues, namely water, soil and air. Urban biophysical 
data were extracted by making use of remote sensing data 
from Landsat 8 OLI imagery. The variable sensitivity analysis 
was conducted if the statistical analysis results showed that 
the variable observed did not fulfil the requirements. Factor 
analysis combined various research parameters and was 
intended to ensure that each variable on each parameter 
did not experience information redundancy both spatially 
and spectrally. 

Spatial Pattern of Liveability in the City of Semarang

 Semarang is one of the big cities in Indonesia with 
rapid urban development that directly impacts changes 
in built-up land and vegetation in urban areas. The image 
transformation index NDBI was in the range of -0.82 (lowest) 
to 0.69 (highest). In this case, negative NDBI indicates non-
built-up land, while positive NDBI means built-up land. Most 
of the built-up land is located at the city centre and close 
to the sea, for example, the northern part of Semarang. In 
this part of the city, the level or flat topography attracts the 
development of offices, settlements, trade and services. 
Urban development in the north is different from that 
in the south. The built-up land distribution in the south 
depends on transportation networks and industrial areas; 
therefore, more trade and industrial areas are developing 
in the southern city. Other urban activities in this area are 
scattered around the Simpang Lima Semarang, the trade 
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Component Matrixa

Component

1

NDVI 0.739

NDBI -0.739

Extraction Method: Principal Component Analysis

a. 1 components extracted

Total Variance Explained

Component
Initial Eigenvalues Extraction Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative %

1 1.091 54.559 54.559 1.091 54.559 54.559

2 0.909 45.441 100.000

Extraction Method: Principal Component Analysis

Table 6. Component Matrix result

Table 7. Total variance explained for the principal component analysis of NDVI and NDBI as the Urban Biophysical 
Environmental Quality (UBEQ) variables
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Fig. 2. Spatial distribution map of NDVI in Semarang, Indonesia

Fig. 3. Spatial distribution map of NDBI in Semarang, Indonesia



21

and business area along Jalan Pemuda and Jalan Gadjah 
Mada and the Johar trade and market. The development 
of the road network in Semarang, especially the ring road 
network at the city centre, strongly influences the existence 
of built-up land (Fig. 4). The liveable city modelling for 
Semarang illustrates that some areas with extensive built-
up land inevitably create poor living conditions because 
of various other physical aspects. In Fig. 3, it is shown 
that the areas with pooriving conditions are located in 
Kelurahan in East Semarang, including Tambakrejo Village 
on the city’s outskirts. Some of the residents in these 
areas are economically disadvantaged (Gultom & Sunarti 
2017) and live in normally uninhabitable regions. These 
conditions result from economic and social limitations of 
the community and issues in spatial management so that 
comprehensive cooperation between the community and 
local officials is needed to overcome the problem. The local 
government in the PLPBK and NUSP-2 (Neighbourhood 
Upgrading and Shelter Project-2) programs has planned 
and arranged the distribution of the settlements in the 
Tambakrejo Sub-district to provide more liveable space for 
the residents. 
 Residential areas with low living conditions are situated 
around industrial locations. High building density and low 
indices in this location are influenced by the development 
of built-up land and urban industries. In general, people 
have two principles in their lives: residing in a liveable 
place and fulfilling daily needs. The settlements on the 
coast of Genuk Sub-district have become very developed 
after industries sprung up in the area and started to pull 
a large influx of workers from Genuk (i.e., Muktiharjo Lor, 
Genuksari and Gebangsari Villages) to live close to their 
workplaces. The rapid industrial growth, especially coupled 
with industrial clusters in Terboyo Wetan and Trimulyo, 

has resulted in greater land development. The growth of 
built-up land, e.g., boarding houses and rented houses, 
and the narrowing of urban green space means Genuk 
has a low index. The settlement development has an 
enormous impact on UBEQ. Urbanisation and commuting 
routes sometimes make unfavourable contributions 
to certain areas. The UBEQ model shown in Fig. 4 also 
illustrates that Genuk has a low index because it has 
many industrial buildings, non-residential built-up land, 
irregular settlements and only a few vegetated areas. An 
index value below -2 means that the location has a very 
low UBEQ index. Secondary data also show high PM10 as a 
consequence of motorised vehicles in the study area.
 In addition, the north coast of Semarang has also 
grown into a centre for trade and services, industry 
and transportation. The coastal area developed into 
densely populated settlements, as opposed to a coastal 
management zone. In a low-lying land like the coast, the 
residents are at risk of coastal floods – a precondition 
for a low UBEQ index. The UBEQ index developed from 
biophysical components (i.e., built-up land and vegetation) 
has relatively good results. 
 Other densely populated areas with high NDBI are 
Ngaliyan and Babankerep Sub-districts. Ngaliyan and 
Tugu Sub-districts are priorities for the development of 
industrial and housing areas in the city development 
zone II. Therefore, the combination of population density 
and limited green open space yielded a low UBEQ index. 
Some areas are also priorities for settlement or housing 
development, which are scattered in Ngaliyan, Tambak 
Aji, Bringin, Gondoriyo, Podorejo and Tugurejo Villages. 
Regarding some sub-disricts with a fairly good urban quality 
index, namely Tembalang, Mranggen and Pedurungan, the 
Tembalang area has been developed as an education zone, 
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Fig. 4. Spatial distribution map of NDBI in Semarang, Indonesia
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because the locations are very comfortable. However, 
changes in residential areas also often occur because many 
students come to stay in the area throughout their studies. 
An example includes the urban area near Diponegoro 
University that has a moderate built-up land index and an 
acceptable vegetation index.
 Residential areas with a high UBEQ index are located 
in Gunungpati and Mijen Sub-districts. The results of the 
remote sensing image analysis illustrate that the area 
continues to have high vegetation covers. The UBEQ values 
were 0–2, indicating a comfortable area for living. Haidir 
& Rudiarto (2019) stated that Gunungpati Sub-district still 
has 13,727,048 m2 of land potentials for development 
into settlements. This implies that Gunungpati is still very 
comfortable for living because it still has a large green open 
space and adequate vegetated lands; high vegetation 
density is associated with very good air quality. Gunungpati 
had three development areas: an urban development area 
including Gunungpati, Plalangan, and Sekaran Villages, rural 
development areas and conservation development areas. 
Protected areas in Gunungpati are also maintained, such as 
river borders, spring borders, degraded land and disaster-
prone areas. Therefore, the balance of the ecosystem in this 
area is highly maintained for high UBEQ at Semarang. 
 Unlike the case of Mijen Sub-district in Semarang City 
– which also has a high UBEQ index, this Mijen suburban 
area is growing quite rapidly. This area is part of the 
development of the BSB Satellite City (Bukit Semarang 
Baru), with the concept of integrated urban development 
with an environmental perspective (Adiana & Pigawati 
2015). The area also has an elite zone equipped with 
housing support facilities, such as offices and industrial, 
educational, and service areas. The behaviour of people 
who live in certain locations strongly determines the 
conditions of the environment in which they live. The 
relationship between an environment and its residents is 
reciprocal and influential (Soemarwoto 1983). 
 The UBEQ model constructed with biophysical 
parameters shows that the factors of each parameter are 
constant. The research variables, i.e., NDBI, NDVI and SAVI, 
contributed to the first factor with different roles. NDBI 
always gives the opposite direction to NDVI and SAVI. The 
formed factors correspond to the theory that says simple 
UBEQ index modelling is influenced by two factors: built-
up land and vegetation. The more extensive the built-
up land, the narrower the vegetated areas. Based on the 

communalities, these three variables (NDBI, NDVI and SAVI) 
have a negative correlation value for NDBI (-0.739), which 
is a reflection of urban built-up land, asphalt, concrete 
and paved roads, and has a positive correlation value for 
NDVI and SAVI (0.739), which closely represent vegetation 
characteristics. This component increases by expanding 
the level of urban built-up, impermeable land, reducing 
urban vegetation and green areas. The vegetation index is 
the second variable that must be used in UBEQ modelling. 
Based on the component matrix, NDVI always contributes 
to NDBI. Therefore, the NDBI and NDVI indices are the most 
basic UBEQ indicators that both can be used in the simplest 
UBEQ modelling. 

CONCLUSIONS 

 The mapping of liveable areas at Semarang City involves 
two indices. The index selected as the representative of 
medium-resolution built-up land is NDBI (using SWIR 
and NIR wavelengths). NDBI is the most suitable index to 
identify built-up land and assess the UBEQ or liveability at 
the research location based on the transformation index. 
The accuracy test shows 86.57%. In addition to the built-
up land index, the UBEQ modelling uses two vegetation 
land indices: NDVI and SAVI, with 87.65 and 85% accuracies, 
respectively. Also, based on the factor analysis and sensitivity 
analysis results, it can be concluded that the combination 
of these three indices (NDVI, SAVI and NDBI) can represent 
urban biophysical parameters. Increasing the number 
of indices used to examine UBEQ does not necessarily 
produce better results. Redundancy of information on the 
spectral channel gives suboptimal results. In simple terms, 
the vegetation and built-up land indices can be used for 
UBEQ research, assuming that the urban areas consisted 
mostly of vegetation and built-up land. This simple method 
of mapping is highly applicable for medium-scale UBEQ 
mapping based on remote sensing imagery as long as the 
SWIR, NIR and visible wavelengths are used. The liveability 
aspect highlighted in this research is the urban biophysical 
environmental quality (UBEQ) instead of socio-economic 
factors like environmental preservation and exploitation 
patterns or perceptions about garbage disposal. The 
UBEQ modelling operates on the concepts that (1) high 
vegetation density decreases temperatures and increases 
humidity and (2) high building density induces urban heat 
island as a result of expanding impervious surfaces.
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