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LANDSCAPE METRICS 
FROM THE POINT OF VIEW 
OF MATHEMATICAL LANDSCAPE 
MORPHOLOGY

ABSTRACT. This paper discusses potential 

of obtaining answers to key issues related 

to the use of landscape metrics by applying 

approaches of mathematical landscape 

morphology. Mathematical landscape 

morphology that has emerged in Russia’s 

geography in recent years serves as the 

basis of the new scientific direction in 

landscape science. Mathematical landscape 

morphology deals with quantitative 

regularities of the development of landscape 

patterns and methods of mathematical 

analysis.

The results of the research conducted have 

demonstrated that landscape metrics are 

subjected to stochastic laws specific to 

genetic types of territories; furthermore, 

these laws may be derived through 

mathematical analysis. It has been also 

shown that the informational value of 

different landscape metrics differs and 

can be predicted. Finally, some landscape 

metrics, based on the values derived from 

single observations, nevertheless allow 

one to provide assessment of dynamic 

parameters of existing processes; thus, the 

volume of repeated monitoring observations 

could be reduced. Other metrics do not 

posses this characteristic. All results have 

been obtained by applying mathematical 

landscape modeling.

KEY   WORDS: landscape metrics, mathe-

matical landscape morphology, landscape 

pattern, mathematical models.

INTRODUCTION

Nowadays, quantitative parameters that 

characterize landscape mosaics formed 

at the Earth’s surface are widely used 

[Vinogradov, 1966; Nikolayev, 1978; Victorov, 

1966, 1998; Leitao, et al., 2006; Riitters, et 

al., 1995, etc.] These parameters are called 

landscape metrics; earlier in the Russian 

literature, terms “quantitative indicators 

of landscape structure of the territory” 

were used [Ivashutin and Nikolayev, 1969; 

Nikolayev, 1975; etc.]. Currently, a large 

number of such parameters exist both in 

literature [Victorov, 1998; Leitao, et al., 2006] 

and in software tools for analysis of mosaics 

[McGarigal, et al., 2002; Pshenichnikov, 2003]. 

Furthermore, the number of possible metrics 

is infinite. Finding new metrics is precisely the 

direction that the efforts of many researchers 

are focused.

Landscape metrics are used in a variety of 

geographic tasks – in landscape analysis 

and planning, definition of geological 

conditions, analysis of changes in the 

environment, risk assessment, and in other 

areas [Nikolaev, 1975; Leitao, et al., 2006; 

Riitters, et al., 1995; Victorov, 2005a, b; 

Moser, et al., 2007; etc.]. At the same time, 

undertaken studies have omitted a number 

of important issues related to landscape 

metrics. These are:

Are the values of landscape metrics  �
subjected to any laws and can we predict 

them?
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What is the relative informational value of  �
different landscape metrics and of their 

combinations?

To what extent do landscape metrics  �
reflect the dynamics of landscape 

structure of the territory?

The answers to these questions are crucial 

because they determine the effectiveness 

of landscape metrics in addressing 

problems of landscape planning, of defining 

geological conditions, and of environmental 

monitoring.

RESEARCH METHODS

The modern level of landscape science 

provides solution to these issues on the 

exact theoretical basis. Mathematical 

landscape morphology that has emerged 

in Russia’s geography in recent years serves 

as the basis of the new scientific direction 

in landscape science [Victorov, 1998, 2006; 

Victorov and Trapeznikova, 2000; Kapralova, 

2007]. Mathematical landscape morphology 

deals with quantitative regularities of the 

development of landscape patterns and 

methods of mathematical analysis. The 

object of study is a landscape pattern 

(morphological structure), i.e., the spatial 

mosaic formed on the surface by the areas 

corresponding to the natural-territorial 

complexes developed in this territory.

One of the main outcomes of the 

mathematical landscape morphology 

is mathematical models of landscape 

patterns [Victorov, 1998, 2006]. A mathe-

matical model of a landscape pattern 

based on existing models is the theory of 

stochastic processes and is a collection 

of mathematical relationships that reflect 

the landscape’s most important geometric 

properties. A special role is played by the 

so-called canonical mathematical models 

of landscape patterns. The canonical 

mathematical models of the morphological 

structures of a particular genetic type 

are the mathematical models of the 

morphological structures formed under the 

impact of one process under homogeneous 

physiographic conditions, i.e., the models of 

simple landscape patterns. The requirement 

of uniformity includes absence, in the area, 

of faults, buried hollows, abrupt changes 

in chemical composition of surface 

sediments, etc., but at the same time does 

not limit composition and amount of 

rainfall, temperature, etc. Thus, a canonical 

mathematical model of morphological 

structures represents such elements that 

can be used to create a mathematical 

model of a landscape pattern anywhere. 

For example, to date, there have been 

established canonical mathematical models 

of morphological structures of alluvial 

plains, of plains with the development of 

karst, of subsidence-suffusion processes, of 

erosion plains, etc. [Victorov, 2006].

The method of mathematical landscape 

morphology is based on the fact that 

equations of mathematical models are valid 

for the same genetic type of landscape in a 

very wide range of physical and geographical 

conditions (composition of deposits, 

sediments, age, etc.). This remarkable stability 

is explained by similarities of features in 

the course of the main processes (erosion, 

karst, etc.) in different natural conditions and 

has been noticed previously in a qualitative 

form as the phenomenon of isomorphism 

of landscape patterns [Nikolaev, 1975]. Due 

to this property specifically, mathematical 

models of landscape patterns can be created 

without reference to a specific composition of 

sediments, precipitation, etc., for the territory 

of a given genetic type; specific conditions 

only affect the values of parameters in the 

model.

Mathematical models of complex morpho-

logical structures can be obtained 

theoretically on the basis of canonical 

models.

ANALYSIS OF RESULTS

The usage of mathematical models of 

landscape patterns provides answers to the 

aforementioned key issues of landscape 

metrics application.
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Values calculated from different metrics 

depend on their properties. However, 

little is known about whether parameters 

of landscape metrics are subjected to any 

laws and whether it is possible to forecast 

these parameters. Using mathematical 

models of landscape patterns allows one 

to predict what laws will govern the value 

of one or another landscape metric. We will 

demonstrate this by using the example of 

such a widespread metric as the area of 

the contour of a lake on a thermokarst-lake 

plain.

Let us consider the area of a thermokarst-lake 

plain uniform in soil and geomorphological 

conditions. The test area has a low-hilly sub-

horizontal surface with the predominance 

of tundra vegetation (cotton-grass tundra, 

sedge-cotton-grass tundra, etc.) and with 

interspersed thermokarst lakes (Fig. 1). Lakes 

are isometric, frequently round in shape, and 

are randomly scattered over the plain.

The model can be based on the following 

assumptions:

1. The process of formation of the primary 

depressions is probabilistic and occurs 

independently in non-intersecting areas;

2. Thermokarst depressions generation 

occurs simultaneously; the likelihood of the 

formation of one depression in the test area 

depends only on its size (Δs) and it is much 

greater than the likelihood of the formation 

of multiple depressions, that is,

p1 = μΔs + o(Δs) (1)

where μ is the average number of depressions 

per unit area;

3. The growth of the radii of lakes due to 

thermoabrasive impact occurs independently 

of each other, it is directly proportional to the 

amount of heat in the lake, and it is inversely 

proportional to the lateral surface area of the 

lake basin;

4. The depth of the lake is proportional to 

the radius.

The first assumptions seem natural, as derived 

from the homogeneity of the study area, 

and reflect the relative rarity of thermokarst 

depressions. The third assumption comes 

from the fact that the thermal effect is 

proportional to the heat flow through unit 

surface area. Finally, the fourth assumption 

reflects the fact that, along with increasing 

diameter of the lake, there is vertical thawing, 

though slow (this notion can substituted 

with the assumption of a constant depth).

The foundation of the model compiled 

allows one, through rigorous mathematical 

analysis of the assumptions, to arrive at the 

laws for such a widespread metric, as the 

area of the contour of a thermokarst lake 

on a thermokarst plain. It is possible to 

demonstrate that lognormal distribution of a 

thermokarst lake’s radius follows strictly from 

the model assumptions [Victorov, 2006]. 

Since the logarithm of the lake area and the 

logarithm of its radius are in linear relation, 

it follows that the area of the lake will also 

be subjected to the lognormal distribution, 

i.e., for the density distribution of the lakes 

areas at any time (t) over the course of 

development of the site it is true

Fig. 1. A typical representation of the landscape 

pattern of thermokarst-lake plains on satellite 

imagery (West Siberia)
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where a, σ are the model parameters.

The conclusion has been empirically 

validated in real measurements based on 

remote sensing surveys for the sites in West 

Siberia, Alaska, and other areas [Victorov, 

1995, 2006; Kapralova 2008 (Fig. 2).

Thus, although each lake area has its own value, 

their combination is subjected to a certain 

stochastic pattern; this pattern was obtained 

by mathematical analysis of the model. In 

general, we can conclude that the use of 

the mathematical landscape morphology 

approach to predict landscape behavior 

allowed forecasting values of landscape 

metrics for homogeneous physiographic 

conditions for the areas of thermokarst-lake 

plains. The type of distribution is lognormal 

and remains constant; the values of the 

distribution parameters vary depending 

on the specific physical and geographical 

conditions of each site.

Another key issue of development of the 

theory of landscape metrics is the relative 

informational content of different landscape 

metrics and of their combinations in problem 

solution. Typically, a researcher does not 

entertain the question and uses more 

or less suitable metrics contained in the 

well-known software tools and references 

[McGarigal, et al., 2002; Leitao, et al., 2006; 

etc.]. However, the analysis shows that, if 

some of the metrics are interrelated, sharing 

them is not rational, because it does not 

add information – a metric automatically 

confirms the differences identified by the 

other metrics. The interconnectedness of 

the metrics most often is not visible in 

advance and its detection is one of the main 

problems of using landscape metrics.

Approaches of mathematical landscape 

morphology can reveal hidden, at first glance, 

relationships of landscape metrics and, thus, 

evaluate their joint informational content. 

We will demonstrate this by the assessment 

of the joint informational content of three 

landscape metrics:

the average area of a contour, �
the density of contours, and �
the share of the area under one type of  �
contours.

Let us evaluate interrelationships of these 

metrics for a plain territory with the dominance 

of karst and subsidence-suffusion processes. 

Such territories develop in homogenous 

geological and geomorphological conditions 

and usually represent homogeneous 

landscape background with randomly 

scattered subsidings and rounded suffusion 

(or karst) depressions (Fig. 3).

Fig. 2. An example of the comparison of the 

theoretical logonormal (magenta) and of the 

empirical (dark blue) distribution of the area of 

the thermokarst lakes (the experimental site)

Fig. 3. A typical representation of a landscape 

pattern of the plains with subsidence-suffusion 

processes on satellite imagery 

(the foothill plain of Kopet-Dag)
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The task of assessment of metrics 

relationships was solved not only for the 

genetic types of the territories, but also for a 

wide class of dangerous geological processes, 

with the centers of circular shapes, on the 

basis of mathematical models of landscape 

patterns. The assessment was based on the 

fact that processes prevalence, expressed 

by the average share of land area occupied 

by the centers of subsidence-suffusion 

processes, is equal to the probability of 

a point, randomly selected on a site of 

being within the limits of the center of 

the process. This, in turn, is a problem 

of the probability of subsidence-suffusion 

processes impact on small-size structures. 

According to the obtained solution for 

this problem [Victorov 2007b; Victorov, 

2006], the following relation describes the 

impact:

Pd = 1 – e–μs (4)

where μ is the mean density of the depressions 

locations; s is the average area of the de pres-

sions. The outcome has been subjected to the 

primary empirical test (Table).

Thus, the three metrics analyzed are in a 

hidden relationship, described by the 

expression provided above. Consequently, 

the use of the third metric (processes 

prevalence) does not add additional 

information for the mean density of the 

depressions locations and their average 

area. We emphasize that the evaluation of 

the informational content of the metrics 

has been conducted by the theoretical 

means; the experimental data have only 

confirmed the findings. The forecast of 

the relationships has been done using the 

models of landscape patterns.

One of the key questions in the theory of 

lands cape metrics is the following: the extent 

to which landscape metrics reflect the 

dynamics of the landscape structure of the 

territory.

Let us examine this issue using the example 

of the plains dominated by thermokarst 

processes. Referring to the analysis 

presented above, it is easy to see that, for 

the thermokarst-lake plains, the average area 

of thermokarst lakes increases, reflecting 

the general dynamics of the landscape due 

to the degradation of permafrost on the 

edges of thermokarst lakes. However, let 

us consider the development of erosion-

thermokarst plains in a situation where 

continued generation of new centers of 

thermokarst occurs.

The comparison between theoretical dependence of m1, m2, and m3 metrics and the empirical data

Locations of the test sites

Metric 1 

(average density of 

depressions) km–2

Metric 2 

(average area 

of depressions) 

km2

Metric 3 

(processes prevalence)

Empirical 

values 

Theoretical 

values 

Turgai tableland (southern part) 0.111 0.820 0.106 0.087

Caspian lowland 1388.889 0.0002 0.209 0.188

Baraba steppe 0.899 0.307 0.198 0.241

Caspian lowland 11.364 0.008 0.070 0.090

Foothill plain of Kopet-Dag 81.439 0.001 0.053 0.073

Russian plain (Belarus) 148.448 0.002 0.250 0.224

West Siberia (South) 0.272 0.434 0.093 0.111

Turgai tableland (northern part) 0.364 0.354 0.053 0.129
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The test area has a low-hilly sub-horizontal 

surface with the predominance of 

tundra vegetation (cotton-grass tundra, 

sedge-cotton-grass tundra, etc.), which 

is interspersed with lakes and hasyreis 

and with infrequent erosion network. 

Lakes are isometric, frequently round in 

shape, and are randomly scattered over 

the plain. Hasyreis are flat depressions, 

also of isometric form, occupied with the 

meadow or marsh vegetation and, similar 

to the lakes, located on a plain in a random 

pattern (Fig. 4).

The basic assumptions of the model of 

the morphological structure of erosion and 

thermokarst plains satisfy the model of the 

thermokarst-lake plains presented above in 

the first positions, but are supplemented 

by two further assumptions that describe 

the interaction of thermokarst and erosion 

processes:

4.    In the process of growth, a lake can 

transition to a hasyrei if it is drained by the 

erosion network; the probability of this even 

is independent of the other lakes; with it, the 

growth of the lake is terminated;

5.    The location of the sources of erosion 

forms on a randomly selected site is a random 

event and its probability is proportional to 

the size of this site.

Also, the first assumption is modified, given 

the situation of a constant generation of 

new thermokarst lakes.

Thermokarst depressions generation is 

a random process; the likelihood of the 

formation of one depression on the test 

sites is independent and depends only on 

the area of the site (Δs) and the considered 

time interval (Δt); it is much greater than 

the likelihood of the formation of multiple 

depressions; that is,

p1 = λΔsΔt + o(ΔsΔt) (5)

where λ  is the average number of de-

pressions that occur per unit area per unit 

time.

The complexity of analyzing the dynamics 

of this area is associated with the fact that 

there are two opposing trends on the site: 

the growth and the formation of new lakes 

on the one hand, and disappearance of lakes 

due to drainage through erosion processes 

and their transition to hasyreis, on the other 

hand. What is the dynamics of the territory 

after a considerable time?

Mathematical analysis of the model allows 

us to demonstrate [Victorov 2005b], that 

after a considerable time in a wide range of 

conditions on erosion-thermokarst plains, 

the dynamic equilibrium in the processes 

of generation of thermokarst lakes and their 

transformation to hasyreis is established. This 

dynamic equilibrium is characterized by the 

following dependencies in the morphological 

structure of erosion-thermokarst plains:

the density of the radii distribution of 

thermokarst lakes

f(x, ∞)
−πγ−

−πγ
22

( )
xe

xEi
, x > 1, (6)

the average density of the locations of lakes

η(∞) = – 1
2a

Ei(–πγ) (7)

the average area of a lake

s(∞) = 
 −

γ −πγ
1
( )Ei

e–πγ (8)

Fig. 4. A typical representation of the landscape 

pattern of erosion and thermokarst plains on 

satellite imagery
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the level of the processes prevalence, taking 

into account the incidence of thermokarst 

depressions generation, the growth of lakes, 

and their transformation into hasyreis

Pl(∞) = 1 – exp
 −πγ⎛ ⎞λ

−⎜ ⎟γ⎝ ⎠2
e

a
 (9)

the distribution of hasyreis radii

Fh(x, ∞) = 1 –  −πγ 2xe  (10)

where γ is the average density of the 

locations of the sources of erosion forms; a, σ 

are the model parameters; Еi(x) is the integral 

exponential function.

The findings obtained have also been 

subjected to the empirical test, which is 

shown in Fig. 5.

Thus, the analysis shows that such 

landscape metrics as the average area, 

density of locations, and share of the area of 

thermokarst lakeson erosion-thermokarst 

plains do not reflect the dynamics of the 

area. The reason is the state of the dynamic 

equilibrium with local changes (possibly 

intense) when the overall parameters 

remain constant and, thus, are not suitable 

for trend analysis.

The problem of capturing the dynamics 

of landscape metrics has another very 

interesting aspect. Above, we have discussed 

the question of controlling the dynamics of 

the territory by recalculating the values of 

the metrics over time. One may ask whether 

the values of landscape metrics obtained at 

a single point of time can carry information 

about the characteristics of the dynamics 

of the territory (the rate of development, 

the relationship of the rates, the probability 

of change, the duration of stages and their 

relation to each other, etc.). Such a formulation 

is of great practical importance, since it 

can dramatically reduce time-consuming 

stationary observations in predictions.

Let us examine this question using an 

example of the landscape of alluvial plains. 

The principal elements of alluvial plains are 

oxbow (ancient oxbow) depressions and 

former riverbed elevations. The depressions 

have an arcuate shape, inherited from 

the former meanders, and are occupied 

by lakes, swamps, salt marshes, wetland 

forest vegetation, and tugai vegetation. 

The elevations, also of an arcuate shape, 

are occupied by more xeromorphic 

systems in accordance with the zonal, 

climatic, geological, and geomorphological 

conditions. The elevations and the 

depressions, adjoining each other, form 

patches coherent in shape and orientation. 

The patches of different generations adjoin 

each other, often “eating” parts of each other 

and, thus, forming the landscape pattern of 

the alluvial plains (Fig. 6).

A number of assumptions formed the basis 

of the mathematical landscape pattern 

models for the alluvial plains [Victorov, 1998; 

Fig. 5. The correspondence between 

the theoretical and empirical size distribution 

of the hasyreis (a part of the Yamburgskoye Gas 

condensate field)

Fig. 6. A typical representation of the alluvial 

plain on satellite imagery
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2006], of which the most important for the 

solution of this task are:

The probability of the straightening of the 

bend over a certain time-interval depends 

on the duration of this interval and does not 

depend on the behavior of other bends;

pd = λΔt + o(Δt) (11)

where λ is the parameter; the probability of 

more than one straightening over a short 

time-interval is much smaller than the 

probability of a single one.

The formation of ridges occurs isochronously 

with the period φ.

The correctness of the model may be 

verified by validating the conclusion on the 

distribution of patch arrows1. The analysis of 

the model implies that the distribution of 

the cycle of the development of the bend 

and, correspondingly, the size of the patch 

in the direction perpendicular to the chord 

(i.e., the arrow) must meet the exponential 

distribution. This conclusion considers the 

fact that the straightening of the bend 

occurs repeatedly and that is why each 

younger patch “erases” the corresponding 

part of the preceding patch or the entire 

patch (Viktorov, 2007a). Several consecutive 

patches can be erased completely.

This conclusion was validated by processing 

remote sensing data for the alluvial sites 

of the valleys of the rivers Vakh and Taz. 

Satellite images of 5-m and 15-m resolution 

were georeferenced using GIS MapInfo. The 

arrows of the fragments of the patches were 

drawn reflected their size. The arrows in the 

young developing patches were drawn as 

a perpendicular between the patch base (a 

straight line) and the parallel line tangent 

to the top of the patch. The arrows in the 

fragments of the old patches were drawn as 

a perpendicular between the line tangent 

to the top of the arc of the fragment base 

1 By analogy with the rise of an arc, which is the line perpen-

dicular to the chord that goes from the center to the apex of 

the arc.

and the parallel line tangent to the top of 

the arc that delimited the patch fragment 

on the outside. In some cases, there were 

difficulties associated with the erasure of the 

side parts of the fragments due to the shift 

of the channel, but in general, despite these 

uncertainties, in most cases, it was possible 

to draw the arrows. Adjacent fragments of 

the patches were isolated on the basis of 

angular unconformities.

The curves of the empirical distributions 

were constructed from the measurements 

results:

the size of the young growing patches; �
the size of the entire set of the patches. �

Further, the average values for the samples 

was determined and the empirical 

distributions were compared with the 

theoretical exponential distribution with the 

shift, according to the results obtained. The 

use of the distributions with the shift was 

connected with the fact that the analysis of 

the images showed fragments of the patches 

consisting of at least two ridges and one inter-

ridge depression; there were no fragments 

consisting of one ridge only. The comparison 

(Fig. 7) shows that the results of the model 

are supported by the empirical data by both 

the relationship of distribution curves and the 

Pearson criterion at a significance level of 0.95. 

However, more reliable results are obtained 

when applying the criterion for the sample-

size of more than 50.

The use of the obtained conclusion on the 

distribution of the duration of the cycle of 

development of the bend allows obtaining 

the distribution of the number of ridges in 

the patch. Considering steady generation of 

the ridges in time, it is possible to see that it 

is described by the expression

Pv(m) = 
 ϕ ϕ

− −
μ μ

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
1

m

e e
 

(12)

where φ is the average period of the 

formation of a ridge;  μ is the average 

duration of the formation of the bend.
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Fig. 7. The comparison of the experimental curve of the distribution of the sizes of the arrows 

of the preserved fragment of the formed patch (1) and of the theoretical curve of the exponential 

distribution with a shift (2) for the areas of the alluvial plains of Western Siberia: 

a – the valley of the river Vakh;  b – the valley of the river Taz

It follows that the average number of the 

ridges in the patch may be given by the 

expression

v = 

ϕ
−

μ

ϕ
−

μ

−

−1

e

e

. (13)

The latter expression makes it possible to 

obtain the value for the dynamic parameter, 

which is the ratio between the period of the 

straightening of the bend and the period of 

the formation of the ridge

ϕ ⎛ ⎞= +⎜ ⎟μ ⎝ ⎠
1

ln 1
v

. (14)

Thus, the dynamic parameter of the alluvial 

plains that describes the relation between 

the period of the bend straightening and the 

period of ridge formation may be defined by 

using such landscape metric as the average 

number of ridges in the patch. We emphasize 

that the metrics values are determined from 

a single period of observations.

CONCLUSIONS

Thus, this study suggests the following 

conclusions.

The values of landscape metrics are 

subjected to stochastic patterns specific to 

each landscape.

The joint informational content of various 

combinations of landscape metrics varies 

and can be predicted.

Landscape metrics in different landscapes 

reflect their dynamics to varying degrees and 

this can be forecasted; the values of some 

landscape metrics obtained for one period, 

however, reflect temporal parameters of the 

landscape dynamics of the area.

The key issues in the use of landscape 

metrics can be addressed using theoretical 

approaches based on mathematical 

landscape morphology.  �
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