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ABSTRACT. Human intervention on vegetation cover has always had a negative impact on the environment, directly 
affecting the quality of life in urban areas. Therefore, this study aimed to develop a methodology for the construction of 
an urban environmental quality indicator (UEQI) that could reflect the environmental quality of urban areas considering 
the vegetation conditions to which the resident population is exposed. For this, the method sought to integrate data on 
demographic density (Dd), leaf area index (LAI), normalized difference vegetation index (NDVI), and surface temperature (St). 
The Mamdani fuzzy inference system was used to generate a rule base containing 108 variations and a defuzzed output with 
five condition classes, ranging from very bad to excellent. The results showed that the studied area is characterized by a very 
bad to good UEQI, with most neighbourhoods having poor conditions (64.51%) and only two with good conditions. It was 
found that in general the studied area has unsatisfactory environmental quality, showing the need for initiatives aimed at 
urban afforestation in order to improve the quality of life for the studied population. It can be concluded that UEQI proved 
to be an efficient tool to identify priority areas for the planning and management of vegetation cover in urbanized areas, 
enabling the improvement of people’s living conditions. 
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INTRODUCTION

 The dynamics of urbanization and its effects, such 
as high population density and human pressure on 
natural areas, result in the hindering of the urban 
environmental balance, which is manifested mainly 
in the reduction of vegetation cover (Melazo and 
Nishiyama 2010; Hartig et al. 2014; Duarte et al. 2017), 
as many cities have a low amount of vegetation. This 
reflects, above all, the lack of planning during the 
expansion of cities and the lack of projects aiming to 
restore degraded areas or encourage conservation, 
preservation and maintenance of the vegetation 
cover.
 Understanding how transformations take place 
in the urban environment is essential for proposing 
strategies to mitigate the negative consequences of 
the urbanization process. According to Magalhães et al. 
(2017) and Bargos and Matias (2012), urban vegetation 
directly influences the population’s quality of life and 
the maintenance of ecological balance. Such claims 
are essential for its prioritization in urban planning. 

 Thus, the analysis of urban quality of life can 
be performed by combining several factors, both 
social and environmental. Among them, this 
article addresses the integration of population 
data that could show spatial distribution patterns 
of demography, vegetation and heat flow in a 
densely occupied urban area using geoprocessing 
techniques (Shimabukuro et al. 2015) and fuzzy 
inference system, as proposed by Mamdani (1974). 
 To carry out studies like this it is necessary to 
use tools such as geographic information systems 
(GIS), which Magalhães et al. (2017) classified as 
of great importance due to its reliability, agility 
in obtaining data and low cost, as even in small 
areas, without the support of this geotechnology, 
the costs for conducting a research can be high. 
Therefore, the use of spatial analysis tools is essential 
to assist in the identification and analysis of urban 
environmental conditions, thus helping to support 
management and planning programs aiming to 
maintain and conserve vegetation, especially trees 
or shrubs. 
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In this sense, this study aims to present a model that, 
using GIS, integrates data on demographic density (Dd), 
leaf area index (LAI), normalized difference vegetation 
index (NDVI) and surface temperature (St) for the 
creation of an urban environmental quality indicator 
(UEQI) applied to study an urban area of a municipality 
with a high population concentration.

MATERIALS AND METHODS

Study area

 The study was carried out in the urbanized area of the 
municipality of Sorocaba, located in the southeastern part of 
the state of São Paulo, Brazil, with an estimated population 
of 671,186 inhabitants and a demographic density of 
approximately 1,304.18 inhabitants/km2 (Figure 1).
 The municipality is highly urbanized and marked by the 
presence of an important commercial and industrial area 
(Lopes et al. 2019). It has Argisols, Cambisols, Gleysols and 
Latosols (Rossi 2017). The vegetation is transitional between 
the Atlantic Forest and the Cerrado biome and is marked 
by high forest fragmentation (IBGE 2012; Mello et al. 2014). 
Both biomes are characterized by rich biodiversity of fauna 
and flora, being considered worldwide hotspots (Myers et al. 
2000). 
 The climate is Cwa, which is characterized by hot 
summers and dry winters (Dubreuil et al. 2017; Lopes et al. 
2019). The average annual temperature ranges from 14.5°C to 
27.5°C. The monthly rainfall for the rainiest period (January) 
reaches 200 mm, while for the driest period (August) it is 35 
mm (CIIAGRO, 2019).

Demographic density (Dd)

 Demographic density (Dd) was obtained from values 
found in the urban and rural census sectors (IBGE 2010; IBGE 
2011), which were subsequently adjusted for the population 
by neighborhoods in the study area.

 After obtaining the population of the neighborhoods, 
the total population was divided by the neighborhood 
area according to Equation 1.

 Where: Dd = Demographic density (inhabitants/ha); 
Pop = Number of inhabitants per census sector; 
Csa = Census sector area.
 The values of Dd obtained by census sector area 
were converted into the centroid of the polygon of 
each neighborhood using the Feature to Point tool and 
interpolated using inverse distance weighing (IDW) in 
the ArcGIS 10.6 software (ESRI 2016).

Obtaining vegetation indexes

 The study of vegetation indexes was based on the 
images of the Landsat 8 bands 4, 5, 10 and 11 with 
orbit 220/point 76 and a spatial resolution of 30 meters, 
available free of charge on the United States Geological 
Survey website (USGS 2018a). The images were taken 
for August 2018 and January 2019 and were redesigned 
for the southern hemisphere. The reference is the plane 
coordinate system SIRGAS 2000 and spindle 23S. For the 
treatment and processing of images as well as for other 
modeling, Matlab R2010a (Mathworks 2014) and ArcGIS 
10.6 (ESRI 2016) software were used.
 The indexes NDVI, LAI and St indexes were obtained 
for January and August using the bands 4, 5, 10 and 11 
of the Landsat 8 satellite.
 NDVI is one of the most used indexes for studies on 
the quality of vegetation cover. The higher is the density 
of vegetation, the greater is the reflectance in the near-
infrared part of the spectrum. The values of NDVI usually 
range from -1 to 1: the closer to 1, the better is the 
vegetation condition, and the closer to zero, the worse 
is the vegetation condition (Gandhi et al. 2015; Santos 
and Aquino 2015).
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Fig. 1. Location of the Municipality of Sorocaba, São Paulo, Brazil
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 LAI corresponds to the ratio of leaf area over the land 
where the vegetation is found. It is an important index 
to estimate, for example, vegetative development and 
biomass (Allen et al. 2002; Fernandes et al. 2016). 
 To calculate NDVI and LAI, the bands 4 and 5 of 
Landsat 8, previously converted from digital numbers 
(DN) into reflectance at the top of the atmosphere 
(TOA), were used according to Equation 2, and later this 
value was corrected for solar angulation using Equation 
3. This conversion was performed using the radiometric 
coefficients available in the image file metadata. Further 
details can be found in the LDCM Cal/Val Algorithm 
Description Document and Landsat 8 Science Users’ 
Handbook available at <http://landsat.usgs.gov/
Landsat8_Using_Product.php>.

 Where: Pλ’= TOA reflectance without correction of 
the solar angle; Mρ = Multiplying factor for resizing the 
band (0.00002); Qcal = Quantified and calibrated pixel 
value in gray level (DN); Ap = Additive scaling factor 
specific to the band (-0.1).

 Where: Pλ= TOA reflectance with correction of the 
solar angle; θSZ = Local solar zenith angle, defined 
as θSZ = 90° – θSE; where θSE = Local solar elevation 
angle. Its value for August 2018 was 43.36905219 and for 
January 2019 – 58.8671889; θSZradian = θSZ*(π/180).
 After correcting the images, Equation 4 was used to 
calculate NDVI (Rouse et al. 1973).

 Where: NDVI = Normalized difference vegetation 
index; NIR = Planetary reflectance at the top of the 
atmosphere within the near-infrared range; R = Planetary 
reflectance at the top of the atmosphere within the red 
range.
 For the calculation of LAI, Equation 5 was used (Allen 
et al. 2002). 

 Where: LAI = leaf area index; SAVI = Soil-adjusted 
vegetation index.
 SAVI is calculated according to Equation 6, proposed 
by Huete (1988). Its value varies from -1.5 to 1.5. The 
factor L varies according to the characteristics of the 
vegetation. However, the value most used in the 
literature is 0.5, the same as adopted in this study.                                           

Surface temperature (St)

 Generally, urban climate presents different micro-
meteorological conditions, such as increase of 
temperature and decrease of humidity, and specific 
climatic conditions such as heat islands may occur. 
The surface temperature can be determined through 
the flow of energy that arrives and leaves a given Earth 
surface creating an interaction with the atmosphere. 
The range that allows greater transmission of the 
energy emitted from the Earth that reaches the sensor 
in the thermal infrared region of the electromagnetic 

spectrum is the range 8.0-14.0 µm (Steinke et al. 2010).
Thus, to perform the St calculation, the quantized 
and calibrated values (DN) of the bands 10 and 11 of 
the Landsat 8 OLI sensor system were converted into 
spectral radiance at the top of the atmosphere using 
the radiometric coefficients provided in the metadata of 
the images files (USGS, 2018a) according to Equation 7.

 Where: Lλ = Spectral radiance at the top of the 
atmosphere (Watts/(m²*srad*µm)); ML = Multiplying 
factor of band resizing (0.0003342); Qcal = Quantified 
and calibrated pixel value in gray level (DN); AL = 
Additive scaling factor specific to the band (0.10000).
Then, the spectral radiance at the top of the atmosphere 
in bands 10 and 11 was converted into brightness 
temperature at the top of the atmosphere (satellite 
temperature) according to Equation 8 (USGS, 2019b).

 Where: T = Effective temperature on the satellite in 
Kelvin (K); K1 = Band 10 or 11 calibration constant; K2 = 
Band 10 or 11 calibration constant; Lλ = Spectral radiance 
(Watts/(m²*srad*µm)); and K = Kelvin temperature 
constant (273.15). 
 Finally, St is obtained by Equation 9 (Artis and 
Carnahan 1982).

 Where: TM = Temperature mean (°C) of bands 10 
and 11; λ= Radiation emission wavelength equal 10.89 
µm (referring to the average wavelength of the Landsat 
8 band 10); c2 = h*c/s= 1.4380*10−2 m.K = 14,380 µm. 
K, where h = Planck constant = 6,626*10-34 Js and s = 
Stefan Boltzmann constant = 1.38*10−23J/K; c = speed 
of light = 2,998*108m/s;   = Emissivity from the Earth’s 
surface calculated according to Equation 10 (Sobrino et 
al. 2004).

 The vegetation proportion (Pv) value is calculated by 
Equation 11, where NDVImax = 0.5 and NDVImin = 0.2 
(Carlson and Ripley 1997; Sobrino et al. 2004).

 After calculating the vegetation indexes and the St, 
the ArcGIS 10.6 tool Cell Statistics was applied to obtain 
a matrix image of the means of the two periods, which 
was used for the preparation of the indicator.

Preparation of the urban environmental quality indicator 
(UEQI)

 The urban environmental quality indicator (UEQI) was 
quantified from a fuzzy inference system considering the 
simultaneous treatment of quantitative and qualitative 
variables.
 The indicators used to calculate the UEQI were Dd, 
NDVI, LAI and St. These indicators were interpreted 
through linguistic variables, since, when using these 
linguistic expressions in a fuzzy inference system, it is 
possible to define sets in which the values are allocated 
with different degrees of pertinence, this process is called 
fuzzification. Through this process the main function of the 
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Fig. 2. Relevance function of the input variable Dd

Fig. 3. Relevance function of the input variable NDVI

linguistic variables is to provide an approximate way for the 
characterization of complex phenomena to be analyzed 
through conventional mathematical models (Lourenço 
et al. 2015). In this study, these linguistic variables were 
expressed by ranges of values found in the literature in 
pertinence functions of the triangular and trapezoidal type.
 Demographic density directly affects the environment 
and, at the same time, has negative impacts and benefits 
for both regions with a low population density and regions 
with a high population density (Campoli and Maclean, 
2007). 
 In this context, Haughton and Hunter (1994) and 
Chakrabarti (2013) stated that regions with a high 
demographic density can be considered relevant in the 
process of achieving sustainable development. This is 
explained by the large concentration of people, which 
allows to maximize the use of the installed infrastructure, 
reduce the relative cost of its implementation and reduce 
the need for its expansion to peripheral areas as well as the 
need for travel since the concentration of people favors 
economic activities such as commerce and service at the 
local level, and, finally, encourage walking and enable the 
implementation of public transport systems (Haughton 
and Hunter 1994; Cioly and Davidson 1998; Jacobs 2000; 
Campoli and Maclean, 2007).
 However, in many cases, these environments that do 
not interact with nature, since there is an absence of tree-
lined streets, which directly impacts the thermal sensitivity 
of these places, maximizing the use of energy, among 
other impacts. Therefore, there is a need to use indicators 
or indexes that can reflect the variables affecting such 
regions, including temperature and the presence of tree 
vegetation.
 Thus, there is uncertainty about the ideal demographic 
density, which justifies the process of fuzzification of 
this variable in the current study. To assist in the process 
of identifying ranges of values that portray adequate 

linguistic figures for the construction of the pertinence 
curve, studies by Del Rio (1990) were used. In their study 
in the favelas of Rio de Janeiro (RJ), the authors showed 
that areas with a density equal to or over 1,500 inhabitants/
ha have deficiencies in the infrastructure service. Rodrigues 
(1986) stated that density below 100 inhabitants/ha makes 
the presence of services unfeasible, while density greater 
than 1,500 inhabitants/ha generate ‘dis-economies’. 
Mascaró and Yoshinaga (2005) argued that demographic 
density should be close to 600 inhabitants/ha to sustain 
infrastructure systems.
 In this sense, the value considered ideal for population 
concentration in this study was Dd equal to 600 inhabitants/
ha, while ranges of less than 100 inhabitants/ha and above 
1,500 inhabitants/ha were classified as regular Dd, as there 
are exceptions in regions with densities within these ranges 
of values that present ideal housing conditions (Figure 2). 
 The NDVI values found for areas covered by vegetation 
in tropical regions vary from 0.10 to 0.80 depending on the 
vegetation architecture, density and humidity, with the 
highest values associated with a very dense vegetation 
cover and, normally, around 0.6 for humid forests such 
as the Atlantic Forest (Parkinson 1997). According to the 
studies by Chouhan and Rao (2011), NDVI values lower 
than 0.1 indicate areas where there is no vegetation, values 
between 0.2 to 0.3 represent pasture areas and shrubs, 
while values between 0.6 to 0.8 correspond to tropical 
and temperate forests and indicate the presence of ‘living 
vegetation’. In these studies on NDVI it was noticed that 
there is uncertainty about the classification of NDVI values, 
which makes its fuzzification justified.
 Given the above, the pertinence curve of NDVI values 
was plotted (Figure 3), with values lower than 0.1 classified 
as bad, values between 0.2 and 0.3 classified as regular, 
values between 0.4 to 0.6 classified as good, and values 
above 0.6 classified as excellent.

Jocy A. P. Sousa, Jomil C. A. Sales, et. al. DEVELOPING OF AN URBAN ENVIRONMENTAL ...
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 Regarding the LAI parameter, Garcia et al. (2018) 
studied the Mata de Santa Genebra in Campinas, SP, 
Brazil. They studied the interior of the forest and its edges, 
finding a variation between 0.955 and 3.522 m2/m2 in 
the countryside and 0.741 and 3.120 m2/m2 for forest 
edges. The lower values for forest edges are due to the 
existence of clearings of different sizes that appear in 
different periods, resulting from both the extraction 
and the shallow cut, and also due to the occurrence of 
specimens decrease due to winds, lightning and fires. 
Thus, the influence of vegetation density on the LAI 
values is verified. 
For the fuzzification of the values and the construction of 
the pertinence curve, the following values were adopted: 
bad = values below 0.5 m2/m2, since these values are 
usually associated with the absence of shrub vegetation 
at the forest edges; regular = values between 0.7 and 
0.9 m2/m2, as this interval, in most cases, is associated 
with border shrub vegetation with greater exposure to 
anthropic action; and good = values above 1.0 m2/m2, 

which corresponds to the vegetation in the countryside 
with no clearings and protected from anthropic action 
(Figure 4).
 García (1995) identified in the Madrid region that 
values close to 25.0°C are considered the ideal comfort 
temperature for humans, while values below 20.0°C 
and above 30°C already begin to cause discomfort. 
Such thermal comfort intervals are consistent with the 
Brazilian reality, so much so that Gomes and Amorim 
(2003) used this classification to assess the thermal 
comfort of public squares in Presidente Prudente (SP). 
Using the values established by Garcia (1995) the 
pertinence curve was plotted. Values below 20°C and 
above 30°C were considered bad and values close to 
25°C were considered good (Figure 5).
 From the pertinence curves of each variable, a set 
of rules was established based on the model proposed 
by Mamdani (1974), which used the knowledge base of 
linguistic variables (output) for a fuzzy inference system 
(Table 1).

Rules
Input Output

NDVI LAI St Dd UEQI

1

Condition Bad

Condition Bad

Condition Bad
Condition Regular Condition Very Bad

2 Condition Good Condition Bad

3
Condition Good

Condition Regular Condition Regular

4 Condition Good Condition Regular

5
Condition Regular Condition Bad

Condition Regular Condition Bad

6 Condition Good Condition Regular

Table 1. Model rules basis

Fig. 4. Relevance function of the input variable LAI

Fig. 5. Relevance function of the input variable St
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7

Condition Bad

Condition Regular Condition Good
Condition Regular Condition Regular

8 Condition Good Condition Regular

9

Condition Good

Condition Bad
Condition Regular Condition Regular

10 Condition Good Condition Regular

11
Condition Good

Condition Regular Condition Good

12 Condition Good Condition Good

13

Condition Regular

Condition Bad

Condition Bad
Condition Regular Condition Very Bad

14 Condition Good Condition Bad

15
Condition Good

Condition Regular Condition Regular

16 Condition Good Condition Regular

17

Condition Regular

Condition Bad
Condition Regular Condition Bad

18 Condition Good Condition Regular

19
Condition Good

Condition Regular Condition Regular

20 Condition Good Condition Regular

21

Condition Good

Condition Bad
Condition Regular Condition Regular

22 Condition Good Condition Regular

23
Condition Good

Condition Regular Condition Good

24 Condition Good Condition Good

25

Condition Good

Condition Bad

Condition Bad
Condition Regular Condition Very Bad

26 Condition Good Condition Bad

27
Condition Good

Condition Regular Condition Regular

28 Condition Good Condition Good

29

Condition Regular

Condition Bad
Condition Regular Condition Bad

30 Condition Good Condition Regular

31
Condition Good

Condition Regular Condition Good

32 Condition Good Condition Good

33

Condition Good

Condition Bad
Condition Regular Condition Regular

34 Condition Good Condition Good

35
Condition Good

Condition Regular Condition Good

36 Condition Good Condition Excellent

37

Condition Excellent

Condition Bad

Condition Bad
Condition Regular Condition Very Bad

38 Condition Good Condition Bad

39
Condition Good

Condition Regular Condition Regular

40 Condition Good Condition Good

41

Condition Regular

Condition Bad
Condition Regular Condition Bad

42 Condition Good Condition Regular

43
Condition Good

Condition Regular Condition Good

44 Condition Good Condition Good

45

Condition Good

Condition Bad
Condition Regular Condition Regular

46 Condition Good Condition Good

47
Condition Good

Condition Regular Condition Good

48 Condition Good Condition Excellent
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 For the output variable (Figure 6), five linguistic 
variables were used, namely: very bad, bad, regular, 
good, and excellent (condition). Thus, the UEQI relevance 
curve was plotted, as shown in Figure 5. UEQI values 
were classified as very bad (0.0 to 0.2), bad (> 0.2 to 0.4), 
regular (> 0.4 to 0.5), good (> 0.5 to 0.7), excellent (0.9 
to 1.0), giving rise to five output classes from the fuzzy 
inference system rule basis.
 To numerically quantify the UEQI, after establishing 
the set of rules and the output membership function a 
conversion method called defuzzification was applied 
using the center of gravity method (Lourenço et al. 
2015). This procedure was carried out using the Matlab 
R2010a Fuzzy Logic Toolbox module (Mathworks 2014), 
with output values corresponding to the final numerical 

values of the UEQI by points (pixels) distributed 
throughout the study area. Then, the average of the 
values by neighborhood was extracted, which were 
geocoded and stored in their respective centroids.

RESULTS 

 Figure 7 shows Dd (a), NDVI (b), LAI (c) and St (d) for 
the urban area of the Sorocaba municipality.
 Figure 7(a) shows that the highest demographic 
density is observed in the northernmost, easternmost 
and westernmost regions of the urbanized area, 
which may imply a greater impact on wooded areas 
or an impediment to the creation of these spaces, 
since the greater concentration of population there 

Fig. 6. Output variable membership function (UEQI)

Fig. 7. Dd (a), NDVI (b), LAI (c) and St (d)
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demands more services, which has a negative impact 
the environment, for example, through an increase in 
impermeable areas.
 NDVI for the studied area showed values varying 
from -0.10 to 0.57 (Figure 7b), with only a few places 
with values approaching 0.57, since most areas do not 
have vegetation or, when they have it, vegetation is at 
a stage of low vegetative vigor. This NDVI analysis made 
it possible to confirm how compromised the quality of 
the municipality’s vegetation is, especially in the areas of 
greater urban concentration. 
 LAI ranged from -0.23 to 2.92 (Figure 7c) with a 
predominance of negative values, which was expected 
since it is an urbanized area. In general, this index reflects 
what has already been verified by NDVI, i.e., vegetation 
with low health characteristics indicating areas that tend 
to have higher temperatures, contributing to thermal 
discomfort. In addition, these indexes make it possible 
to observe that vegetation in most neighborhoods is 
isolated as there are no long stretches formed by dense 
vegetation cover. 
 For the surface temperature (Figure 7d), it can be 
seen that the minimum was approximately 21.12°C and 
the maximum was 33.62°C with higher temperatures 
corresponding to the urban perimeter. This is justified 
by the dense urbanization and low vegetation coverage, 
which lead to differences in atmospheric pressure 
and retention of particulate material on the surface, 
contributing to heating and thermal discomfort. This is 
extremely harmful to the health of the population as it 
may cause more respiratory problems and allergies in 
these areas.

 Figure 8 shows the UEQI maps, in which the 
conditions, classified as very bad, bad, regular and 
good, are presented per pixel and as the average 
value per neighborhood, respectively. It is important 
to note that excellent conditions were not found. 
Table 2 shows the number of neighborhoods for each 
condition class.
 The bad condition of UEQI was prevalent in 
more than 64% of Sorocaba neighborhoods, almost 
double the regular condition, which ranked second 
(34.05%). The very bad condition was present in only 
four neighborhoods, namely, Jardim Maria do Carmo, 
Jardim Henrique, Vila Franco, and Vila Porcel. The good 
condition, on the other hand, had the lowest number 
(Vivenda do Lago and Portal da Raposo) (Table 2). 
 Figure 9(b) shows a neighborhood with a very bad 
condition, Jardim Maria do Carmo, which does not 
have areas with a representative tree or shrub cover, 
vegetation is only present alongside roads or in some 
homes. Moreover, it is marked by the predominance of 
built areas with a high population density. 

DISCUSSION

 It can be stated that the isolation of vegetation 
cover makes it difficult to form an environmental 
balance and create ecological corridors. According to 
Bryant (2006), Haaren and Reich (2006) and Hong et 
al. (2017), corridors are essential to provide ecosystem 
services such as dispersion and biological migration, 
buffer zones, and conservation of water resources, in 
addition to mitigating the effects of high temperatures.

Fig. 8. Distribution of UEQI condition classes

Table 2. Distribution of neighborhoods according to UEQI condition

Condition of UEQI Total Neighbourhoods Neighborhoods (%)

Very bad 4 0.96

Bad 269 64.51

Regular 142 34.05

Good 2 0.48

Total 417 100.00
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 The low vegetation cover can also contribute to 
the formation of heat islands, which are areas with 
higher temperature than in their surroundings. They 
are considered as one of the factors responsible for 
the increase in thermal discomfort, thus contributing 
to the reduction of the population quality of life and 
impairment of ecosystem functions (Amorim et al. 2009; 
Amorim 2017). Barros and Lombardo (2016) suggested 
detailing the existing relationship between heat islands 
and problems such as concentration of pollutants and 
gases in the atmosphere and pointed it out as a factor 
responsible for morbidity and mortality due to problems 
in respiratory functions.
 According to Amorim et al. (2009) and Amorim 
(2017), the development of such heat islands is driven by 
multiple processes including suppression of vegetation, 
waterproofing of soils, and increase in built area. Amorim 
(2017) reported that areas covered by vegetation have 
a greater thermal capacity, that is, they need a greater 
amount of solar incidence to raise their temperature by 
1°C. This is different from urban areas, which are formed 
by other materials that make that thermal capacity 
smaller. 
 In cities, there are areas with little afforestation. In 
the central region this is due to the urban expansion 
process and in the peripheral areas – due to the absence 
of public policies aiming at the implementation and 
maintenance of this vegetation. However, it should be 
noted that urban planning must be done seeking to 
reconcile the demands of urbanization with demands 
of the environment to reduce the impacts that may be 
caused (Cruz 2009; Teixeira and Amorim 2011).
 Barros and Lombardo (2016), also using NDVI, LAI 
and St, found that in the city of São Paulo the highest 
concentration of vegetation were marked by a decrease 
in the intensity of heat island, therefore making 
vegetation responsible for mitigating heat in urban 
areas. These results are similar to the conclusions of 
this study as areas with the highest concentration of 
vegetation present a more pleasant temperature. It is 
worth highlighting places furthest from areas with high 
urban density, where temperature around 21.12-25°C 
was observed, which is within the ideal thermal comfort 
interval.
 The resulting UEQI classification is consistent 
with the reality of the neighborhoods. Figure 9 shows 
the representation of two neighborhoods, one with 
conditions characterized as good, which refers to 
the neighborhood Vivenda do Lago (Figure 9a). This 

neighborhood is further away from the urban center 
and is surrounded by tree or shrub vegetation, which 
contribute to its environmental quality, especially in 
terms of thermal comfort.
 Figure 8 shows that the neighborhoods that 
presented the worst indicators of urban environmental 
quality are those characterized by a set of factors that 
determine this result, such as the absence of dense 
vegetation cover, high ratio of urbanized areas and 
presence of areas that may cause some type of soil 
degradation. 
 Duarte et al. (2017) stated that the urbanization 
process enlarges the distance between society and 
nature as artificial spaces are increasingly created. 
Often the lack of knowledge of the benefits provided 
by the vegetation cover restricts its use to only the 
beautification of cities. However, its benefits go beyond 
the aesthetic factor, as they present social, ecological 
and educational functions.
 The ecological function of vegetation is in providing 
well-being to the local population, thus mitigating the 
negative impacts of the urbanization process, such as 
thermal discomfort and soil waterproofing. The social 
function is to provide leisure. Therefore, it is essential that 
these locations are properly maintained so that they can 
properly perform their functions (Porto-Gonçalvez 2006; 
Bargos and Matias, 2011; Bargos and Matias 2012). 
 As mentioned, there are several factors that 
contribute to urban quality of life, but the main one 
is the presence of plant cover given its association 
with improving the quality of life of the population. 
Therefore, Souza and Amorim (2016) emphasized the 
need to allocate areas and financial resources aiming to 
implement afforestation. However, according to Bargos 
and Matias (2012), there is a neglect of vegetation, which 
is not given due importance in the urban planning of 
cities.
 Many studies have reported the positive impacts 
of urban vegetation, which go beyond improving the 
microclimate, such as its relationship with the physical 
and mental health of the population. Among these 
studies, Lin et al. (2019) focused on a survey conducted 
in different green spaces and Juan et al. (2017) studied 
the role of public squares in offering psychological 
benefits. These authors define them as potential restorer 
of natural landscapes.
The UEQI analysis has shown that none of the 
neighborhoods in the municipality of Sorocaba 
demonstrates ideal conditions that could guarantee a 

Fig. 9. Neighborhood Vivenda do Lago (a) and Neighborhood Jardim Maria do Carmo (b). 
Source: Google Earth Pro images, year 2019
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good environmental harmonization. It confirmed that 
vegetation cover is not sufficient to provide a pleasant 
environment to the population, as neighborhoods lack 
spaces with vegetation, which can contribute to the 
residents’ quality of life. However, it is not just a question 
of planting flowerbeds and roads but of creating well-
wooded squares, restoring degraded areas and creating 
campaigns encouraging the population to contribute to 
the maintenance of these areas. 
 Degraded areas may be subject to ecological 
restoration, but a feasibility study must be carried out so 
that appropriate management techniques are adopted 
to restore the environmental quality of these places, thus 
providing well-being for the population, scenic beauty 
and proper environment for fauna and flora, in addition 
to helping to maintain the quality of water resources. 
Therefore, given the results, urban planning for the 
expansion of urban vegetation is recommended 
in different neighbourhoods of the municipality of 
Sorocaba, especially in those where UEQI was very bad 
or bad, as it indicates conditions that can compromise 
the quality of life of the population.
 Studies on environmental quality are essential to 
understand the problems resulting from the expansion 
of urbanization since they serve as subsidies for 
decision-making aiming to mitigate the environmental 
impacts resulting from anthropic interventions on the 
urban environment (Estêvez and Nucci 2015). Duarte et 
al. (2017) reported that it is possible to reconcile urban 
space with environmental quality as long as there is 
adequate urban planning and the population is willing 
to contribute to the insertion of vegetation cover. 
 There are several methodologies to assess urban 
environmental quality, such as the ones presented in 
Ávila and Pancher (2014), Minaki and Amorim (2012), 
Dias, Gomes and Alkmim (2011) and Nucci (2008). 
However, most of them aim to characterize factors, 
different from the point of view proposed in this study, 
which, in addition to using special analysis tools, adopts 
a fuzzy inference system to encompass environmental 
quality.
 The methodology applied to elaborate UEQI becomes 
relevant as it can cover the resident population and small 
spatial variations disregarding local homogeneity, that 
is, any changes that occur in the studied variables are 
included in the modeling of the reproduced scenario, 
thus enabling results consistent with reality.
 Given the above, UEQI becomes an important public 
management tool since the support of geospatial 
technology tools for spatial analysis can assist in 
obtaining data and allow to identify the places where the 

most urgent interventions are needed, thus improving 
the conditions in these locations in order to guarantee 
environmental quality.
 The use of population data referring to the last 
demographic census (2010) was a limiting factor in this 
research, since such a census is carried out every ten 
years and, due to the pandemic, it was not carried out in 
2020. And these data are particularly important because 
they provide a population overview of the municipality, 
serving as the basis for several studies carried out in 
Brazil.
 Temporal analysis of UEQI using data on the 
demographic density and other variables (St, NDVI 
and LAI) referring to the year of publication of the 
demographic census is suggested for future research. 
In this way, a future projection will be obtained, which 
can help to identify neighbourhoods that are more 
conducive to a scenario of suppression of urban 
vegetation cover or intensification of the heat island 
phenomenon. This will help to outline more effective 
urban planning strategies and, consequently, positively 
affect the quality of urban life.

CONCLUSIONS

 The variables used in this research are adequate 
for the assessment of UEQI, which is evident from 
the coherence of the information presented since 
areas without vegetation cover and with the highest 
demographic density presented the worst conditions 
and the highest temperatures. 
 The municipality needs measures that prioritize 
urban afforestation, such as greater incentives for 
the recovery of degraded areas and creation of green 
spaces for leisure. Such measures can be carried out in 
conjunction with an environmental education project 
for the population focused on the importance of green 
areas, as they are essential for improving environmental 
conditions and, consequently, people’s quality of life. It 
should be noted that the urban center of Sorocaba is old 
and there has been no urban planning that considers 
factors that were presented in this study.
 It is important to highlight the use of geospatial 
technology for data analysis as these tools enable using 
environmental and social variables that are not considered 
in traditional methods. This contributes significantly to 
the detailing of certain conditions not usually mapped 
in traditional models and provides the assessment UEQI 
which can easily be replicated since all variables can be 
represented spatially making UEQI an important tool that 
can be used by the public agencies.
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