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ABSTRACT. Regardless of the existing governmental and public preventive actions for surveillance and controlling the air 
quality in several regions of the Chennai city in India, the air quality does not meet the desired standard. In this regard, this 
study employs an ARMA/ARIMA modelling approach for forecasting Respirable Suspended Particulate Matter (RSPM), Sulphur 
dioxide (SO2) and Nitrogen dioxide (NO2) concentration for three most polluted sites in Chennai city. A total of nine univariate 
linear stochastic models have been developed, three for each of the stations which includes one for each of the specific 
pollutants in order to forecasts the concentration of each pollutant. The evaluation of the model statistics R2 values and index 
of agreement values evince that a significant level of real-time forecasting of the pollutants can be achieved by employing 
the developed ARMA/ARIMA models. Moreover, the comparisons of actual air pollutant concentration have been carried out 
with the permissible limit as prescribed by the National ambient air quality standards (NAAQS) of India for assessing the level 
of pollution of all three locations.
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INTRODUCTION

 In recent years, the massive decline in air standard 
is predominately attributed to a swift increase in 
industrialisation and density of vehicles that increase the 
air pollution in the environment. Reliable forecasts for the 
concentration of pollutants in the atmosphere are required 
with time and space for managing the air standard up to 
non-hazardous level and to formulate the air pollution 
control policy. Most of the air polluted countries have 
launched an active surveillance system to reduce major air 
pollutants in highly polluted areas of their dominion.
 The air quality prediction for assessing air pollution can 
be established either by analytical or statistical models. 
Analytical models are usually more appropriate to make 
long-term forecasting and planning decisions (Juda 
1989; Zannetti 1989). But, such models do not produce 
satisfactory results for air pollutant series characterised 
by rapid dynamics (Cats and Holtslag 1980; Jakeman et 
al. 1988; Raimondi et al. 1997). In addition, the analytical 
methods are unable to bring a quantitative assessment of 
the environmental pollution if the data of extra input factors 
such as temperature, wind, traffic features for evaluating 
the emission rate is not available (Petersen 1980; Benson 
1989). In the cases when the data of extra input factors is 
unavailable, stochastic modelling provides an alternative 
approach to deal with the time series of air pollutants.

The forecasts of air quality can be attained either by 
air standard report from running monitoring sites after 
analysing the general pattern or by the air pollution 
predictor models. In stochastic models, ARMA/ARIMA 
approach is most suitable for linear time series assessment 
and forecasting (Box & Jenkins 1976). For regulatory bodies, 
forecasting is essential in order to apply counter techniques 
for maintaining the pollutant level in check.
 The ARMA/ARIMA model, also known as the Box-
Jenkins model, is widely acknowledged as one of the 
most efficient statistical methods for forecasting from 
time-series data (Adebiyi et al. 2014). ARIMA models are 
comparatively more robust and competent than other 
complex fundamental models with respect to short-term 
forecasting (Meyler et al. 1998). The ARIMA modelling is 
recognized for remarkable forecasting precision and for 
the suitable presentation of different kinds of time series 
in an effective manner for optimal model formulation 
(Khandelwal et al. 2015).
 The ARMA/ARIMA models are employed to attain the 
best fit model from the past values of a time series. The use 
of ARMA/ARIMA forecasting model is not only restricted to 
air pollutant time series, but it is widely used in many other 
fields for forecasting. The maximum of ozone aggregation 
was predicted by Slini et al., (2002) using the past nine 
years of air standard data. Kumar et al., (2004) study applied 
the ARMA approach to get maximum daily ozone forecasts 
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at Brunei Darussalam. Duenas et al., (2005) use a stochastic 
model to forecasts ground-level ozone aggregation in 
urban and rural regions. Liu, (2009) forecasted day by 
day   aggregation level using Box–Jenkins time series 
models and multivariate analysis. Numerous univariate 
ARMA/ARIMA models were developed by Sharma et al., 
(2009) for assessing and predicting a monthly maximum 
of the 24-hours average time series data for sulphur 
dioxide, nitrogen oxide and suspended particulate matter 
aggregation in an urban region of Delhi city. Kumar and 
Jain, (2010) developed univariate ARIMA models for 
predicting the daily mean of ambient air pollutant such as 
ozone, carbon monoxide, nitric oxide and nitrogen dioxide 
aggregation at an urban traffic location. ARIMA modelling 
was applied by Jian et al., (2012) to forecast submicron 
particle aggregation. Naveen & Anu, (2017) forecasts by 
employing ARIMA and SARIMA approach on the ambient 
air quality data of Thiruvananthapuram District of Kerala 
and arrive at a result that ARIMA model gave better 
forecasting in comparison to SARIMA model.
 There is no evidence of forecasting air pollutants of 
metropolitan cities of India such as Chennai, Mumbai, 
Calcutta and Hyderabad. Therefore this study attempt to 
fill the gap using Chennai city as its case study. 
 With this motivation, our study best-fits ARMA/ARIMA 
models for forecasting pollutants level of three sites in 
Chennai city and then graphically represent the trend of 
air pollutants accompanied with comparison to NAAQS for 
January 2004 to December 2018. The rest of the paper is 
compiled as follow. In Section 2, we discuss the background 
of air pollution in India, particularly in Chennai. In Section 
3, we discuss the collection of data and illustration of all 
the three sites. In Section 4, the general strategy regarding 
the formation of best-fit models is provided. Section 5 
demonstrates the performance of the best-fitted models. 
Section 6 discusses the results obtained from the best-
fitted models and their implications. Section 7 provides a 
conclusion reflecting on this research.

BACKGROUND OF AIR POLLUTION IN INDIA

 The reports of past studies analyse that particulate 
matter is increasing at a rapid rate among all the air 
pollutants in India. The census of 2011 indicates that, out 
of the 640 districts in India, annual PM2.5 concentration 
exceeded in 27% districts in 1998, 45% districts exceeded it 
in 2010 and 63% districts exceed it in 2016 compared to the 
annual standard value of 40µg/m3 (Guttikunda et al. 2019). 
Further, Venkataraman et al., (2018) affirms that 99.5% of 
these districts cross the limit of WHO guideline of 10µg/m3 
(annual average) for PM2.5 concentration in 2016, and about 
50% of the population lives in an area where the annual 
average concentration of PM2.5 is exceeded than 40µg/m3 
of admissible limit as per NAAQS of India. The report of the 
World Health Organization (WHO 2014) stated that, of the 
top 20 most polluted cities in the world, 14 are in India. While 
the pollution level is not uniform in different cities all over 
India. The report further indicates that north India is worst 
polluted than south India, as none among these 14 cities is 
from south India. The north Indian cities like Uttar Pradesh, 
Delhi, Jharkhand, and Punjab are mostly polluted with 
quite higher amount of PM10 concentration as compared to 
other pollutants (Pant et.al. 2019). Most of the Indian cities 
have the only SO2  pollutant in compliance with NAAQS 
(Guttikunda et.al. 2014). Delhi, the capital of India, is the 
worst-ranked city in term of air pollution in India (Kaushik 
et.al. 2019). The tremendous increase in the number of 
motorised vehicles is the major cause of pollution in Indian 

cities (Dhyani et.al. 2017). Unlike the northern cities, the air 
pollution in a southern city like Chennai is not much higher 
than NAAQS. Sivaramasundaram and Muthusubramanian 
(2010) indicate that particulate matter (PM) level is the 
major air pollutant in Chennai and is more than the 
NAAQS at those urban sites where vehicular movement 
is highest. Guttikunda et al., (2015) study examined that 
the vehicle exhaust contributes about (34%), industries 
(21%), power plants (12%), road dust (9%), brick kilns (7%), 
domestic wastages (4%), and open waste burning (3%) to 
PM10 pollution in Chennai. The diesel exhausts contribute 
about 50% to PM10 and gasoline about 15% to PM10 level in 
Chennai (Srimuruganandam and Nagendra 2012).
 
DATA COLLECTION AND STUDY SITES 

 Chennai, the capital of Indian state, Tamil Nadu, is 
situated at 13.0827° N, 80.2707° E. Chennai city has Tropical 
savanna climate with dry summers and winters (Koppen 
climate classification) and is situated close to the southern 
coastal part of India. May and June are the hottest with a 
daily mean temperature of 38°C and December and January 
are coldest with a daily mean temperature of 21°C. The 
average annual precipitation falls down between October 
and December. The air quality in most of the regions of 
Chennai is decaying from the past decade. Anna Nagar (Fig. 
1), a major residential area, lies in the north-western part of 
Chennai. It has good road and railway networks comparing 
to other parts of Chennai. It is situated about a distance 
of 10km from Chennai beach. Theagaraya Nagar  is a very 
prosperous commercial and residential neighbourhood 
district of Chennai. It is one of the major business districts 
in Chennai. It is about 9 km away from the famous Marina 
beach. Kilpauk is a commercial (traffic intersection) area 
located in Chennai. It is about a distance of 8 km from 
the famous Marina beach and about 18km from Chennai 
airport. It has a good road and railway connectivity with 
other parts of Chennai City.
 As of September 2018, three key air pollutants, Sulphur 
dioxide (SO2) , Nitrogen dioxide (NO2) and Respirable 
Suspended Particulate Matter (RSPM/PM10) have been 
identified for continuous monitoring at above-mentioned 
stations like all the other stations in India. All other pollutants 
are also monitored, but not at all stations across the 
country. The pollutant is monitored for 24-hour (4-hourly 
sampling for gaseous pollutants and 8-hourly sampling 
for particulate matter) manually twice in a week to obtain 
104 observations in a year (https://cpcb.nic.in/monitoring-
network-3/) under the National Air Monitoring Programme 
(NAMP). In Chennai, 8 ambient air quality monitoring 
stations are running, and data is sampled manually once 
a day to cover two stations per day on all working days 
(http://tnenvis.nic.in/Database/TN-ENVIS_793.aspx). The 
data collected at these stations is descriptive rather than 
absolute. This approach is applied for forecasting when 
the long-term data records are available. An elementary 
requirement to use ARMA/ARIMA approach on the time 
series data is the continuity of data. Our study makes 
possible to employ directly ARMA/ARIMA approach for 
forecasting due to the absence of missing values in each 
of the time-series data for all the three sites. The data for 
each of the three sites Anna Nagar, Theagaraya Nagar and 
Kilpauk has been acquired from January 2004 to December 
2018 from the Central Pollution Control Board (CPCB) of 
India, (www.cpcb.nic.in; accessed in April-2018). After 
collecting the data, the data have been split into two parts, 
the training and test data sets. The data set from January 
2004 to December 2016 act as «training data set» and from 
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January 2017 to December 2018 acts as «test data set». 
The training data set is used to obtain the best fit model, 
while the test data set serves as an unobserved data set for 
comparing with the efficiency of the forecasting obtained 
from the best fit model of the training data set. 
 
METHODOLOGY

 The present study adopts a univariate linear stochastic 
ARMA/ARIMA modelling approach for forecasting the monthly 
average concentrations of each of the ambient air pollutants 
(RSPM, SO2 and NO2) for each of the three most polluted stations 
of the Chennai city. The basis of this study is to apply the ARMA/
ARIMA approach for forecasting the air pollutants in an efficient 
manner. This approach is an integrated framework consisting 
of several interrelated steps to be applied until the best-fitted 
model is attained for forecasting as shown in figure 2.

Formulation of ARMA/ARIMA modelling
 The ARIMA modelling brings out the predictable trend, 
variation and correlation from the observed data until a series 
of white noise is attained in ACF of residuals to indicate the 
best-fit model. The process is followed by disintegrating the 
time series into three constituents, autoregressive (AR), the 
integration (d; difference) and the moving average (MA) 
operators. 
 In practice, the formulation of the most suitable ARMA/
ARIMA model is not convenient and requires four phases to be 
applied to the time-series data. 

Model identification: In the preliminary phase, the time series 
is investigated for stationarity. If the series is non- stationary 
then after the conversion of series into stationary, the tentative 
values of non-seasonal AR and MA function are evaluated on 
the basis of plotting of Autocorrelation function (ACF) and 
Partial autocorrelation function (PACF).
 
Parameter estimation: After determining the tentative values 
of (p, d, q) parameters for AR, differential operator and MA, the 
linear coefficients of the models are evaluated using maximum 
likelihood or minimum least-squares method. AIC is defined by 
(Brockwell and Davis 2002) as   

BIC is given by (Schwarz1978) as: 

If the model is univariate, linear in parameters and the 
residuals are normally distributed, then the AICc is given by 
(Burnham and Anderson 2004) as: 

where L denotes the likelihood function in Eqn. (1), (2) and v, m 
denote the number of variables and number of observations 
respectively in the Eqn. (1), (2) and (3). The idea of Portmanteau 
goodness-of-fit test is applied on tentative models for 
choosing such a model among numbers of tentative models 
that have the least values of AIC (Akaike Information Criterion), 
BIC (Bayesian Information Criterion) and AICc (another version 
of Akaike information criterion). These statistical information 
criteria are estimators used to determine the tentative models 
for a given set of data. All of these three Information Criteria 
has its own benefits and drawbacks. Thus in our studies, we 
make use of all these criteria instead of relying upon any one 
of these to choose tentative models. 

 Validation: The proficiency of the selected ARIMA (p, d, q) 
model is determined by employing the certain statistical test 
after the best-fit model achieves the white noise (residuals 
do not have autocorrelation). Following this, two types of 
diagnostic tests are generally applied to determine the 
statistical competency of the selected best-model. The first 
test analyses the correlation of the residuals series by plotting 
the ACF of residual. Further, if the plot of the ACF of residuals is 
not correlated then the residuals are white noise. The second 
is the Chi-square statistics test that depends on the residual 
autocorrelations of first 25 lags in our studies, the Portmanteau 
goodness-of-fit test (Box et al. 1994). On testing both of these 
two criteria, if either of these two criteria is not fulfilled on a 
tentative model obtain from (step 2) then the re-estimation of 
the model parameters is needed to apply on other tentative 
models to test for validation until the model satisfying both 
conditions is achieved. 
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Fig. 1. Depicting the location of considered ambient air quality monitoring stations in Chennai on map of India
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 Forecasting: After obtaining the best-fitted model 
from the trained data with good accuracy, the same best-
fitted model is applied to the test data set of that series 
for attaining the forecasting. In this manner, a total of 
nine models have been developed, one for each specific 
pollutant for each of the three stations.
 The ARMA/ARIMA modelling approach is applied only 
to a stationary time series. If a series is non-stationary, 
«logarithmic», «square root» or «power transformations» 
are applied for stabilizing the variance in the time series 
(Mills 1991). ARIMA approach suggested regular and 
seasonal differencing transformation for removing the non-
stationary created by trend and seasonality. The difference 
operator “ ”  and “ ” given by xt=xt-xt-1 and Sxt=xt-xt-s are 
operated on the time series yt. 
 The preliminary phase is to initiate the process of 
building the model after the time-series have been 
converted to stationarity by applying the differencing of 
suitable order. The pattern of ACF and PACF plots suggest 
the suitable tentative models by defining the behaviour, 
trends, stationary and order of AR and MA operator in 
the time series data (Tabachnik and Fidell 2005; Pankratz 
1983). The ACF identifies the extent of linear dependence 
between the observations of the time series apart by lag1.  
The PACF plot helps in identifying the numbers of AR terms 
required for the model. A common representation of a 
AR(p) is

where P determine the number of terms in the past required 
for forecasting the present value with random error term εt 
at the time  β0, β1, β2... βp having  as coefficients. 
 A moving average MA(q) model having an order q, is 
one in which yt depends only on the random error term 
following a white noise process (εt having zero mean and 
constant variance to lag q). A moving average MA (q) 
model with φ0,φ1,φ2...φq being the coefficients is generally 
represented by 

 A combination of both AR(p) and MA(q) is referred to 
ARMA(p,q), depending upon p of its own past values and q  
of past values of the white noise distribution expressed by 
(Shumway and Stoffer 2006) for some constant α.

But if differencing is employed to time series to make 
it stationary then the resulted model is referred as 
ARIMA(p,d,q) where d indicates the order of differencing 
(Shumway and Stoffer DS 2006; Brockwell and Davis 2002).

Best fitted model for different monitoring sites
 The selection of the final best fit model is based upon the 
given criteria: A stationary model having the least value of 
AIC, BIC and AICc are chosen among the tentative stationary 
models. And in addition to this, if ACF of residuals of the 
chosen model has white noise then it is selected as a best-fit 
model only when the numerical error on applying statistical 
tests is least compared to other tentative white noised models. 
Otherwise, rests of models from tentative stationary models 
have to be checked until one of them is best-fitted. 
 In each model, the Ljung-Box test is applied on the first 25 
lag all at once for determining the p-value (significance level for 
comparison) and Q*-statistics. The value of p greater than 0.05 
from the Ljung-Box for all the nine best-fit models suggests the 
acceptance of the null hypothesis, that the given models are the 
best fit. Similarly, the Q*-statistics is performed for testing the 
competency of the different tentative models for each of the 
time series. The Ljung- Box test Q*(m) statistic is characterized 
by asymptotic chi-square distribution with   degrees of freedom. 
The null hypothesis Q*(m) is satisfied if the obtained model has 
a non-serial correlation and is computed as: 

where n is the number of values in the data set, m is the 
maximum number of lags used in the test and Pk is the 
autocorrelation of data at lag k.  The low values of Q*- 

Fig. 2. Flowchart depicting the outline of the general methodology
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statistics suggest the validity of a model. The Q*m  value 
is less than 20 for all the nine models, suggesting the 
adequacy of all the best-fit models.

Auto-correlation function of the residuals for best fitted 
ARIMA (p, d, q) models
 The portmanteau test of Ljung-Box test is mostly 
applied to check the level of goodness of fitness of a time 
series model. If significant autocorrelation is not present in 
the residuals from the model, then the model is claimed 
to fulfil the test. Each of the series of RSPM, SO2 and NO2 

for all the stations used the 156 observations (training data 
set) for the formulation of the model. All the sub-figures in 
Figure 3 for ACF of the residuals show that the individual 
residual autocorrelations are very small and are lying within  

for m=156 significance bounds. It signifies ACF of the 
residuals of all the nine best-fit models that are represented 
in Figure 3 shows white noise character (as all of the values 
lie inside the confidence interval).
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 Figures 3a-3c depicts the ACF of the Residuals for best 
fitted ARMA/ARIMA model of RSPM,   and   respectively 
for Anna Nagar. The ACF of the Residuals for best fitted 
ARMA/ARIMA model of RSPM,   and   for Theagaraya Nagar 
are shown in Figure 3d, 3e, 3f respectively. Figures 3g-3i 
presents the ACF of the Residuals for best fitted ARMA/
ARIMA model of RSPM, SO2 and NO2 respectively for Kilpauk. 

Assessment of the Performance of the best-fitted Models
 The forecasting efficiency and reliability of best-fitted 
models are judged by employing the statistical techniques 
on the «test data set». Different techniques are employed 
to estimate the degree of accuracy and reliability of the 
time series forecasting models. The most commonly used 
method for estimating the degree of forecasting accuracy is 
to visualize by plotting the measured and forecasted values. 
The visualization of the plotting directly helps to analyse 
the extent up to which the performance of the model is 
convincing. However, this method of evaluation lacks 
objectivity. In order to make the numerical error analysis 
free from the subjectivity, the current studies use two quite 
effective statistical measures for assessing the forecasting 
efficiency of the developed models. The root mean square 
error (RMSE) and it’s constituent, systematic RMSES and 
unsystematic RMSEu proposed by Willmott (1981) and 
Willmott et al., (1985). The RMSE is given as,   states the 
division of the total error into systematic and unsystematic 
where 

and

The Oi and yi represent the observed and predicted values 
respectively. Also Ŷi=mOi+b, where  and   are the slope and 
intercept of the least square regression respectively on the 
observed parameters. Willmott (1981) and Willmott et al., 
(1985) also proposed the index of the agreement (d) as: 

where O represent the mean of the observed values.
 The index d evaluates the limit to which signs and 
the magnitude of the observed values about the O are 
associated to the forecasted deviations about O and 

determines the variation not only in O and Y but also in 
the proportionality of O and  Y (Rao et al. 1985). The value of 
the index d ranges from 0.0 to 1.0. The former value implies no 
agreement while the latter defines the best agreement. The d 
can be regarded as standardized (in terms of the difference in 
the forecastings and observations about the observed mean) 
estimate of the mean square error. The index d was suggested by 
Willmott (1981) as a substitute to R (coefficient of correlation) an 
R2 (coefficient of determination). The index d is a dimensionless 
and bounded technique with values near to one implies a 
strong agreement. However, Willmott and wicks (1980) analyses 
that the high or statistical significant values of R and R2 may be 
inaccurate, as they frequently are not associated with the size of 
variation between Oi and yi.   

RESULTS AND DISCUSSION

 The results shown in Table 1 summaries the statistical 
analysis of the training data set and test data set of all the nine 
different models. One model for each of the pollutant RSPM/
PM10, SO2 and NO2 at the three stations are developed in our 
studies. In the evaluation of model statistics, the values of R2,d, 
RMSE lie between the ranges of 0.89 to 0.94, 0.87 to 0.91 and 0.12 
to 0.43 respectively for forecasting all the nine models. The range 
of d value suggests that there exist a good level of agreement 
between the training data set and test data set for all the nine 
models. Moreover, the range of R2 value signifies that at least 
89% of the forecasting evaluated in all the models is free from 
the errors. The low percentage of errors in the models suggests 
that the forecasting is quite convincing.
 The forecasting results acquired in the present study (Table 
1) are compared with the results of Sharma et al., (2009) study 
who applied an identical approach for developing ARMA/
ARIMA models and for determining the statistical efficiency to 
forecasts the ambient air quality of Delhi City. Our studies obtain 
at least 89% of forecasting free from error for all of the models in 
comparison to at least 86.93% forecasting accuracy of (Sharma 
et al. 2009) for all the models. 
 The Central Pollution Control Board (CPCB) of India has 
installed hundreds of ambient air quality surveillance centres 
across the country and made it mandatory to monitor at least 
three pollutants(RPSM, SO2 and NO2) at each of the sites to 
keep the air pollutants level in control. It has specified certain 
permissible limits of the different pollutants given by NAAQS in 
μg/m3 (Table 2) on the basis of annual pollutant concentration 
for comparing with the concentration of the actual pollutant of 
a site for assessing pollution level.
 The annual average concentration of pollutants from January 
2004 to December 2018 for five locations has been compared 

Stations Pollutant
ARIMA
model

AIC BIC AICc
d R2 RMSE

Fit Forecast Fit Forecast Fit Forecast

Anna Nagar RSPM 3,1,2 502.5 504.3 510.8 0.88 0.90 0.89 0.91 0.22 0.28

SO2 3,0,0 712.3 713.4 721.3 0.88 0.87 0.87 0.89 0.19 0.23

 NO2 1,0,1 603.3 604.2 616.2 0.89 0.89 0.90 0.92 0.38 0.34

Theagaya Nagar RSPM 1,2,2 721.1 722.6 732.8 0.90 0.90 0.92 0.92 0.44 0.37

 SO2  1,1,2 593.2 594.4 602.3 0.89 0.88 0.90 0.90 0.33 0.29

 NO2 1,0,2 857.3 858.9 863.6 0.90 0.91 0.91 0.91 0.39 0.43

Kilpauk RSPM 2,1,1 934.9 935.3 946 0.90 0.90 0.92 0.93 0.40 0.33

SO2   2,1,3 576.4 578.3 587 0.91 0.89 0.93 0.94 0.16 0.12

 NO2 1,1,1 673 674.3 682.4 0.90 0.88 0.94 0.94 0.31 0.27

RMSE
n

Y OS i i
i

n

= −
=
∑1 2

1
( ∆ )

RMSE
n

Y Yu i i
i

n

= −
=
∑1 2

1
( ∆ )

Table 1. Model evaluation statistics for best-fitted models
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Y O O O
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i i
i
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∑

∑
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with NAAQS (Table 2). Adyar and Anna Nagar are residential 
areas while Theagaraya Nagar, Kilpauk, and Nungambakkam are 
commercial (traffic intersection) areas of Chennai city. The mean 
annual concentration of RSPM/PM10 is at least 1.5 times higher 
than the permissible limit of 60μg/m3   at all the five considered 
stations except Adyar from January 2004 to December 2018 
(Table 2). But, unlike  RSPM/PM10, the mean annual concentration 
level of both SO2 and NO2 at all the five given stations over the 
period from 2004 to 2018 was well within the admissible limits of 
50μg/m3 and 40μg/m3 respectively as specified by NAAQS (Table 
2). The study of Rajamanickam & Nagan (2018) reports that 
RSPM/PM10 is not only the main contributor to the pollution, but 
also exceed the limit as prescribed by NAAQS in all the regions of 
Chennai. While SO2 and NO2 is well within the limit of NAAQS at 
all the regions of Chennai. The mean annual ambient air quality 
of three stations considered in our studies, from 2004 to 2018 
has been compared with the mean annual NAAQS in order to 
assess the pollution level at each site.
 The figures 4, 5 and 6 clearly shows that the mean annual 
concentration range of   for Anna Nagar, Theagaraya Nagar and 
Kilpauk lies within 71μg/m3  to 135μg/m3  79μg/m3 to 128μg/m3 
and 73μg/m3  to 160μg/m3 respectively over the period of 2004 to 

2018. These ranges show that the mean annual concentration of   
was too much higher for all three stations over the given period 
of time than the permissible limits of 60μg/m3  as prescribed by 
NAAQS.
 The figures 4, 5 and 6 depict that the mean annual 
concentration of SO2 in Anna Nagar, Theagaraya Nagar and 
Kilpauk ranges from 6μg/m3 to 14μg/m3, 7μg/m3 to 19μg/m3 and 
7μg/m3  to 19μg/m3  respectively. Further, the above-mentioned 
figures signify that the mean annual concentration of NO2  in 
Anna Nagar, Theagaraya Nagar and Kilpauk lies in the range from 
15μg/m3 to 37μg/m3, 17μg/m3 to 83μg/m3 and 16μg/m3 to 30μg/
m3 respectively. These ranges suggest that the mean annual 
concentration level of SO2 and NO2 of three mentioned stations 
over the period of 2004 to 2018 was well within the permissible 
limits of 50μg/m3 and 40μg/m3 respectively as specified by 
NAAQS.
 The report of National Ambient Air Quality Monitoring of 
India,2014-15 states that the low concentration of SO2 and NO2 in 
Anna Nagar, Theagaraya Nagar and Kilpauk areas of the Chennai 
city over the years has been influenced by local atmospheric 
circulation that regularly rushes from the sea into these areas. 
While the main reason behind the quite high level of  in these 

Table 2. The main characteristics of soils in the different landscape types (Eh, pH, ρ) and the depth of pitting corrosion in 
the metal of gas pipelines of the inter field collector

Types of Location
Annual Permissible limits in  

RPSM/PM10 SO2 NO2 

Industrial areas 60 50 40

Residential and other areas 60 50 40

Ecologically sensitive areas 60 20 30

Anna Nagar 102 9 21

Theagaraya Nagar 105 11 23

Kilpauk 104 11 22

Adyar 51 8 14

Nungambakkam 92 11 20

Fig. 4. Temporal variability of the mean annual 
concentration of the RSPM, SO2 and NO2 pollutants (μg/m3) 
with an admissible limit of Anna Nagar from 2004 to 2018

Fig. 5. Temporal variability of the mean annual concentration 
of the RSPM,SO2 and NO2 pollutants (μg/m3) with an 

admissible limit of Theagaraya Nagar from 2004 to 2018

Fig. 6. Temporal variability of the mean annual concentration 
of the RSPM, SO2 and NO2 pollutants (μg/m3) with an 

admissible limit of Kilpauk from 2004 to 2018
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areas has been constant emission from a growing number of 
vehicles and dust from traffic. The number of motorized vehicles 
rises to 24-fold since 2005, and private vehicles now constitute 
55% of daily all-person trips (Basic Road Statistics of India, Urban 
Infrastructure: Twelfth Five Year Plan). Every day, at least 700 
new vehicles go to the Chennai streets triggering the level of 
pollution (Sharma et al. 2019).
 The fairly higher concentration of RSPM and under 
controlled concentrations of SO2 and  NO2 of mentioned stations 
in Chennai City in comparison with the permissible limits of these 
pollutants as defined by NAAQS suggests that the forecasting of 
air pollutants is requisite for monitoring and checking the further 
air pollution.

CONCLUSIONS

 The present study has introduced an application 
of ARMA/ARIMA modelling approach that yields the 
convincing results for forecasting the ambient air quality 
of Chennai city in India. A total of nine models are selected 
from the number of tentative models, one for each 

pollutant at each of the three sites after attaining the white 
noise in ACF of residual and fulfilling certain other criteria. 
These models are quite beneficial for forecasting air quality 
as the forecasting assessed from all nine different models is 
almost free from errors. The level of accuracy suggests that 
the present forecasting approach is quite convincing but 
still more efforts are needed to improve the efficiency of 
the forecasting. The study shows that SO2 and NO2 is under 
NAAQS, but RSPM/PM10 is quite higher than NAAQS at all 
the three stations. The tremendous increase in numbers 
of vehicles is the major source of the excessive level of 
RSPM/PM10  in Chennai. The actual pollutants level on 
comparing with a permissible limit of National ambient 
air quality standards of India and forecasting accuracy of 
ARMA/ARIMA best-fitted models of three sites provide an 
inclusive approach for framing a suitable policy to handle 
the degrading level of air standard in Chennai City.
 This study can be extended by analysing the impact 
of air pollutants on atmospheric properties and human 
health in India (Chubarova et al. 2019)
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